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Memory from Neuroimaging
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Introduction

Functional neuroimaging techniques, such as functional magnetic resonance imaging 
(fMRI) and electro/magnetoencephalography (EEG/MEG), have had a major 
impact on the study of human memory over the last two decades. This impact includes 
not only new evidence about the parts of the brain that are important for memory 
(“functional localization” or “brain mapping”), which extends what was previously 
known from patients with brain damage, but also arguably informs our theoretical 
understanding of how memory works (e.g., Henson, 2005; Poldrack, 2006; though 
such claims have been questioned, e.g., Coltheart, 2006; Uttal, 2001). In this chapter, 
we illustrate ways in which functional neuroimaging has influenced our understanding 
of memory, going beyond research that was previously based primarily on behavioral 
techniques. We focus in particular on how memory processes might be implemented 
in the brain in terms of average levels of activity in certain brain areas, patterns of 
activity within areas, and connectivity between brain areas.

Theoretical Concepts That are Difficult to Measure 
Behaviorally, e.g., Retrieval States

Tulving (1983) theorized that we adopt a particular mind‐set during episodic memory 
retrieval, a so‐called “retrieval mode,” which optimizes recovery of information from 
memory, and allows us to interpret that information as having come from the past 
(rather than from sensations in the present). Until recently, however, it has been dif
ficult to evaluate theories like this owing to the difficulty of measuring such states 
behaviorally. Neuroimaging, on the other hand, is able to measure sustained brain 
activity directly associated with a state. This ability has reinvigorated such theories, 
leading to new hypothetical states that are assumed to be important for the encoding 
and retrieval of information, and even prompting new behavioral measures to investi
gate such theories further (see Chapter 5).
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2 Andrea Greve and Richard Henson

An early example of this use of neuroimaging is the study of Düzel and colleagues 
(1999), who recorded EEG during sequences of four words. Prior to each sequence, 
a cue instructed participants to decide whether or not each word was seen in a previous 
study phase (“episodic task”), or whether each word denoted a living or nonliving 
entity (“semantic task”). Düzel et al. found a sustained positive shift over right frontal 
electrodes for the episodic task relative to the semantic task. This positive shift emerged 
shortly after the instruction onset, but prior to the presentation of the first word (i.e., 
before any retrieval had taken place), and so was interpreted as evidence of a preparatory 
state for episodic retrieval, i.e., a retrieval mode.

This neuroimaging finding in turn prompted new theoretical proposals. Rugg and 
Wilding (2000) proposed that there may be different states even within a retrieval 
mode, in which people are oriented towards retrieving different types of episodic 
information. They called these “retrieval orientations.” For example, Herron and 
Wilding (2004) reported a more positive‐going left frontocentral EEG shift when 
participants prepared to retrieve the type of encoding task under which an item was 
studied, compared to when they prepared to retrieve the location in which an item 
was studied. Another example is the study of Ranganath and Paller (1999), which 
examined event‐related potentials (ERPs) locked to the onset of correctly rejected, 
new (unstudied) items in a recognition memory test. Because such correct rejections 
are unlikely to elicit any episodic retrieval, any difference in their associated ERPs as 
a function of retrieval instructions is likely to be a consequence of a different retrieval 
orientation. In this case, Ranganath and Paller compared a retrieval task in which 
 participants had to endorse objects that had appeared at study, regardless of their size 
on the screen (“general task”), with another task in which participants were only to 
endorse items as studied if they appeared in the same size as at study (“specific task”). 
A more positive‐going ERP waveform to correct rejections was found post‐stimulus 
onset over left frontal electrodes for the specific than for the general task.

It is also possible to measure such state‐related brain activity with fMRI, though 
given its worse temporal resolution relative to EEG, special designs are needed that 
allow statistical modeling to separate state‐related from item‐related blood‐oxygen‐
level‐dependent (BOLD) responses. For example, Donaldson and colleagues 
(2001) showed state‐related activity associated with blocks of a recognition 
memory task (relative to blocks of a fixation task) in bilateral frontal opercular 
areas. Moreover, the same brain areas also showed greater item‐related activity for 
correct recognition (hits) than correct rejections, suggesting that frontal oper
culum supports both a sustained retrieval mode and transient processes associated 
with successful retrieval. A subsequent fMRI study by Otten, Henson, and Rugg 
(2002) provided analogous evidence for dissociable “encoding orientations”. 
These authors found that the mean level of state‐related activity during blocks of 
words varied as a function of the number of words later remembered within each 
block, independent of item‐related activity associated with whether or not 
individual words were successfully remembered. Furthermore, this relationship 
between state‐related activity and subsequent memory occurred in different brain 
areas as a function of the study task: occurring in left  prefrontal cortex when par
ticipants performed a semantic (deep) task, and superior medial parietal cortex 
when participants performed a phonemic (shallow) task.

Importantly, the neuroimaging studies described above have not only led to new 
theoretical development (e.g., the concepts of retrieval and encoding orientations), 
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but also prompted new behavioral experiments to further test these concepts. 
Building on the ERP studies such as that of Ranganath and Paller (1999) described 
above, Jacoby et al. (2005) conducted behavioral investigations of retrieval orien
tation. They used a second memory test to probe the fate of correctly rejected new 
items (foils) in a first recognition test, as a function of the retrieval orientation that 
was adopted  during that first memory test. Participants studied one list of items 
under a semantic (deep) task, and another list of items under a phonemic (shallow) 
task. In the first recognition test, participants were expected to be oriented towards 
semantic information when distinguishing foils from deeply encoded targets, but 
oriented towards phonemic information when distinguishing foils from shallowly 
encoded targets. If so, the foils in the semantic condition should be processed 
more deeply than the foils in the phonemic condition, and hence themselves be 
remembered better on the final recognition test. This is exactly what the authors 
found. Thus, this (indirect) behavioral assay supported the theories of retrieval 
 orientations that originated from neuroimaging research. Furthermore, this assay 
has been used to examine how retrieval orientations become less precise as people 
get older.

Supplementing Behavioral Dissociations with Neuroimaging 
Dissociations, e.g., Dual‐Process Theories

Another situation in which neuroimaging data can complement behavioral data arises 
when seeking functional dissociations between hypothetical memory processes. For 
example, there has been a long‐standing debate about whether behavioral data from 
recognition memory tasks are best explained by single‐ versus dual‐process models. 
Single‐process models claim that a single memory‐strength variable is sufficient to 
explain recognition performance, normally couched in terms of signal detection 
theory (Donaldson, 1996; Dunn, 2004, 2008; Wixted, 2007; Wixted and Mickes, 
2010). Dual‐process models, however, assume that recognition involves at least two 
different processes, such as recollection, associated with retrieval of contextual 
information, and familiarity, providing a generic sense of a previous encounter, but 
without contextual retrieval (Aggleton and Brown, 1999; Diana et al., 2006; Rotello 
and Macmillan, 2006; Yonelinas, 2002; see also Chapter  9). It is not clear that 
behavioral data have yet resolved this debate (though the main protagonists may dis
agree!). One possible solution is to examine neuroimaging data from the same task: if 
conditions assumed to entail recollection produce qualitatively, rather than just quan
titatively, different patterns of activity across the brain compared to conditions 
assumed to entail familiarity, then this would appear to support dual‐process models 
(see Henson, 2005, 2006, for further elaboration and assumptions of this type of 
“forward inference”).

A methodological question then becomes how to define a “qualitatively” different 
pattern of brain activity. With classical statistics, it is not sufficient, for example, to find 
a significant difference in one brain area for a contrast of a recollection‐condition 
against a baseline condition, and in a different brain area for the contrast of a 
familiarity‐condition with that baseline. This is simply because the failure to find 
significant activation for each condition in the other brain area could be a null result. 
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However, even finding a significant interaction between two brain areas and two such 
contrasts is not sufficient, because we do not know the “neurometric” mapping 
 between fMRI/EEG/MEG signal and the hypothetical processes of interest. This 
mapping may not be linear (i.e., a doubling in memory strength may not necessarily 
mean a doubling in BOLD signal or ERP amplitude). Moreover, the neurometric 
mapping may differ across different brain areas. Indeed, there may be a positive rela
tionship between the  neuroimaging signal and a memory process in one area (e.g., 
increasing BOLD signal associated with increasing memory strength in hippocampus), 
but a negative relationship between the neuroimaging signal and the same memory 
process in another area (e.g., decreasing BOLD signal associated with increasing 
memory strength in perirhinal cortex; Henson, 2006; Squire, Wixted, and Clark, 
2007). These considerations mean that even a significant crossover interaction bet
ween two areas and two  conditions does not refute single‐process theories.

Fortunately, there is a method to solve this problem of unknown neurometric map
pings, which assumes only that these mappings are monotonic (in other words, the 
neuroimaging signal must always increase, or always decrease, whenever engagement 
of the hypothetical process increases, even if it does not increase or decrease in equal 
steps). This method is called “state‐trace analysis,” and it was developed in the 
psychological literature by Bamber (1979). The “reversed association” pattern 
described by Dunn and Kirsner (1988), and by Henson (2005), is a special case of 
state‐trace analysis. This method requires at least two dependent variables, e.g., neuro
imaging signal in two brain areas, and at least three levels of the independent vari
able, e.g., three memory conditions. When plotting the data from each condition in 
a space whose axes are defined by the two independent variables, if the resulting 
“state‐trace” is neither monotonically increasing nor monotonically decreasing, then 
one can refute the hypothesis that there is a single underlying process (for further 
elaboration, see Newell and Dunn 2008).

This analysis has been recently applied to neuroimaging data, for the first time, by 
Staresina et al. (2013b). These authors examined the amplitude of the initial evoked 
component (peaking around 400 ms) in ERPs recorded directly from human hippo
campus and perirhinal cortex during a recognition memory task. The task enabled 
definition of three trial types: (1) trials in which an unstudied item was correctly 
rejected, (2) trials in which a studied item was recognized but its study context was 
not identified, and (3) trials in which a studied item was recognized and its study 
context was identified. According to single‐process models, conditions 1–3 should 
be ordered along an increasing continuum of memory strength. However, Staresina 
et al. were able to reject this hypothesis by demonstrating a non‐monotonic state‐
trace,  concluding that at least two different processes were occurring in these two 
brain areas.

While this finding overturns previous claims that a single dimension of memory 
strength can explain neuroimaging data in the medial temporal lobe during recogni
tion memory tasks (Squire, Wixted, and Clark, 2007; Wixted, 2007), it is important 
to note that it does not necessarily support specific dual‐process memory theories. 
State‐trace analysis only imputes the dimensionality of the underlying causes (assuming 
a monotonic mapping from those causes to each measurement); it does not constrain 
what those dimensions are. Thus further theorizing, concerning the precise nature of 
the experimental conditions, is necessary to infer the nature of the two or more 
processes that differed across the three conditions in the study by Staresina et al. 
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(2013b). For example, one process may have related to memory strength, while the 
other could have reflected differences in some other non‐mnemonic process that hap
pened to also differ across the three conditions. Note also that, even if there are 
 multiple memory signals in the brain, they may still be mapped onto a single dimension 
of “evidence of oldness” in order to make a typical old/new recognition decision, i.e., 
conform to single‐process theory in terms of behavioral data.

The use of state‐trace analysis for “forward inference” of course resembles the 
classical “dissociation logic” commonly used in cognitive psychology and neuropsy
chology (Henson, 2005; Shallice, 2003). In the extreme case, such inferences do not 
care where in the brain (or when in time) qualitative differences in brain activity are 
found (cf. “reverse inference,” considered in the next section). Indeed, even when 
brain location may be of interest – such as hippocampus versus perirhinal cortex in the 
above example of Staresina et al. (2013b) – there are limitations to the specificity of 
such localization. As argued by Henson (2011), for example, as soon as one allows for 
nonlinear and recurrent transformations of a stimulus (experimental input) by other 
brain areas, the finding of a non‐monotonic state‐trace across two measured areas 
does not necessitate that the processes of interest occur in those areas: the dissociable 
neuroimaging signals in those areas might instead be due to differing inputs from 
other (non‐measured) areas.

Inferring Memory Processes Directly from Local Brain 
Activity (Reverse Inference)

In contrast to the dissociation logic above, one of the most common types of 
psychological inference from neuroimaging data is based on association: namely, that 
a memory process occured within an experimental condition because a certain brain 
area was active. The assumptions and limitations of this type of “reverse inference” 
have been discussed at length (Poldrack, 2006, 2008). In the extreme case, this infer
ence is only valid under a strict form of functional localization: i.e., when there exists 
a one‐to‐one mapping between a specific brain area and a specific cognitive process 
(Henson, 2005). We return to these limitations later, but first give some examples of 
this type of inference.

One example of a recent MEG study to use reverse inference was reported by Evans 
and Wilding (2012). This study tested a particular type of the dual‐process theories of 
recognition memory described above: the independent‐dual‐process model of 
Yonelinas and colleagues (Diana et al., 2006; Yonelinas, 2002). According to this 
model, recollection is a probabilistic event whose occurrence is independent of famil
iarity. This independence assumption has been questioned by others, however (Berry 
et al., 2012; Pratte and Rouder, 2012; Wixted and Mickes, 2010), and is difficult to 
test with behavioral data alone, since the independence assumption is normally 
necessary in order to score the data.

Evans and Wilding (2012) combined MEG with Tulving’s (1985) remember/
know procedure, which instructs participants to make a remember (R) judgment when 
they can retrieve any contextual information associated with prior study of an item, a 
know (K) judgment if the item seems familiar to them, but they cannot remember any 
context, or a new (N) judgment if the item does not seem familiar. The basis of Evans 
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and Wilding’s reverse inference was an extensive EEG literature in which familiarity is 
believed to occur from 300 to 500 ms post‐stimulus, while recollection is believed to 
occur later, from 500 to 800 ms (Bridson et al., 2009; Donaldson, Wilding, and Allan, 
2003; Greve, van Rossum, and Donaldson, 2007; Mecklinger, 2000; Rugg and 
Curran, 2007; Tendolkar et al., 2000). They therefore measured the amplitude of the 
event‐related fields (ERFs) in these two time‐windows for R, K, and N judgments to 
studied items (i.e., R hits, K hits, and N misses).

According to Yonelinas’s model (and in common with signal‐detection theories), 
for a K judgment to be given, the strength of a familiarity signal needs to exceed some 
criterion (otherwise an N judgment is given instead). This means that, if R judgments 
are given only when recollection occurs, and the probability of this recollection is 
independent of the level of familiarity, then the mean level of familiarity for R judg
ments will be less than that for K judgments (since the occurrence of recollection 
means that familiarity does not also need to exceed some criterion in order to make 
an R judgment). Single‐process theories, on the other hand, which assume R and K 
judgments are quantitatively rather than qualitatively different, always predict that 
memory strength will be highest for R judgments. Thus the rank order of the ERF 
from 300 to 500 ms should be N–R–K according to the independent dual‐process 
model, but N–K–R according to single‐process theories. Evans and Wilding (2012) 
found support for the first pattern, with ERF amplitude between 300 and 500 ms for 
R judgments falling in between that for N and K judgments. For the later time‐
window of 500–800 ms, on the other hand, the order was N = K < R, consistent with 
a separate, later recollection effect. This finding therefore supports dual‐process 
models in which recollection and familiarity are independent.

Another recent example of a reverse inference in the context of dual‐process models 
of recognition memory comes from the fMRI study of Taylor, Buratto, and Henson 
(2013). This study combined R/K judgments with brief, masked primes that occurred 
immediately prior to each item during a recognition memory test. These primes were 
masked so effectively that participants were rarely able to identify them. Under such 
conditions, Jacoby and Whitehouse (1989) found that participants are more likely to 
endorse test items (targets) as previously studied when the preceding prime was the 
same item (primed condition), relative to when the preceding prime was a different 
item (unprimed condition). This memory illusion occurs even for new test items that 
are not in fact studied, and subsequent studies showed that this increased bias to 
respond “old” is associated with K judgments, not R judgments (Kinoshita, 1997; 
Rajaram, 1993). This bias is naturally explained within a dual‐process framework by 
assuming that matching primes increase the familiarity of test items, and this increased 
familiarity is attributed to the study phase (erroneously in the case of new items).

Taylor, Buratto, and Henson (2013) compared the effects of masked “repetition” 
primes, of the type discussed above, with the effects of masked “conceptual” primes, 
which were different but semantically related to the target item (though not associa
tively related; cf. Rajaram and Geraci, 2000). These conceptual primes increased R 
but not K judgments, thus showing the opposite effect to repetition primes. This 
finding is difficult to explain along the conventional dual‐process lines described 
above, i.e, in terms of increased fluency being attributed to familiarity (though see 
Taylor, Buratto, and Henson 2013, for some suggestions). However, one trivial 
explanation is that the crossover interaction between repetition versus conceptual 
primes and R versus K judgments was an artefact of the mutually exclusive nature of 
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the R/K procedure. That is, if the repetition and conceptual primes produced  different 
types of fluency (perceptual versus semantic, for example), participants might feel 
obliged to indicate this by using K judgments for one type of fluency and R judg
ments for the other. Indeed, this mutually exclusive responding has been claimed to 
be a weakness of the standard R/K procedure; when participants are asked to give 
continuous and parallel ratings of both “remembering” and “knowing” for each item, 
many experimental manipulations are found to affect both R and K ratings (see Brown 
and Bodner, 2011; Kurilla and Westerman, 2008).

Taylor, Buratto, and Henson (2013) therefore combined their masked priming 
paradigm with fMRI, and leveraged on previous fMRI studies that have implicated 
inferior parietal activation in recollection. The authors replicated the increased BOLD 
signal in these parietal areas for R versus K judgments, but importantly also found that 
masked conceptual primes, but not masked repetition primes, increased this parietal 
activation further (relative to the unprimed case). This observation suggests that the 
conceptual primes were genuinely increasing recollection. This is therefore an example 
of where a reverse inference from neuroimaging data can be used to rule out an 
alternative theoretical account: here, that the interaction between R/K judgments 
and repetition/conceptual primes was a methodological artefact of the mutually 
exclusive R/K procedure.

Assuming the reverse inferences used by Evans and Wilding (2012) and Taylor, 
Buratto, and Henson (2013) are valid, both of these neuroimaging studies not only 
provide additional constraints on theories of recognition memory; they also offer 
methodological guidance for analysis of behavioral data, such as whether R and K 
judgments can be assumed to be independent (rather than redundant or exclusive; 
Knowlton and Squire, 1995; Mayes, Montaldi, and Migo, 2007). However, as 
 mentioned earlier, the assumption of reverse inference, in its most extreme form, 
requires that the 300–500 ms ERF amplitude (in the Evans and Wilding example) 
reflects differences in, and only in, familiarity, and that the inferior parietal BOLD 
amplitude (in the Taylor and colleagues example) reflects differences in, and only in, 
recollection. If instead the 300–500 ms ERF or parietal BOLD amplitude reflect 
 differences between R, K, and N categories other than their mean familiarity or 
 recollection respectively (e.g., differences in some confounding variable), then the 
theoretical (reverse) inferences do not follow. For example, electrophysiological 
 signals from 300–500 ms in recognition tasks have been argued not to reflect famil
iarity per se, but rather forms of implicit conceptual fluency (Paller, Voss, and Boehm, 
2007; see also Chapter 3). Likewise, the BOLD signal in parietal cortex might not 
reflect recollection per se, but rather differences in endogenous or exogenous 
attention, or perhaps even differences related to motor preparation (given that “old” 
decisions associated with R judgments tend be made faster on average).

The nature of the mapping between brain measure and cognitive process is of 
course at the heart of cognitive neuroscience. The extreme form of functional locali
zation assumes that each distinct brain area supports one unique hypothetical function 
(Figure  1.1a). To avoid making this one‐to‐one mapping between neuroimaging 
measure and cognitive process (which may not be provable in the strict sense: Henson, 
2005), Poldrack (2006) suggested reverse inferences as probabilistic, according to a 
Bayesian framework. According to the Bayes’ theorem, the probability that a cognitive 
function F1 was engaged when activity in a certain brain area A1 is observed depends 
on how likely it is that this brain area is active when function F1 is known to have 
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occurred, multiplied by the prior probability that function F1 generally occurs, and 
divided by the baseline probability that brain area A1 is generally active. While the 
likelihood of A1 being activated, whether or not F1 is assumed to have occurred, can 
be estimated from databases or meta‐analyses, estimating the prior probability of 
function F1 occurring is problematic (though see Poldrack, 2006, for a possible 
solution).

In general terms, the implication of this Bayesian formulation is that, even if activity 
in a certain brain area is very likely to occur with a specific function – for example, a 
cognitive process reliably activates that area – this is not particularly informative if the 
same area is also activated in many other situations where that function is not involved. 
This has led many to criticize the weakness of reverse inferences. More recently, 
Hutzler (2014) argued that, if one further conditionalizes the probability of a brain 
area being activated on a subset of tasks (e.g., just those experiments that examined 
activity during a recognition memory task), then reverse inferences become stronger. 
In other words, if a brain area has consistently been activated in association with a 
specific memory process in the context of recognition memory tasks (ignoring how often 
it is activated in other types of tasks), then its activation in a new recognition memory 
experiment can provide strong evidence that this process has occurred. Thus, if the 
300–500 ms ERF and parietal BOLD effects in the Evans and Wilding (2012) and 
Taylor, Buratto, and Henson (2013) studies have been consistently associated with 

Pattern analysis

(a)

(b)

(c)
Regions of activation Connectivity
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Figure 1.1 Schematic drawings of the human brain that illustrate different potential map
pings of distinct memory functions (F1, F2) onto neural activity within and across distinct brain 
areas (A1, A2, A3). Changes in cognitive function can give rise to modulations in: (a) average 
levels of activity in different brain areas, (b) the pattern of activity within and across different 
regions, and (c) the nature of connectivity between multiple brain areas.
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familiarity and recollection respectively by prior neuroimaging experiments of 
 recognition memory (regardless of whether they occur in other contexts), then this 
would bolster the reverse inferences described above.

The problem with Hutzler’s (2014) argument is that it requires a definition of the 
subset of tasks over which to estimate the prior probability of activation (e.g., recog
nition memory tasks just with visual stimuli, or with any type of stimulus?). This 
debate then returns to the persistent question of cognitive theory, that is, the ontology 
of basic cognitive processes and their engagement in specific tasks. If this ontology 
can be established on purely independent grounds (e.g., from behavioral data alone), 
then reverse inference might become valid, but ironically neuroimaging is then no 
longer necessary for informing the ontology. An alternative pragmatic approach, 
 suggested by Henson (2005), is that reverse inferences may start as being weak, but 
can still be used to inform and/or revise the cognitive ontology, leading to new exper
iments and iterated inferences until there is (hopefully) a convergence of brain 
 mapping and cognitive ontology, such that a one‐to‐one mapping between brain area 
and cognitive process is established; at which point, reverse inference then becomes 
valid (see also Gonsalves and Cohen, 2010; Poldrack and Wagner, 2004).

Anatomical and Functional Scale, High‐Resolution fMRI, 
and Contact with Animal Models

The above discussion raises the important issue of granularity (Henson, 2005): that 
is, at what level of specificity to define a cognitive process and at what spatial scale to 
define a “brain area.” In terms of memory processes, for example, it is possible that 
recollection is not a unitary construct, in that retrieval of spatial context might be a 
dissociable function from retrieval of temporal context (e.g., Duarte et al., 2010) and 
likewise, familiarity might encompass fluency of multiple different types of processing, 
e.g., orthographic, phonological, semantic, etc. In terms of brain areas, on the other 
hand, it is possible that trying to ascribe a single function to the hippocampus is inap
propriate because it in fact contains several distinct subfields that each serve a different 
function, e.g., dentate gyrus (DG), CA1, CA3, and subiculum (Deguchi et al., 2011; 
Lee et al., 2004; Leutgeb et al., 2004; Schmidt, Marrone, and Markus, 2012; 
Vazdarjanova and Guzowski, 2004; see also Chapter 6). In this case, averaging activity 
over all voxels within the hippocampus will obscure such functional differences. 
Analogously, had Evans and Wilding (2012) averaged over all time samples between 
300 ms and 800 ms in their MEG study, then no difference between familiarity and 
recollection might have been observed.

It is possible that the appropriate level of anatomical granularity will only be found 
when the spatial resolution of neuroimaging techniques such as fMRI is increased. 
Indeed, in the extreme, we would like to be able to measure activity in individual neu
rons (or even individual synapses). This is of course possible in animals, but rarely in 
humans. Nonetheless, there are many computational models of the hippocampus 
(and other brain areas) that are based on such single‐cell data from animals (Hasselmo 
and Howard, 2005; Lisman and Otmakhova, 2001; Treves and Rolls, 1994), some of 
which have hypothesized specialized functions for hippocampal subfields. The advent 
of high‐resolution fMRI means that some of these subfields can now be imaged in 
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humans, which in turn allows a bridge between human and animal data and models. 
For example, two concepts popularized in computational (neural network) models of 
the hippocampus are pattern separation and pattern completion (for more discussion, 
see Chapter 6). Pattern separation refers to the ability to orthogonalize similar input 
patterns (e.g., to separate two episodes that occurred in similar contexts), whereas 
pattern completion refers to the ability to group together different input patterns 
(e.g., to complete the details of an episodic memory given only a partial cue).

Several recent models attribute pattern separation to the DG. Inputs from cortical 
areas are assumed to reflect distributed patterns of activity, which are transformed into 
unique hippocampal representations via the DG and its subsequent sparse projections 
to the CA3 field. The recurrent connectivity within CA3, on the other hand, is 
thought to support pattern completion, via conjunctive representations of co‐ 
occurring elements. When a noisy or partial cue is presented, these conjunctive codes 
and recurrent connections enable completion of associated information (which is then 
projected back into the cortex via other subfields such as CA1 and subiculum). Most 
fMRI studies to date (which typically have a resolution of 3 mm isotropic) have been 
unable to resolve these hippocampal subfields, and so it has been difficult to test the
ories about pattern separation and completion, given that these processes co‐occur.

Bakker et al. (2008), however, used the higher resolution (1.5 mm isotropic) 
afforded by recent advances in fMRI to separate BOLD signal across hippocampal 
subfields. They presented participants with a series of images, in which some images 
were either the same as previous images in the series, or were similar but not identical. 
If participants noticed this slight change, the DG showed a novelty response that was 
also observed for new items, but was absent when exact replicas of previously studied 
images were shown (though it was not possible to distinguish DG and CA3 even at 
this resolution). Bakker et al. interpreted this pattern as supporting a role of human 
DG in pattern separation. Neural populations in CA1 and subiculum areas, on the 
other hand, did not show a novelty response for the similar items and did not differ
entiate between the similar and identical items, and were interpreted as contributing 
to pattern completion (see also Johnson, Muftuler, and Rugg, 2008).

Clearly today’s high‐resolution fMRI is unlikely to be sufficient to reveal all 
functional subdivisions in our brains, and this may remain the case even if we reach 
theoretical limits on fMRI resolution, for example, in terms of vascular coverage. 
Nonetheless, the finer level of spatial granularity offered by higher‐resolution fMRI is 
still likely to furnish insights beyond those afforded by our current resolutions, and 
thereby further reduce the gap between human and animal models. High‐resolution 
fMRI is also likely to increase the amount of information extracted by multivariate 
pattern analyses, as discussed next.

Multivariate Pattern Analysis: Processes Versus Representations?

Multivariate pattern analysis (MVPA) is a relatively recent method that uses powerful 
pattern classification algorithms to determine whether different types of stimuli or 
cognitive processes can be classified on the basis of patterns of activity over voxels 
(in fMRI, e.g., Haxby et al., 2001; Norman et al., 2006; Polyn et al., 2005), or over 
sensors/time‐points/frequencies (in MEG/EEG, e.g., Jafarpour et al., 2013). Thus in 
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an fMRI experiment, for example, rather than comparing two conditions in terms of 
the average BOLD signal across voxels within a region of interest (ROI), the tradi
tional “univariate” approach, MVPA compares them in terms of patterns of signals 
across voxels within that ROI, which may not necessarily differ in the average signal 
(Figure 1.1b). These methods have been shown to offer the remarkable ability to 
“decode” brain activity, for example, to determine what stimulus a person is looking 
at from the brain activity alone (see Norman et al., 2006, for review; for more 
discussion of MVPA, see Chapters 2 and 6).

Some caution should be exercised concerning the recent excitement around MVPA, 
however, which again has to do with the questions of granularity and functional–
anatomical mapping. If one were to include all voxels within the brain, then it would not 
be particularly surprising if MVPA could distinguish two stimuli that were perceivably 
different. Analyses of this kind are more theoretically interesting when participants 
have no reportable access to the processes of interest, or when patterns are restricted 
to various ROIs: for example, to discover that episodic memories can be classified 
above chance within one ROI, e.g., hippocampus (Chadwick et al., 2010), but not 
within another, e.g., cerebellum. Yet it should be noted that this latter use of MVPA 
to “decode” brain activity within ROIs describes another form of functional localiza
tion, albeit one that may be more sensitive than traditional analyses that only consider 
the mean activity within an ROI1. Indeed, this use of MVPA is analogous to the issue 
of spatial resolution discussed in the previous section: a standard‐resolution voxel can 
be viewed as an ROI that averages over what might be quite distinct patterns of 
activity had a higher resolution been used (i.e., one scanner’s voxel is another scan
ner’s ROI!).

Nonetheless, there has been a more important shift in perspective triggered by 
MVPA, in terms of characterizing the nature of neural representations. One example 
of this is the development of methods to test whether neural representations are 
sparse or distributed (e.g., Morcom and Friston, 2012). Another example, which is 
likely to have a significant effect on the field, is representational similarity analysis 
(RSA), in which the activity patterns for a large number of different stimuli are com
pared in terms of their similarity (see Chapter 6). The emergence of structure within 
the resulting stimulus‐by‐stimulus “similarity matrix” then gives clues to what an 
ROI is representing (e.g., animate versus inanimate visual objects; Kriegeskorte 
et al., 2008). Thus the focus is not so much on whether or not patterns can be classi
fied according to two or more experimentally defined categories, but on letting the 
data reveal the nature of the categories represented by an ROI (its “representational 
geometry”). Moreover, the similarity spaces observed in neuroimaging data can 
then be compared to those predicted by competing computational models (by 
applying RSA to model outputs, when the models are “presented with” the same 
stimuli). This approach offers an interesting potential way to test the computational 
models of the MTL described in the previous section (e.g., in terms of pattern sep
aration and completion).

Moreover, the greater sensitivity of MVPA classification methods over traditional 
univariate methods should not be dismissed, because it has allowed researchers to 
track the presence of neural activity patterns (representations) over time in continuous – 
and hence noisy – brain activity. This has been particularly influential in memory 
research, where reactivation of memories can be examined by training a classifier on 
stimuli presented during the study phase, and then testing that classifier’s ability to 
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detect the same patterns during retrieval (when the stimuli are no longer present, e.g., 
cued by a different stimulus). One of the first examples to use this approach was the 
fMRI study of Polyn et al. (2005). These authors wanted to test the contextual 
 reinstatement hypothesis (Bartlett, 1932; Tulving and Thomson, 1973), which states 
that people retrieve specific episodic details by first activating information about the 
general properties of such episodes. Polyn et al. did this by asking participants to 
study famous faces, famous locations, and common objects. An MVPA classifier was 
trained to distinguish these three categories from fMRI data acquired during the 
study phase. Then, using the fMRI data acquired when participants later freely recalled 
the names of the studied stimuli, the classifier predicted the category that participants 
were thinking about, on a moment‐by‐moment basis. Consistent with the contextual 
reinstatement hypothesis, high classification about a given category emerged several 
seconds before specific examples of that category were recalled.

MVPA has also been used in MEG, at least in the context of maintenance in 
short‐term memory. Fuentemilla et al. (2010) trained an MVPA classifier to distin
guish indoor or outdoor scenes, and then looked for above‐chance classification 
(across sensors) at various times and frequencies during a 5‐second retention 
interval. Interestingly, reactivations of above‐chance classification were common in 
the theta frequency range (around 6 Hz) and correlated with memory performance, 
although only for blocks in which configural information needed to be retained 
during that interval. The authors argued that these data support animal models in 
which theta‐coupled replay supports maintenance of information in working 
memory. Evidence for reactivation during a longer‐term retention interval has also 
recently been found with fMRI. Staresina and colleagues (2013a) tracked the fMRI 
activity patterns occurring during a retention interval in which participants 
 performed an odd/even distractor task, comparing their similarity to patterns 
evoked by individual stimuli during the study phase. Greater similarity was found 
for stimuli that were recalled in the subsequent test phase than for stimuli that were 
not, which supports the hypothesis that long‐term memories are retained and/or 
consolidated by offline reactivation.

These examples thus illustrate a more subtle effect of the advent of MVPA, namely 
the theoretical shift in interpreting neuroimaging data in terms of processes versus 
representations. Results from univariate tests within an ROI are normally interpreted in 
terms of processes, i.e, the degree to which recollection or familiarity occurred, whereas 
MVPA results are normally interpreted in terms of representations. In reality, of course, 
it is impossible to define processes in the absence of representations (and vice versa), and 
defining both is often only possible in the context of formal models. Greve, Donaldson, 
and van Rossum (2010), for instance, described a neural network model that simulates 
two kinds of retrieval processes that operate on the same memory representation. This 
model simulated both familiarity‐based and recollection‐based discrimination of old 
and new items, which paralleled the characteristics reported in the empirical literature. 
Simulations like this demonstrate how the psychological processes of recollection and 
familiarity may reflect qualitatively distinct retrieval (read‐out) operations that act on the 
same representations within a single brain area. More generally, explicit neural models 
like those described by Greve and colleagues, coupled with a subtle shift in perspective 
between characterizing processes and characterizing representations, may alter the way 
neuroimaging data are used to inform memory theories.
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Functional and Effective Connectivity in Memory,  
e.g., within MTL

A further logical possibility is that some memory processes/representations are most 
visible in changes in the connectivity between brain areas, rather than in average activity 
or activity patterns within each area (Figure 1.1c). Given that memories are likely to be 
stored in terms of changes in synaptic strengths, and that those occur between as well 
as within brain areas, it would seem likely that those synaptic changes would alter the 
functional connectivity between areas. Recollection, for example, might correspond 
not simply to high activity levels within hippocampus, but rather to high levels of con
nectivity between hippocampus and other cortical areas, which represent the content 
of recollected memories (see also Chapter 13). Indeed, it is also possible that the same 
set of brain areas could enable different memory functions depending on changes in 
the effective connectivity between them; that is, the same anatomical network could 
“re‐wire” into different functional networks according to different memory processes.

Some of the first fMRI studies to investigate memory‐related changes in functional 
connectivity were performed by Maguire, Mummery, and Büchel (2000). These authors 
used structural equation modeling (SEM), a technique that tests competing models 
against each other, to evaluate explicit network models defined over a small number of 
ROIs. Assuming a model provides a satisfactory fit to the time‐series data in each ROI, 
SEM coefficients for individual connections can then be interpreted in terms of “effec
tive connectivity” between ROIs. Effective connectivity in this context goes beyond 
functional connectivity (e.g., in Figure 1.1a, simple pairwise correlation between activity 
in two areas A1 and A2) in that it allows for indirect connections (e.g., in Figure 1.1c, 
testing whether the correlation between A1 and A2 is actually due solely to a common 
input from a third area A3, assuming that all the areas that modulate activity within the 
network have been included in the model). Maguire et al. used SEM to address a theo
retical debate about the distinction between semantic and episodic memory. The 
multiple‐memory systems view (Tulving 1987) holds that separate memory systems are 
specialized for processing episodic and semantic information, supported by functionally 
independent networks. The alternative unitary system view proposes a single declarative 
memory system (McIntosh, 1999; Rajah and McIntosh, 2005; Roediger, 1984), in 
which memories can vary along a contextual continuum. Maguire and colleagues tested 
these theories by acquiring fMRI data while participants judged the accuracy of sen
tences about four different types of information: autobiographical events, public events, 
autobiographical facts, and general knowledge. They then defined a memory retrieval 
network by comparing activity common to all four of these types of sentence against a 
scrambled sentence baseline condition. This network included medial frontal cortex, 
left temporal pole, left hippocampus, left anterolateral middle temporal gyrus, parahip
pocampal cortex, posterior cingulate, retrosplenial cortex, and temporoparietal junction.

SEM then revealed several differences in effective connectivity between areas within 
this retrieval network as a function of the type of information retrieved. For example, 
connectivity from temporal pole to parahippocampal gyrus increased during retrieval of 
autobiographical relative to public events. Connectivity from temporal pole to lateral 
temporal cortex, on the other hand, increased during retrieval of public relative to 
 autobiographical events. The authors argued that this pattern of results is more consis
tent with the view that episodic and semantic memories originate from separate systems 
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that differ in the way information is processed, than with the view that semantic and 
episodic memories emerge from a continuum of representations that differ in contex
tual detail. Furthermore, the data suggest that brain areas can have multiple functions 
during memory retrieval, depending on their connectivity with other brain areas.

Gagnepain et al. (2010) provided another example of the different perspectives 
offered by local activity versus effective connectivity. These authors used dynamic causal 
modeling (DCM) of fMRI data, which can be thought of as an extension of SEM that 
includes a more sophisticated model of the dynamics of neural interactions and their 
expression via the haemodynamic (BOLD) response. DCM was applied to fMRI data 
from a study phase in which participants performed an incidental task on auditory 
words, and memory was tested 24 hours later using a remember/know procedure. Of 
primary interest was how neural activity that predicted subsequent R versus K judg
ments varied as a function of whether or not words at study had been primed via pre‐
study exposure. Unprimed words showed the usual pattern of greater hippocampal 
activity for words later attracting R judgments than for words later receiving K judg
ments. For primed words, however, this pattern was reversed, with decreased activity for 
words that attracted R than K judgments. This suggests that local hippocampal activity 
alone is not sufficient to predict subsequent memory. Instead, DCM analysis showed 
that subsequent R judgments were associated with increased effective connectivity to 
the hippocampus from the superior temporal gyrus – an area that showed the usual 
reduction in activity for primed relative to unprimed words. This was explained in terms 
of priming improving the transmission of sensory information to hippocampus, result
ing in stronger associations between that information and its spatiotemporal context. 
Regardless of whether this explanation is correct, the more important issue for present 
purposes is that some causes of successful memory encoding may be found in the 
functional coupling between areas, rather than in local activity within those areas.

Given that much communication between brain areas during memory encoding 
and retrieval is likely to occur on the scale of tenths of a second, methods for testing 
effective connectivity are likely to be more theoretically illuminating when applied to 
MEG/EEG data than fMRI data, because changes in connectivity over such rapid 
timescales will be invisible to fMRI. Intracranial EEG data acquired directly from the 
medial temporal lobes of patients about to undergo surgery, for example, have shown 
transient increases in coupling between hippocampus and perirhinal cortex in the 
gamma frequency band (around 40 Hz) associated with successful memory encoding 
(Fell et al., 2001). Recent methods that use DCM to compare different network 
models of extracranial MEG and EEG data may also prove a useful approach when 
intracranial data are not available (Kiebel et al., 2008).

Closing the Loop: Inferring Causality from Neuroimaging Data

It is often stated that neuroimaging data are only correlational, and therefore brain activity 
may be incidental to a memory process of interest, rather than causing that process. This 
is sometimes then taken to mean that neuroimaging data are somehow inferior to 
behavioral data. The latter claim, however, would be mistaken, since both measures of 
brain activity and measures of behavior (for example, accuracy or speed) are measurements 
of the same neural/cognitive system. Indeed, the behavioral responses only reflect the 
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final output, with less information about the intermediate stages between stimulus and 
response. In most cognitive neuroscientific (hypothetical‐deductive) frameworks, neither 
type of measurement can directly “cause” a cognitive process; this would only make sense 
if one measurement were used as a surrogate for a process of interest, according to some 
theory (for further discussion of this issue, see Henson, 2005). Thus, claims that neuro
imaging differences are  confounded by concurrent behavioral differences are usually 
invalid: behavioral differences cannot cause activity differences; rather, brain activity and 
behavioral responses are normally both considered as the consequence of some hypothet
ical process. In the context of more mechanistic models of information flow, sensory input 
can be said to cause activity in one brain area, which can then be said to cause activity in 
another area, ultimately causing motor output (i.e., a behavioral response).

Of course, what is normally meant by the statement that neuroimaging data are 
only correlational is that they cannot tell us about the causal role of a brain area in a 
cognitive process in the same way that lesion data do. This issue would appear to be 
undeniable, and of course raises the question about how to define causality (Henson, 
2005; Weber and Thompson‐Schill, 2010). Without getting into philosophical 
debate, one recent step towards inferring causality from neuroimaging data was made 
by Yoo et al. (2012). Normally, a stimulus or task is manipulated experimentally, and 
brain and behavioral data are measured in response. Yoo et al., on the other hand, 
used brain data to control when a stimulus was presented, and measured the 
consequence for subsequent behavior (i.e., the brain data were used to define the 
independent variable, rather than being the dependent variable). More precisely, they 
used real‐time fMRI to measure online activity in the parahippocampal place area 
(PPA), and then presented visual scenes when PPA activity corresponded to either a 
“good” or “bad” state, where those states were defined by a prior experiment in 
which PPA activity was related to subsequent memory for scenes. Later testing outside 
the scanner then showed that recognition memory for the scenes presented during 
the “good” brain state was superior to that for scenes presented during the “bad” 
state. This finding thus bolsters the claim for a causal role in PPA activity during 
memory encoding. This approach still does not correspond to experimental manipu
lations that directly affect neural activity in a brain area (e.g., transcranial magnetic 
stimulation, TMS) – in that it relies on spontaneous rather than controlled changes in 
PPA state – but it is another interesting example of how neuroimaging data can be 
used to inform neuroscientific theories about how our brains enable our memories.

Conclusion

We have presented a number of examples of neuroimaging studies that we believe 
have enriched our understanding of human memory. For example, we have illustrated 
cases where neuroimaging has been informative in investigating memory processes 
that are difficult to access behaviorally. In other cases, neuroimaging provides addi
tional sources of constraints (e.g., dissociations) that can be used to distinguish com
peting memory theories. Moreover, neuroimaging has not only offered additional 
ways to test existing theories, but has also facilitated the development of new 
 experimental paradigms for behavioral studies, and provided the ability to address 
assumptions underlying some behavioral analysis methods.
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We have emphasized that the value of neuroimaging hinges on the types of analysis 
and inference employed. While most neuroimaging studies have focused on the average 
activity within brain areas (or within time/frequency windows) and have been portrayed 
solely in terms of localizing a presumed memory process (in space or time), some neu
roimaging studies have tried to reverse this inference, using neuroimaging data to deter
mine whether a memory process occurred in a certain context. Furthermore, recent 
analysis techniques have started to utilize patterns of activity over voxels or times/
frequencies, rather than just averaging that activity, and to  consider what these patterns 
might represent. Other analyses have focused on memory‐related changes in the com
munication between brain regions in terms of effective connectivity. These new analyses 
in turn force memory researchers to think carefully about how memory processes might 
be implemented in terms of neural representations and synaptic changes between neural 
populations. Such thoughts are best formalized in computational models of neuronal 
networks, which can then be tested in more detail with animal experiments.

Having said this, there are still deep philosophical issues that need to be considered 
when interpreting neuroimaging data. Issues related to the granularity of cognitive 
processes and resolvable brain areas, for example, must be considered when interpret
ing neuroimaging data, for example, for reverse inferences. We also acknowledge that 
not all neuroimaging studies of memory have made useful contributions to memory 
theories, and that the neuroimaging field continues to be plagued by tricky statistical 
issues that may question some published findings. Nonetheless, we do not think these 
are reasons to “throw the baby out with the bathwater.”

Note

1 This also raises the question of how the ROIs are defined in the first place, which is often 
based on traditional mass univariate analyses that search through the whole brain, though 
analogous searchlight methods exist to apply MVPA within a fixed volume, the center of 
which can be traversed across the entire brain image (Kriegeskorte et al. 2008).
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