CHAPTER 1

BASIC STATISTICAL TOOLS

This Chapter provides some basic statistical concepts and tools. Pointwise estimation
and confidence interval estimation are introduced; conservative estimation follows.
Then, an explanation is given on what statistical tests are. The power function of
the tests together with the errors of first and second type are defined. The p-value is
presented, as an index for evaluating the outcome of the test. Some applications in
the context of clinical trials are shown and numerical examples and figures are alse
provided. The probability of success in a trial (i.e. success probability) is illustrated,
including how to estimate it. Superiority tests are adopted first to illustrate the above
topics. Then, inequality tests are considered. Finally, there is a brief Section regard-
ing how success probability estimation can be derived for tests of clinical superiority,
of non-inferiority and for equality tests.
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1.1 Pointwise estimation

Two populations are in the study, representing tho one treated with a new drug
and that treated with a control drug. In order to estimate the unknown param-
eters of interest of these populations, for example their averages (i.e. means),
experimental samples are drawn from the populations. Then, experimental data
are used to provide an estimated value, which is often the most likely one, of
these parameters: this is pointwise estimation.

Often, the effect size of the new drug is the quantity of clinical interest and is
expressed as the ratio of the difference between the two means and the common
standard deviation of the distributions. So, the effect size can be estimated on
the basis of point estimates of means and standard deviation derived from popu-
lation samples. It is worth noting that the frequency of effect size estimates that
are far from the true (and unknown} value of the effect size tends to be smaller
as the size of the samples tends to be larger.

Nevertheless, although the point estimate is probably close to the unknown ef-
fect size, especially for large samples, it is almost surely different from the true
effect size. What is most important is that peintwise estimation has its pecu-
liar random variation, since it depends on random samples. Estimates, indeed,
can vary from ene sample to another and they vary randomly since samples
are randomly drawn, Consequently, the variability of pointwise estimates must
be taken inte account during the estimation process. This is a very basic and
essential statistical concept.

Consider two Gaussian distributions representing the distributions of the quantity of
interest in the two patient populations being treated with the new drug (population
1} and with the contrel (population 2), defined by X; and X5, respectively. These
distributions have generic means ;" and ", respectively, and common standard devi-
ation o. This ¢ is a measure of the variability of population data around their means
- it is a mean of the distances of data from the respective means.

The effect size of the experiment is considered here to be the standardized difference
between the means, thatis § = (i’ — ') /0. The effect size can cover a wide range
of values, depending on how the new and the control drugs perform. Nonetheless,
there is only one “true” value of 4, namely é; and given by the true means p¢; and ps.
To investigate on §; is the aim of our research,

A sample of size m is randomly drawn from each patient population and the random
variables representing the data provided by the patients are denoted by X ;, with
di=1,....mandi= L 2 Thesample averages 3. ; X;;/m, denoted by X; m,
aim to estimate the distribution means ;. ¢ = 1,2, and are estimators of the latter.
Since estimators are functions of the random samples they are random variables too.
In general, estimators are built in order to fall with high probability close to the
parameters they are estimating.
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Here, o is assumed to be known. The pointwise estimator of 4; is, then, based on
sample averages: d, = (X — Xom)/0.

The value that a random variable assumes, i.e. the observed value of the latter, is
called realization of the random variable; the realizations of estimators are called
estimates.

Remark 1.1. Often, distinct notations are adopted to emphasize the difference be-
tween a random variable and its realization: uppercase and lowercase letters usually
indicate the former and the latter object, respectively. For example, the realizations
of the average of the first sample (i.e. the estimates af 1) might be denoted by T\ .
Throughout the book, this distinction will not be made and the reader will deduce
Jrom the context of the sentence if either a random variable or a realization of it is
being considered.

EXAMPLE 1.1

The variables X and X, of the two populations under study have true mean
1 = 5 and pg = 1, respectively, and standard deviation ¢ = 8. The shape of
their Gaussian distributions is shown in Figure 1.1. The true effect size, there-
Jore, is 8, = (5 — 1)/8 = 0.5. A sample of size m = 85 is drawn from each
population, providing the estimates X g5 = 3.816 and Xg85 = 1.152 (these
are realizations of X 1,85 and X 1,85). It is not surprising that sample mean es-
timates do not coincide with population ones: this is due to random variation.
The effect size estimate is dgs = (3.816 — 1.152}/8 = 0.333.

Without loss of generality, and in order to handle as few symbols as possible, o is
set equal to 1 throughout Part I of this book, whenever not explicitly claimed, the
contrary. Then, & = g1 — po. Consequently the pointwise estimator of the effect
size, which is a function of the estimators of the unknown parameters, is:

dm = X1m = Xz2m (1.1)

The probability distribition of d,,,, as a consequence of the Gaussian distribution
shapes of the populations, is Gaussian too - this is due to a mathematical theorem.
The mean of d,, is d;, and its standard deviation is oy = o+/2/m, which is also
called the standard errar of d,: being ¢ = 1, we have o4, = /2/m. This means
that d,,, is more dense around §;, and that the probability that d,,, falls far from &, de-
creases, as the sample size m increases. In other words, the precision in estimating &,
improves when m increases {(see Figure 1.2). Formally speaking, d., is a consistent
estimator of §;. Recall that d, is a random quantity, depending on random samples,
and that its realizations vary from one couple of samples to another.
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Distributions of populations

1 5
0.051 = w = maan = 1 - contral
— mean = 5 - new drug
0.04
2 0.03
]
=
[7]
=
0.024
0.01 -
0.00 r
30
Figure 1.1  Distributions of the populations in study - Example 1.1.
1.2 Confidence interval estimation, conservative estimation

The variability of pointwise estimates is here taken into account. Indeed, beside
the point estimate, an interval of admissible value for the unknown quantity of
interest (in this case, the effect size) should be provided. This interval, too, is
based on random samples, and so it may or may not include the effect size.

The key concept is that the probability that the so-called Confidence Interval
contains the true effect size can be controlled. This probability, namely con-
fidence level of the interval {viz. -}, is usvally set high (e.g. 90 — 95%). Its
complement to 1 {i.e. 1 — <) is the error probability, i.e. the probability that the
Confidence Interval does not contain the true effect size.




COMNFIDENCE INTERVAL ESTIMATION, CONSERVATIVE ESTIMATION 7

Distributions of the effect size estimator d_m
05

density

Figure 1.2  Distributions of the gffect size estimator dy, with 8, = 0.5, and with m = 25
and 100. It is of note that the distribution of dioo is more dense around §; = 0.5 than thar of
das.

Note that as the sample sizes increase the amplitude of the interval decreases, so
that confidence interval estimation becomes more precise. On the contrary, the
probability of error does not change with the sample sizes.

The lower bound of the confidence interval can be viewed as a conservative
estimate of the effect size: it tends to the latter as the sample size increases,
remaining below it with a given (high) probability.

In order to derive an interval of plausible values for 4, (namely Confidence In-
terval) the standardized version of d,,, is introduced, that is (d,, — &}/+/2/m =

v m/2(d,, — ;). The latter quantity has a Gaussian distribution with mean 0 and
variance 1, namely a standard Gaussian distribution.
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A random variable with the latter distribution is represented by the symbol Z. The
terms Gaussian distribution and normal distribution will be used as synonyms.

Now, let & be the cumulative distribution function of the standard normal, that is the
probability that Z falls below a certain value t: ®(t) = P(Z < t)). Moreover, let z,
be the -y-th percentile of the standard normal (i.e. z., is such that P(Z < z,} = 7).
Then, the y-percentile is z, = &~ {v).

It follows that the central part of the distribution of Z lies, with probability -, in the
interval [2¢)_~y/2, 2(14+)/2]- Since the standardized version of d,,, is Z-distributed,

we obtain:
Pleg—qy2 € Vmf2dm — &)/ < 201972) =7
Inverting the two inequalities above, and being 2, _, = —z, due to the symmetry of
the Gaussian distributions, we finally have:
P(dm - Z(1+.T)J,*2V 2/m < 5,3 < dm + Z(1+T)X2 AV 2/??"&) = (12)

In other words, the (random) interval [dy, — 2(14v),2v/ 2/, e + Z(144) 2/ 2/ M)
contains &; with probability +, and so it is a v-Confidence Interval for the effect
size. This is a two-sided confidence interval, since it is both npward and downward
bounded. The confidence level « is usually set high, e.g. 90%, 95%, 99%.

EXAMPLE 1.2

Let us continue Example 1.1, where the effect size estimate was dss = 0.333.
With a confidence level v = 95%, 2142 becomes zyr 5, = 1.96 (see Table
A.l). The realizations of the bounds of the interval result: 0.333—-1.96+/2/85 =
0.032 and 0.333 + 1.96+/2/85 = 0.634. In this case, the realization of the

interval contains 4; = (.5

Note that the confidence interval is defined by a random quantity (i.e. d,,) and
so it varies from one couple of samples to another. ~ is the frequency of sampled
confidence intervals that contain 4,, independently on m. The amplitude of the in-
terval is given by the difference between its upper and lower bounds and it results
22(14+}72+/ 2/m, which decreases as 1 increases. This means that confidence in-
terval estimation improves its precision as the sample size increases. The confidence
level ¥ does not change when m. varies,

Confidence Intervals can also be one-sided. In fact, when a statistical lower bound
for the effect size is of interest, the one-sided v-Confidence Interval is:

[dm - Z’Y\/%a +OO)

which provides:

Pldm — 24/2/m <6y =~ (1.3)
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The lower bound of the interval can be used for conservative estimation. Being:

dl, = dw — 247/2/m (1.4)

the latter can be viewed as a conservative estimator of the effect size In other words,
d}, tends to be much closer to 4, as the size of the sample m increases, with the
condition of falling below &; with (high) probability -~ {(see Figure 1.3). Let us call
d}, the v-lower bound for 6.

Distributions of the 90%-conservative esiéi?ator of the effect size
3.0- T

r \ — =25
- == m=100
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density
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Figure 1.3 Distributions of the effect size estimator da” with &, = 0.5, and with m = 25
and Y00. It is of note thar d50¢ is more dense around 0, = 0.5 than d32°°, and that the area
under the curves below 0.5 equals 90% (i.e. the amount of conservativeness of do0™ ) for each
m,
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1.3 The statistical hypotheses, the statistical test and the type | error
for one-tailed tests

The statistical test is the procedure that leads, through the statistical analysis of
experimental data, to one of these two cutcomes: “it is experimentally proved
that the new drug is more effective than the control drug”, or “it is not proved
that the new drug is more effective”. The possibility to prove that the new drug
is less effective than the control treatment will be considered later.

In practice, the assumption that the mean of the effect of the new drug is lower
than, or at least equal to, that of the control drug is made. In other words, it is
assumed that the true effect size is lower than, or equal to, zero, viz. nuil hy-
pothesis. If clinical trial data show, under the latter assumption, an unexpected
result, that the patients respond considerably better under the new drug, then
the assumption above (against the new drug) is rejected, the complementary
assumption (i.e. the true effect size is greater than zero, viz. alternative hypoth-
esis) is assumed to be true, and the effectiveness of the new drug is considered
to be experimentally proved.

Specifically, a sample of patients is randomly drawn from each population and
the respective sample means are computed. Hence, if a high difference is ob-
served in favor of the new drug, so high that this observed event falls within
the predefined set of events having globally, under the null hypothesis, a low
probability (namely <), then the statement “it is experimentally proved that the
new drug is more effective than the control drug™ is the outcome of the test -
this is called a significans outcome. Otherwise, the outcome is “it is not proved
that the new drug is more effective”, and nothing is proved.

In case the drug is considered to be effective where in actual fact it is not, an
error is made: this is the type I error of the test. The probability that this error
occurs 18 at most «. This @ 1s set before recruiting patients, and so before
analyzing data, it is often equal to 5% or to 2.5%.

The assumptions on the means are the sfatistical hypotheses, which formally result
in:

Hy:py < s and Hy g > g
namely the null and the alternative hypotheses, respectively. The latter is the one-
sided alternative of superiority. Further hypotheses (such as Hy : p1 > o +8p) will
be considered later (see Section 1.8) . Note that the hypotheses can also be viewed
in terms of effect size:

Hg 18 <0 and Hi: 4, >0

The test statistic, namely T,,, has to reflect the behavior of the phenomenon of in-
terest and is, therefore, a function of the samples of size yn drawn from the two
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populations. Here, the difference between the means is under study, and se 7., is
built on the basis of sample averages, and in particular of d,,. Moreover, d,, is
divided by its standard deviation o4 _, so that 7', has a unitary standard deviation:

T = (Xim — Xom)/0a,, = dn//2/m = /m/2dn, (1.5)

T, has a Gaussian distribution with mean 4, v/m /2 and variance 1 - see Figure 1.4,
(When the null hypothesis is Hy = 11 < po + 8p, 1.e. Hy 1 6; < &g, then dp,, — 6y
is considered so that Ty, = +/m/2(d,, — &) - see Section 1.8). Under the null
hypothesis, T, has mean at most 0.

It follows that large values of T,,, could lead one to consider it true that §, > 0 (or
that &; > dg when Hy : 4y > po + dg is under testing) and induce Hy rejection.

Then, the probability, namely «, permitted to the type I error, i.e. rejecting Hy when
it is true, is set. So, the rejection region, i.e. the set of values that if assumed by
T, induce Hj rejection, is that on the right tail of the standard Gaussian distribution
whose total probability is «, that is {21 ., +o0). In other words, the null hypothesis
is rejected when T, results greater than z; —,, which is named the critical value of
the test. Note that the probability to reject Hy when it is true is actually, at most, o
P‘jt:o(Tm > zl—a) =,

The statistical test 3, therefore, is;

1 if T > 210

"1{"0: (Tm): { . {16)

0 if Tm < Zl—a

where *“1” stands for “H is experimentally proved™ and “0” for “nothing is proved”.

This 1), is also called Z-test. Here, the rejection region is defined on one tail of the
distribution of the test statistic under the null, and so 1/, is named one-tailed test.

1.4 The power function and the type Il error

The power function of the test reports the probability ta reject the null hypothe-
sis, that is the probability to prove that the new drug is more effective than the
control drug. This probability depends on the type I error, on the sample size
and on the generic effect size §.

When the null hypothesis is true, the power function, i.e. the probability to
reject the null, provides the probability of an error: this is the type I error, whose
probability assumes at most the value of o,

When the alternative hypothesis is true, that is when the new drug is effective,
there is actually the possibility of not rejecting the null hypothesis. If this hap-
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pens an error is made: this is the type I error, whose probability is named 5 and
is given by 1 minus the power function.

Table 1.1  Errors and Right Decisions (RD}), with their probabilities, in hypotheses testing.

Hypotheses
Decisions Hy true H, true
Accept Hy RD type I error
1—a B
Reject Hy | type | error RD
o wlo,m, §)

Consider now a generic value 4 of the effect size, not the fixed and unique true
effect size &;. Then, the generic test statistic T}, is normally distributed with mean
8/ /2 (not 8;+/m/2) and unitary variance. From (1.6) the probability to reject Hy
i8 Ps{tho(Tin) = 1), i.e. Ps(Tyy, > 21-4). The latter quantity depends on o, m and
4 and it is called the power function: 7{a, m, é}.

From the knowledge of the distribution of 7,,, we have:
mla,m,8) = Fs(Tm > 21-0) = Fs(Tn = 6v/m/2 > 215 — 63/ m/2)
=P(Z > 21 — +/M/f2) = B(d/m/2 — 21_¢) (1.7)

Note that under Hy (i.e. with values of 4 < () the power function is lower than, or
equal to, the type I error:

o, m, 8) < mlaym, ) = B(—21-,) = B(2,) = «

Given o and m, the power function {1.7) increases as ¢ increases, meaning that the
probability to prove that 4 > {} grows as the effect size becomes higher, The power
function also increases, given & and 4 > 0, as the available information grows, that is
as mn increases. To complete, given m and §, the power function is higher for larger
s,

Under the alternative hypothesis (i.e. with § > 0) a possible error could be to fail
to reject Hp - this is often called “to accept Hy”. This is the type Il emror, whose
probability is § = 1 —~w(a, m, 8). Under H;, the power function (1.7} is higher than
the type I error: w{a,m,8) > a if > 0. In Table 1.1 the possible decisions are
summarized, together with their respective errors.

Remark 1.2. [t is noteworthy that to accept Hy signifies that there is not enough
information fo reject it, and therefore to prove H,. To accept H, does not mean,
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therefore, that the null hypothesis is proved. the null kypothesis is never proved. On
the contrary, when Hy is rejected H, is experimentally proved, unless the type I error
is made, this probability is .

Distributions of the test statistics

0 1.96 3.26
0.4 = 7 under H0
=== Zunder H1
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& 0.2-
o
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Figure 1.4  Distributions of the test statistic under the null and under the alternative of
Example 1.3 with m = 85. Note that the mean of Tss is &+/m /2 = 0.5+/85/2 = 3.26.
The probabilities are represented by the area under the curves: the black area represents the
rype I error probability o = 2.5% under the null; the gray-dashed area (which includes the
black one) represents the probability, under the alternative, to fall in the rejection region with
m = 85 and § = 0.5, that is = 90%,

EXAMPLE 1.3

When o = 2.5% the critical value is zg7 55, = 1.96 (use Table A.1 to obtain
probabilities and deviates for the standard novmal distribution, and so even for
power computation), When & = 0.5 the power function with m = 17, 40 and 85
data per group provides 30.78%, 60.88% and 90.31%, respectively, according
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to {1.7). This means thar with mi = 85 available data, there is approximately
a 90% probability to prove that py > pa, allowing for a type I error of 2.5%.
In Figure 1.4 this 90.31% power can be viewed as a probability (the label Z
is adopted for values of T, as in the next Figures). The power functions are
reported in Figure 1.5.

Power function with different sample sizes
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Figure 1.5 Power functions for the Z-test with & = 2.5%, with m = 17, 40 and 85 (i.e.
for scenarios in Example 1.3). The values assumed by the power functions with 8 = 0.5 are
reported.
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1.5 The p-value

The p-value is the statistical index traditionally used for evaluating the outcome
of statistical tests: given the data, the p-vatue is the maximum type I error for
which a test statistic is not significant.

Another possible way to introduce the p-value is that it represents the prob-
ability, computed under the null hypothesis, of finding, in a new experiment
completely analogous to that just performed but independent of it, & result even
farther from the null hypothesis than the one just observed.

In other words, the p-value answers this question: if the null hypothesis is really
true (in this case, if §; < 0), what is the probability that random sampling would
lead to a result better than the one observed in favor of the new drug {e.g. a
difference between sample means larger than the one observed)?

The p-value is an index of the strength adopted to reject the null hypothesis: the
lower than « the p-value is, the higher the strength.

Moreover, the p-value can also be used to compute the outcome of the test: the
null hypothesis is, indeed, rejected only when the p-value results lower than the
prefixed type I error probability c.

Let us define the p-vatue formally:
p-value = max{a st P (Tr) =0} (1.8}

From the test statistic (1.6) and the definition (1.8}, the p-value is such that T,,, =
21 —pevatue. Then, recalling the definition of 2, = &~ () and applying the monotone
function @ to both members of the latter equality we obtain:

®(Tr) = ®(®~1(1 — p-value)) = 1 — p-value
giving, finally:

p-value =1 — B(T},) {1.9)

Alternatively, the p-value can be defined by considering a new experiment, identical
to the one just performed, which gives a new test statistic 77, independent of T,,,.
Hence, the p-value, being the probability under Hj that the random statistic T}
would be larger than the observed T7,,, can be defined as follows:

p-value = Ps, (T}, > Ty [T ) = 1 — (T},)

where the last equality follows from the condition that the test new statistic T, is
Gaussian distributed, as in this introductive testing situation. (The notation P{4 | B)
means “the probability of A once event B has been observed”.)
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EXAMPLE 1.4

Consider a one-tailed Z-test with type I error probability « = 2.5%, so that the
critical value is 297 5, = 1.96. A total of 170 patients are recruited, and they
are randomized into two groups of size 85. The latter represent the two samples
from the two populations under the new drug and under the control treatment,
providing sample averages of X1 g5 = 0.477 and X, g5 = 0.144, respectively.
From 1.5, the observed test statistic is: Tgs = +/85/2(0.477 — 0.144) = 2.17.
Since Tgy is greater than 1.96, the test outcome is significant: ¥ 50,(2.17) = 1.
According to (1.9) the p-value is 1 — ®~1(2.17) = 1.5%, which seems quite a
bit lower than o (use Table A.1 also to compute p-values). Consequently, this
aufcome appears quite a reassuring one. The p-value is reported as a black area
in Figure 2.1.

It is interesting to note that the p-value in (1.9) is lower than « only when T3, is over
the critical value of the test, that is only when the outcome of the test is significant,
Indeed, we have that;

p-value = 1-®(T,)) <a iff ®(T,)>1-a if T, >0 (1-a)=z1_,,

where iff means ff and Only if. So, the p-value can also be employed to define the
statistical test (1.6) itself:

(T} = { 1 if  p-value < & (1.10)

0 it  p-value > «

Equation (1.10) may be referred to as p-value testing.

As a consequence, the power function (1.7) (i.e. the probability of finding a signif-
icant outcome) can be viewed as the probability of finding a p-value lower than the
type 1 error probability «:

wla,m,8) = Ps(Tr, > 21-4) = Ps(p-value < o)

Since the p-value depends on data, it is a random variable with a certain distribution.
In Figure 1.6 the distributions of the p-value in scenarios of Example 1.3 are reported.
Note that p-value distributions under the alternatives are much denser to the left for
high power values, i.e. for high values of m. Moreover, when é = 0 (i.e. for
the highest of the possible values under Hp) the p-value is uniformly distributed in
(0,1), that is Ps,_o( p-value < t) = ¢, with £ € {§), 1). In other words, in this case
the density of the p-value is uniformly equal to 1 in the domain (0, 1).
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Distributions of the p-value

Figure 1.6  Distributions of the p-value for the Z-test with o = 2.5%, under the alternative
hypothesis with § = 0.5, m = 17, 40 and 85 (i.e. for scenarios in Example 1.3).

1.6 The success probability and its estimation

The true probability of proving that the new drug is more effective than the
control drug when it actually is, that is, the true probability of rejecting the null
hypothesis under the altemative, is called the success probability, SP.

8P depends on the “true” value of the effect size, which is actnally unknown.
Of course, SP is related to the power function: in particular, SP is the power
function evaluated at §;, when 4, > (.

Since 4, 1s unknown, the same holds true for SP. Nevertheless, it would be very
useful to acquire information on SP, that can in fact be estimated,

SP estimation can be applied in solving the problems presented in Section 1.4. In
particular, it can be applied for estimating the sample size of a phase I trial on
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the basis of phase I data, and for estimating, once a trial has been performed, the
probability of finding a statistical significance in a new trial whose settings are
identical 1o those of the one just performed (namely reproducibiliry probability),
in order to evaluate the stability of the results of the trial.

The SP is the power function computed at 4;, that is:

P = P, (T > 21_a) = wla,m, &) = ®{6i/m/2 — 21_4) (1.11)

In other words, SP is the true power of the test.

Now, let us assume that two samples of size n (not necessarily equal to m) are
available from the same two populations, one from each. (Actually, in Chapter 3,
Section 3.2, it will be explained that the condition of sampling from the same popu-
lations can be relaxed). These samples can be viewed as pilot ones and are indepen-
dent from those of size m used to define the Z-test in {1.6). On the basis of these
data an estimator of §; can be computed: let us call it 7, where e indicates that
several statistical approaches can be adopted for estimating &, (the sirnplest one is
d® = d, = X1, — X2,). Hence, an estimator of the SP is obtained by puiting the
estimator of &, in the power function definition (1.7):

SP = Py (Tu > 210 |d}) = w(a,m, dl) = B{dh/m/2 — 21-4)  (1.12)

This statistical practice of substituting an estimator of a parameter into a certain
function of the parameter itself is called the “plug-in principle”.

EXAMPLE 1.5

Consider the same sample data of Example 1.4. The observed effect size is dgs =
(0.477 — 0.144 = 0.333 (as in Example 1.1} and it is considered the estimate of
8;. Assume that it is of interest to estimare the SP of a one-tailed Z-test with
o = 2.5% emrolling m = 120 data per group (here 85 plays the role of n).
From (1.12) the estimate of the latter quantiry resulted: SP = Py 333{Ti20 >
2gr et = ®(1/120/20.333 — 1.96) = 73.22%. According to Example 1.1,
where 0y = 0.5, SP = Pos{Ti20 > #orsn) = 97.21%. The power function
with m = 120 is reported in Figure 1.7, together with SP and SP,

SP estimation can be applied to solve the problems presented in Situations T and II
of Section 1.4,

Actually, Situation 1 considered a particular case of SP estimation, where the size
of the test sample (i.e. m) is equal to that of a sample actually available, n. The SP
estimation assumes, therefore, the meaning of reproducibility probability estimation.
This topic will be developed in Chapter 2.
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Figure 1.7  Power function, SP and estimated SP for the Z-test with o = 2.58%, with
m = 120, illustrating Example 1.5.

Situation I concerned sample size estimation: in practice the sample size for a phase
III ¢can be computed on the basis of SP estimates given by phase II data. Different
approaches to SP estimation are available, and they will be developed in Chapters 3
and 4.

1.7 Basic statistical tools for two-tailed tests

In this Section the basic statistical tools and SP definition will be extended to the
two-tailed setting.
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1.7.1 Two-sided hypotheses and two-tailed statistical test

When the statistical test procedure should provide one of these two statements:
“it is experimentally proved that one of the drugs is more effective than the
other one”, or “it is not proved that neither drug is more effective”, two-sided
hypotheses are to be adopted.

The possibility that the new drug is less effective than the control treatment is
included here. In other words, the assumption of ineguality is being proved,
instead of that of superiority,

In practice, the assumption that there is no difference between the means (i.e.
the true effect size is zero, viz. null hypothesis) is made. If clinical trial data
show a “strange” result, that is, a considerably better patient response to any of
the drugs, then the assumption of no difference is rejected and the effectiveness
of the drug which performed better is considered as experimentally proved.

Specifically, a sample of patients is randomly drawn from each population and
the respective sample means are computed. If a high difference is observed, high
enough that this observed event falls within the predefined set of events having
globally, under the nuil hypothesis, a low probability «, then the first staternent
is the outcome of the test. Otherwise, the outcome is the second statement:
nathing is proved.

The concept of type I error is analogous to that of Section 1.3: in case one of
the drugs is considered to be more effective when actually it is not, an error is
made, namely type I error of the test.

When two-sided alternatives are considered the statistical hypotheses under testing
are:

Hy:py =z and Hyoopy # o

{one can also state Hy : §, = 0 and H, : §; # 0). The latter H; is the two-sided
alternative of inequality. The test statistic T,,, is the same as the one defined in {1.5).
Low values of T, lead to infer that 4, < 0, and high values that 4, > 0, 50 that in
both cases Hy rejection is a probable outcome.

Under the null, T, has a standard normal distribution. The probability allowed to
the type I error, i.e. rejecting Hy when it ts true, is still a. So, the rejection region,
i.e. the set of values that if assumed by T, induce Hy rejection, should consider both
tails of the standard Gaussian distribution and « is, therefore, shared between the two
tails, so that each part of the rejection region has a/2 probability. Consequently, the
null hypothesis is rejected when T, results lower than z,,; or greater than z;_, 5.
The rejection region is, therefore, (—00, 242} U {21_ay2; +00). Note that the type
I probability remains a: Ps,—0(Tin < 2app 0t Ton > 21_oy2) = Ps,—0(Tm <
Zajz) T Ps,=0(Tm > 21-4/2) = 0/2+ /2 = a.
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The statistical test 1, , therefore, is:

1 if T <zapp0rTin > 216

i.fl)cr(Tm): { (1.13)

0 if Laf2 < Tm < Fl—q/2

This test, where the rejection region is the union of two regions, one on each tail of
the distribution of the test statistic under the null, is named two-tailed test.

1.7.2 Two-tailed power function, type Il and Ill errors and SP

The power function reports the probability to reject the null hypothesis, that is
the probability to prove that any of the drugs is effective. In this two-tailed
context too, this probability depends on the type I error, on the sample size and
on the generic effect size 4.

When the null hypothesis is true, the power function (i.e. the probability to
reject Hy) coincides with the probability of the type L error, i.e. a.

When the alternative hypothesis is true, that is, when any of the drugs is more
effective and null hypothesis is not rejected, an error is made: this is the type
I error, whose probability (i.e. 5} is 1 minus the power function (like in the
one-tailed setting).

In case the alternative hypothesis is true and the null hypothesis is rejected but
the worst drug is actually considered to be the best one, an errer is committed:
this is the type III error. The probability of the type LIl error is, in practice, very
small and it can, therefore, be ignored.

In two-sided hypotheses testing, the SP is the probability to prove that any of the
drugs is effective when one of the two is actually so (i.e. when §; # 0), avoiding
the type If error. This probability depends on the “true™ value of the effect size
&, which is actually unknown. Even this two-tailed SP can be estimated.

In the two-tailed setting there are two possible significant outcomes {one for each tail
of the null distribution) and so the power function of the test is the sum of the two
following quantities:

ma{a,m, ) = Ps(Tm < Zajz) + Ps(Tm > 21-ay3) (1.14)

We call these two summands (o /2, m, ) and 7r{a/2, m,§) respectively, to in-
dicate the probability to fall on the Left tail (i.e. below z,/2) and on the Right tail
(over z1_n/2)

When & = 0 and the test fails to reject Hy the type 1l error is made, whose probability
i8 8 = 1 — ma{a,m.8). As for one-tailed tests, under the alternative the power
function (1.14) is higher than the type I error: wo(a, m,8) > aif 0 # 0.
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The type IIT error {(Harter, 1957) consists in rejecting the null hypothesis and in de-
ciding that the worst drug is the best one. Hence, under f, one of the two summands
of the power function above (viz. mp(a/2,m,8), Tr(a/2,m,5)) is the probability
of the type 1l error, and the other one can be viewed as the “good power function”.
Often, the type IlI error probability is very small and it always is lower than o /2.

EXAMPLE 1.6

The values assumed by the type I error probability are often very small. For
example, when o = 5%, if § = 0.5 > 0 and m = 17, the type Ill error probabil-
ity is w1, (2.5%,17,0.5) = Py 5(Ti7 < zp.5%) = 0.0316%. If & decreases to 0.2
then the probability of the type 11l error increases to 0.55%. With m = 40 these
two latier probabilities are 0.0014% and 0.22%, respectively, and they become
even lower when m grows.

Now, let us define the SP on the basis of (1.14) and in accordance with its one-tailed
definition (1.11). Note that the “good power function™ is one of the two summands
of (1.14), but which of the two is unknown. So, the SP for the two-tailed setting is
the “good power function” evaluated at 4, under the alternative hypothesis:

SPF{ Ps,(Tyn < Zay2) if 8, <0 w15)

Ps,(Tm > 21_ay2) if 48, >0

SP estimation for two-tailed tests will be developed later (see Sections 2.9 and 3.10).

1.7.3 Two-tailed p-value

The concept of the p-value has not changed: it remains, therefore, the maximum
type I error for which a test statistic is not significant.

Here, the p-value answers this question: if the null hypothesis is really true
(in this case, if §; = 0), what is the probability that random sampling in a
new experiment completely analogous to that just performed would lead to a
difference between sample means larger than that observed, in favor of each of
the drugs?

Even in this case the null hypothesis is rejected only when the p-value is lower
than cv.

The formal definition of the p-value in (1.8) is still valid, and through (1.13) gives:

p-value = 2{1 - (|75, |)) (1.16)
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In analogy with the one-tailed setting, the p-value can also be defined by considering
the probability, under the null hypothesis, that a test statistic T;, given by a new
experiment identical to the one just performed would be farther from 0, potentially
in both directions/tails, than the observed T;,,. This reflects in:

p-value = 2Fs,=o(Tyy, > |Tm| [Tn} = 2(1 — @(|Tm]))

In practice, the p-value is two times the probability mass, compuoted under the null,
of the tail delimited by the observed test statistic. In other words, if, for example,
T > O then the p-value is 2P5,0 (T > T [T} = 2(1 — ®(T0)).

Finally, the p-value based definition of the statistical test (1.10), i.e. p-value testing,
remains valid.

1.8 Other statistical hypotheses and tests

In some circumstances, the statement “the new drug is more effective than the
control” is related to a clinical minimum threshold of improvement. This con-
cept introduces statistical tests of clirical superiority.

In other cccasions different assumptions should be proved, such as “the new
drug is as effective as a standard therapy”. When this statement is related
to a clinical maximum threshold of worsening of the new drug with respect
to the standard therapy, this approach infroduces statistical tests of clinical
non-inferiority.

Further, equivalence statistical tests consider the simultaneous experimental
proof of clinical non-superiority and clinical non-inferiority.

For all these tests, statistical analysis and SP estimation can be performed in
analogy with those shown in previous Sections of this Chapter.

Let us consider a threshold of minimum clinical improvement dg > 0. It is interest-
ing to prove the one-sided alternative of superiority Hy : 1 > pa + g, where the
null hypothesis is Hg : g1 < pg + 8. For these hypotheses the test statistic (1.5)

becomes: _ B
Thm = v m/Z(X],m - XZ,m - 50)

and the test of clinical superiority is defined as the test in (1.6).

Now, let &g > 0 be the threshold of maximum clinical worsening. Thus, the one-
sided alternative of non-inferiority to be proved is Hy : p1 > po — 8, being Hy :
i1 < pg — 8y. The test statistic, therefore, is:

T = v m/2(X1,m — Xg,m =+ 60)

and the test of clinical non-inferiority is once again equal to (1.6).
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When o > 0 represents the threshold of clinical equivalence, the alternative hy-
pothesis of non-inferiority and non-superiority to be proved is Hy : |p1 — 2] < &y,
that is B : pa — dp < 1 < p2 + & Complementarily, the null hypothesis
of no equivalence is Hy : g7 < pg — g U py 2 e + 8. In this context,
when the set representing Hj is not convex, the statistical test is significant when
V2 X — KXo +d0) > 21-g and /m/2( X 5 — KXo — d0) < ~214.
For clinical superiority and clinical non-inferiority tests, the SP is defined as in
(1.11). In particular, for superiority tests the §; in (1.11) should be replaced by
d; — &y, and for non-inferiority tests by &, + dy. The SP for equivalence tests can be
obtained analogously, but this topic is not developed here,





