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1
Modeling of AC Drives and
Power Converter

Building mathematical models of AC drives and power converters is the first step towards the design and
implementation of control systems. This chapter presents the mathematical models of machine drives
and power converters in a uniform way that firstly uses space vector description of the physical variables
such as voltage, current and flux, and secondly converts the space vector based model to various reference
frames. From Sections 1.1 to 1.4, the Permanent Magnetic Synchronous Machine (PMSM) will be used
as an example to illustrate in detail how its dynamic model is established. In Section 1.5, the dynamic
model for an induction machine is obtained by following the same thought process used for the PMSM.
Section 1.6 derives the dynamic model for a 2-level grid connected voltage source converter, also using
the same approaches as electrical drives. In the Summary section 1.7, characteristics of dynamic models
are highlighted for future applications.

1.1 Space Phasor Representation
The analysis of a three phase system could be significantly simplified by adopting vector based
approaches. Here, the concept of space vector will be introduced first before deriving a model of a
PMSM. To simplify the analysis, a 2-pole machine with balanced three phase windings is assumed.

1.1.1 Space Vector for Magnetic Motive Force

Figure 1.1 shows the cross section of stator windings for a 2-pole machine. By Ampere’s law, a magnetic
motive force (MMF) will be generated when current is flowing in the windings. The peak of magnetic
motive force produced by each phase will align with their own magnetic field and is separated by 120∘
from each other. Here, it is assumed that phase current has a frequency 𝜔, initial angle 𝜙0 and amplitude
Is. When each of the three phase windings is provided with balanced three phase currents, where

ia(t) = Is cos(𝜔t + 𝜙0) (1.1)

ib(t) = Is cos(𝜔t + 𝜙0 − 2𝜋∕3) (1.2)

ic(t) = Is cos(𝜔t + 𝜙0 − 4𝜋∕3). (1.3)
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Figure 1.1 Cross section of stator winding. ⊗ and ⊙ denote the cross sections of the wires, Fa(t), Fb(t) and Fc(t)
are the peaks of magnetic motive forces for the three phase currents, 𝜃r is the position of the rotor and 𝜃 is an arbitrary
position.

each phase current will produce a sinusoidal distributed MMF whose peak aligns with their respective
magnetic axis for each phase, which are

Fa(t) = Nsia(t) = Fm cos(𝜔t + 𝜙0) (1.4)

Fb(t) = Nsib(t) = Fm cos(𝜔t + 𝜙0 − 2𝜋∕3) (1.5)

Fc(t) = Nsic(t) = Fm cos(𝜔t + 𝜙0 − 4𝜋∕3), (1.6)

where Fm = NsIs is the magnitude of the peak MMF, Ns is a constant related to the number of coil turns
and winding factor and Is is the amplitude of the phase current.

At a certain position 𝜃, referred to the magnetic axis of phase a-a’ in Figure 1.1, the magnetic motive
forces contributed from each phase winding are

Fa(t)
𝜃 = Fa(t) cos(0 − 𝜃) (1.7)

Fb(t)
𝜃 = Fb(t) cos(2𝜋∕3 − 𝜃) (1.8)

Fc(t)
𝜃 = Fc(t) cos(4𝜋∕3 − 𝜃), (1.9)

which are functions of 𝜃. Therefore, the resultant total MMF at the position 𝜃 is the summation of
Equations (1.7)–(1.9), which gives

F(t)𝜃 = Fa(t) cos(−𝜃) + Fb(t) cos(2𝜋∕3 − 𝜃) + Fc(t) cos(4𝜋∕3 − 𝜃). (1.10)

Note that
cos(−𝜃) = Re{e−j𝜃}; e−j𝜃 = cos(𝜃) − j sin(𝜃).

Equation (1.10) can also be represented by

F(t)𝜃 = Re{Fa(t)e
−j𝜃 + Fb(t)e

−j(𝜃−2𝜋∕3) + Fc(t)e
−j(𝜃−4𝜋∕3)}

= 3
2
Re

{2
3

(
Fa(t) + Fb(t)e

j 2𝜋
3 + Fc(t)e

j 4𝜋
3

)
e−j𝜃

}
. (1.11)

Based on the calculation of the total MMF at the position 𝜃, the space vector of the three-phase peak
MMF is defined by

−→
F (t) = 2

3

(
Fa(t) + Fb(t)e

j 2𝜋
3 + Fc(t)e

j 4𝜋
3

)
. (1.12)
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For notational simplicity, the rest of this chapter will use the notation
−→
{.} to denote a space vector. With

this definition, the total MMF at the position 𝜃 is expressed as

F(t)𝜃 = 3
2
Re

{−→
F (t)e−j𝜃

}
. (1.13)

Furthermore, it can be verified that by substituting (1.4)–(1.6) into (1.12), the space vector of the
three-phase peak MMF

−→
F (t) has the following compact expression:

−→
F (t) = 2

3

(
Fa(t) + Fb(t)e

j 2𝜋
3 + Fc(t)e

j 4𝜋
3

)
= 2

3
Fm

(
cos(𝜔t + 𝜙0) + cos(𝜔t + 𝜙0 − 2𝜋∕3)e j 2𝜋

3 + cos(𝜔t + 𝜙0 − 4𝜋∕3)e j 4𝜋
3

)
= Fme

j(𝜔t+𝜙0). (1.14)

In the derivation of (1.14), the following equalities are used:

cos(𝛼) = 1
2
(e j𝛼 + e−j𝛼)

1 + e j 4𝜋
3 + e j 8𝜋

3 = 0.

Following the compact expression of
−→
F (t) given by (1.14), the total MMF at the position 𝜃 is also simply

expressed as

F(t)𝜃 = 3
2
Re(−→F (t)e−j𝜃)

= 3
2
Fm cos(𝜔t + 𝜙0 − 𝜃). (1.15)

As shown by (1.14), the space vector
−→
F (t) is a rotating vector in the complex plane. As a result, the

instantaneous value of F(t)𝜃 in (1.11) and its equivalent (1.15) can be interpreted as the magnitude of the
projection of

−→
F (t) on the position 𝜃.

Figure 1.2 gives an example of the vector representation of MMF at t = 0 while assuming 𝜙0 = 0. In
this figure, at t = 0, the vectors of peak MMF for each phase current are

−→
Fa = Fm cos(0)e j0 = Fm

Im

a′

a

b′ C′

c

b

Re

Fc

Fa
Fb

θ
3
2F

Figure 1.2 Space vector of MMF (t = 0 and 𝜙0 = 0).
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−→
Fb = Fm cos

(
−2𝜋

3

)
e j 2𝜋

3 = −1
2
Fme

j 2𝜋
3

−→
Fc = Fm cos

(
−4𝜋

3

)
e j 4𝜋

3 = −1
2
Fme

j 4𝜋
3

and the resulting total peak MMF is,

−→
F = 2

3
(−→Fa +

−→
Fb +

−→
Fc) = Fm.

thus, the total MMF at angle 𝜃 is the magnitude of projection
−→
F onto angle 𝜃,

F(0)𝜃 = Fm cos(𝜃).

1.1.2 Space Vector Representation of Voltage Equation

The use of space vector facilitates the derivation of voltage equation for the PMSM with a compact
expression. This derivation is the key to form the dynamic model for current control.

With a similar principle, the space vector for three-phase stator current can be written as

−→
is = 2

3

(
ia(t) + ib(t)e

j 2𝜋
3 + ic(t)e

j 4𝜋
3

)
(1.16)

−→
is = Ise

j(𝜔t+𝜙0) (1.17)

and the space vector of three-phase stator voltage is defined as

−→
𝑣s =

2
3

(
𝑣a(t) + 𝑣b(t)e

j 2𝜋
3 + 𝑣c(t)e

j 4𝜋
3

)
, (1.18)

where 𝑣a(t), 𝑣b(t) and 𝑣c(t) are terminal line-to-neutral voltage for each phase, respectively.
When a surface-mounted PMSM is considered, the space vector of stator flux consists of two parts.

One is produced by the stator current while the other is produced by the permanent magnets of the rotor:

−→
𝜑s = Ls

−→
is + 𝜙mge

j𝜃e , (1.19)

where 𝜙mg is the amplitude of the flux induced by the permanent magnets of the rotor in the stator phases
and this parameter is assumed constant in the design, 𝜃e is the electrical angle of the rotor, and Ls is the
sum of leakage inductance and mutual inductance.

With the space vector representation of voltage, current and flux, the stator voltage equation in space
vector form can be written according to voltage law,

−→
𝑣s = Rs

−→
is +

d−→𝜑s

dt
, (1.20)

where −→
𝑣s is the space vector of stator voltage, Rs

−→
is is the voltage drop on the resistors of the stator and

d−→𝜑s
dt

is the induced voltage due to changing of magnetic flux. Taking the derivative of the second term of
the flux based on (1.19) gives

d(𝜙mge
j𝜃e )

dt
= j𝜔e𝜙mge

j𝜃e ,

where 𝜃e(t) = 𝜔et. Thus, the vector voltage equation of a PMSM is obtained by replacing the flux deriva-
tive in (1.20) with the calculated derivative based on (1.19), which leads to

−→
𝑣s = Rs

−→
is + Ls

d
−→
is
dt

+ j𝜔e𝜙mge
j𝜃e . (1.21)

This is the fundamental equation that governs the relationship between the current and voltage of PMSM
in a space vector form, based on which the dynamic models will be obtained.
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1.2 Model of Surface Mounted PMSM
As seen from the previous sections, the space vectors of three-phase voltages, currents and flux are three
rotating vectors in the complex plane. The speed of their rotation depends on the frequency (𝜔) of the
three-phase voltages and currents. In the complex plane, as shown in Figure 1.3, each vector (see the
three phase current

−→
is ) could be decomposed into a component on real axis (see i𝛼) and a quadrature

component on imaginary axis (see i𝛽). Such a decomposition could be carried out with respect to different
reference frames (see the d − q reference frame). Importantly, control strategies will devised according
to the models in the relevant reference frames.

This section presents the two most widely adopted reference frames and their relationships,
which are the stationary reference frame (also called 𝛼 − 𝛽 reference frame) and the synchronous
reference frame (also called d − q reference frame). Both reference frames are illustrated in
Figure 1.3.

1.2.1 Representation in Stationary Reference (𝛼 − 𝛽) Frame
One choice of the reference frame is a stationary reference frame with the real (𝛼) axis aligned with the
peak MMF (Fa(t), see Figure 1.1) and the imaginary (𝛽) axis in quadrature (see Figure 1.3).

By projecting the space vectors of voltage and current onto real (𝛼) and imaginary (𝛽) axes, these
vectors can be represented by the complex notations,

−→
𝑣s = 𝑣𝛼 + j𝑣𝛽 (1.22)

−→
is = i𝛼 + ji𝛽 . (1.23)

Substituting the complex representations (1.22) and (1.23) into the space vector voltage equation (1.21),
and equating their real and imaginary parts in both sides, respectively, gives the model of PMSM in the
𝛼 − 𝛽 reference frame,

𝑣𝛼 = Rsi𝛼 + Ls

di𝛼
dt

− 𝜔e(t)𝜙mg sin 𝜃e (1.24)

𝑣𝛽 = Rsi𝛽 + Ls

di𝛽
dt

+ 𝜔e(t)𝜙mg cos 𝜃e. (1.25)

This model of PMSM will be used in the Chapter 7 for a current controller design in the 𝛼 − 𝛽 reference
frame.

One might ask what is the relationship between the current and voltage variables in the 𝛼 − 𝛽 ref-
erence frame and the original three phase variables. This unique relationship is given by the Clarke

q
β

is

d
iβ

iq
iα

id
θe

α

Figure 1.3 Illustration of stationary reference frame and synchronous reference frame. 𝜃e is the electrical angle of
the rotor. Current space vector is projected to two reference frames.



Trim Size: 170mm x 244mm Wang c01.tex V3 - 11/24/2014 4:38 P.M. Page 6

6 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®
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Figure 1.4 Illustration of Clarke transformation of current.

transformation. Taking the three phase currents as an example, the transformation of three phase variables
to their components in the 𝛼 − 𝛽 reference frame is achieved by Clarke transformation, where

⎡⎢⎢⎣
i𝛼
i𝛽
i0

⎤⎥⎥⎦ = 2
3

⎡⎢⎢⎢⎢⎣
1 − 1

2
− 1

2

0
√

3

2
−

√
3

2

1

2

1

2

1

2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ia
ib
ic

⎤⎥⎥⎥⎦ . (1.26)

As shown in Figure 1.4, the transformation matrix is obtained by projecting ia, ib and ic on 𝛼 and 𝛽
axes, respectively. Here, it is seen that the 𝛼 axis is aligned with the direction of ia current which is also
the direction of the peak MMF Fa(t) (see Figure 1.1). The coefficient 2

3
here is to guarantee the energy

conservation. In addition, i0 represents the zero sequence component of three phase current and is zero
for balanced three phase currents. Conversely, the inverse Clarke transformation is defined as

⎡⎢⎢⎣
ia
ib
ic

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

1 0 1

− 1

2

√
3

2
1

− 1

2
−

√
3

2
1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
i𝛼
i𝛽
i0

⎤⎥⎥⎥⎦ . (1.27)

It is easy to show that

2
3

⎡⎢⎢⎢⎢⎣
1 − 1

2
− 1

2

0
√

3

2
−

√
3

2

1

2

1

2

1

2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0 1

− 1

2

√
3

2
1

− 1

2
−

√
3

2
1

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦ .
The current and voltage variables in the 𝛼 − 𝛽 reference frame are all sinusoidal in nature because they are
directly related to their original three phase current and voltage variables (see the Clarke transformation
(1.26)).



Trim Size: 170mm x 244mm Wang c01.tex V3 - 11/24/2014 4:38 P.M. Page 7

Modeling of AC Drives and Power Converter 7

1.2.2 Representation in Synchronous Reference (d − q) Frame

Another reference frame is the d − q reference frame, where the direct axis (d) is always aligned with
rotating flux produced by the permanent magnets of the rotor, and the q axis is in quadrature. Because
the rotor runs the same speed as the supplying frequency at steady-state, it is also called the synchronous
frame for PMSM.

To change the reference frame to the d − q reference frame, as shown in Figure 1.3, it is equivalent
to rotating the space vector in 𝛼 − 𝛽 reference frame clockwise by 𝜃e. Mathematically, this rotation of
space vectors is translated into multiplication by the factor e−j𝜃e , which leads to a set of new space vectors,

for example, voltage space vector −→𝑣s
′
, current space vector

−→
is

′
. By projecting these transformed space

vectors into the real and imaginary axes, the current and voltage variables in the d − q reference frame
are formed. That is,

−→
𝑣s

′ = −→
𝑣se

−j𝜃e = 𝑣d + j𝑣q (1.28)

−→
is

′
= −→

is e
−j𝜃e = id + jiq (1.29)

where −→
𝑣s

′
and

−→
is

′
denote the space vectors referred to synchronous d − q reference frame.

Multiplying the the original space vector voltage equation (1.21) by e−j𝜃e leads to the following
equation:

−→
𝑣se

−j𝜃e = Rs

−→
is e

−j𝜃e + Ls

d
−→
is
dt

e−j𝜃e + j𝜔e𝜙mg. (1.30)

Noting that
−→
is

′
= −→

is e
−j𝜃e

and by taking derivative on both sides of this equality, it can be shown that

d
−→
is
dt

e−j𝜃e =
d
−→
is

′

dt
+ j𝜔e

−→
is

′
. (1.31)

Therefore, from (1.30), together with (1.31), the voltage equation in terms of the space vectors −→𝑣s
′

and
−→
is

′
has the following form:

−→
𝑣s

′ = Rs

−→
is

′
+ Ls

d
−→
is

′

dt
+ j𝜔eLs

−→
is

′
+ j𝜔e𝜙mg. (1.32)

This is the fundamental equation that governs the relationship between the voltage and current variables
in space vector form that leads to the dynamic model in the d − q reference frame.

Now, substituting (1.28) and (1.29) into (1.32), and because the real and imaginary components from
the left-hand side are equal to the corresponding components in their right-hand side, it can be shown
that the d − q model of PMSM is,

𝑣d = Rsid + Ls

did
dt

− 𝜔eLsiq (1.33)

𝑣q = Rsiq + Ls

diq
dt

+ 𝜔eLsid + 𝜔e𝜙mg, (1.34)

where (1.33) is obtained with the components from the real part whilst (1.34) is from the imaginary part.
There is a unique relationship between the variables in the 𝛼 − 𝛽 reference frame and those in the d − q

reference frame. The transformation of real and imaginary components in 𝛼 − 𝛽 frame to its counterparts
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q
β

iβ

θe

d

α
iα

Figure 1.5 Illustration of Park transformation of current from d − q reference frame to 𝛼 − 𝛽 reference frame.

in the rotating d − q reference frame is achieved by the so called Park transformation, as shown in
Figure 1.5, which leads to the current and voltage relations in the two reference frames:[

𝑣d
𝑣q

]
=
[

cos 𝜃e sin 𝜃e
− sin 𝜃e cos 𝜃e

] [
𝑣𝛼
𝑣𝛽

]
(1.35)[

id
iq

]
=
[

cos 𝜃e sin 𝜃e
− sin 𝜃e cos 𝜃e

] [
i𝛼
i𝛽

]
, (1.36)

where 𝜃e is the angle between the two reference frames and also the electrical angle of the rotor.
Conversely, the inverse Park transformation is defined as[

𝑣𝛼
𝑣𝛽

]
=
[

cos 𝜃e − sin 𝜃e
sin 𝜃e cos 𝜃e

] [
𝑣d
𝑣q

]
(1.37)[

i𝛼
i𝛽

]
=
[

cos 𝜃e − sin 𝜃e
sin 𝜃e cos 𝜃e

] [
id
iq

]
. (1.38)

Combining Clarke transformation (1.26) with Park transformation (1.36) gives the Park-Clarke transfor-
mation from three-phase values to their representations in the d − q reference frame:

[
id
iq

]
= 2

3

⎡⎢⎢⎣
cos 𝜃e cos

(
𝜃e −

2𝜋

3

)
cos

(
𝜃e −

4𝜋

3

)
− sin 𝜃e − sin

(
𝜃e −

2𝜋

3

)
− sin

(
𝜃e −

4𝜋

3

)⎤⎥⎥⎦
⎡⎢⎢⎣
ia
ib
ic

⎤⎥⎥⎦ . (1.39)

The amazing fact about the mathematical model (see (1.33) and (1.34)) in the d − q reference frame
is that the current and voltage variables are no longer sinusoidal signals, instead, they are DC signals. In
other words, because of this, in the design of a control system, the reference signals to the closed-loop
system could be constants or step signals, which explains why PI controllers are widely used for this
class of systems.

1.2.3 Electromagnetic Torque

For the surface mounted PMSM, the d − q axis inductance is equal to each other due to the uniform
air-gap, that is

Ld = Lq = Ls
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and thus the stator flux in 𝛼 − 𝛽 reference frame is as in Equation (1.19). Similarly, the stator flux can
also be represented in the d − q frame by rotating the flux vector clockwise by 𝜃e, leading to

−→
𝜑s

′ = −→
𝜑se

−j𝜃e = Ls

−→
is

′
+ 𝜙mg (1.40)

and its real and imaginary parts are

𝜑d = Lsid + 𝜙mg (1.41)

𝜑q = Lsiq (1.42)

respectively, where the flux (𝜙mg) induced by the permanent magnets of the rotor is aligned with rotor
and its q-axis component is zero.

The electromagnetic torque is computed as the cross product1 of the space vector of the stator flux with
stator current in the 𝛼 − 𝛽 reference frame as

Te =
3
2
Zp
−→
𝜑s ⊗

−→
is (1.43)

or equivalently, in the d − q reference frame as,

Te =
3
2
Zp
−→
𝜑s

′
⊗

−→
is

′
, (1.44)

where Zp is the number of pole pairs. The cross product is calculated using two three dimensional vectors
[𝜑d, 𝜑q, 0] and [id, iq, 0] and the result is the vector [0, 0, 𝜑diq − 𝜑qid]. Hence,

Te =
3
2
Zp(𝜑diq − 𝜑qid). (1.45)

By substituting Equations (1.41) and (1.42) into (1.45), we obtain

Te =
3
2
Zp𝜙mgiq. (1.46)

With the flux of permanent magnet assumed to be a constant, the electromagnetic torque can be controlled
through varying the q-axis component of stator currents. Therefore, with the electrical model of PMSM
in d − q reference frame, the control of PMSM is analogous to the principle of controlling DC motors.

However, if one were to use the electrical model in the 𝛼 − 𝛽 reference frame to compute the electro-
magnetic torque Te, the matter would be more complicated. In this case, the space vector of the flux has
the relationship with the currents in the 𝛼 − 𝛽 reference frame:

−→
𝜑s = Ls

−→
is + 𝜙mge

j𝜃e (1.47)

= Lsi𝛼 + 𝜙mg cos 𝜃e + j (Lsi𝛽 + 𝜙mg sin 𝜃e). (1.48)

This leads to the expression of the electromagnetic torque Te via the cross product of −→𝜑s ⊗
−→
is that has

the following form:

Te =
3
2
Zp[(Lsi𝛼 + 𝜙mg cos 𝜃e)i𝛽 − (Lsi𝛽 + 𝜙mg sin 𝜃e)i𝛼]. (1.49)

One could easily compute the torque Te from (1.49), when the i𝛼 and i𝛽 currents are given. However, in
reverse, it would be difficult to determine the trajectories of i𝛼 and i𝛽 if a desired electromagnetic torque

1 The cross product of two vectors −→a and
−→
b is the vector −→c = −→a ⊗ −→

b . Letting −→a = [a1, a2, a3] and
−→
b = [b1, b2, b3],

the vector −→c = [c1, c2, c3] has the components: c1 = a2b3 − a3b2, c2 = a3b1 − a1b2 and c3 = a1b2 − a2b1 (see
Kreyszig (2010)).
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Te were given, which is what is required in the control of the electromagnetic torque. This explains why in
the control strategies chosen for the later chapters, the mathematical model in the d − q reference frame
is predominately used for the reason that there is a simple relation between the electromagnetic torque
Te and the iq current (see (1.46)).

It is worthwhile to emphasize that in the context of controlling a PMSM drive, if the model used for
the control system design is based on the 𝛼 − 𝛽 reference frame, then the manipulated variables are the
voltage variables 𝑣𝛼 and 𝑣𝛽 . Similarly, if the model in the d − q reference frame is used in the design,
then the manipulated variables are the voltage variables 𝑣d and 𝑣q. However, in the implementation of
the control law, the control signals 𝑣d and 𝑣q will be converted to 𝑣𝛼 and 𝑣𝛽 signals using the inverse
Park Transform, then to three phase voltage signals 𝑣a, 𝑣b and 𝑣c that will be realized using a volt-
age source inverter typically consisting of a DC power supply and several semiconductor switches (see
Chapter 2). The same control law implementation procedure applies to other AC machine drives and
power converters.

1.3 Model of Interior Magnets PMSM
The main difference between an interior magnets PMSM and a surface mounted motor is that the salience
due to the rotor magnets results in a non-uniform air-gap flux. The derivation of its d − q model is very
similar to the surface mounted case and is briefly introduced here. The vector voltage equations are the
same as those in (1.20) and (1.32) and presented here again for convenience,

−→
𝑣s = Rs

−→
is +

d−→𝜑s

dt
(1.50)

−→
𝑣s

′ = Rs

−→
is

′
+

d−→𝜑s

′

dt
+ j𝜔e

−→
𝜑s

′
. (1.51)

In contrast to a surface mounted PMSM, the stator flux due to the salience of the interior magnets needs
to be modeled in the d − q reference frame with different inductances in the d − q axes,

−→
𝜑s

′ = 𝜑d + j𝜑q, (1.52)

where

𝜑d = Ldid + 𝜙mg (1.53)

𝜑q = Lqiq. (1.54)

Here the quadrature axis stator inductance Lq is usually smaller than the direct axis inductance Ld for
an interior magnets PMSM. Therefore, substituting (1.52), (1.53) and (1.54) into (1.51) yields the d − q
model for interior magnets PMSM,

𝑣d = Rsid + Ld

did
dt

− 𝜔eLqiq (1.55)

𝑣q = Rsiq + Lq

diq
dt

+ 𝜔eLdid + 𝜔e𝜙mg. (1.56)

It is apparent that the model of interior PMSM is equivalent to the surface mounted case if Ld = Lq = Ls.
For the interior magnets PMSM, the nonlinearity of torque is mainly due to the salience of the rotor,
which causes the non-uniformity of air-gap.

Its electromagnetic torque is obtained by substituting (1.53), (1.54) into (1.45):

Te =
3
2
Zp(𝜙mgiq + (Ld − Lq)idiq). (1.57)
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In comparison with torque equation (1.46) of a surface mounted machine, the extra component
3

2
Zp(Ld − Lq)idiq is the reluctance torque due to the saliency.

1.3.1 Complete Model of PMSM

For the PMSM with multiple pair of poles, the electrical speed relates to the mechanical speed by

𝜔e = Zp𝜔m (1.58)

where Zp denotes the pair of poles of the PMSM. The rotation of motor could be described by the fol-
lowing dynamic equation:

Jm
d𝜔m

dt
= Te − B𝑣𝜔m − TL (1.59)

with Jm denoting the total inertia, B𝑣 viscous friction coefficient and TL load torque. Replacing the
mechanical speed (𝜔m) with electrical speed 𝜔e in (1.59) gives

d𝜔e

dt
=

Zp

Jm

(
Te −

B𝑣
Zp

𝜔e − TL

)
. (1.60)

For the surface mounted PMSM or id = 0 control, there is no additional torque component. Thus, sub-
stituting the torque (1.46) into (1.60) yields

d𝜔e

dt
=

Zp

Jm

(
3
2
Zp𝜙mgiq −

B𝑣
Zp

𝜔e − TL

)
. (1.61)

Together with the electrical model derived in the last section, the complete model of a PMSM is repre-
sented by

did
dt

= 1
Ld

(𝑣d − Rsid + 𝜔eLqiq) (1.62)

diq
dt

= 1
Lq

(𝑣q − Rsiq − 𝜔eLdid − 𝜔e𝜙mg) (1.63)

d𝜔e

dt
=

Zp

Jm

(
3
2
Zp𝜙mgiq −

B𝑣
Zp

𝜔e − TL

)
. (1.64)

1.4 Per Unit Model and PMSM Parameters
Using the explicit machine model (1.62) to (1.64) with SI unit to design the controller could lead to
numerical problems due to different units of machine parameters and variables. For example, in the third
equation (1.64), a small inertia value (Jm) in kg ⋅ m2 may lead to a very large coefficient for iq in Amp. As a
result, the controller gain becomes numerically very small for speed control purpose. Such wide variation
of numerical ranges makes the implementation on micro-controllers or Digital Signal Processors (DSP)
rather complex. Hence it is more convenient to use the per unit model of the PMSM for the design of
controllers.

1.4.1 Per Unit Model and Physical Parameters

In the per unit model, as an example, the base values of parameters and variables of a PMSM are listed
in Table 1.1. Here, only three independent base values need to be given. With the three independent
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Table 1.1 Base values for the per unit model

Symbol Description Base value SI unit

Pb Rated power 0.35 kW

Ub Rated voltage 150∕
√

3 V
Tb Rated torque 1.1 Nm
Ib Current 8.083 A
Rb Resistance 10.71 Ω
𝜔eb Velocity 630.63 rad∕s
Lb Inductance 0.017 H
Φb Flux 0.1373 Wb
Jb Inertia 0.0018 kg ⋅ m2

Bb Viscous coefficient 0.0018 Nm ⋅ s

values Pb, Ub and Tb chosen for this case, the other base values can be obtained by their inherent
relationships,

Ib = ZpPb∕Ub, Rb = Ub∕Ib, 𝜔eb = UbIb∕Tb

𝜙b = Ub∕𝜔eb, Lb = Rb∕𝜔eb

Jb = ZpPb∕𝜔
2
eb, Bb = Tb∕𝜔eb.

Scaling the parameters and variables in (1.62) to (1.64) with their own base values, the per unit version
of a machine model is

did
dt

=
𝜔eb

Ld

(𝑣d − Rsid + 𝜔eLqiq) (1.65)

diq
dt

=
𝜔eb

Lq

(𝑣q − Rsiq − 𝜔eLdid − 𝜔e𝜙mg) (1.66)

d𝜔e

dt
=

Zp

Jm

(
3
2
Zp𝜙mgiq −

B𝑣
Zp

𝜔e − TL

)
, (1.67)

where the notation refers to the per unit value of the machine variables and parameters with the exception
that 𝜔eb is in SI units. The numerical values and their per unit counterparts of machine parameters used
in obtaining the experimental and simulation results in this book are given in Table 1.2.

1.4.2 Experimental Validation of PMSM Model

The physical model developed is to be validated against the experimental data collected from the test-bed
that is described in detail in Chapter 10. The PMSM test-bed has its physical parameters defined by
Table 1.2. Using the parameters defined in the table, the differential equations (1.62)–(1.64) are solved
to yield the responses of id, iq currents and velocity 𝜔e. In both simulations and experiments, identical
step signals are applied to the 𝑣d and 𝑣q voltages as input to the dynamic system. The load torque TL = 0
Nm in both simulation and experimental validation. Figure 1.6 shows the experimental validation results
when the direct axis voltage is a step signal with amplitude 5 and 𝑣q is a step signal with amplitude of
20 (V). With these input voltage signals, the steady-state of the currents id (see Figure 1.6(a)) reaches
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Table 1.2 Parameters of PMSM

Symbol Description SI value SI unit Per unit

Jm Total inertia 0.47 × 10−4 kg ⋅ m2 0.0267
B𝑣 Viscous coeff. 1.1 × 10−4 Nm ⋅ s 0.0625
Ld d-axis inductance 7.0 × 10−3 H 0.4120
Lq q-axis inductance 7.0 × 10−3 H 0.4120
TL Load torque unknown Nm unknown
Rs Resistance 2.98 Ω 0.2781
𝜙mg Flux linkage due to

permanent magnet
0.125 Wb 0.9102

irated Nominal current 2.9 A 0.36
Zp No. of pole pairs 2

1.75 A and iq (see Figure 1.6(b)) reaches zero from the simulation results and the velocity reaches 73
rad∕s (see Figure 1.6(c)). The steady-state of the iq current is zero because the motor is not loaded and
the load torque is zero. In comparison between the simulation and experimental results, the physical
model developed here has a high fidelity in both transient responses and steady-state responses. The
discrepancies between the responses obtained using the model and those from the experimental test-bed
could be explained as the result of the net effects of the PWM harmonics (see Chapter 2), measurement
noise, pulsing torque, iron saturation and many other factors, which are ignored in the model.

1.5 Modeling of Induction Motor
Induction motor, or in other words, asynchronous motor generally contains two main components in its
structure: stator winding and rotor winding. Stator winding is supplied by an AC power source, which
will generate a rotating magnetic field, the so-called stator flux. Then, the constantly changing flux will
cause a current induced in the rotor winding based on Lenz’s Law, subsequently this induced current
will generate a magnetic field, the so-called rotor flux. Since both fluxes are opposite to each other, a
rotational force is generated to accelerate the rotor until the magnetizing torque is balanced to the load
torque. Because the actual rotor’s position is always lagging the flux position, in order to ensure the flux
cutting through the rotor winding, there is a difference between the angular speed𝜔s of the magnetic field
and the rotor electrical speed 𝜔e, which is called slip with 𝜔slip = 𝜔s − 𝜔e. 𝜔s is also called synchronous
flux angular speed.

The traditional three-phase AC induction motor has two types, wound and squirrel-cage, which
describes the form of the rotor winding. The wound rotor form has a brushed external connection;
typical applications include the wind-farm generators. The squirrel-cage rotor is more widely applied
and it has the rotor winding connection as a short-circuit without any external connections. The induction
motor discussed in this book is of the squirrel-cage type.

1.5.1 Space Vector Representation of Voltage Equation of Induction Motor

The use of the space vector simplifies the derivation of voltage equation for the induction machine and
makes the model derivation easier to understand. This derivation is the key to forming the dynamic
models for current control.
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Figure 1.6 Experimental validation (input voltage 𝑣d = 5 V and 𝑣q = 20 V). Noise free line: model outputs; noisy
line: outputs from test-bed. (a) id , (b) iq, and (c) 𝜔e.
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In modeling of the induction motor, the space vector for its three-phase stator current is written as

−→
is =

2
3

(
ia(t) + ib(t)e

j 2𝜋
3 + ic(t)e

j 4𝜋
3

s)
−→
is = Ise

j(𝜔st+𝜙),

where 𝜔s is the angular speed of the stator side space vectors, and the space vector of three-phase stator
voltage is defined as

−→us =
2
3

(
ua(t) + ub(t)e

j 2𝜋
3 + uc(t)e

j 4𝜋
3

)
,

where ua(t), ub(t) and uc(t) are terminal line-to-neutral voltage for each phase, respectively. Similarly,

space vectors of three-phase rotor voltage and current are denoted by −→ur and
−→
ir . The rotor dynamics play

an important role in the mathematical model of an induction motor.
For a squirrel-cage induction motor, the space vector voltage equation of stators with respect to their

own winding systems is

−→us = Rs

−→
is +

d−→𝜓s

dt
, (1.68)

where Rs is the stator resistance and −→
𝜓s is the space vector of stator flux. With respect to its own winding

system, the space vector voltage equation of the rotor is

−→ur
∗ = Rr

−→
ir

∗
+

d−→𝜓r

∗

dt
= 0, (1.69)

where Rr is the rotor resistance,
−→
ir

∗
, −→ur

∗
and −→

𝜓r

∗
are rotor’s current, voltage and flux in space vector forms

with respect to the rotor reference frame. Due to the short-circuit of the rotor winding, the rotor voltage
vector in (1.69) is always equal to zero.

In order to synchronize the reference frame of the rotor windings with the reference frame of the stator
windings, a set of space vectors are defined to change the reference frame of the space vectors of the
rotor,

−→ur =
−→ur

∗
e j𝜃e

−→
ir =

−→
ir

∗
e j𝜃e

−→
𝜓r =

−→
𝜓r

∗
e j𝜃e ,

where 𝜃e = 𝜔et, 𝜃e is the electrical angle of the rotor, and 𝜔e is the electrical angular speed of the rotor.
This transformation is based on the electrical field of the rotor windings lagging behind that of the stator
by 𝜃e radians; thus, in order to synchronize these two reference frames, the space vectors in the rotor
reference frame are advanced with the angle 𝜃e.

Now, multiplying both sides of (1.69) with the factor e j𝜃e and substituting the transformations into the
rotor voltage equation leads to

−→ur = Rr

−→
ir +

d−→𝜓r

dt
− j𝜔e

−→
𝜓r = 0, (1.70)

where the following equality is used,

d−→𝜓r

dt
e j𝜃e =

d−→𝜓r

dt
− j𝜔e

−→
𝜓r.

With the space vectors of both currents in stator and rotor, the instantaneous fluxes of both windings
are given based on their relationships to currents:

−→
𝜓s = Ls

−→
is + Lh

−→
ir (1.71)

−→
𝜓r = Lh

−→
is + Lr

−→
ir (1.72)

where Lh is the mutual machine inductance, Ls and Lr are the stator and rotor inductance, respectively.



Trim Size: 170mm x 244mm Wang c01.tex V3 - 11/24/2014 4:38 P.M. Page 16

16 PID and Predictive Control of Electrical Drives and Power Converters using MATLAB®/Simulink®

Note that there are coupling terms in the stator flux (see (1.71)) and rotor flux (see (1.72)). It seems
that the derivation of the induction motor model is more complicated than the process used in the PMSM
model, however, they follow the same thought process. Here it is to eliminate the rotor current

−→
ir from

the equations and find the relationship between the stator voltage and current.
Taking derivative of stator flux based on (1.71), and substituting the stator flux with stator and rotor

currents, the stator voltage equation (1.68) becomes:

−→us = Rs

−→
is + Ls

d
−→
is
dt

+ Lh

d
−→
ir
dt
. (1.73)

To eliminate the rotor current
−→
ir , the rotor flux equation (1.72) is used to find

−→
ir = 1

Lr

−→
𝜓r −

Lh

Lr

−→
is .

Substituting this into (1.73) yields

−→us = Rs

−→
is + Ls

(
1 −

L2
h

LsLr

)
d
−→
is
dt

+
Lh

Lr

d−→𝜓r

dt
.

To eliminate the derivative of the rotor flux from the above equation, the voltage balance equation from
the rotor (see (1.70)) is used, which leads to

d−→𝜓r

dt
= −

Rr

Lr

−→
𝜓r +

RrLh

Lr

−→
is + j𝜔e

−→
𝜓r,

where the rotor current is replaced with stator flux and current. Finally, it can be verified that the stator
voltage equation is expressed in terms of the rotor flux and stator current:

−→us =

(
Rs + Rr

L2
h

L2
r

)
−→
is + Ls

(
1 −

L2
h

LsLr

)
d
−→
is
dt

+
(
−
LhRr

L2
r

+ j𝜔e

Lh

Lr

)
−→
𝜓r.

Although all the physical parameters are defined in the above model, they could have more compact
expressions. More specifically, define the following parameters used in the model, leakage factor:

𝜎 = 1 −
L2
h

LsLr

, (1.74)

stator time constant:

𝜏s =
Ls

Rs

, (1.75)

rotor time constant:

𝜏r =
Lr

Rr

, (1.76)

coefficients:

kr =
Lh

Lr

(1.77)

r𝜎 = Rs + Rrk
2
r (1.78)

𝜏 ′𝜎 =
𝜎Ls

r𝜎
. (1.79)
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With these definitions of parameters, the voltage equation in space vector form is simply expressed as

−→
is + 𝜏

′
𝜎

d
−→
is
dt

=
kr
r𝜎

(
1
𝜏r

− j𝜔e

)
−→
𝜓r +

1
r𝜎

−→us (1.80)

where the rotor flux satisfies the differential equation:

−→
𝜓r + 𝜏r

d−→𝜓r

dt
= j𝜔e𝜏r

−→
𝜓r + Lh

−→
is . (1.81)

1.5.2 Representation in Stationary 𝛼 − 𝛽 Reference Frame

Upon obtaining the electrical model in the space vector form, the next step is to convert it to the model
in the 𝛼 − 𝛽 reference frame. The 𝛼 − 𝛽 reference frame is a stationary reference frame in the stator side
with the real (𝛼) axis aligned with the peak MMF (Fa(t), see Figures 1.1 and 1.3) and the imaginary (𝛽)
axis in quadrature (see Figure 1.3).

By decomposing the space vector voltage, current and flux onto the real and imaginary axes, they can
be represented by the complex notations,

−→us = us𝛼 + jus𝛽 (1.82)

−→
is = is𝛼 + jis𝛽 (1.83)

−→
𝜓r = 𝜓r𝛼 + j𝜓r𝛽 . (1.84)

To obtain the dynamic model in the 𝛼 − 𝛽 reference frame, the above variables are substituted into the
space vector model (1.80) and (1.81).

It can be readily verified that the electrical model of the induction motor in the 𝛼 − 𝛽 reference frame
is described by the following four differential equations:

dis𝛼
dt

= − 1
𝜏 ′𝜎

is𝛼 +
kr

r𝜎𝜏
′
𝜎𝜏r

𝜓r𝛼 +
kr
r𝜎𝜏

′
𝜎

𝜔e𝜓r𝛽 +
1

r𝜎𝜏
′
𝜎

us𝛼 (1.85)

dis𝛽
dt

= − 1
𝜏 ′𝜎

is𝛽 −
kr
r𝜎𝜏

′
𝜎

𝜔e𝜓r𝛼 +
kr

r𝜎𝜏
′
𝜎𝜏r

𝜓r𝛽 +
1

r𝜎𝜏
′
𝜎

us𝛽 (1.86)

d𝜓r𝛼

dt
=

Lh

𝜏r
is𝛼 −

1
𝜏r
𝜓r𝛼 − 𝜔e𝜓r𝛽 (1.87)

d𝜓r𝛽

dt
=

Lh

𝜏r
is𝛽 + 𝜔e𝜓r𝛼 −

1
𝜏r
𝜓r𝛽 . (1.88)

1.5.3 Representation in d − q Reference Frame

To change the reference frame to the d − q frame is equivalent to rotating the space vector in 𝛼 − 𝛽 frame
clockwise by 𝜃s, that is

−→us
′ = −→use

−j𝜃s = usd + jusq (1.89)

−→
is

′
= −→

is e
−j𝜃s = isd + jisq (1.90)

−→
𝜓r

′ = −→
𝜓re

−j𝜃s = 𝜓rd + j𝜓rq, (1.91)
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where −→us
′
,
−→
is

′
and −→

𝜓r

′
denote the space vectors referred to rotating d − q frame. 𝜃s = 𝜔st where 𝜔s is the

synchronous flux angular speed in the stator. In this rotating d − q reference frame, the rotor flux vector
is fixed to the real axis of the coordinate system. Therefore, the quadrature component of −→𝜓r

′
is zero.

Multiplying (1.80) with the factor e−j𝜃s and substituting in the space vectors in d − q frame gives

−→
is

′
+ 𝜏 ′𝜎

⎛⎜⎜⎝
d
−→
is

′

dt
+ j𝜔s

−→
is

′⎞⎟⎟⎠ =
kr
r𝜎

(
1
𝜏r

− j𝜔e

)
−→
𝜓r

′ + 1
r𝜎

−→us
′
, (1.92)

where the following equality is used:

d
−→
is
dt

e−j𝜃s =
d
−→
is

′

dt
+ j𝜔s

−→
is

′
.

Based on the real and imaginary components of (1.92), the dynamic electrical model in the d − q refer-
ence frame is obtained:

disd
dt

= − 1
𝜏 ′𝜎

isd + 𝜔sisq +
kr

r𝜎𝜏
′
𝜎𝜏r

𝜓rd +
1

r𝜎𝜏
′
𝜎

usd (1.93)

disq
dt

= −𝜔sisd −
1
𝜏 ′𝜎

isq −
kr
r𝜎𝜏

′
𝜎

𝜔e𝜓rd +
1

r𝜎𝜏
′
𝜎

usq. (1.94)

Similarly, it can be shown that the rotor flux in the d − q reference frame satisfies:

d𝜓rd

dt
=

Lh

𝜏r
isd −

1
𝜏r
𝜓rd (1.95)

0 =
Lh

𝜏r
isq − (𝜔s − 𝜔e)𝜓rd, (1.96)

where the q component of rotor flux 𝜓rq = 0. Since Equation (1.96) is an algebraic equation, it is not
included for control design. However, it yields the relationship used for estimation of 𝜔s:

𝜔s = 𝜔e +
Lh

𝜏r

isq
𝜓rd

, (1.97)

which is also called slip estimation and 𝜔e is the electrical angular velocity of the rotor. Since the rotor
flux 𝜓rd is not directly measured, the slip estimation is alternatively performed using the current isd to
replace 𝜓rd as

𝜔s = 𝜔e +
1
𝜏r

isq
isd
, (1.98)

where d𝜓rd
dt

= 0 is assumed in (1.95) to obtain the steady-state solution of isd in relation to 𝜓rd.
Relationships exist between the current, voltage and flux variables in the 𝛼 − 𝛽 reference frame and

the d − q reference frame, governed by the Clarke transformation (see Figure 1.4 for illustration), and
they are given below: [

usd
usq

]
=
[

cos 𝜃s sin 𝜃s
− sin 𝜃s cos 𝜃s

] [
us𝛼
us𝛽

]
(1.99)[

isd
isq

]
=
[

cos 𝜃s sin 𝜃s
− sin 𝜃s cos 𝜃s

] [
is𝛼
is𝛽

]
(1.100)[

𝜓rd

𝜓rq

]
=
[

cos 𝜃s sin 𝜃s
− sin 𝜃s cos 𝜃s

] [
𝜓r𝛼

𝜓r𝛽

]
. (1.101)



Trim Size: 170mm x 244mm Wang c01.tex V3 - 11/24/2014 4:38 P.M. Page 19

Modeling of AC Drives and Power Converter 19

1.5.4 Electromagnetic Torque of Induction Motor

The electromagnetic torque of induction motor is calculated using the cross product of the space vectors
of rotor flux and and stator current in the d − q reference frame, which is

Te =
3
2
Zp

Lh

Lr

(−→𝜓r

′
⊗

−→
is

′
), (1.102)

where Zp is the number of pole pairs. The cross product, defined in Section 1.2.3, is calculated using
two three dimensional vectors [𝜓rd 0 0] and [isd isq 0] since 𝜓rq is zero. The result of the cross
product is the vector [0 0 𝜓rdisq]. Thus, in the d − q reference frame, the electromagnetic torque is
proportional to 𝜓rdisq, which is

Te =
3
2
Zp

Lh

Lr

𝜓rdisq. (1.103)

If the electromagnetic torque is calculated using the space vectors of rotor and stator current in the 𝛼 − 𝛽
reference frame, then it is proportional to the cross product of the space vectors of rotor flux and stator
current in the stationary frame,

Te =
3
2
Zp

Lh

Lr

(−→𝜓r ⊗
−→
is )

= 3
2
Zp

Lh

Lr

(𝜓r𝛼is𝛽 − 𝜓r𝛽 is𝛼). (1.104)

Note that the expression of electromagnetic torque Te in the d − q reference frame is only related to 𝜓rd

and isq. These two variables are DC variables, thus the torque control can be achieved by controlling 𝜓rd

and isq to their specified constant or piece-wise constant reference signals. On the other hand, in the 𝛼 − 𝛽
reference frame, it is much more difficult to achieve torque control because the expression in (1.104) is
associated with the fluxes in 𝛼 − 𝛽 reference frame that are sinusoidal signals.

The mechanical model of induction motor is derived from the general motion equation of motor rota-
tion, which is given as follows,

Jm
d𝜔m

dt
+ fd𝜔m = Te − TL, (1.105)

where 𝜔m(t) is the rotor’s mechanical velocity (𝜔m = 𝜔e

Zp
), Jm represents the inertia of the motor, fd is

the friction coefficient, Te and TL denote the electromagnetic torque and load torque, respectively. The
dynamic model of the mechanical equation is obtained by substituting Equation (1.104) into the motion
equation (1.105), giving

d𝜔m

dt
= −

fd
Jm
𝜔m + 3

2

ZpLh

LrJm
𝜓rdisq −

TL

Jm
. (1.106)

In terms of rotor’s electrical velocity,

d𝜔e

dt
= −

fd
Jm
𝜔e +

3
2

Z2
pLh

LrJm
𝜓rdisq −

ZpTL

Jm
. (1.107)

1.5.5 Model Parameters of Induction Motor and Model Validation

The induction motor has the characteristics given by the nameplate data (see Table 1.3), and its parameters
used in the physical model are given in Table 1.4. These physical parameters are used in this book for
simulations and experiments.
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Table 1.3 Nameplate of the induction motor

Manufacturer SEW-EURODRIVE

Type 3-phase Cage
Rated power 0.75 kW
Supply frequency 50 Hz
Number of pole pairs 2
Rated Speed 1435 RPM
Rated stator current 1.75 A
Rated RMS phase voltage 415 V
Connection Y (star connection)

Table 1.4 Motor parameters

Rs(Ω) Rr(Ω) Ls(H) Lr(H) Lh(H) Jm(kg ⋅ m2) fd(Nm ⋅ s)

11.2 8.3 0.6155 0.6380 0.570 0.00214 0.0041

The induction motor model is validated against the test-bed used in this book (see Chapter 10 for
a detailed description of the test-bed). In the d − q reference frame, the responses of stator currents
isd, isq, rotor flux 𝜓rd and motor mechanical velocity 𝜔m are calculated by building an induction
motor simulator using the MATLAB/Simulink SimPower Toolbox, followed by entering the physical
parameters listed in Table 1.4 into this simulator. Choosing the voltage input signals, usd and usq,
as step signals with amplitudes of 10 V and 100 V respectively, the simulation results of currents,
flux and velocity are shown in Figure 1.7. With the identical conditions as the simulation conditions,
experiments are conducted using the test-bed. Figure 1.8 shows the experimental results of the currents,
flux and velocity. By comparing these two figures, it is seen that the steady-state responses are very
similar; however, the transient responses from the actual motor are faster than those produced by the
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Figure 1.7 Simulation result using SimPower model. (a) isd and isq currents and (b) Flux and velocity.
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Figure 1.8 Experimental results. (a) isd and isq currents and (b) Flux and velocity.

Simulink simulator. Also, due to the PWM mechanisms used in both the simulation and experiment,
the stator currents isd and isq contain substantial amount of harmonics (see Figures 1.7–1.8), par-
ticularly in the steady-state operations. Discussions about harmonics in the AC drives can be found
in Chapter 2.

For those who are interested in how to build a Simulink simulator using SimPower Toolbox, a
step-by-step tutorial for such a practice is given in Chapter 10.

1.6 Modeling of Power Converter
Figure 1.9 shows the block diagram of a grid-connected three phase voltage source converter. The sym-
bols [Sa, Sa], [Sb, Sb], [Sc, Sc] in Figure 1.9 denote six bipolar switching inputs with either value of 0 or 1
for an upper and lower leg of each phase respectively. These switching inputs are conducted in a comple-
mentary manner, for example, at any given time Sa + Sa = 1, Sb + Sb = 1, Sc + Sc = 1. This means that
only one of the switches is allowed to conduct at any one time.

Ea

Eb

Ec

Ls Rs

Sa Sb Sc

vdc

Cdc

RL

Sa Sb Sc

ia

ib

ic

+

−

Figure 1.9 Block diagram of two level voltage source converter.
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Before proceeding to the model derivation, several assumptions are made about the operation of the
converter. Firstly, it is assumed that all switches are ideal and operate in a continuous conduction mode
(CCM), and the grid voltage is symmetric and balanced as follows.

Ea = Em cos(𝜔gt) (1.108)

Eb = Em cos
(
𝜔gt −

2𝜋
3

)
(1.109)

Ec = Em cos
(
𝜔gt −

4𝜋
3

)
, (1.110)

where 𝜔g = 2𝜋f , f is the grid frequency (50 Hz used in this book). Secondly, the system is assumed to
be a three wire system, thus the sum of three phase currents and voltage is equal to zero.

ia + ib + ic = 0 (1.111)

Ean + Ebn + Ecn = 0. (1.112)

Thirdly, it is assumed that the inductance and resistance parameters, Ls and Rs, are ideal, therefore, they
have the same values for the three phase system. Even though these assumptions are ideal and do not
hold entirely in applications, their acceptance ensures the derivation of the dynamic model in a simpler
manner.

1.6.1 Space Vector Representation of Voltage Equation for Power Converter

The use of space vector simplifies the derivation of voltage equation for the two level voltage source
power converter. The space vector for three-phase grid current can be written as

−→
is = 2

3

(
ia(t) + ib(t)e

j 2𝜋
3 + ic(t)e

j 4𝜋
3

)
, (1.113)

while the space vector of three-phase voltage at the three nodes, on the grid side linked with the converter,
is defined as

−→
𝑣s =

2
3

(
𝑣a(t) + 𝑣b(t)e

j 2𝜋
3 + 𝑣c(t)e

j 4𝜋
3

)
(1.114)

and the space vector of the three phase grid voltage is described by

−→
Es =

2
3

(
Ea(t) + Eb(t)e

j 2𝜋
3 + Ec(t)e

j 4𝜋
3

)
. (1.115)

Based on these definitions, the space vector voltage at the nodes of the converter satisfies the voltage
equation:

−→
𝑣s = −Ls

d
−→
is
dt

− Rs

−−→
is(t) +

−→
Es. (1.116)

It is emphasized here that the above space vector voltage equation is obtained at the grid side.

1.6.2 Representation in 𝛼 − 𝛽 Reference Frame

The next step in the derivation of the model is to convert the model in the space vector form to the model
in the 𝛼 − 𝛽 reference frame. By representing the space vectors, voltage and current, in terms of their
real and imaginary components, they can be written in the complex notation,

−→
𝑣s = 𝑣𝛼 + j𝑣𝛽
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−→
is = i𝛼 + ji𝛽
−→
Es = E𝛼 + jE𝛽 .

To obtain the dynamic model in the 𝛼 − 𝛽 reference frame, the above variables are substituted into the
space vector model (1.116) where the rotating frame in the 𝛼 − 𝛽 has the same velocity as the rotating
speed of the space vector in the grid. Thus, by simply taking the components in the real and imaginary
axes, in the 𝛼 − 𝛽 reference frame, the electrical model of the voltage source converter is described by
the following two differential equations:

𝑣𝛼(t) = −Ls

di𝛼(t)
dt

− Rsi𝛼(t) + E𝛼(t) (1.117)

𝑣𝛽(t) = −Ls

di𝛽(t)
dt

− Rsi𝛽(t) + E𝛽(t). (1.118)

1.6.3 Representation in d − q Reference Frame

To change the reference frame to the d − q frame is equivalent to rotating the space vectors in (1.116)
clockwise by 𝜃g so that the synchronous reference frame is aligned with the grid voltage at 𝜔g frequency,
where 𝜃g = 𝜔gt and 𝜔g = 2𝜋f rad∕s, f is the grid frequency in Hz. Thus, the following rotated space
vectors are defined:

−→
𝑣s

′ = −→
𝑣se

−j𝜃g = 𝑣d + j𝑣q (1.119)

−→
is

′
= −→

is e
−j𝜃g = id + jiq (1.120)

−→
Es

′
= −→
Ese

−j𝜃g = Ed + jEq, (1.121)

where −→
𝑣s

′
,
−→
is

′
and

−→
Es

′
denote the space vectors referred to rotating d − q frame. The grid voltage in the

q-axis, Eq, is zero.
Multiplying (1.116) with the factor e−j𝜃g and replacing the original space vectors by the space vectors

((1.119)–(1.121)) in the rotating frame gives

−→
𝑣s

′ = −Ls

d
−→
is

′

dt
− j𝜔gLs

−→
is

′
− Rs

−→
is

′
+ −→
Es

′
, (1.122)

where the following equality is used:

d
−→
is
dt

e−j𝜃g =
d
−→
is

′

dt
+ j𝜔g

−→
is

′
.

Based on the real and imaginary components of (1.122), it can be verified that the dynamic model in the
d − q reference frame is:

𝑣d = −Ls

did(t)
dt

+ 𝜔gLsiq − Rsid + Ed (1.123)

𝑣q = −Ls

diq(t)
dt

− 𝜔gLsid − Rsiq, (1.124)

where Eq = 0.
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1.6.4 Energy Balance Equation

The output of the voltage source converter is its DC voltage 𝑣dc on the capacitor (see Figure 1.9). To
derive the dynamic model for the 𝑣dc, the energy conservation is investigated, where

Pc = Pg − PL.

Here, Pc is the power consumed by the capacitor, Pg is power from the grid and PL is the power consumed
by the load. Assuming that the DC current for the capacitor is ic(t), then from the energy conservation,
the following equality is obtained:

𝑣dcic =
3
2
−→
𝑣s ⋅

−→
is − iL𝑣dc, (1.125)

where −→𝑣s ⋅
−→
is is the inner product2 of the space vectors of voltage and current, iL is the load current. In this

equation, the term 𝑣dcic is the energy conserved in the capacitor, the term iL𝑣dc is the energy consumption

of the load, and the term 3

2
−→
𝑣s ⋅

−→
is is the energy drawn from the grid, consisting of active power and reactive

power.
Since in the 𝛼 − 𝛽 reference frame, the following relationships hold:

−→
𝑣s = 𝑣𝛼 + j𝑣𝛽
−→
is = i𝛼 + ji𝛽 .

By substituting these equations into (1.125) and calculating the inner product, the capacitor current
satisfies:

ic =
3

2𝑣dc
(𝑣𝛼i𝛼 + 𝑣𝛽 i𝛽) − iL.

Since ic = Cdc
d𝑣dc
dt

, the capacitor voltage 𝑣dc is described by the dynamic equation in the 𝛼 − 𝛽 reference
frame:

Cdc

d𝑣dc
dt

= 3
2𝑣dc

(𝑣𝛼i𝛼 + 𝑣𝛽 i𝛽) − iL, (1.126)

where Cdc is the capacitance.
Similarly, in the d − q reference frame, (1.125) is expressed in terms of the space vectors of current

and voltage
−→
is

′
and −→

𝑣s
′
, which has the form:

𝑣dcic =
3
2
−→
𝑣s

′
⋅
−→
is

′
− iL𝑣dc

= 3
2
(𝑣did + 𝑣qiq) − iL𝑣dc, (1.127)

leading to the capacitor voltage 𝑣dc described in the d − q reference frame as

Cdc

d𝑣dc
dt

= 3
2𝑣dc

(𝑣did + 𝑣qiq) − iL. (1.128)

Supposing that at steady state operating conditions, the converter maintains a target DC bus voltage with
unity power factor, the reference signal to the iq current is chosen to be zero in order to achieve this
control objective.

2 The inner product of two vectors −→a and
−→
b is the scalar c = −→a ⋅

−→
b . Letting −→a = [a1, a2] and

−→
b = [b1, b2], the scalar

c = a1b1 + a2b2 (see Kreyszig (2010)).
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1.7 Summary
This chapter has derived the physical models of PMSM, induction machine and voltage source power con-
verter in both stationary reference frame (also called 𝛼 − 𝛽 reference frame) and synchronous reference
frame (also called d − q) reference frame.

There are two steps deployed in the derivation of the mathematical models. The first step is to use space
vector description of the physical variables for voltage, current and flux, and the second step is to convert
the space vector based model to various reference frames. The mathematical models are presented in
terms of differential equations that will be used for control system design in the future chapters.

1.8 Further Reading
General application characteristics of electric motors are discussed in Pillay and Krishnan (1991).
Books for electrical drives include Vas (1992), Vas (1993) Hughes and Drury (2013), Leonhard (2001),
El-Hawary (2011), Drury (2009), Quang and Dittrich (2008), Linder et al. (2010). Modeling and
simulation of AC motor drive was discussed in Pillay and Krishnan (1988), Pillay and Krishnan (1989),
Holtz (1994), Filho and de Souza (1997), Lorenz et al. (1994) and Ong (1998). Mathematical modeling
and analysis of converters were presented in Wu et al. (1991), in Lindgren (1998), in Abdel-Rahim and
Quaicoe (1994), in Blasko and Kaura (1997). The Park transformation was described in Park (1929)
and the Clarke transformation was described in Duesterhoeft et al. (1951). A system theory approach to
unify electrical machine analysis was discussed in Willems (1972).
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