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1
Introduction and Overview

Plus ça change, plus c’est la meme chose.
—Jean-Baptiste Alphonse Karr (1849)

There’s even exponential growth in the rate of exponential growth.
—Ray Kurzweil (2001)

1.1 Introduction

Services, businesses, analytics, and other types of data services have moved from workstations,
local area networks (LANs), and in-house IT infrastructure to the Internet, mobile devices, and
more recently “the Cloud.” This has broad implications in the privacy, security, versioning, and
ultimately the long-term fate of data. These changes, however, provide a welcome opportunity
for reconsidering the manner in which intelligent systems are designed, built and tested,
deployed, and optimized during deployment. With the advent of powerful machine learning
capabilities in the past two decades, it has become clear to the research community that learning
algorithms, and systems based in all or part on these algorithms, are not only possible but also
essential for modern business. However, the combined impact of mobile devices, ubiquitous
services, and the cloud comprise a fundamental change in how systems themselves can—and
I argue should—be designed. Services themselves can be transformed into learning systems,
adaptive not just in terms of the specific parameters of their applications and algorithms but
also in the repertoire (or set) and relationship (or architecture) between multiple applications
and algorithms in the service.

With the nearly unlimited computing and data hosting possibilities now feasible, hitherto
processor-bound and memory-bound applications, services, and decision-making (actionable
analytics) approaches are now freed from many of their limitations. In fact, the cloud- and
graphical processing unit (GPU)-based computation have made possible parallel processing
on a grand scale. In recognition of this new reality, this book focuses on the algorithmic,
analytic, and system patterns that can be used to better take advantage of this new norm of
parallelism, and will help to move the fields of machine learning, analytics, inference, and
classification to more squarely align with this new norm.
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2 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

In this chapter, I overview at an often high, but thematic, level the broad fields of machine
intelligence, artificial intelligence, data mining, classification, recognition, and systems-based
analysis. Standing on the shoulders of giants who have pioneered these fields before this book,
the intent is to highlight the salient differences in multiple approaches to useful solutions in
each of these arenas. Through this approach, I intend to engage all interested readers—from
the interested newcomer to the field of intelligent systems design to the expert with far deeper
experience than myself in one or more of these arenas—in the central themes of this book. In
short, these themes are:

1. Instead of finding the best possible intelligent algorithm, system, or engine for a task, the
system architect should look for the best combination of algorithms, systems, or engines
to provide the best accuracy, robustness, adaptability, cost, and so on.

2. Parallel approaches to machine-intelligence-driven tasks such as data mining, classifica-
tion, and recognition naturally lead to parallelism by task, parallelism by component, and
eventually parallelism by meta-algorithmics.

3. Meta-algorithmic approaches and patterns provide a toolbox of potential solutions for
intelligent systems design and deployment—accommodating architects of widely varying
domain expertise, widely varying mathematical background, and widely varying experience
with system design.

1.2 Why Is This Book Important?

Jean-Baptiste Alphonse Karr, right after the 1848 Revolutions rocked Europe, made the famous
observation that “the more that things change, the more they stay the same.” This statement
anticipated Darwin’s treatise on the Origin of Species by a decade, and is germane to this day.
In the fast-changing world of the twenty-first century, in which Ray Kurzweil’s musing on
the rapidly increasing growth in the rate of growth is nearly cliché and Luddite musings on
humanity losing control of data are de rigueur, perhaps it may be time to reconsider how large
systems are architected. Designing a system to be robust to change—to anticipate change—may
also be the right path to designing a system that is optimized for accuracy, cost, and other
important performance parameters. One objective of this book is to provide a straightforward
means of designing and building intelligent systems that are optimized for changing system
requirements (adaptability), optimized for changing system input (robustness), and optimized
for one or more other important system parameters (e.g., accuracy, efficiency, and cost). If
such an objective can be achieved, then rather than being insensitive to change, the system
will benefit from change. This is important because more and more, every system of value is
actually an intelligent system.

The vision of this book is to provide a practical, systems-oriented, statistically driven ap-
proach to parallel—and specifically meta-algorithmics-driven—machine intelligence, with a
particular emphasis on classification and recognition. Three primary types of parallelism will
be considered: (1) parallelism by task—that is, the assignment of multiple, usually different
tasks to parallel pipelines that would otherwise be performed sequentially by the same pro-
cessor; (2) parallelism by component—wherein a larger machine intelligence task is assigned
to a set of parallel pipelines, each performing the same task but on a different data set; and
(3) parallelism by meta-algorithmics. This last topic—parallelism by meta-algorithmics—is



P1: TIX/XYZ P2: ABC
JWST304-c01 JWST304-Simske April 2, 2013 7:21 Printer Name: Yet to Come Trim: 244mm × 170mm

Introduction and Overview 3

in practice far more open to art as it is still both art and science. In this book, I will show
how meta-algorithmics extend the more traditional forms of parallelism and, as such, can
complement the other forms of parallelism to create better systems.

1.3 Organization of the Book

The book is organized in 11 chapters. In this first chapter, I provide the aims of the book
and connect the material to the long, impressive history of research in other fields salient to
intelligent systems. This is accomplished by reviewing this material in light of the book’s
perspective. In Chapter 2, I provide an overview of parallelism, especially considering the
impact of GPUs, multi-core processors, virtualism, and cloud computing on the fundamental
approaches for intelligent algorithm, system and service design. I complete the overview
chapters of the book in Chapter 3, wherein I review the application domains within which I will
be applying the different forms of parallelism in later chapters. This includes primary domains
of focus selected to illustrate the depth of the approaches, and secondary domains to illustrate
more fully the breadth. The primary domains are (1) document understanding, (2) image
understanding, (3) biometrics, and (4) security printing. The secondary domains are (1) image
segmentation, (2) speech recognition, (3) medical signal processing, (4) medical imaging, (5)
natural language processing (NLP), (6) surveillance, (7) optical character recognition (OCR),
and (8) security analytics. Of these primary and secondary domains, I end in each case with
the security-related topics, as they provide perhaps the broadest, most interdisciplinary needs,
thus affording an excellent opportunity to illustrate the design and development of complex
systems.

In the next three chapters, the three broad types of parallelism are described and applied
to the domains described in Chapter 3. Chapter 4 will address Parallelism by Task, which
focuses on the use of multiple instances of (usually the same) data being analyzed in parallel
by different algorithms, services, or intelligent engines. This chapter will also outline the
advantages that cloud computing brings to this type of parallelism—namely, the ability to
produce actionable output limited by the throughput of the slowest process. Chapter 5 then
addresses Parallelism by Component, in which different partitions of the same data set are
processed in parallel. The advances provided by GPUs will be highlighted in this chapter.
The third and final broad category of parallelism—Parallelism by Meta-algorithm—will be
introduced in Chapter 6. Because of their importance to the rest of the book, these approaches
will be elaborated as belonging to three different classes—first-, second-, and third-order
meta-algorithms—each with a specific set of design patterns for application. These patterns
will be introduced in Chapter 6 before they are then applied to the domains of interest in the
three chapters that follow.

In Chapter 7, the first-order meta-algorithmic patterns are explored. These relatively simple
means of combining two or more sources of knowledge generation—algorithms, engines,
systems, and so on—are shown to be generally applicable even when the combined generators
are known only at the level of black box (input and output only). One pattern, Tessellation
and Recombination, is shown to be especially useful for creating correct results even when
none of the individual generators produces a correct result—a process called emergence. This
pattern bridges us to the potentially more powerful patterns of Chapters 8 and 9. In Chapter
8, the second-order meta-algorithms are described. A very powerful tool for temporal and
series-parallel design of meta-algorithmic systems, the confusion matrix, is explored in full.



P1: TIX/XYZ P2: ABC
JWST304-c01 JWST304-Simske April 2, 2013 7:21 Printer Name: Yet to Come Trim: 244mm × 170mm

4 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

In Chapter 9, third-order meta-algorithmic patterns—generally focused on feedback from the
output to input and system-level machine learning—are overviewed.

The book concludes with Chapter 10—elaborating how parallelism by task, component,
and meta-algorithm lead to more accurate, cost-sensitive, and/or robust systems—and Chapter
11, which looks to the future of intelligent systems design in light of the previous chapters.

It is clear that, in addition to the more straightforward parallel processing approaches (by
task and by component), this book focuses on meta-algorithmics—or pattern-driven means
of combining two or more algorithms, classification engines, or other systems. The value
of specific patterns for meta-algorithmic systems stems from their ability to stand on the
shoulders of the giants of intelligent systems; in particular, the giants in informatics, ma-
chine learning, data mining, and knowledge discovery. This book will cover some new theory
in order to expostulate the meta-algorithmic approaches, but it is intended to be a practical,
engineering-focused book—enough theory will be provided to make the academic reader com-
fortable with the systems eventually crafted using the meta-algorithmics and other parallelism
approaches.

Building big systems for intelligence—knowledge discovery, classification, actionable an-
alytics, and so on—relies on the interplay of many components. Meta-algorithmics position
the system architect squarely in the “post-cloud” era, in which processing, storage, analysis,
and other traditionally limited computing resources are much less scarce.

In the sections that follow, the background science to which this book owes its existence will
be occasionally interpreted in light of meta-algorithmics, which themselves are not introduced
until Section 2.5 or fully developed until Chapter 6. This should not be an impediment to
reading this chapter, but concerned readers may feel free to look ahead at those sections if
they so wish. More importantly, this background science will be reinterpreted in light of the
needs of the so-called parallel forms of parallelism that comprise this book. We start with
informatics.

1.4 Informatics

Informatics, like the term “analytics,” is a broad field of knowledge creation with a plethora
of definitions. In keeping with Dreyfus (1962), I herein consider informatics to include the
study of algorithms, behavior, interactions, and structure of man-made systems that access,
communicate, process, and store/archive information. Informatics is concerned with the timely
delivery of the right information to the right person/people at the right time. Informatics,
therefore, is innately amenable to parallelism. Figure 1.1 illustrates this in simplified form.
Two sets of (one or more) algorithms are provided. The internals of these algorithms are not
important to the overall behavior of the system, which is the function mapping the inputs to
the outputs. The interactions between the two algorithmic subsystems are also a “black box”
to the inputs and outputs, and the overall structure of the system is the set of all inputs, outputs,
algorithms, and interactions.

Informatics, therefore, is the science of useful transformation of information. This implies
that the outputs in Figure 1.1 are more sophisticated than—that is, contain information of in-
creased value in comparison to—the inputs. A simple but still useful example of an informatics
system based on the architecture shown in Figure 1.1 is given in Figure 1.2.

In Figure 1.2, a parallel architecture is used even though the task is simple enough to perform
with a sequential design. The advantage of the parallel design is that subsections of the original
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Input Input

Algorithms Algorithms

Interactions

Interactions

Output Output

Figure 1.1 Simplified informatics system illustrating algorithms, behavior (mapping from input to
output), interactions (data exchange between algorithm blocks), and structure (overall architecture)

Text document:
“My vacation in California”

Los Angeles
San Diego

San Francisco

Dictionary of American cities

Compound place
names

Compound nouns

Compound nouns:
Berkeley University

Lassen Volcano
Los Angeles

Oakland Raiders
Redwood National Park

San Diego
San Francisco

Whale Watching

Dictionary:
Baltimore
Boston
Chicago

Los Angeles
New York City
Philadelphia
San Diego

San Francisco

Figure 1.2 A simple system to pull compound place names from a document. The algorithm box to the
left, “Compound nouns,” extracts compound nouns from the input document. The algorithm box to the
right, “Dictionary,” inputs a dictionary of terms to search for in its input (which happens to be the output
of the compound noun extractor). The terms occurring in each set are returned to the text document
algorithm box and output as the set of compound place nouns: “Los Angeles,” “San Diego,” and “San
Francisco”
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document after being processed by the left (or “Compound nouns”) algorithm, can be input
to the right (or “Dictionary”) algorithm and processed in parallel to the next subsection being
processed by the “Compound nouns” algorithm.

1.5 Ensemble Learning

Informatics-based systems are thus a very general type of intelligent system. In this section, en-
semble learning, which focuses on the handling of the output of two or more intelligent systems
in parallel, is considered. Two reviews of ensemble learning are of particular utility—those
provided by Berk (2004) and Sewell (2007). In Berk (2004), ensemble methods are defined as
“bundled fits produced by a stochastic algorithm, the output of which is some combination of a
large number of passes through the data.” This bundling or combining of the fitted values from
a number of fitting attempts is considered an algorithmic approach (Hothorn, 2003). In Berk
(2004), classification and regression trees (CART), introduced in Breiman et al. (1984), are
used to bridge from traditional modeling (e.g., mixture models, manifold-based systems, and
others) to algorithmic approaches. Partitioning of the input is used to create subclasses of the
input space, which correlate well with one among a plurality of classes. However, partitioning
quickly leads to overfitting of the data and concomitant degradation of performance on test
data when compared to training data.

To avoid this problem, ensemble methods are used. Bagging, random forests, and boosting
are the three primary ensemble methods described in Berk (2004). Bagging, or “bootstrap
aggregation,” is shown to be definable as a simple algorithm: random samples are drawn N
times with replacement and nonpruned classification (decision) trees are created. This process
is repeated many times, after which the classification for each case in the overall data set is
decided by majority voting. Overfitting is avoided by this “averaging” effect, but perhaps even
more importantly by selecting an appropriate margin for the majority voting. This means some
cases will go unclassified, but since multiple trees are created, these samples will likely be
classified through another case. Should any samples be unassigned, they can be assigned by
nearest neighbor or other decisioning approaches. Random forests (Breiman, 2001) further
the randomness introduced by bagging via selecting a random subset of predictors to create
the node splits during tree creation. They are designed to allow trade-off between bias and
variance in the fitted value, with some success (Berk, 2004). Boosting (Schapire, 1999), on
the other hand, is derived from a different learning approach, even though it may result in a
very similar interpretative ability to that of random forests (Berk, 2004). Boosting is, generally
speaking, the process by which the misclassified cases are more highly weighted after each
iteration. It is argued that this approach avoids overfitting, and its famous incarnation, the
AdaBoost (Freund and Schapire, 1996; Schapire, 1999), has certainly proven accurate in a
number of machine learning problems. However, there are some concerns with the approach:
the stopping criterion—usually the error value during training—is not always effective, and
convergence is not guaranteed.

In Jain, Duin, and Mao (2000), 18 classifier combination schemes are overviewed. Among
them are ensemble methods bagging and boosting, voting, and class set reduction. Interestingly,
this article mentions the possibility of having individual classifiers use different feature sets
and/or operate on different subsets of the input; for example, the random subspace method.
This approach lays some of the groundwork for meta-algorithmics.
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In Sewell (2007), ensemble learning is defined as an approach combining multiple learners.
This review focuses on bagging, boosting, stacked generalization, and the random subset
method. Here, Sewell refers to bootstrap aggregating, or bagging, as a “meta-algorithm,”
which is a special case of model averaging. Viewed this way, the bagging approach can be
seen as an incipient form of the Voting meta-algorithmic pattern described in Section 6.2.3.
It can be applied to classification or regression. However, as opposed to meta-algorithmic
patterns, bagging operates on multiple related algorithms, such as decision stumps, and not
on independently derived algorithms. Boosting is also described as a “meta-algorithm” that
can be viewed directly as a model averaging approach. It, too, can be used for regression or
classification. Boosting’s value is in generating strong classifiers from a set of weak learners.
This approach is an important part of the rationale for meta-algorithmics in general, as we will
see in Chapters 6–9.

Stacked generalization (Wolpert, 1992) extends the training + validation approach to a
plurality of base learners. This is a multiple model approach in that rather than implementing
the base learner with the highest accuracy during validation, the base learners are combined,
often nonlinearly, to create the “meta-learner.” This paves the path for meta-algorithmic
patterns such as Weighted Voting (Section 6.2.3), although stacked generalization is focused
on combining weak learners, whereas meta-algorithmics are focused on combining strong
learners, engines or intelligent systems.

The final ensemble method that introduces some of the conceptual framework for meta-
algorithmics is the random subspace method (Ho, 1998), in which the original training set input
space is partitioned into random subspaces. Separate learning machines are then trained on the
subspaces and the meta-model combines the output of the models, usually through majority
voting. This shares much in common with the mixture of experts approach (Jacobs et al., 1991),
which differs in that it has different components model the distribution in different regions of
the input space and the gating function decides how to use these experts. The random subspace
method leads to a single model—capable of classification or regression analysis—that can
provide high accuracy even in the face of a highly nonlinear input space. Both the random
subspace and mixture of experts approaches are analogous in some ways to the Predictive
Selection meta-algorithmic approach (Section 6.2.4) and related meta-algorithmic patterns.
However, as with the rest of the ensemble methods, these models stop at providing an improved
single model for data analysis. Meta-algorithmics, on the other hand—as we will see in much
of the rest of the book—use the output of ensemble methods, other classifiers, and other
intelligent systems as their starting points. Meta-algorithmics combine multiple models to
make better decisions, meaning that, for example, bagging, boosting, stacked generalization,
and random subspace methods, could all be used together to create a more accurate, more
robust, and/or more cost-effective system.

1.6 Machine Learning/Intelligence

The distinction between machine learning/intelligence and artificial intelligence is somewhat
arbitrary. Here, I have decided to term those approaches that result in a readily interpretable,
visible set of coefficients, equations, procedures, and/or system components as “machine
learning.” Those in which the details of how the system works are hidden are considered
“artificial intelligence” systems. For the former, the intelligence is not “artificial,” but rather
based on an expert system, formula, or algorithm in line with human reasoning; for the latter,



P1: TIX/XYZ P2: ABC
JWST304-c01 JWST304-Simske April 2, 2013 7:21 Printer Name: Yet to Come Trim: 244mm × 170mm

8 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

it simply works with an “intelligence” that is not immediately obvious. The distinction is not
particularly important other than to allow me to collect some thoughts on these broad topics
in a (relatively) structured manner.

For this machine learning overview, I primarily consulted Bishop (2006), Hastie, Tibshirani,
and Friedman (2009), and Marsland (2009). While there are many other texts on machine
learning, the combination of these three was appealingly broad and deep. In providing different
foci, they were just the right balance between rigor and heuristics, and I refer the reader to
these books for a far more in-depth coverage of these topics than I can provide in this section.
Additional background texts consulted, which helped frame the development of machine
and artificial intelligence in the decade leading up to support vector and ensemble methods,
included Fogel (1995), Goldberg (1989), Leondes (1998), and Tveter (1998): these provided
rich context for the more current state of machine intelligence and also highlighted for me the
need for parallel and other hybrid methods.

1.6.1 Regression and Entropy

Regression is perhaps the simplest form of machine intelligence. Linear regression is often
the introduction to least squares error, since this is the most common choice of loss func-
tion in regression (since least squares estimates have the smallest variance among all linear
unbiased estimates). Introductory statistics courses teach the student how to perform linear
regression and in so doing determine a least squares best fit model that is described in its
entirety by the {slope, intercept}, or {β1, β0}. This fits precisely one definition of machine
learning above: a readily interpretable, visible set of coefficients. The machine has learned
that

ŷ = β0 + β1X.

That is, the dependent variable y, as well as its estimate ŷ, is predicted by the independent
variable X using only the model coefficients.

One of the more interesting applications of regression is in determining the complexity of
the overall data. I define complexity here by the combination of the order of the regression,
the residual variability determined by 1.0 − r2, and the entropy of the residual variability.
Table 1.1 illustrates the residual variability as a ratio of the initial variability and the entropy

Table 1.1 Residual variability as a percentage of the original variability and entropy, H(�y), of the
residual variability determined from H(�y) = − ∑

p(�y) ln p(�y), where p(�y) are computed on a
histogram of 100 bins (maximum entropy = 4.605)

Input Space A Input Space B
Order of
Regression Residual Variability Residual Entropy Residual Variability Residual Entropy

1 0.432 2.377 0.345 2.561
2 0.167 3.398 0.156 2.856
3 0.055 4.101 0.087 3.019
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of the residuals, �y = |y − y|, for first-, second-, and third-order regression models of two sets
of data, Input Spaces A and B.

The entropy for Table 1.1 is taken for 1% subranges of the overall range of X. The entropy
is computed from

H(�y) = −
∑

p(�y) ln p(�y),

where the maximum entropy is, therefore, − ln(0.01) = 4.605. For Input Space A, the residual
variability decreases as the order of regression increases. The entropy increases significantly,
as well. These data indicate that much of the variability in the data is explained by a third-
order regression: only 5.5% of the variability remains and the remaining error values have
high entropy.

For Input Space B, however, the residual variability drops less, to 8.7% after a third-order fit.
The entropy also does not increase significantly from second- to third-order best fit, indicating
that there is still structure (i.e., a fourth-order or higher fit is appropriate) in the residual error
values. Interpreting the data in Table 1.1 in this way is appropriate, since the simple first-,
second-, or third-order regression models are a linear combination of fixed basis functions.
Since reduced entropy indicates nonrandom structure remains in the data, it indicates that the
regression model does not contain sufficient dimensionality, or else that a different model for
the regression is needed altogether. This latter possibility is important, as it may mean we need
to rethink the approach taken and instead use, for example, a support vector machine (SVM)
with a kernel to transform the input space into one in which simpler regression models suffice.

Regardless, this simple example illustrates an important connection between regression and
other intelligent system operations, such as classification (Section 1.9) or alternative models
(Section 1.7). For example, one may conclude that Input Space A represents a third-order data
set, and so gear its classification model accordingly. Input Space B, on the other hand, will
require a more complicated classification model. This type of upfront data analysis is critical
to any of the three forms of parallelism that are the main topic of this book.

1.6.2 SVMs and Kernels

SVMs are two-class, or “binary,” classifiers that are designed to provide simplified decision
boundaries between the two classes. Support vectors create boundaries for which the margin
between the two classes is maximized, creating what is termed optimal separation. It is obvious
that such an approach is highly sensitive to noise for small- and medium-sized data sets, since
the only relevant subset of input data—the support vectors—are used to define the boundary
and its margin, or spacing to either side of the decision boundary. An example of a support
vector for a two-dimensional (2D), two-class data set is given in Figure 1.3.

SVMs (Cortes and Vapnik, 1995; Vapnik, 1995) focus on transforming the input space into
a higher-order dimensionality, in which a linear decision boundary is crafted. There is art, and
mathematical prowess, involved in creating a decision boundary, analogous to the creation
of classification manifolds, as in Belkin and Niyogi (2003), Grimes and Donoho (2005), and
elsewhere. As noted in Bishop (2006), direct solution of the optimization problem created
by the search for an optimum margin is highly complex, and some classification engineers
may prefer genetic, near-exhaustive, and/or artificial neural network (ANN) approaches to the
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Dimension 2

Dimension 1

Figure 1.3 Example decision boundary (solid line) with margin to either side (dotted lines) as defined
by the support vector (filled circles and diamond). The margin is the maximum width possible for the
given data set in which classification errors are entirely eliminated (all circles at least one margin above
the decision boundary, and all diamonds at least one margin below the decision boundary)

mathematically precise approach. However, some of this complexity is obviated by reducing
the SVM optimization equation to what is known as the canonical representation of the
decision hyperplane. This means the optimization is now recrafted as a familiar quadratic
programming problem—a second-order function is optimized subject to a set of first-order
inequality constraints.

The relationship between an SVM and regression models, such as described in the previous
section, is subtle, as shall be illustrated in the next few paragraphs. The SVM is designed to
maximize the margin of the decision boundary, as shown in Figure 1.3. As the size of the
two populations increases, however, the percentage of points in each population that are being
considered in forming the support vector drops. This is analogous to the much lower surface
area to volume ratio of, say, an elephant in comparison to a mouse. It is clear that the margin
can be optimized, but does that mean that it should? The answer to this somewhat troubling,
but very important, classification question is, of course, “it depends.”

To address this, I will push the SVM ramifications in another direction, trying to connect
the decision boundary to regression and principle component analysis. Let us suppose that the
margins around the decision boundary define a range of acceptable decision boundary slopes.
This is shown in Figure 1.4 for the support vector introduced in Figure 1.3.

Figure 1.4 illustrates one means of using all of the samples in both of the classes to define the
optimal decision boundary, and not just the support vectors. The decision boundary is allowed
to be redefined such that none of the samples defining the support vector are misclassified,
even though the slope of the decision boundary may change. The perpendiculars to the range
limits of this new decision boundary are also shown.

In order to connect the range from line C to line D in Figure 1.4, a linear transformation of
the data in Figures 1.3 and 1.4 is performed. In Figure 1.5, this transformation is performed by
elongating the input space in a direction perpendicular to the original decision boundary. This



P1: TIX/XYZ P2: ABC
JWST304-c01 JWST304-Simske April 2, 2013 7:21 Printer Name: Yet to Come Trim: 244mm × 170mm

Introduction and Overview 11

Dimension 2

Dimension 1

A

C D

B

Figure 1.4 Support vector example from Figure 1.3 in which the Dimension 2 margins of the support
vector (the “decision zone,” or space within a margin of the optimal decision boundary) are used to
define the range of slopes for the decision boundary. Line A indicates the minimum slope defined by
the upper left and lower right limits of the decision zone, and line B indicates the maximum slope. The
perpendiculars to lines A and B are lines D and C, respectively, and delimit the allowable range of slopes
for the line of best fit to the overall data set

Dimension 2

Dimension 1

Figure 1.5 Support vector example from Figure 1.3 in which the data for the two classes (represented
by circles and diamonds) are stretched vertically to ensure that the regression line of best fit and the
principal component will both be roughly perpendicular to the decision boundary
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Dimension 1

Dimension 2

Figure 1.6 Redefinition of the decision boundary (dashed line, which passes through the centroid of
the decision zone) based on defining it as perpendicular to the line of best fit to the transformed data
(“dashed” and “dotted” line)

allows us to use regression and/or principal component analysis (PCA) to define the optimal
decision boundary.

In this case, the decision boundary could be defined as the perpendicular to the line of best
fit through the combined data. An illustration of this is given in Figure 1.6; the line of best
fit is illustrated by the “dashed” and “dotted” line. This line of best fit is used to redefine the
decision boundary as a perpendicular to it. In this example, the final system defined by the
decision boundary is likely to be more robust than the original system because it minimizes
the error of regression and yet is still compatible with the support vector decision zone.

Figures 1.3, 1.4, 1.5, and 1.6 provide some possibilities for modestly improving the support
vector. However, it is more important to address less ideal systems in which the support
vector cannot provide error-free classification. As noted in Figure 5.3 of the Marsland (2009)
reference, one approach is to immediately assess each of the candidate margins for their
errors: “If the classifier makes some errors, then the distance by which the points are over
the border should be used to weight each error in order to decide how bad the classifier is.”
The equation for errors is itself turned into a quadratic programming problem, in order to
simplify its computation. The error function to be minimized, however, incorporates an L1,
or Manhattan, absolute difference, which may or may not be appropriate; for example, an L2
or Euclidean distance seems more appropriate based on the properties of least squares fitting
described in Section 1.6.1.

The L2 distance is used in the example of Figures 1.7 and 1.8. In Figure 1.7, a problem
in which the support vector decision boundary does not eliminate all classification errors is
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Dimension 1

Dimension 2

Figure 1.7 Decision boundary (solid line) with margin to either side (dotted lines) as defined by the
support vector (filled circles and diamond). Here, there are six misclassifications

illustrated. In fact, 6 of 41 samples are misclassified. The support vector, however, provides a
decision boundary and maximized margin.

Next, the entire set of data in Figure 1.7 is used in combination with the support vector
decision zone to create a new decision boundary that has minimal squared error for the
misclassified samples as a sum of their L2 values from the boundary. Figure 1.8 provides
the optimum decision boundary that is compatible with the support vector range of allowable
values as introduced in Figure 1.4. This can be compared with the decision boundary that
minimizes the sum of L2 error distances overall in Figure 1.9.

Through this process, a boundary-based approach, the SVM, has been modified to be com-
patible with a population-based, “bottom-up,” data-driven approach. Whether this approach
provides a real advantage to SVM approaches compared to, for example, the kernel trick
described next, remains to be seen. Certainly, it should be an area of research for the machine
learning community. However, it does appear likely that such an approach, in minimizing the

Dimension 1

Decision
boundary of

minimum error

Dimension 2

Figure 1.8 Decision boundary providing least squares error for the six misclassified samples of Fig-
ure 1.7 (dashed line), which does not deviate from the decision zone of the support vector
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Dimension 1

Dimension 2

Decision
boundary of

minimum error,
decision zone

compatibility not
required

Figure 1.9 Decision boundary providing least squares error for the six misclassified samples of Fig-
ure 1.7 (dashed line), where it is allowed to deviated from the decision zone of the support vector

overall squared error and in maximizing the margin around the decision boundary, may be
more robust.

Figures 1.7, 1.8, and 1.9 illustrate a coordinate space in which no linear separation of the
class is possible. For linear separation, the following two equations must hold:

If (y > mx + b), y ∈ ClassA;
If (y < mx + b), y ∈ ClassB.

The kernel trick is introduced to find a linear decision boundary for separation of these two
classes, since in real-world classification problems, the class separation is rarely as clean as
shown in, for example, Figure 1.3. More commonly, the initial class separation, or decision
boundary, is a Gerrymandered curve along the lines of that shown in Figure 1.10a. With the
kernel trick we transform the decision boundary—albeit in a transformed coordinate system
made possible by the increased dimensionality of the kernel—into a linear boundary as shown
in Figure 1.10b.

Why is the transformation to a linear boundary important? My answer here is not based
on SVM theory, as I am unaware of research to date that has addressed, let alone solved, this
question. My interpretation is that, for one thing, it makes the boundary a minimal length
pathway through the new dimension space, which minimizes the “error surface.” For another,
this single pathway boundary—when the right kernel is selected—minimizes overfitting, since
the boundary is described by a surface the same order as the dimensionality of the class space.

In concluding this section on SVMs, I would like to point out their central role in current clas-
sification theory and practice. The kernel trick has, in some ways, allowed a classifier—the
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Dimension 1

(a)

(b)

Dimension 1'

Dimension 2

Dimension 2'

Figure 1.10 Decision boundary for two classes in the original 2D space (a) and in the transformed
space (b) created within the kernel. In (b), the decision boundary is linear, which generally minimizes
overfitting and differences between training and testing error rates

support vector—which might otherwise not be very effective for a given problem to be-
come very effective when one or more kernels are utilized. Among these, determining the
best results among the set of {linear, polynomial, radial basis, Fisher, Gaussian} kernels
provide a good repertoire of choices that will generally result in one or more highly accu-
rate SVM + kernel systems. For more on kernel engineering, please see Shawe-Taylor and
Cristianini (2004).

1.6.3 Probability

Probability methods are important for a wide range of intelligent system tasks, including
clustering, classification, and the determination of variance and covariance. Clustering is
especially important to estimate the relative sizes and distribution of the classes of data,
which in turn can be used to decide what, if any, transformation should be performed on each
distribution before downstream analysis.
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Probabilistic means of clustering data are as simple as the expectation maximization (EM)-
based k-means clustering approach. The k-means clustering approach performs iterations
consisting of two steps: updating the cluster assignment of the samples based on their location
to the nearest cluster center, followed by updating the cluster centers based on the set of
samples now belonging to them. Though simple, this algorithm can be readily modified to
accept constraints, such as (1) having clusters with equal number of samples; (2) weighting
different features used to determine the distances from each cluster center differently based on
their predicted utility for later classification, regression, and so on; and (3) allowing predefined
clusters to be accommodated concomitant to unknown clusters.

Another important set of approaches is based on joint distributions and conditional inde-
pendence of features. In this case, the probability of an event A, given the occurrence of an
event B, is the same as the probability of an event B, given the occurrence of an event A. The
equation describing this is

p(A | B)∗ p(B) = p(B | A)∗ p(A),

from which the general form of Bayes’ theorem is directly obtained:

p(A | B) = p(B | A)∗ p(A)

p(B)
,

where, as noted above, p(A | B) is the probability of event A given that the event B has already
occurred. In many cases, we wish p(A) and p(B) to be very low (rarity of identifying event
or events) but p(A | B) to be very high (specificity of event or events). Rearranging Bayes’
theorem to show the ratio of p(A) and p(B), we can see that the ratio of p(A)/p(B) is equal to
the ratio of p(A | B)/(B | A):

p(A)

p(B)
= p(A | B)

p(B | A)
.

In many machine intelligence problems, we are concerned with events that occur with some
probability when one or more of multiple other events occur. In fact, we may wish to find the
probability of event A when considering all of a set of mutually exclusive events, denoted as
B here. We thus rearrange to solve for p(A):

p(A) = p(A | B)∗ p(B)

p(B | A)
.

Let us now consider the case where B can occur as one of N independent outcomes; that is,
the sum of all p(Bi) = 1.0. We then obtain the following for p(A):

p(A) =

∑

i=1,...,N
p(A | Bi)

∗ p(Bi)

∑

i=1,...,N
p(Bi | A)

.
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This latter equation also governs the probability of event A for any subset of the outcomes
of B; for example, under constrained situations in which one or more of the Bi is not allowed
to, or cannot, occur. Why is this important? Because in many cases, we may not have a good
estimate for the probability of event A. Event A, meanwhile, may be a triggering event for
a specific downstream task, such as using a specific classifier tuned for the input data when
the triggering event occurs. Thus, the rearranged generalized Bayesian equation allows us
to compare different dependent events, here event A, for their overall probabilities against a
mutually exclusive set of events, B.

1.6.4 Unsupervised Learning

Unsupervised learning techniques are concerned with clustering (aggregating like elements
in a group), input space data distribution, or other operations that can be performed without
training data. Training data is also referred to as ground-truthed data and as labeled data. With
such unlabelled data, we have to rely on the structure of the data itself to infer patterns; that
is, unsupervised learning.

One type of unsupervised learning is the k-means clustering approach described in Sec-
tion 1.6.3. Related to the k-means clustering approach is the Gaussian mixture model (GMM),
in which we know the number of classes that are in a data set, but have no labeled data. The
GMM assumes that the data set is a function comprising the sum of multiple Gaussians, one
each corresponding to the individual classes:

f (x) =
C∑

c=1

wcG(x : μc, Xc),

where x is the set of features, f (x) is the output based on the set of features, C is the number of
classes, wc is the weight assigned to class c, and G(x : μc, χc) is a C-order Gaussian function
with mean μc and covariance matrix χc. The classifier consists, after the model is built (also
using an EM approach, per Section 9.2.2 of Bishop (2006)), of finding the maximum of the
following:

max
k

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p(xa ∈ k : k = 1, . . . , C) = wkG(xa : μk, Xk)

C∑

c=1

wcG(x : μc, Xc)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

Weighting the classes is governed by the constraint

C∑

k=1

wk = 1.0.

For the EM approach to determining the GMM, the weights of the individual classes are
proportional to the number of samples assigned to the individual classes. This is called the
average responsibility approach, since the weighting is proportional to the class’ responsibility
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in explaining the input data set. It should be noted that the individual features in the feature
vector x can also be weighted differentially. There will be much more to say on this in later
sections of the book.

Self-organizing feature maps (SOMs) (Kohonen, 1982) are an unsupervised learning ap-
proach to describe the topology of input data. This machine learning approach can be used
to provide a lower-dimensional representation of the data in addition to its density estimation
value. It should be noted that SOMs can be very useful at the front end of unsupervised cluster-
ing problems, as well. As will be discussed in detail in Chapter 8 and elsewhere in this book,
one of the primary considerations in parallel system design is to decide how best to aggregate
processes to run in parallel. For large intelligence systems, this may include deciding which
aggregate classes to form first and from this determine the structure of a decision tree.

1.6.5 Dimensionality Reduction

SOMs, then, can be used for dimensionality reduction. Nearest neighbor techniques can also be
used to reduce the dimensionality of a data set. This is important to classification problems too,
since it is usually advantageous to eliminate isolated samples or even small clusters to avoid
overtraining, the addition of ectopic classes, and other types of “output noise.” Figure 1.11
illustrates how the 3-nearest neighbor approach is used to assign an unassigned sample to one
of two classes. The process involved is the same as that used for assigning samples when the
trained system is deployed.

The example of Figure 1.11 reduces the number of classifiers. More traditionally, however,
dimensionality reduction is concerned with the removal of features from the feature space. In
order to reduce the number of features, Marsland (2009) outlines three primary approaches:

1. Feature selection
2. Feature derivation
3. Clustering.

Dimension 1

Dimension 2

Figure 1.11 k-nearest neighbor classification applied to a formerly unclassified (square). The dotted
circle has a radius sufficient to incorporate the nearest three neighbors. Based on the results, the square
is assigned to the same class as the diamonds
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Feature selection is a white box means of eliminating features inasmuch as we use our
awareness of the relationship between a feature and the system output—for example, through
correlation, confusion matrices, and so on—to decide whether or not to eliminate a feature.
We can triage features through some relatively simple algorithms, including the following:

1. Select the feature with the lowest correlation with the output (alternatively, select the feature
with the lowest accuracy output).

2. Remove the feature.
3. If system performance improves, drop the feature and return to Step 1.
4. If system performance does not improve, either terminate feature selection or jump to the

next most poorly correlated (or accurate) feature and repeat Steps 1–3.

When employing Step 4 in this algorithm, we may choose to allow the “stack” to only get
to a certain depth (say, 10% of the number of features) before terminating the search. Other
forms of feature selection include the decision tree approaches and linear discriminant analysis
(LDA). LDA is concerned with projecting to a lower-order dimension such that the samples
in the higher-order dimension are optimally separated in the reduced dimension space. The
approach is effectively half of an F-score approach: we wish to maximize the between-class
scatter. The effect is similar to that discussed with regard to Figures 1.5 and 1.6. The “dashed”
and “dotted” line in Figure 1.6, in fact, could be the output of an LDA, allowing the two
dimensions in Figure 1.6 to be reduced to a single projected line.

Harkening back to the previous section, we observe that the LDA is performed on labeled
data. However, there are several methods for dimensionality reduction that do not require
labeled data. The first, PCA, is the process by which a matrix is transformed into its eigen-
vectors and eigenvalues; that is, orthogonal, uncorrelated components comprising a new set of
dimensions in which the principal component is in the direction of maximum variance for the
data set. Independent component analysis (ICA), on the other hand, assumes that the latent
components are independent, and so strives to transform the input data space into a set of
independent dimensions. Dimensionality reduction is readily achieved for PCA by dropping
all of the eigenvectors whose eigenvalues are below a given threshold (Jolliffe, 1986), and
for ICA based on the measurement of the mutual information of the components (Wang and
Chang, 2006).

Feature derivation, a second method for dimensionality reduction, is concerned with trans-
forming a (measured or original) feature set into another (derived or transformed) feature set.
These new features can be combined features from the original space; for example, in imaging
we may wish to combine red, green, and blue channel intensity into a mean intensity feature,
which is simply the mathematical mean of the original three features. Note, however, that
such transformations do not necessarily result in a reduced feature set immediately after trans-
formation: in this example, we may replace the three features (red, green, and blue channel
means) with three new ones (mean intensity, mean saturation, and mean hue) that provide us
with a set better pruned using feature selection.

Both PCA and ICA, described above, perform feature derivation in addition to the feature
selection. Each of them computes a principal component in the direction of maximum variance
and derives the rest of the components based on orthogonality (PCA) or independence (ICA).
Factor analysis (Dempster, Laird, and Rubin, 1977; Liu and Rubin, 1998) is another means
of dimensionality reduction in which latent variables are discovered using an EM approach.
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Multi-dimensional scaling (MDS) (Cox and Cox, 1994) and locally linear embedding (Roweis
and Saul, 2000) are two other feature derivation processes.

The third method for dimensionality reduction, clustering, has been already addressed in
light of k-means clustering, k-nearest neighbor (k-NN) clustering, and GMMs. As will be
shown later in this chapter, a specific criterion, the F-score, can be used to decide whether or
not to cluster.

Dimensionality reduction is important for several reasons. First off, in reducing the set
of features on which regression, classification, and other machine learning tasks are based, it
allows better compression of the data. Secondly, in reducing the correlation and/or dependency
among the features, dimensionality reduction may make the system less sensitive to noise.
Thirdly, dimensional reduction results in improved retrieval efficiency during querying.

1.6.6 Optimization and Search

Optimization is the process whereby, with a certain confidence, the best possible outcome
for a system is obtained. Typically, a function of the output—for example, the cost of the
system components, the cost of the processing, or the cost of correcting system errors—is to
be optimized. For cost, the optimization is usually a minimization. Introductory calculus tells
us that a smooth function can be effectively searched for its local optima using the gradient,
or Jacobian operator. The steepest descent approach updates the vector x as follows:

xk+1 = xk − �k∇ f (xk),

where �k is the distance to travel in the direction from xk to xk+1 in order to reach a minimum.
A related approach, which effectively uses the gradient descent method to create a trust region
for a least squares approach, is the Levenberg–Marquardt algorithm (Levenberg, 1944). The
conjugate gradient method is often a significant improvement on these methods, however,
since it moves in conjugate directions sequentially—thereby avoiding consecutive small steps
in the same direction.

For each of these approaches, one concern is that the gradient cannot move the vector x
from the zone of a local optima. No method for searching other neighborhoods in the output
space is provided. Thus, it is not unreasonable to combine such an optimization approach
with a “location generator” that seeds an appropriate set of points in x to provide statistical
confidence that an overall optimum has been achieved. This is illustrated in Figure 1.12, in
which sufficient starting points exist to allow the finding of the overall optimum.

In later chapters of this book, first derivative approaches will largely focus on sensitivity
analysis problems. However, it should be noted that the same concern applies to sensitivity
analysis problems as do to the more general optimization problems. Namely, the input space
must be seeded with a sufficient number of starting points to allow the overall optima to
be found.

Another important machine intelligence system approach to optimization is search. The
path to search is implicit in the grid pattern of seeded starting points in Figure 1.12. As the
spacings between starting points, or nodes, in the grid become smaller, the odds of missing
the overall optima also become smaller. Only optima with contours having effective radii of
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Dimension 1

Dimension 2

Figure 1.12 Example of an output space with sufficient seeding of starting points {xj}. These are
arranged in the grid (circles). The outer contours of regions for local optimization are shown in ovals.
Half of the starting points belong to one of the local optima contours, and the average contour spans 1.25
of the starting points. It is highly unlikely that none of the starting points will reside inside the contour
of the overall optimum

less than 70.7% of the internode distance could be unseeded. Assuming that the grid of seeded
nodes is sufficient, therefore, the optima (or near-optima) can be found through an exhaustive
search of the output values for all of the nodes. This search can be augmented by gradient
methods as described above to find the optima around each of the nodes.

Another important use for search in machine intelligence is in optimizing pathways. Min-
imum pathways are important in network, traffic, and other multi-step processes. The bench-
mark for optimizing pathways, as for search, is exhaustive search, in which every possible
pathway is attempted. Of course, this is hugely expensive computationally, even for a massive
and massively parallel computing environment. The number of possible pathways, NPP, for an
N-node set of locations is given by

NPP = (N − 1)!

2
.

As N increases to more than a trivial problem space, the number of pathways becomes
unwieldy for the exhaustive search approach. As a consequence, effective means for searching
a subset of the possible pathways must be selected. In Simske and Matthews (2004), several
methods for selecting the next node in a pathway were given. One was termed the “lowest
remaining distance” strategy, which is also known as the greedy search approach (Marsland,
2009). This approach often results in excessive distances for the last few node–node transitions.
Another approach was termed the “centroid + clockwise traversal” method, which rotates
around the centroid of all the nodes to the nearest—by angular value—node from the current
node. This method is readily extended to a hybrid clustering/clockwise traversal approach that
effectively introduces supernodes that are internally sequential. A final method mentioned in
Marsland (2009) is the hill climbing approach, in which pairs of nodes are randomly swapped
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to see if improvements can be made over the best current set of pathways. This approach
naturally leads to genetic algorithm approaches, which are described in Section 1.7.2.

1.7 Artificial Intelligence

In this overview chapter, artificial intelligence approaches are collectively viewed as machine
reasoning systems in which the architecture of the connections is allowed to optimize with-
out regard to a specific guiding formula or expert system rule set. Neural networks, which
trade off architectural complexity with convergence speed, are overviewed first. Next, genetic
algorithms are introduced and shown to be effective for searching a very large input space
with a relatively small number of trials. We conclude this section with an overview of Markov
methods, which are “memoryless” approaches in which the next state depends only on the
current state.

1.7.1 Neural Networks

The term “neural network,” or more correctly, “artificial neural network” (ANN), implies a
system whose architecture is inspired by one or more physiological neural networks. While
this may be the case in some instances, for the general case this is not an accurate representation
of how ANNs are designed.

The human cerebral cortex, for example, is largely comprised six layers of neurons, with
widely different relative layer thicknesses when comparing the different cortical lobes: frontal,
parietal, temporal, and occipital (Kandel, Schwartz, and Jessell, 2000). This relatively struc-
tured architecture, however, is far different from that of the hippocampus—a brain structure
associated with the incorporation of memory—or that of the cerebellum, a three-layered brain
region containing more than half of the brain’s neurons. The modal neuron in the brain makes
thousands of synaptic connections to other neurons. These connections are characterized by
the effects of released neurotransmitters on the postsynaptic neurons. These effects can be
excitatory or inhibitory, synergistic or antagonistic, short-termed or long-termed, persistent or
habituated, and even result in distinct effects on different postsynaptic neurons. Synaptic (and
dendritic) projections can be local, into adjoining layers, or to distant brain regions. In other
words, brain architecture is both complex and diverse.

Learning in the brain is also both complex and diverse. The efficacy of synapses, resulting
in stronger or weaker influence on the postsynaptic neuron, can be altered through changes in
neurotransmitter release, changes in neurotransmitter reuptake or removal from the synapse,
changes in the morphology of the synapses, and changes in the number of synapses, depending
on the strength and length of the reinforcement provided for a given connection. At a more
macroscopic level, brain learning is also complex and diverse. Neural pathways are often
carved rather than assembled—think of Michelangelo’s David and not Picasso’s Baboon and
Young. This carving not only reinforces certain behaviors or preserves certain thoughts but also
removes other behaviors and thoughts. This is in fact termed neural sculpting, and this too is
not a uniform process throughout the brain; for example, it creates longer-lasting information
pathways in the cerebral cortex than those in the hippocampus.

Let us compare these nature-made neural networks (NNN) to the artificial ones. For this
comparison, the ANN of choice will be the multi-layer perceptron, or MLP, of Rumelhart,
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Hinton, and McClelland (1986). This MLP connects an input layer to a hidden layer, and the
hidden layer to the output layer, and comprises a three-layer network. The architecture of the
MLP is far simpler than that of the NNNs described above in the following ways:

1. The ANN has a specific input and output layer. For an NNN, these would be functionally
replaced by sensory (input) and motor (output) neurons, furthering the complexity of the
NNN from that described above.

2. The ANN has only a single hidden layer that connects the input and output layers. The
NNN, on the other hand, consists of three (cerebellum) or six (cerebral cortex) layers, or a
much less structured, more highly interconnected architecture.

3. The number of connections in the MLP is very small. Typically, each input node, IN,
connects to each hidden layer node, HLN, and each HLN in turn to each output node, ON.
If the number of nodes in each of these three layers are NIN, NHLN, and NON, respectively,
then the total number of connections, NC, is

NC = NHLN(NIN + NON),

for which the mean number of connections per node, μC/N is

μC/N = NHLN(NIN + NON)

NIN + NON + NHLN
.

If the number of nodes at each of the three layers are equal, then

μC/N = 0.67NHLN.

If, however, NIN and NON are �NHLN, as may be the case for imaging applications, then

μC/N ≈ NHLN.

In other words, μC/N is O(N). Unless the number of hidden nodes is abnormally large—the
range of hidden nodes typically used is from roughly 20 to 100—this is approximately two
orders of magnitude less than the mean number of connections per node in the human brain.
As a better direct comparison, though, we should compare the ANN to a ganglion, that
is, a peripheral nerve center. For this NNN, the mean number of connections per node—I
should say per neuron here—is intermediate to that of the MLP and the human brain regions
described above.

Regardless, we must keep in mind that the relationship between the mean number
of connections and the complexity of a neural network—not to mention its capacity for
learning—is nonlinear. Assuming that all synapses are independent and contribute relatively
equally to learning and neural processing, the relationship between μC/N and ANN or NNN
complexity is geometric.

4. The number of synapses is not equal to the number of connections in a living neural network,
as it is in the ANN MLP. In an NNN, new synapses are grown during learning (Bailey and
Kandel, 2008), allowing the same neuron not only to connect to new postsynaptic neurons
but also to add new connections to existing postsynaptic connections.
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5. Learning in an MLP consists of changing the weights on the connections between nodes.
Learning in an NNN, as described above, is more complex. Here, learning includes the
growth of new neurons, the growth of new synapses, and changes in the morphology
and/or efficacy of synapses—along with the opposite of each of these in the case of neural
sculpting.

6. Short-term and long-term memory also differ greatly when comparing the MLP and NNNs.
In an MLP, the short-term learning is effectively the error feedback changing the weights of
the connections. The long-term memory is the current state of the MLP, which is simply the
set of weights on all of the connections. In an NNN, short-term and long-term memory are
both quite complex. Synaptic plasticity, or the ability of chemical (neurotransmitter-based)
synapses to change their efficacy, includes long-term potentiation (LTP) and increased
synaptic interface surface area (ISISA). LTP is the process by which the amount of neu-
rotransmitter released is altered—for example, greater amounts of excitatory neurotrans-
mitter(s) are released into the synapse or lesser amounts of inhibitory neurotransmitter(s)
are released into the synapse—or else the rate of removal of neurotransmitters from the
synapse is altered. ISISA results in a greater relative postsynaptic potentials, enhancing the
ability of the presynaptic neuron to affect the postsynaptic neuron. Both LTP and ISISA are
associated with short-term learning, although ISISA can also be associated with long-term
memory if the changes are significant—and permanent—enough. Of course, long-term
memory in an NNN is even more complicated, since it includes the growth of new exci-
tatory and/or inhibitory synapses, the projection of neuronal axons or dendrites into new
regions, or even the growth of new neurons.

It is clear that ANNs such as the MLP are not as complex as the biological systems that
(at least in theory) inspired them. It is certain that some ANN architecture will increase in
complexity as their value for cognitive analysis is bettered, and better appreciated by the
machine intelligence field. Even so, the general principles of the MLP are still quite likely to
apply, and the various physiological attributes of NNNs are likely to be adopted slowly, and
only in targeted applications.

The MLP is, in fact, simply an elaborate algorithm that is carried out on the structured sets of
layers defined above. To initialize the MLP, an input vector is put into the INs. These nodes are
arranged as a one-dimensional (1D) array, but 2D and 3D inputs are readily accommodated by
simply mapping them to a 1D vector (e.g., the same way that 2D images are stored sequentially
in memory, one raster line after the other). Weights along the connections are also randomly
initiated, which contributes to the stochastic nature of ANN models. The input signals are fed
forward through the network to the hidden layer and thence to the output layer. The state of the
input signal, the weights along the connections, the sum of the weights at the next node, and
the activation, or threshold, function (usually a sigmoid function) for determining whether the
sum of weights causes firing of the hidden node, determine the set of states at the HLNs. The
outputs of these nodes, the weights of the connections between HLNs and output layer nodes,
and the same summing and activation approaches then determine the ON states.

Ground truthing or “target output” is then used to compute the error in the network. The
expected, or targeted, output vector is compared to the actual output vector (the set of states of
all ONs) and this error is then fed back into the network to update, in order, the hidden layer
weights and then the input layer weights.



P1: TIX/XYZ P2: ABC
JWST304-c01 JWST304-Simske April 2, 2013 7:21 Printer Name: Yet to Come Trim: 244mm × 170mm

Introduction and Overview 25

Each of these steps involves choosing certain system coefficients; for example, the activation
function coefficient and the backward feedback coefficient. These coefficients are used to
provide a trade-off between faster convergence time (preferred) and system convergence on
a local optimum (not preferred). Increasing the learning rate (α) typically results in faster
convergence, and also more likely results in the identification of a local optimum. Slower
learning rates force the algorithm to inspect the topology at a higher resolution in exchange
for slower convergence. This trade-off is, of course, problem dependent.

In this text, ANNs will be viewed as black boxes that produce a specific output, which
we then use as input in a larger parallel processing intelligent system. For example, several
neural networks can be run in parallel with different initial conditions to see if there is a
preferred system convergence state or simply to provide multiple optima candidates. In this
way, ANNs can be used in a method somewhat analogous to genetic algorithms, as described
in the Section 1.7.2. Initial conditions based on an expert, or expert system, estimate may also
converge faster and still provide an output that is optimal or very close to optimal. Regardless,
ANNs are a very important type of algorithm to use in combination with other machine
intelligence algorithms because they tend to work differently than many of the other common
machine learning approaches, such as SVMs, boosting, genetic approaches, expert systems,
and Bayesian systems. As such, they are a useful (and easy to implement) means of adding
another intelligent system to a problem space. The advantages of this for the meta-algorithmic
patterns outlined and elaborated in Chapters 6–9 will become obvious. The fact that there are
a plethora of open source neural network software libraries is icing on the cake.

Note that in some ways, if I may reach a bit here, an ANN is analogous to the kernel
method introduced in Section 1.6.2. The ANN—through the use of the hidden layer and a
focus on optimizing connections between layers that are difficult, if not impossible, to map to
any mathematical relationship between input and output—is able to solve problems without
the solution architect having to really understand how the solution has been effected. In effect,
a larger-dimensional solution space is created (the number of connections are much greater
than the number of INs and ONs), which the MLP algorithm efficiently searches to create an
intelligent system. The kernel trick also increases the dimensionality of the search space and in
so doing allows a linear boundary to be found in that space that maps to a more complex—and
more accurate—boundary in the lower-dimensional problem space.

1.7.2 Genetic Algorithms

Genetic algorithms (Goldberg, 1989) are efficient search approaches based on the principles
and kinetics of natural selection and heredity. Specifically, genetic algorithms are based on
the principle of a gene, which comprises a string of DNA or RNA triplets that code for
a polypeptide (protein) chain or an RNA chain. For genetic algorithms, these triplets are
represented with individual bits or loci, meaning that the sequences that can be optimized by
the genetic algorithm can be binary in nature.

Any binary representation of a function to be searched can be handled by a genetic algorithm.
In its simplest form, a genetic algorithm consists of the following elements and operations:

1. A set of strings that comprise a small subset of the possible search strings.
2. A means to populate this subset of search strings.
3. A fitness measurement for the search strings.
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4. A means to select a next iteration of search strings, which includes replication, near-
replication, crossover, mutation, and random selection.

5. A means of terminating the algorithm after a certain number of iterations of Steps 2–4.

These are relatively simple steps, and are well designed for searching over a specific output
function.

As an example, suppose we wish to determine the best set of 10 query terms to include
in a particular search. There are 210 – 1 = 1023 possible query sets (the null term query is
disallowed), and we wish to get an acceptable recommended search query from just a small
set of 50 search query candidates, called genes. We decided to use 10 randomly created genes,
and then proceed from there with four rounds of gene shuffling. The initial set of 10 genes
was determined by using a random number generator (RNG), with returned RNG values in
the range [0.5, 1.0] being made 1s, and RNG values in the range [0.0, 0.5) being made 0s:
example genes include {0001001110}, {1011011011}, and {0100001101}. Next, the fitness
measurement was determined based on the relative success of finding the correct document
using the search query based on each gene. The three genes shown have four, seven, and four
terms, respectively (since the 1s indicate including the term). The fitness of the first and second
queries (based on the genes) are weighted much higher than the third, and so these two are
chosen—whereas the third is not—as the basis for the next set of 10 queries. A mutation rate
of 5% and crossover rate of 90% is chosen. The first sequence {0001001110} is randomly
assigned a crossover at the fourth bit with the second sequence {1011011011}, resulting in
two new genes {0001011011} and {1011001110}. Next, one of these bits is mutated: the
eighth bit of the second new gene, making it {1011001010}. Similar crossover and mutations
led to an additional eight set of genes, for a total of 10 new genes in the second iteration. By
the end of five such iterations, we have exhausted the 50 search query candidates, and the best
quality search is, for example, 98.5% as good as the best single search out of all 1023 possible
searches. Randomly selecting 50 queries would generally give a lower mean percentage of
the best possible value, since the genetic algorithm preferentially reproduces the higher fitness
genes, crossovers of two of them, and minor mutations on them.

Importantly, this set of steps, with only minor modification, can be used for other types of
search, optimization, and classification. In a previous work, a genetic algorithm was used for
a variant of the traveling salesman problem (TSP), in which a path through N locations is to
be minimized (Simske and Matthews, 2004). In this case, the five elements and operations
described above are implemented as follows:

1. A string of loci, numbered consecutively, each of which represents one particular location.
For example, if L locations need to be passed through, then the locations may be listed
alphabetically and assigned the values 1, 2, . . ., L.

2. Five different means of creating initial strings were used. Each of them involved the concept
of next-node probabilities. These probabilities are an array of probabilities, normalized to
sum to 1.0, which combined give the statistical likelihood of selecting each of the remaining
nodes. These probabilities are recomputed each time a node is selected (using an RNG that
is mapped into the probabilities). (a) The first methods used include naı̈ve, in which all of
the next-node probabilities are identical,

pi∈S(unassigned) = 1

Ni∈S(unassigned)

.
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The probabilities are equal for every unassigned node in the particular path being ini-
tialized. The set of unassigned nodes are in the set S(unassigned). (b) The second method
assigns the next-node probabilities by relative distance,

pi∈S(unassigned) = D(nodei − nodecurrent)
∑

k∈S(unassigned)

D(nodek − nodecurrent)
,

where D(∗) is the Euclidean distance. (c) The third method assigns the next-node probabili-
ties by cluster. Effectively, this reduces the problem space to a search within a cluster until all
of the locations in a cluster are visited, and then the next cluster is appended. This is in effect
a hybrid approach, and depends on an appropriate clustering algorithm—such as k-means
clustering—to be performed first. The constraint can be relaxed such that the weighting
within the clusters is simply relatively higher than the weighting outside of the clusters in
comparison to what would otherwise be assigned by methods (a), (b), (d), or (e). Speaking
of which, method (d) creates the next-node probabilities based on the direction of travel. If
the current direction of the travel is clockwise (or counterclockwise) around the centroid of
all the locations, then the next nodes in the clockwise (or counterclockwise) direction being
traversed can be weighted more highly relative to its otherwise-assigned weight. The final
method (e) weights the next-node probability based on the inverse of the distance; that is,

pi∈S(unassigned) ∝ 1

D(nodei − nodecurrent)
.

Taking into account all remaining unassigned nodes,

pi∈S(unassigned) =

∑

k∈S(unassigned)

1

D(nodek − nodecurrent)

D(nodei − nodecurrent)
.

3. The fitness measurement for each path is trivial to compute: it is the sum of the distances
from the starting node through all the other nodes and back to the starting node. The
results were not particularly surprising. As reported in Simske and Matthews (2004),
when applying the inverse distance approach to both initialization and crossover (discussed
below), excellent fitness and rapid convergence were observed.

4. The means to select a next iteration of search strings involved crossover, which involves
simple reversal of a length of nodes: for example, if nine cities are visited in order from
{4,2,5,8,3,9,1,7,6} and crossover is dictated to occur from nodes 3 to 7, then the order of
cities visited becomes {4,2,1,9,3,8,5,7,6}. This effectively swaps part of one gene with a
previous version of itself, and leads to generally much more change than a point mutation.
Mutation in such a situation includes substitution, which for the example results in the
swapping of nodes 3 and 7, producing the order {4,2,1,8,3,9,5,7,6}.

5. The algorithm described in points 2–4 is terminated after a certain number of iterations in
which no overall improvement in fitness is observed.

The results of applying these steps to the TSP were immediate. In particular, the inverse
distance approach resulted in much faster convergence and much less residual error after
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convergence than the other methods. However, in the earlier work (Simske and Matthews,
2004), I did not have the opportunity to experiment on all five of the different means of
creating initial strings. With the type of crossover used, it turns out that method (b) sometimes
works, especially with asymmetric systems, since it helps create genes that are exploring
new local optima. This overcomes one of the most common problems in genetic algorithms;
namely, the difficulty of creating new searches that escape from the current local optimum. The
mutation type implemented also helps prevent convergence on what is only a local optimum.
Also, for both symmetric and asymmetric TSPs, the clustering method (c) works quite well
when the clustering is attached to an F-score metric such as described later in this chapter.

The TSP solutions investigated here are a simplification of the real complexities involved in
directing traffic. In real-world applications, the node–node transition costs are based on, among
other things, both the distance and the traffic congestion between nodes. Other pragmatic
considerations include the intelligent clustering of nodes based on similarity in the navigator’s
intents at each destination (e.g., cities to visit may be clustered by language in Europe),
maximum distance preferred between nodes (so the traveler will not have too much driving
for a day), and other pragmatic considerations.

Like neural networks described in the previous section, genetic algorithms are used to
search a very wide space in an efficient manner. Genetic algorithms are not expected to find
the global optima efficiently, but are expected to find something close to the overall optimum
rather quickly. Thus, certain genetic algorithm approaches can provide the types of machine
intelligence plasticity proffered by ANNs. One easy way to see a relationship is to consider
how the initial conditions on the connections in a neural network are set. Suppose we choose
to create a population of MLPs as introduced in Section 1.7.2. We may then initialize the
MLPs using an RNG and score each MLP after just a small number of iterations using a fitness
metric. The genetic “crossover” can then be used on the initial weightings to initialize a new
MLP that can be deployed next, and this will presumably lead to a more optimal MLP more
quickly than running a single MLP for many iterations.

Genetic algorithms have long been a favorite adaptive stochastic optimization algorithm,
with the analogies to biological evolution often touted for robustness and convergence advan-
tages. Another evolutionary analogy has often been overlooked: that of punctuated equilibrium
(Gould and Eldredge, 1977). Punctuated equilibria comprise static periods in the evolution of
a sequence of species that are interrupted by relatively short periods of rapid change. Genetic
algorithms run the risk of remaining in stasis unless there is an impetus sufficient to effect
change. As illustrated herein, this impetus can stem from changes in initialization, crossover,
and/or mutations. It can also, importantly, stem from hybridization of a genetic algorithmic
approach with that of clustering or other techniques.

1.7.3 Markov Models

Markov models are an important form of reinforcement learning (Marsland, 2009). This type
of learning is based on knowing the right answer only, but not the correct means to arrive at
it. This is analogous to many genetic algorithmic and ANN approaches, as described in the
previous two sections. Markov models, however, have a very simple architecture. At each of
the possible states in a Markov process, the conditional probability distribution for all possible
next states is only dependent on the current state.
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If the system state is fully observable, a Markov chain is used. If the system state is only
partially observable, then a hidden Markov model (HMM) is used. The general Markov model
is described by a joint probability model in which the probability of a sequence of S events is
based on the conditional probabilities leading to each of the states {o1, o2, . . ., oS}. Thus, the
probability of obtaining S specific outputs in this order is given by

p(o1, o2, . . . , oS) =
S∏

k=2

p(ok | o1, o2, . . . , ok−1).

In most cases, the output set is too large, the relevancy of the many-termed conditional
distributions is too low, and/or the training set is too small for all of these probabilities to be
calculated. In most applications, a first-, second-, or third-order Markov model suffices. For a
first-order model, the probability for the state sequence {o1, o2, . . ., oS} is, therefore,

p(o1, o2, . . . , oS) = p(o1)

S∏

k=2

p(ok | ok−1).

A first-order Markov model can be applied readily to classifier output. Examples of dif-
ferent states include characters in text recognition problems, phonemes in speech recognition
problems, and different classes in any general classification problem. As an illustration, in
Figure 1.13 the transition diagram associated with a three-state system is given. The condi-
tional probabilities are first-order; that is, the probability of the next state is conditional only
on the current state.

0.2

State B

State A State C0.2

0.2 0.3

0.3
0.5

0.3 0.6

0.4

Figure 1.13 Transition diagram for a three-state Markov model. The model is first-order as all of the
state transition probabilities depend only on the current state. The associated probabilities are indicated
by the numerical values associated with the arrowed arcs. These probabilities are used to create the
transition matrix, T, as described in the text
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Extracting the transition probabilities from Figure 1.13, we obtain the transition matrix, T,
given here:

State n
A B C

State
n − 1

A

B

C

⎡

⎢
⎣

0.5 0.3 0.2

0.2 0.2 0.6

0.4 0.3 0.3

⎤

⎥
⎦ .

This is a very convenient matrix to use for state probabilities. For the probability equation
above, suppose we wish to compute probability of starting at state A and three transitions later
ending at state C. Then

p(A, X1, X2,C) =
∑

X1∈{A,B,C}

∑

X2∈{A,B,C}
[p(C | X2)p(X2 | X1)p(X1 | A)].

The first of these is p(C | A)p(A | A)p(A | A), or (0.2)(0.5)(0.5) = 0.050. Summing all nine of
these probabilities, we obtain

p(A, X1, X2,C) = 0.050 + 0.090 + 0.030 + 0.012 + 0.036

+ 0.054 + 0.016 + 0.036 + 0.018 = 0.342.

Similarly, we can obtain the following probabilities:

p(B, X1, X2,C) = 0.346,

p(C, X1, X2,C) = 0.343.

Perhaps not surprisingly, these values are all very similar, meaning that the state three cycles
before is more or less unrecoverable for such a first-order Markov process. One would, based
on these results, conclude that the system is in state C roughly 34.4% of the time.

I wrote software to perform millions of iterations on the states in this system, using an RNG
to decide the state transitions. In fact, after 3 × 107 iterations, I found that the system spent
38.4% of its time in state A, 27.3% of its time in state B, and 34.3% of its time in state C. This
result makes sense when we sum the columns in the transition matrix as shown:

State n
A B C

State
n − 1

A

B

C

⎡

⎢
⎣

0.5 0.3 0.2

0.2 0.2 0.6

0.4 0.3 0.3

⎤

⎥
⎦

1.1 0.8 1.1
.

Based on these sums alone, we expect the system to spend 36.3% of its time in state A,
26.3% of its time in state B, and 36.3% of its time in state C. Further eyeballing, we can see
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that state A is more likely to stay in state A (50%) compared to state C (30%), and thus the
overall 38.4–34.3% results observed, favoring state A over state C, also make sense.

The state sequences described herein are often captured in a lattice or trellis diagram. These
diagrams are especially helpful, in my experience, for understanding the optimal pathways,
such as the max-sum optimum as identified by the Viterbi algorithm (Viterbi, 1967).

Markov models with large output sets, farsighted conditional distributions, and insufficient
training sets are unlikely to have reliable conditional probability values to use. The same
caution should be noted for Bayesian networks, introduced in Section 1.6.3.

1.8 Data Mining/Knowledge Discovery

Data mining, often referred to as “knowledge discovery,” brings together some of the algo-
rithms and system approaches outlined in earlier parts of this chapter; in particular, probability,
statistical NLP, and artificial intelligence. This is an important field to introduce here since
it is so highly dependent not just on the algorithms used, but on how the algorithms inter-
act with the hardware used to house the data. Data mining is tightly coupled to the type
of data to be analyzed as well as the database upon which it performs search and analy-
sis. For example, column-oriented storage organization significantly accelerates sequential
record access within a database. However, this approach does not help for so-called object-
oriented database (OODB) operations: these include commonplace transactional operations
including refresh/update, delete, insert, and single-record search and retrieval. For OODB-
like data mining, linked lists and other modern addressing and indexing approaches are
more relevant.

In the end, data mining is the extraction of data from a data store (usually a database) for the
purpose of upgrading its content: this can mean the creation of meta-data, the creation of new
data structures, or raw analytics (data statistics). After this new data is created, it too should be
represented in such a way as to optimize its downstream search and data mining on the given
database, using the given data management system, and using the salient access protocols and
structures. Thus, an important aspect of data mining is not just the updated content, but how
the updated content will be represented and accessed thereafter.

Whereas genetic algorithms were shown to be associated with search—finding existing
information from a large set of data—data mining is associated with discovery; that is, the
finding of new content. Data mining is therefore analysis of large data sets in order to discover
one or more of the following:

1. Patterns within and between large or multiple data sets. This analysis of content is designed
to uncover relationships within data sets, including temporal relationships, occurrence
frequencies, and other statistics of interest. The patterns can be based on model fitting
(templated data discovery) or can be open-ended (statistical data discovery).

2. Unusual data, data sets, or data structures. This analysis of abnormal content is termed
anomaly detection, and can include analysis of context. Data outside the range normally
associated with a particular event will be tagged as anomalous, and will trigger an associated
response (notification, corrective response, etc.).

3. Data dependencies, wherein terms co-occurring are identified and used to define association
rules. These rules are used extensively in suggestive selling, advertising, promotional
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pricing, and web usage mining. Combined, these rules are used to profile a person, group,
or other user pool, and comprise analysis of context and/or analysis of usage.

Data mining is usually not the end of the analysis of the data. In many case, the analysis of
content, context, and/or usage is the input to secondary, more specific analysis. For example,
the data dependencies can be used to comprise a predictive model for later behavior. This
predictive model may be used in synchrony with other input—for example, business policies,
operational rules, personal knowledge, and business intelligence—to help define a decision
support system that is used in the appropriate business context to more effectively solve
problems and make better-informed decisions.

Knowledge extraction (KE), associated with data mining, is concerned with the repurposing
of the data extracted for use in downstream processes. As such, KE is concerned with mapping
mined data to a particular schema or structure that can be used in other contexts. Both structured
and unstructured data are remapped into an ontology or taxonomy that can be more effectively
incorporated into other decisioning processes. A key point here is that data mining and KE are
more effective when they are part of a bigger, hybrid system comprising two or more machine
intelligence algorithms, systems, and engines.

1.9 Classification

In many ways, classification is the central subject in intelligent systems, including the
most sophisticated one: the human brain. Classification is the systematic placement of
objects—concrete or abstract—into categories. Classification can be performed on struc-
tured data (in which the categories are known beforehand) or on unstructured data that has
previously undergone cluster analysis (in which case clustering is performed first and later
these clusters are associated with categories or otherwise assigned/combined).

SVMs are powerful classifiers, and they are overviewed in Section 1.6.2. SVMs are
boundary-based approaches, which by definition focus on the support vector, or the set of
samples that define the border zone between multiple classes. An example of a boundary-
based classifier is given in Figures 1.14, 1.15, 1.16, and 1.17. In Figure 1.14, the 2D data is
shown, the two dimensions are the two features measured for each sample. There is no clear
linear boundary between the data.

Figure 1.15 shows the results of applying a boundary-based classification on the data in
Figure 1.14. Here the boundary is loosely fit (e.g., a cubic spline fit).

Figure 1.16 shows a tightly fit decision boundary (TFDB) for the same data set. Here the
boundary is able to avoid misclassification of any of the training data. This can be achieved
by several of the methods described earlier in the chapter, including the SVM with the kernel
trick and ANNs.

Figure 1.17 illustrates the samples that are part of the support vector for the boundary in
Figure 1.16. More than half of the samples in the set are used for the definition of the vector
space. As a consequence, the decision boundary in Figure 1.17 is likely fit too closely with
the training data. The decision boundary created in Figure 1.16 will likely perform as well or
better on test data.

Other classification approaches that are focused on decision boundaries are linear
classifiers—which distinguish classes based on linear combination of the features (Simske,
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Figure 1.14 Simple 2D sample set (nX = 20, nO = 15) to be classified

Li, and Aronoff, 2005)—and quadratic classifiers, which separate classes based on a quadric
surface.

All classifiers benefit from the availability of training data. For example, in Figures 1.14,
1.15, 1.16, and 1.17, if the amount of training data were greatly increased, we would have a
better means of comparing the deployment accuracy of the two decision boundaries, shown
in Figures 1.15 and 1.16. Figure 1.18 provides such a comparison through the addition of
55 more samples, which are considered a validation set. After adding the validation set data
samples, the loosely fit decision boundary (LFDB) of Figure 1.15 has 87.8% accuracy on
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Figure 1.15 Data sample set of Figure 1.14 with a loose decision boundary
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Figure 1.16 Data sample of Figure 1.14 with a tightly fit (overfit?) decision boundary

the combined training + validation data, slightly but statistically nonsignificantly greater than
the 86.7% accuracy on the combined training + validation data observed for the TFDB of
Figure 1.16. This is in spite of 100.0% accuracy when using the TFDB on the training set
compared to the lower 91.4% accuracy when using the LFDB. Thus, the LFDB performed
far better (85.5% accuracy) than the TFDB (78.2% accuracy) on the validation data, and is
therefore the boundary of choice for deployment.
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Figure 1.17 Data sample set of Figure 1.14 with the TFDB of Figure 1.16, with the support vector-
relevant samples in light gray. In general, overfit decision boundaries will involve a higher than expected
number of samples in the support vector
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Figure 1.18 Data sample set of Figure 1.14 augmented with 30 more X and 25 more O samples (nX =
50, nO = 40). Here it becomes clear that the decision boundary of Figure 1.15 is most likely as good an
approximation of the optimal decision boundary as is that of Figure 1.16. See text for details

Training data is the basis for the weightings used in boosting and the probabilities used in
Bayesian classification and HMM classification. Both Bayesian- and HMM-based classifiers
select as the assigned class the output with the highest summed probability.

Boosting classifiers such as AdaBoost (Freund and Schapire, 1996; Schapire, 1999) are
ensemble classifiers that effectively used the consensus decisions of a (usually large) set
of relatively inaccurate classifiers to provide a highly accurate decision. The random forest
classifier (Breiman, 2001) is also an ensemble classifier, and it consists of many decision trees.
After a large number of decision trees are formed, the most common output is accepted as the
classification.

Clustering approaches are also used to create “bottom-up” classifiers; that is, classifiers
that are based on aggregating rather than defining boundaries. Figure 1.19 shows a GMM
clustering for the data of Figure 1.14, where five clusters are used to represent the “X” class,
and four clusters are used to represent the “O” class.

The k-NN classifier is also an aggregation-based classification method. This classifier com-
pares the test sample to the k nearest training samples and assigns the class as the modal
neighbor class. Typically, k is in the range {1, . . ., 5}, and is generally higher when the number
of training samples is greater.

A helpful analytical measurement for clustering and for aggregation-based (“bottom-up”)
classifiers such as GMMs or simple linear combinations of Gaussian classifiers (Simske, Li,
and Aronoff, 2005) is the F-score, which I use as the shorthand for the test statistic of an
F-test such as is used in analysis of variance (ANOVA) and other statistical comparisons. The
F-score is defined as

F = MSEb

MSEw
,
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Figure 1.19 Data sample set of Figure 1.14 using a Gaussian mixture model for the classes. Here the
number of Gaussians in the class are overfit, five for the X samples and four for the O samples

where MSEb is the mean-squared error between the clusters and MSEw is the mean-squared
error within the clusters. Since the mean-squared errors are defined by the sum squared errors
(SSE) and the degrees of freedom in the data sets, we rewrite the F-score as

F =
SSEb

/
dfb

SSEw
/
dfw

,

where df are the degrees of freedom, generally 1 less than the members in a group. Next, we
consider the values, V , of the data set. The mean value of cluster c, designated μc, is given by

μc =

n(c)∑

s=1

Vs,c

n(c)
.

Here, Vs,c is sample s in cluster c. The number of samples in cluster c is n(c) and the total
number of clusters is nc. From this, the value of MSEw is given by the following:

MSEw =

nc∑

c=1

n(c)∑

s=1

(
Vs,c − μc

)2

nc∑

c=1

n(c) − nc

.



P1: TIX/XYZ P2: ABC
JWST304-c01 JWST304-Simske April 2, 2013 7:21 Printer Name: Yet to Come Trim: 244mm × 170mm

Introduction and Overview 37

The value of MSEb is readily derived as follows:

MSEb =

nc∑

i=1

nc∑

j=i+1

(
μi − μ j

)2

nc(nc − 1)
/

2
.

Using the fact that

n(c)∑

s=1

(
Vs,c − μc

)2 =
n(c)∑

s=1

(
V 2

s,c − 2Vs,cμc + μ2
c

) =
n(c)∑

s=1

V 2
s,c − 2μ2

cn(c) +
n(c)∑

s=1

μ2
c

=
n(c)∑

s=1

V 2
s,c − 2μ2

cn(c) + n(c)μ2
c,

the value of MSEb is more conveniently written as

MSEb =

nc∑

c=1

(
μc − μμ

)2

nc − 1
.

Here, μμ is the mean of the means, which is the mean of all the samples if all of the clusters
have the same number of samples, but usually not so if they have different numbers of samples.
In terms of reducing computational overhead, then, MSEb is

MSEb =

nc∑

c=1

μ2
c − ncμμ

nc − 1
.

Similarly, the computations for MSEw can be reduced to

MSEw =

nc∑

c=1

n(c)∑

s=1

V 2
s,c −

nc∑

c=1

n(c)μ2
c

nc∑

c=1

n(c) − nc

.

We now consider how the ratio of MSEb/MSEw—that is, the F-score—can be used to
optimize clustering using a simple example. Consider the simple data set in Figure 1.20,
which have two possible clusterings. The dashed lines indicate the three clusters:

A = {(1, 4), (3, 4), (2, 3)},
B = {(3, 1), (4, 2), (5, 1)},
C = {(8, 4), (9, 5), (10, 4)}.

The solid lines indicate two clusters, D = A ∪ B, and C.
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Figure 1.20 Data set for the F-score clustering example (see text). The dashed lines indicate a three-
cluster representation, A, B, and C. The solid lines indicate a two-cluster representation, D = A ∪ B,
and C

It is left to the reader to show that F{A,B,C} = 11.62 and F{D,C} = 7.06. From this, we
determine that the three-cluster representation is optimal.

This example, while relatively trivial, illustrates the value of a simple metric—the F-
score—to provide very important output—the clusters associated with a data set of any size.
The F-score is of huge importance in parallelism by meta-algorithmics, as each of the clusters
of data may be analyzed differently based on their different characteristics.

1.10 Recognition

Pattern recognition (Tveter, 1998) plays an important role in many intelligent systems, partic-
ularly signal processing and image understanding. The brief overview of recognition is placed
here since it builds on many of the technologies introduced in earlier sections of this chapter.

Recognition can be considered in two distinct—both important—ways. The first is absolute
recognition—wherein an item is categorized as being an object of a certain type, or class. This
identification can be performed even if the object has not been observed before; for example, it
can be identified based on rules or an intelligent grammar of rules (expert system). The second
is an awareness that something observed has been observed before. This relative recognition is
often achieved using correlation. Correlation in the broad sense is any measure of dependency
of one set of data on another set(s): this means the k-NN classification method is a correlative
method, since the sample to be classified best correlates, in a positional sense, with the modal
class of its k nearest training samples.

Examples of relative recognition abound in NLP, in which lemmatization, part-of-speech
tagging, summarization, keyword generation, and semantic analysis can be used to describe
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a portion of text. Different text elements can be matched relatively, then, by having similar
keywords or other salient meta-data. Words with matching lemmas are related conceptually
to each other (absolute recognition), whereas words with matching stems may not be (relative
recognition).

In imaging applications, correlation between an image and a distortion-free reference image
is used to provide absolute recognition. Correlation between an image and a nonreference
image is used to provide relative recognition. The differences in correlation can be used
for quality assurance, surveillance alerts, tracking, and other object recognition and image
understanding applications. Not surprisingly, relative differences in correlation can be used as
the input data for clustering.

1.11 System-Based Analysis

This chapter has overviewed many of the core technologies used in machine intelligence
systems. As systems get larger—cloud computing scale and beyond—it will be increasingly
important to be able to treat the individual knowledge generators as black boxes. Though their
internal workings vary significantly, their inputs, outputs, and transfer functions should be
well understood by the would-be system architect, as this will allow them to be combined in
a variety of parallel approaches.

Systems analysis is the study of interacting components that create a system, with the
intent of providing a recommendation, usually related to improvement of the deployed sys-
tem architecture. In this book, system-based analysis is used to further optimize not only
the architecture of the system (interaction of components) but also the system components
themselves. This is achieved by using three different forms of parallelism—the subject of the
next chapter—to optimize the system components. For intelligent systems, these components
range from algorithms to large intelligence engines such as automatic speech recognition and
image understanding systems.

System-based analysis would be overwhelming without a set of tools to help perform the
task. Patterns are essential to direct and even constrain the ways in which to optimize the
intelligence components of the system. Much of this book will, in fact, be focused on these
patterns.

1.12 Summary

This chapter outlined some of the most important technologies used in intelligent systems.
These smart systems include machine intelligence, artificial intelligence, data mining, clas-
sification, and recognition systems. This chapter provided enough background to highlight
the commonalities and differences among the key machine learning approaches; from SVMs
to ensemble methods and from Bayesian to regression methods. Adaptive systems, such as
genetic algorithms and neural networks, were shown to be robust to different input to out-
put maps. Others, such as Bayesian systems, were shown to improve as more training data
and/or successfully completed tasks were available. The wide diversity of machine learning
approaches should be viewed as an opportunity, not a worry. The goal of this book is to show
how this great diversity can be used to our advantage in designing systems.

This book is aimed at allowing one with a moderate understanding of statistics, calculus,
logic, linear systems, and design patterns to be able to architect and deploy more intelligent
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systems than even the best individual intelligent algorithm designer can achieve. The so-
empowered meta-architect must understand both the relative advantages and disadvantages,
and both the flexibility and the limitations, of each of the component systems. The meta-
architect need not understand these individual technologies well enough to improve them as
they are; rather, she must understand how to make them more valuable within a larger system
involving two or more intelligent components. Let us now consider the types of systems that
will require these new system-based analysis skills.
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