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This chapter presents historical and latest advances in applications of complex-
valued nenral networks (CVNNs) first. Then it also shows one of the most
important merits of CVNNs, namely, the suitability for adaptive processing of
coherent signals.

1.1 INTRODUCTION

This chapter presents historical and Jatest advances in applications of complex-valued
neural networks (CVNNs) first. Then it also shows one of the most important merits
of CVNNs, namely, the suitability for adaptive processing of coherent signals.
CVNNGs are effective and powerful in particular to deal with wave phenomena
such as electromagnetic and sonic waves, as well as to process wave-related infor-
mation. Regarding the history of CVNNs, we can trace back to the middle of the
20th century. The first introduction of phase information in computation was made
by Eiichi Goto in 1954 in his invention of “Parametron” [17, 18, 61]. He utilized
the phase of a high-frequency carrier to represent binary or multivalued informa-
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2 APPLICATION FIELDS AND FUNDAMENTAL MERITS

tion. However, the computational principle employed there was "logic” of Turing
type, or von Neumann type, based on symbol processing, so that he could not make
further extensive use of the phase. In the present CVNN researches, contrarily, the
researchers extend the world of computation to pattern processing fields based on a
novel use of the structure of complex-amplitude (phase and amplitude) information.

We notice that the above feature is significantly important when we give thought
to the fact that various modern technologies centered on electronics orient toward
coherent systems and devices rather than something incoherent. The feature will
lead to future general probability statistics, stochastic methods, and statistical learn-
ing and self-organization framework in coherent signal processing and information
analysis. The fundamental idea is applicable also to hypercomplex processing based
on quaternion, octonion, and Clifford algebraic networks.

Some parts of the following contents of this chapter were published in detail in the
Journal of Society of Instrument and Control Engineers [29), the Frontiers in Elec-
trical and Electronic Engineering in China [28), and IEEE Transactions in Neural
Networks and Learning Systems [35].

1.2 APPLICATIONS OF COMPLEX-VALUED NEURAL NETWORKS

Complex-valued neural networks {CVNNs) have become widely used in various
fields. The basic ideas and fundamental principles have been published in several
books in recent years [27, 22, 26, 41, 53, 2]. The following subsections present
major application fields.

1.2.1 Antenna Design

The most notable feature of CVNNS is the compatibility with wave phenomena and
wave information related to, for example, electromagnetic wave, lightwave, electron
wave, and sonic wave [28]. Application fields include adaptive design of anten-
nas such as patch antennas for microwave and millimeter wave. Many researches
have been reported on how to determine patch-antenna shape and sub-element ar-
rangement, as well as on the switching patterns of the sub-elements [46, 10, 47].
A designer assigns desired frequency-domain characteristics of complex amplitude,
or simply amplitude, such as transmission characteristics, return loss, and radiation
patterns. A CVNN mostly realizes a more suitable design than a real-valued net-
work does even when he/she presents only simple amplitude. The reason lies in the
elemental dynarnics consisting of phase rotation (or time delay x carrier frequency)
and amplitude increase or decrease, based on which dynamics the CVNN leaming
or self-organization works. As a result, the generalization characteristics {(error mag-
nitude at nonlearning points in supervised learning) and the classification manner
often become quite different from those of real-valued neural networks [28, 35]. The
feature plays the most important role also in other applications referred to below.



APPLICATIONS OF COMPLEX-VALUED NEURAL NETWORKS 3

1.2.2 Estimation of Direction of Arrival and Beamforming

The estimation of direction of arrival (DoA) of ¢lectromagnetic wave using CYNNs
has also been investigated for decades {67, 6]. A similar application field is the
beamforming. When a signal has a narrow band, we can simply employ Huygens’
principle. However, in an ultra-wideband (UWB) system, where the wavelength
is distributed over a wide range, we cannot assume a single wavelength, resulting
in unavailability of Huygens’ principle. To overcome this difficulty, an adaptive
method based on a CVNN has been proposed [60] where a unit module consists of a
tapped-delay-line (TDL} network.

1.2.3 Radar Imaging

CVNNs are widely applied in coherent electromagnetic-wave signal processing. An
area is adapiive processing of interferometric synthetic aperture radar (InSAR) im-
ages captured by satellite or airplane to observe land surface [59, 65]. There they aim
at solving one of the most serious problems in InSAR imaging that there exist many
rotational points (singular points) in the observed data so that the height cannot be
determined in a straightforward way.

Ground penetrating radar (GPR) is another field [21, 66, 43, 44, 49, 34]. GPR
systems usually suffer from serious clutter (scattering and reflection from non-target
objects). Land surface as well as stones and clods generate such heavy clutter that
we cannot observe what are underground if we pay attention only to the intensity.
Complex-amplitude texture often provides us with highly informative features that
can be processed adaptively in such a manner that we do in our early vision.

1.2.4 Acoustic Signal Processing and Ultrasonic Imaging

Another important application field is sonic and ultrasonic processing. Pioneering
works were done into various directions [69, 58]. The problem of singular points
exists also in ultrasonic imaging. They appear as speckles. A technique similar to
that used in InSAR imaging was successfully applied to ultrasonic imaging [51].

1.2.5 Communications Signal Processing

In communication systems, we can regard CVNNs as an extension of adaptive com-
plex filters, i.e., modular multiple-stage and nonlinear version, From this viewpeint,
several groups work hard on time-sequential signal processing [15, 16], blind sep-
aration (68], channel prediction [12}, equalization [63, 36, 55, 40, 33, 7, 8], and
channel separation in multiple-input multiple-output (MIMO) systems [37]. Rele-
vant circuit realization [131is highly inspiring not only as working hardware but-also
for understanding of neural dynamics.
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1.2.6 Image Processing

There are many ideas based on CVNNs also in image processing. An example is the
adaptive processing for blur compensation by identifying point scattering function
in the frequency domain [3]. In such a frequency-domain processing of images, we
often utilize the fact that the phase informaticn in frequency domain corresponds to
position information in spatial domain. On the other hand, CVNN spatial-domain
processing is also unigue and powerful. A highly practical proposal was made for
quick gesture recognition in smart phones by dealing with finger angle information
adaptively by a CVNN [19]. Biological imaging is another expanding field. There we
can find, for example, a classification of gene-expression stages in gene images [1],
along with adaptive segmentation of magnetic resonance image (MRI) by placing
a dynamic boundary curve (so-called "snake”) in the obtained complex-amplitude
MRI image for segmentation of blood vessels and other organs [20]. Since there are
various types of active and coherent imaging systems in medicine, we can expect
further applications of CVNNs to deal with complex-amplitude images.

1.2.7 Social Systems Such as Traffic and Power Systems

Recent applications expand more multi-directionally even to social systems. In traf-
fic systems, a CYNN will be effectively used for controlling mutual switching timing
of traffic lights in complicatedly connected driving roads [50]. Since traffic lights
have periodic operation, some CVNN dynamics is suitable for their adaptive control.
Green energy and smart grid are also the fields. A CVNN-based prediction of wind
strength and direction has been demonstrated for efficient electric power generation
[14] in which amplitude and phase in the complex plane represent the strength and
the direction, respectively.

1.2.8 Quantum Devices Such as Superconductive Devices

Applications to quanturn computation using quantum devices such as superconduc-
tivity have also been investigated in many groups [57, 39, 48]. Their results suggest
the future realization of intrinsically non-von Neumann compuiers including pattem-
information representing devices. Conventional quantum computation is strictly lim-
ited in its treatable problems. Contrarily, CYNN-based quantum computation can
deal with more general problems, which leads to wider applications of quantum com-
putation.

129 Optical/Lightwave Information Processing Including
Carrier-Frequency Multiplexing

Leamning optical and lightwave computer is another field of CVNN applications.
There are researches such as frequency-domain multiplexed learning {38] and real-
time generation of a three-dimensional holographic movie for interactively control-
lable optical tweezers [32, 62]. In these networks, a signal has its carrier frequency,
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equivalent to a band signal in communications, and therefore the learning and pro-
cessing dynamics is controllable by modulating the carrier frequency. The idea can
be adapted to complex filters. It led to a novel developmental fearning of motion
control combined with reinforcement learning [30]. The success suggests further a
possible influence of frequency modulation of brain wave on biological brain activ-
ity, indicating a new door to CVNN-related physiology.

1.2.10 Hypercomplex-Valued Neural Networks

Hypercomplex-valued neural networks have also been actively investigated [5]. An
example is the adaptive learning in three-dimensional color space by using quater-
nion [45]. An adaptive super-high-sensitive color camera (so-called night vision) has
been produced that realizes a compensation of nonlinear human color-vision charac-
teristics in extremely dark environment. More generalized hypercomplex networks,
namely, Clifford algebraic neural networks, are also discussed very actively in, e.g.,
special sessions in conferences [34].

1.3 WHAT IS A COMPLEX NUMBER?

In this section, we lock back the history of complex numbers to extract the essence
influential in neural dynamics.

1.3.1 Geometric and Intuitive Definition

Throughout history, the definition of the complex number has changed gradually
[11]. In the 16th century, Cardano tried to work with imaginary roots in dealing with
quadratic equations. Afterward, Buler used complex numbers in his calculations in-
tuitively and correctly. Itis said that by 1728 he knew the transcendental relationship
ilogi = —n /2. The Euler formulae appear in his book as

eix + e—iz eia: _ e—i.‘c
cosgr = —— and sinzg=—"'"—— (1.1
2 2i

In 1798, Wessel described representation of the points of a plane by complex num-
bers to deal with directed line segments. Argand also interpreted +/—1 as a rotation
through a right angle in the plane, and he justified this idea on the ground that two
+/—1 rotations yields a reflection, i.e., —1. It is also believed that, in early 1749,
Euler already had a visual concept of complex numbers as points of a plane. He
described a number x on a unit circle as * = cos g + i sin g, where g is an arc of the
circle. Gauss was in full possession of the geometrical theory by 1815. He proposed
to refer to 41, —1, and +/—1 as direct, inverse, and lateral unity, instead of positive,
negative, and imaginary or “impossible” elements.
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1.3.2 Definition as Ordered Pair of Real Numbers

The geometrical representation is intuitively simple and visually understandabie, bui
may be weak in strictness. In 1835, Hamilton presented the formal definition of the
complex number as an "ordered pair of real numbers,” which also led to the discovery
of quaternions, in his article entitled "Theory of conjugate functions, or algebra as
the science of pure time.” He defined addition and multiplication in such a manner
that the distributive, associative, and commutative laws hold. The definition as the
ordered pair of real numbers is algebraic, and it can be stricter than the intuitive
rotation interpretation.

At the same time, the fact that a complex number is defined by two real num-
bers may lead present-day neural-network researchers to consider a complex network
equivalent to just a doubled-dimension real-number network etfectively. However,
in this paper, the authors would like to clarify the merit by focusing on the rotational
function even with this definition.

Based on the definition of the complex number as an ordered pair of real numbers,
we represent a complex number z as

z= (x}y) (12)

where x and y are real numbers. Then the addition and multiplication of 2; and 2
are defined in complex domain as

(x1,0) + (T2,32) = (21 + 22,01 + ¥2) (1.3
(#1,1) - (22,92} = (1122 — N1y, 2192 + 1122) (1.4)

As a reference, the addition and multiplication (as a step in correlation calculation,
for exampte) of two-dimensional real values is expressed as

(i, )+ (x2,52) = (21 +Z2, 01 +2) (1.5)
(x1,9) (22,92} = (2122,2112) (1.6)

In the comparison, the addition process is identical. Contrarily, the complex multi-
plication seems quite artificial, but this definition (1.4) brings the complex number
with its unique function, that is, the angle rotation, as well as amplitede amplifica-
tion/attenuation, which are the result of the intermixture of the real and imaginary
components.

It is easily verified that the commutative, associative, and distributive laws hold.
‘We have the unit element (1, 0) and the inverse of z (# (), which is

Z_l

Li)

I2+y2’$2+92

_ r -y

= (W’W) -0

where |z| = /&2 + y2.
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1.3.3 Real 2 X2 Matrix Representation

We can also use real 2x2 matrices, instead of the ordered pairs of real numbers, to
represent complex numbers [11, 9]. With every complex number ¢ = a + ib, we
associate the C-linear transformation

T.:C - C, zwrcz=uazr-—-by+ilbz+ay) (1.8

which includes a special case of z —+ ¢z that maps 1 into ¢, ¢ into —1, ..., with a
rotation with right angle each. In this sense, this definition is a more precise and
general version of Argand’s interpretation of complex numbers, If we identify C
with R? by

2 = z+iy = ("") (1.9)

() = (bim)
(5 )0 10

In other words, the linear transformation T, determined by ¢ = a + b is described

it follows that

by the matrix ( 2 _ab ) Generally, a mapping represented by a 2x2 mairix is

noncommutative. However, in the present case, it becomes commutative. By this
real matrix representation, the imaginary unit ¢ in C is given as

_ {0 -1 2 _ -1 0 _
I:(l 0),1..(0 _1)_-—}5‘ (1.11)

In the days of Hamilton, we did not have matrices yet. Even after the advent of
matrices, it is very rare to define complex numbers in terms of real 2x2 matrices {11]
(Chapter 3, §2, 5.), [9] . The introduction of complex numbers through 2 x2 matrices
has the advantage, over introducing them through ordered pairs of real numbers,
that it is unnecessary to define an ad hoc multiplication. What is most important is
that this matrix representation clearly expresses the function specific to the complex
numbers—that is, the rotation and amplification or attenuation as

a -b cosf —siné
( b a ) - T( sinf#  cosé ) (112
where r and # denote amplification/atenuation of amplitude and rotation angle ap-
plied to signals, respectively, in the multiplication calculation. On the other hand,
addiion is rather plain. The complex addition function is identical to that in the case
of doubled-dimension real numbers.

In summary, the phase rotation and amplitude amplification/attenuation are the
most importani features of complex numbers.
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(c)
Figure 1.1 (a) A simple real-valued single-layered two-input two-output
feedforward network to learn (b) a mapping that maps :BIN t¢ :nOUT and {c) a possible

but degenerate solution that is often unuseful [28].

1.4 COMPLEX NUMBERS IN FEEDFORWARD NEURAL
NETWORKS

We consider intuitively what feature emerges in the dynamics of complex-valued
neural networks. Here we first take a layered feedforward neural network. Then we
consider metrics in correlation learning,
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Variables in C

(b)

Figure 1.2  (a) A complex-valued neural network seemingly identical to Fig. 1.1{a}
to learn the mapping shown in Fig. 1.1(b), and (b) a solution obtained in this small-
degree-of-freedom case [28].

1.4.1 Synapse and Network Function in Layered Feedforward Neural
Networks

In wave-related adaptive processing, we often obtain excellent performance with
learning or self-organization based on the CVNNSs. As already mentioned, the rea-
son depends on situations. However, the discussion in Section 1.3 suggests that the
origin lies in the complex rule of arithmetic. That is to say, the merit arises from the
functions of the four fundamental rules of arithmetic of complex numbers, in partic-
ular the multiplication, rather than the representation of the complex numbers, which
can be geometric, algebraic, or in matrices. Moreover, the essence of the complex
numbers also lies in the characteristic multiplication function, the phase rotation, as
overviewed in Section 1.3 [27].

Let us consider a very simple case shown in Fig. 1.1(a), where we have a single-
layer 2-input 2-output feedforward neural network in real number. For simplicity,
we omit the possible nonlinearity at the neurons, i.e., the activation function is the
identity function, where the neurons have no threshold. We assume that the net-
work should realize a mapping that transforms an input 2™ to an output 29T in
Fig. 1.1(b) through supervised learning that adjusts the synaptic weights w;;. Sim-
ply, we have only a single teacher pair of input and output signals. Then we can
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describe a general input—output relationship as

OoUT IN

(B )= (2 0)(2) w1
We have a variety of possible mapping obtained by the learning because the number
of parameters to be determined is larger than the condition; i.e., the learning task is
an ill-posed problem. The functional difference emerges as the difference in the gen-
eralization characteristics. For example, leaming can result in a degenerate mapping

shown in Fig. 1.1{c), which is often unuseful in practice.
Next, let us consider the mapping learning task in the one-dimensional complex
domain, which transforms a complex value % = (2{V, 2I™) to another complex

value xOUT = (£PVUT xQUT), Figure 1.2(a) shows the complex-valued network,
where the weight is a single complex value. The situation is expressed just like in

(1.13)as
22T N f |wlcos@ —|w|sing i (1.12)
2PUT ] T\ |w|sing |w|cosé i |

where # = arg(w). The degree of freedom is reduced, and the arbitrariness of
the solution is also reduced. Figure 1.2(b) illustrates the result of the learning. The
mapping is a combination of phase rotation and amplitude attenuation. This example
is truly an extreme. The dynamics of a neural network is determined by various
parameters such as network structure, input—output data dimensions, and weacher
signal numbers. However, the above characteristics of phase rotation and amplitude
modulation are embedded in the complex-valued network as a universal elemental
process of weighting.

The essential merit of neural networks in general lies in the high degree of free-
dom in learning and self-organization. However, if we know a priori that the objec-
tive quantities include "phase™ and/or "amplitude.” we can reduce possibly harmful
portion of the freedom by employing a complex-valued neural network, resulting
in a more meaningful generalization characteristics. The “rotation™ in the complex
multiplication works as an elemental process at the synapse, and it realizes the ad-
vantageous reduction of the degree of freedom. This feature corresponds not only o
the geometrical intuitive definition of complex numbers but also to the Hamilton’s
definition by ordered pairs of real numbers, or the real 2x 2 matrix representation.

Though we considered a small feedforward network in this section, the conclu-
sion is applicable also te other CVNNs such as complex-valued Hebbian-rule-based
network and complex correlation learning networks, where the weight is updated by
the multiplication results. The elemental process of phase rotation and amplitude
modulation results in the network behavior consistent with phase rotation and am-
plitude modulation in total. The nature is a great advantage when we deal with not
only waves such as electromagnetic wave and lightwave, but also arbitrary signals
with the Fourier synthesis principle, or in the frequency demain through the Fourier
transform.
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Im

Dual-RVNN CVNN

Vo " Augmented
“z CVNN

Figure 1.3  Conceptual illustration of the relationship among bases in the respective
neural networks to deal with complex signal z {35].

1.4.2 Circularity

The circularity of the signals to be processed is also an important factor. To deepen
the discussion, we refer to the wide sense linear {or widely linear: WL) systems
which introduce conjugate signals in addition to direct complex signals [56,41]. WL
systems well leamn complex data distributed anisotropically in the complex plane,
i.e., noncircular data. For example, it is useful for predicting wind strength and
direction by assuming the axes of the complex number plane represent north, south,
east, and west, and the distance from the origin expresses the strength. Augmented
complex-valued neural networks have been proposed in such a context [64}. Wind
has high anisotropy in general. The augmented complex-valued networks does not
lead to the reduction of the degree of freedom. The degree is the same as that of
real-valued networks, resulting in dynamics similar to that of real-valued ones [42).
Figure 1.3 is a conceptual illustration showing the bases of the respective net-
works. The number of the bases of the augmented complex networks becomes that
of the real-valued networks back, and its dynamics approaches that of real networks,
This situation is analogous to the fact that the combination of positive and nega-
tive frequency spectra generates almost real-valued signals. In other words, if we
compare the relationship to the polarization of lightwave, we come to the follow-
ing. Complex-vatued neural networks deal with only right- or left-handed circular
potarized light, which are suitable for circular signal processing. Note that the sig-
nal in total can be cut of complete circularity, but only each frequency component
has the circularity. Since any waveform can be synthesized by sinusoidal compo-
nents through Fourier synthesis, the signals that the complex networks can deal with
are not lirmited to cornpletely coherent signals. In contrast, the angmented complex-
valued networks deal with both the right- and left-handed circular polarized light.
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They are more fiexible because of the larger degree of freedom, which is too much
for circular signals. Dual univariate networks have the same degree of freedom;
however, in this case, the bases are linear polarization corresponding to the real and
imaginary parts, instead of the right- and left-handed circular bases in the augmented
networks. In this manner, they are similar to each other,

Consequently, complex-valued neural networks are suitable for processing ana-
Iytic signals, which consist of a real component and its consistent imaginary com-
ponent that has the same amplitude but 90-degree shifted phase. The anakytic signal
is essentially circular. Analytic signals exist widely in electronics—for example, at
the output of heterodyne or homodyne mixers and at the output of digital signal pro-
cessing using the Hilbert transform. Complex-valued networks have the ability to
process such analytic signals appropriately.

1.5 METRIC IN COMPLEX DOMAIN

1.5.1 Metric in Complex-Valued Self-Organizing Map

Among various neurodynamics in the complex domain, the complex-valued self-
organizing maps (CSOMs) may possess fewer features which reflect the complex
multiplication mentioned in Section 1.4 since most of SOMSs have two subprocesses
in the operation, i.e., winner determination and weight update, both of which may
consist of only addition and subtraction in its arithmetic without any multiplication
that utitizes the coraplex nature of phase rotation.

However, the circumstances depend on the metric we use te determine the dynam-
ics. If we employ complex inner product, instead of conventional Euclidean metric
in double-dimensional real space, we can utilize the characteristics specific to com-
plex space [4]. The general dynamics of a SOM will be explained in Section 1.5. In
this section, we discuss the metric we use in feature vector space.

1.5.2 Euclidean Metric

In SOM in general, the metric most widely used to determine the winner neuron
whose weight w,, is nearest to an input feature vector z is the Euclidean metric. Even
in a complex-valued SOM (CSOM) where z and w are complex, we can express
them with imaginary unit ¢ as

[|21] exp(284)
2z = |lza|exp(if:) (1.15)

‘lwc 1 ! EXp(l“lf)c 1)
|we 2} exp(éve 2) (1.16)

w,
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/(a) High-coherence data

Complex
inner product

{b) Low-coherence data
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{a")|Real part of high-coherence data
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(b') Real part of low-coherence data

Figure 1.4  Conceptual illustration to compare the inner product z*w. and the
real-part inner product Re(z*w.) to calculate ||z — w.|[* [4].
The Euclidean process to choose a winner is expressed as

é=argminl||z — w,]| {c: classindex) (.17
4

where arg min, --- chooses a ¢ that minimizes - - -, and || - || denotes norm (ampli-
tude}, i.e.,

llz — we|l” = (z — we)" (2 — we)

= [|2]]? + |fwel]* = (z*w. +wh2)
= ||z|[* + [lwe|[* - 2Re(z*ur) (1.18)
Though (1.18) deals with complex numbers, this arithmetic is identical to the cal-

culation of real-valued Euclidean distance and also of the real-valued inner product;
ie,whena,w,. € R™,

lix = well? = ||| + ||well* - 227w,
= {2l + l[well* = 2D |zil{we 5| costpe s — 8:) (1.19)
i
Then, when ||z||? and ||w,|{? are almost constants, as is often the case, and/or we

pay attention to phase information, the distance (1.19) is detemined by the cosine
component (real part) |2;||w. ;| cos(t. ; — 6;).
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1.5.3 Complex Inner-Praduct Metric

Instead, we can also employ a complex inner-product metric for use in determination
of a winner in the CSOM as

R z* .

¢ = arg max (‘ —_— ) (¢ : class index) (1.20)
o \[Hl=ll[{el

This process is better understandable in equations by employing the polar represen-

tation. That is, the numerator of the complex-valued inner product (1.20) is given

as

2" we =Y (|2i| exp(—i6;)) (|we +| explithe 1)) (1.21)

1

= learllwulexp(i(wc i —0:)) (1.22)

where the summation takes into account the phase values directly, that is, the direc-
tion of the arrows [4].

In other words, the metric (1.22) takes both the cosine and sine components (real
and imaginary parts) into consideration. That is, when we express the vectors as
z = (x) +iy1, %2 +iyg,...) and w = (w1 + ivy, up + tvg,...), omitting suffix ¢, we
obtain

. . . . . T
Zrw o= [m -y wa -ty .. ) fua+iv vative L]
= it + 31 + Taus + v + <— €O0s component

+i (2301 — Y111 + F2Us — Yaus + ...) < sin component (1.23)

1.5.4 Comparison Between Complex Inner Product and Euclidean
Distance

Figure 1.4 is a conceptual illastration to show the merit of this complex inner-product
metric. In active imaging such as the ground penetrating radars described in Section
1.2,3, we obtain coherent signals consisting of amptlitude and phase. The feature vec-
tor is defined in complex domain. For a set of high-coherence signals, i.e., signals
having similar phases, the summation to generate inner product grows straightfor-
ward as shown by arrows (a) in Fig. 1.4, Contrarily, in a low-coherence case, having
random phases, the summation does not grow s¢ much as shown by arrows (b). This
effect emerges also in the Euclidean metric to some extent. However, the Euclidean
metric is related only to the cosine component as shown in Fig. 1.4(a") and (b).
resulting in a partial weatment of phase directions. The evaluation results can be
different from (a) and (b). The complex inner-product metric is then more sensitive
to signal coherence and, therefore, enhances the distinction among various objects
compared with the case of Euclidean metric described below. _

In addition, the complex inner product is inherently less sensitive to the norm of
signal vectors. This is simply because of the normalization. It is desirable in partic-
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ular in coherent imaging systems where we often suffer from distoriion in intensity
caused by the mirror glaring and speckles.

1.5.5 Metric in Correlation Learning

Correlation learning, used widely in neural networks such as associative memories
[24] described in Section 1.5.5, also possess the same feature of the complex-valued
leamning. The correlation learning embeds the correlation between outpui signals
z, and input signals z; in synaptic weights w. For simplicity of expression, we
consider one of the output signals z, out of z,. As shown in detail in Section 1.5.5,
the learning dynamics is expressed as

w *
TE =—w+ 2 2 (1.24)

where 7 is the leaming time constant in the time ¢ domain. Various pairs of input
z¢ and output z, teacher signals are presented (o the network for the training. The
correlation is accumulated into w, converging at

w — K <z;2f > (1.25)

where K is a real constant.
Here we express the teacher signal pairs in real and imaginary parts as

23 = T+ Jys (1.26)
2zt = [z +jyn, T2+ ez, T + JUN]T (1.27)

where j and N are the imaginary vnit and the input terminal number. Then the
product in the correlation in (1.25) is rewritten as

2s g = [ (i1 + ysynr) + H{ysTn — Tsh1),
(@stz + Ysr2) + F{Ysez — Tatiiz),

(Teen + YoYen} + HusZin — Tsyen) 1T (1.28)

The real and imaginary parts mix with each other. The meaning becomes obvious
when we express the pixel values in amplitude and phase as

7y = rae (1.29)
ze = [rae’ rpeve L rvefeN]T (1.30)

and rewrite (1.28) as
Zs 2] = [ ryrpned@em0) popedBambial e v ed BT (g 3]y

The product yields the phase difference as well as the amplitude product, which is
compatible with the signal circularity.
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Figure 1.5 A set of teacher signals [35] (See color insert.).

Input training data set

On the contrary, if we regard the neural network as a real-valued network having
double input terminals and two output neurons corresponding to real and imaginary
parts, the dynamics for double-dimensional real signals 2, and 2, are expressed as

zs = [%sYs) (1.32)
Zt = [TensYers T2, Yt o > Tens YeN ] (1.33)

and the product as a step to calculate correlation becomes

Zez = [ TeTels YoWu, TsFez, YsUr2, - » Talen, ysyu\r]T (1.34)

We can find that the product (1.34) is different from {1.28) or (1.31). That is, the dy-
namics of the real-valued network is completely different from that of the complex-
valued one. The difference originates from the very basic arithmetic operation, and
is therefore very fundamental. This property may also be called circularity as one of
the characteristics of the complex-valued neural network. The circularity is one of
the most essential features of the complex-valued neural networks.

1.6 EXPERIMENTS TO ELUCIDATE THE GENERALIZATION
CHARACTERISTICS

To elucidate the generalization characteristics in feedforward layered neural net-
works described in Section 1.4, we conducted a set of experiments. The details
were reported in Ref. 35. The outline is explained as follows.

¢ Input signals: Weighted summation of the following (A} and (B} as shown in
Fig. 1.5.
(A) Sinusoid: completely coherent signal.
(B) White Gaussian noise (WGN): completely incoherent data having random
amplitude and phase {(or real and imaginary parts).

o Task to learn: Identity mapping, which is expected to show the learning char-
acteristics most clearly for the above signals with various degrees of coher-
ence.
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Feedforward neural network

Input Hidden neurons Output neurons
terminals I

Weights W™ or W, W

Figure 1.8  Basic construction of the complex- and real-valued feedforward neural
networks [35]. (See color insert.)

o Evaluation of generalization: Observation of the generalization error when the
input signals shift in time, or when the amplitude is changed.

1.6.1 Forward Processing and Learning Dynamics

1.6.1.1 Complex-Valued Neural Network (CVNN} Figure 1.6 shows the general
construction of the neural network to be considered here. It is a layered feedforward
network having input terminals, hidden neurons, and output neurons. In a CVNN,
we first employ a phase-amplitude-type sigmoid activation function and the teacher-
signal-backpropagation learning process, [23, 311 with notations of

A = [21,---,2£a---=zf,21+1]T
(Input signal vector) (1.35)
‘ZH = [zla"-rzha'“&zH)zH-i“l]T
(Hidden-layer output signat vector) (1.36)
0 = (214 +ees Zos s 20] T
{Output-layer signal vector) (1.37)
whH = [wai] (Hidden neuron weight matrix) (1.38)
wi - [wor] (Output neuron weight matrix) (1.39)

where [ -] means transpose. In (1.38) and (1.39), the weight matrices include addi-
tional weights wy, 741 and w, g1, equivalent to neural thresholds, where we add
formal constant inputs zr4; = 1 and zgy = 1 in (1.35) and (1.36), respec-
tively, Respective signal vectors and synaptic weights are connected with one an-
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Figure 1.7  Schematic diagram of the learning process for pairs of input—output
teachers [35]. (See color insert.)

other through an activation function f(z) as

= (whl) (1.40)
= f (WOzH) (1.41)

where f(z) is a function of each vector element z (€ C) defined as
J(2) = tanh (2]} exp (i arg 2) (1.42)

Figure 1.7 is a diagram to explain the supervised learning process. We prepare a

set of teacher signals at the input 2% = [Z151 -1 Bigy s B15y 2141 s)7 and the output
zso = [814, e Bosr - 20s]T (8 = 1,...,5,...8) for which we employ the teacher-
signal backpropagation learning. We define an error function ¥ to obtain the dynam-

ics by referring to Refs. [31, 23, 27] as

1 5 Q 1
E = 5;; 20(%3) — Zos (1.43)
new old| _ ;- OF
= 1.44
B = o K (4D
1 E
argw?fw = argw(?,{d 9 (1.45)

|woh| a(arg woh-)
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OF
alwohl
(1= 120l®) Qzel = [2e] cos (arg 2o — arg 20)) lan]

- cos (argz, — arg 2, — argwon)

o , |2n]
— |2 ZalBI{arg z, — argz,) —m—
| o” 01 ( EZo g Zo) tanh~1 |zo|

- sin {arg z, — arg Z, — arg won ) (1.46)

1 OF _
[ton] Olargwor) —
(1= 1ool®) lzol = 2o} cos (arg 20 = arg ) [z
- sin {arg z, — arg Z, — argWyp)
|2
tanh ™! |z,
- cos(argz, — arg £, — argwyy) (147

+ |2o| |25) sin (arg 2z, — arg £,)

where (- )™ and ( - )°M indicates the update of the weights from ( - )°!d 1o ( - }P€W,
and K is a leaming constant. The teacher signals at the hidden layer H (21, .-, 2,
..,2g|7 is obtained by making the output teacher vector itself £0 propagate back-

ward as .
= (7((20) W)

where ( - )* denotes Hermite conjugate. Using #H the hidden layer neurons change
their weights by following (1.44)—(1.47) with replacement of the suffixes o,/ with
h,i [25,27].

16.1.2 Complex-Valued Neural Network Having Real-Imaginary Separate-Type
Activation Function (RI-CVNN)  We also investigate the characteristics of complex-
valued neural networks having real-imaginary separate-type activation function. In-
stead of (1.42), a neuron has an activation function expressed as

f(z) = tanh(Re[2]) + 7 tanh(Im[z]) (1.49)

The structure and the dynamics of feedforward processing and backpropagation lean-
ing are those described in, for example, Ref. 52.

1.6.1.3 Real-Valued Neural Network Having Double Input Terminals and Output
Neurons for Bivariate Procesing (RVNN)  Similarly, the forward processing and
learning of a RVNN having double input terminals and output neurons are explained
as follows. Figure 1.7 includes also this case. We represent a complex number as

a pair of real numbers as z; = x9;_1 + ix9;. Then we have a double number of

terminals for real and imaginary parts of input signals zﬁ and a double number of
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output neurons to generate real and imaginary parts of output signals z}? . We also

prepare a double number of hidden neurons for hidden-layer signals zg so that the
equivalent number of neurons is the same as that of the above CVNN.

Forward signal processing connects the signal vectors as well as hidden neuron
weights Wg and output neuron weights WRO through a real-valued activation func-
tion fg as

real & imaginary
I _ ' r—
ZR - [ Ty, Ty g oery L2153 T4y wnny
Tor—1,Tal, Tars1, Tart2]
(: zI) (Input signal vector) (1.50)
ZE = [.'.‘!:1, Ey iy Tahel, T2y ey
TaH_1, T2H, T2H 41, T2 42)
(Hidden-layer output signal vector) (1.51)
Z;({) = [271,3?2,-u,xzo—h-’u"%;‘--;$20—1=$20]T
(Output-layer signal vector) (1.52)
WH = [wg,,] (Hidden neuron weight matrix) (1.53)
Wg = [wgr,,] {(Outputneuron weight mateix) (1.54)
A = r(WEE) (1.55)
= fp(WR-R) (1.56)
fr{z) = tanh(z) (1.57)

where the thresholds are wg , er+1* WR p 214+2° YR h oH+10 and wg , oH+2 with
formal additional inputs Tag4l = 1, Tof42 = 1, Taggyr = 1, and Tof4a = i
We employ the cenventional error backpropagation learning. That is, we define an
error function Ep for a set of input and output teacher signals (21, :29) to obtain the
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learning dynamics as

B = 3 ZZ ro(2h ) — 20| (= B) (1.58)
s*—l o=1
new _ old dEp
wRoh - Roh K awRoh (1 59)
ne _ old 8ER
ij:V - me K athi (1 60)
dEgp R 5
oy, (o) (1—25) zn (1.61)
dER x : .
= {x,—T,) (1 - xﬁ wep {1 — z2) 2 (1.62)
R = (St 1= a2 1=

1.6.1.4 Dual Real-Valued Neural Networks for Real-Imaginary Separate Process-
ing (dual-RVNN) We consider another type of real-valued neural network in which
the real and imaginary parts of input signals are processed separately. It is an exten-
sion of dual univariate real-valued neural network having single-layer structure. We
may have a variety of ways of mixing and separation of real and imaginary variables
in multiple-layer networks. With this network, we examine a completely separate
case where the neurons in the real-part network have no connections to those in the
imaginary-part network. The learning and processing dynamics are identical to that
of the above RVNN except that the numbers of input terminals and output neurons
are the same as the CVNNs for the respective real and imaginary networks.

1.6.2 Experimental Setup

1.6.2.1 Simulation Setup Figure 1.8 shows schematically how to observe the
generalization characteristics of the networks. We conducted the learning process as
follows. We chose the identity mapping as the task to be learned to show the network
characteri stics most clearly. That is, we take a set of input and output teacher signals
as z = zo (s =1,2,...,5) with the following conditions. For a signal set showing
hlgh coherence, we choose its wavelength in such a manver that a unit wave spans
Jjust over the neural input terminals ¢ = 1,..., I, and discrete I points are fed to the
network evenly with a constant interval in the unit wave, In more detail, we choose
multiple amplitude values between 0 1o 1 evenly for s4 = 1,..., 54 teacher signals
as well as multiple time shift amount between ( to half-wave duration (phase shift in
a sinusoidal case between O to 7) evenly for 5, = 1,..., 5; teachers. Consequently
we generate & = S x 5 points of discrete teacher-signal sets ;. (s = 1,2,...,5)

as
_ SA . t
Zis = -————SA ) exp (z (ZSt ) 2«) (1.63)
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Figure 1.8  Schematic diagrams showing how to feed signals to observe (a} time-
shift and (b} amplitude-change generalizations [35]. (See color insert.)

Note that the wavelength, and then the signal frequency, are unchanged. Figure 1.5
includes the manner of the amplitude variation. We add WGN to the sinusoidal wave
with various weighting. The noise power is adjusted depending on the signal power
and the expected signal-to-noise ratioc SNR which is determined in each leaming
trial.

The dots on the continuous signals in Fig. 1.8 indicates the discrete teacher signal
points 2;,. We observe the generalization characteristics by inputting signals other
than the teachers and evaluate the output errors. Figure 1.8(a) iltustrates the observa-
tion of outputs when the input signal is shifted in tme. The continucus time signal
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Figure 1.9  Example of (a) amplitude and (b} phase when the input signal gradually
shifts in time in the real-valued and complex-valued neural networks (RVNN and
CVNN} when no noise is added to sinusoidal signals (SNR= oo} [35)].

was generated by the Lagrange interpolation. Figure 1.8(b) shows the observation
when the amplitude is changed. We combine the time shift and the amplitude change
to evaluate the generalization. In the experiment below, Sy = 4, S; = 4, and the
neural network parameters are listed in Table 1.1. The learning iteration is 3,000.

1.6.2.2 Heterodyne Signal Experiment We process a heterodyne signal observed
in a sonar imaging system. The signal has a carrier of 100 kHz with thermal noise. It
is converted into 100 Hz in-phase and quadrature-phase (1Q) intermediate-frequency
(IF) signals through an IQ mixer. The imbalance of the 1Q mixer is less than 0.3 dB
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Table 1.1 Parameters in the neural networks [35]

CVNN or RI-CVNN RVNN or dual-RVNN

Number of input nevrons I=16 2f=32
Number of hidden neurons H=25 2H =50
Number of output neurons O0=16 20=32

Learning constant H=0.01 K =0.01

in amplitude and 3 degrees in phase, which is common in this type of systems. The IF
signal is recorded by a personal computer (PC) through an analogue/digital converter
with 600 k Sample/s sampling frequency. We aim at appropriate interpolation of the
signals in time andfor space domain for post-processing to generate high-quality
time-space images. When the 100 kHz carrier signal power changes, the SNR also
changes for a constant noise power.

1.6.3 Results

1.6.3.1 Examples of Output Signals for Inputs Having Various Coherence De-
grees Figure 1.9 displays typical examples of the output signals of the CVNN and
RVNN for a single leaming trial when SNR = oo, i.e., the signal is completely si-
nusoidal and coherent. After a leaming process, we use other input signal points to
investigate the generalization. As mentioned above, the wavelength is adjusted to
span over the 16 neural input terminals. For example, we gradually move the input
signal forward in time while keeping the amplitude unchanged at @ = 0.5. Figures
1.9(a) and (b) present the output amplitude and phase, respectively, showing from
left-hand side to the right-hand side the ideal output of the identity mapping, the
RVNN outputs, and CVNN outputs of the 16 output neurcns. The horizontal axes
present the time shift ¢ normalized by the unit-wave duration.

In Fig. 1.9(b), we find that the output signals of the RVNN locally deviate greatly
from the ideal ones. The learning points are plotted at £ = 0 (no time shift), where
the output amplitude is almost 0.5 for all the neurons. However, with the time course,
the amplitude values fluctuate largely, Contrarily, the CVNN amplitude stays almost
constant. At the learning point ¢t = 0, the value is slightly larger than 0.5, corre-
sponding to the slight nonzero value of the residual error in the learning curve,

In Fig. 1.9(c), the ideal output phase values on the left-hand side exhibit linear
increase in time. In the RVNN case, though the phase values at ¢ = ( are the same as
those of ideal outputs, the values sometimes swing strongly. In contrast, the CVNN
output phase values increase orderly, which is almost identical with the ideal values.
In summary, the CVNN presents much better generalization characteristics than the
RVNN when the coherence is high, i.e., SNR= oc.
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Figure 1.10  Squared generalization errors averaged for 100 trials ag functions of
amplitude change and time shift for SNR= {a) oo, (b) 20 dB, {c) 10 dB, and (d) ¢ dB,
respectively [35].
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Figure 1.11 Squared generalization errors summed up for all the sampling
amplitude-time points shown in Fig. 1.10 versus signal SNR for the real-valued and
complex-valued neural networks (CVNN, RI-CVNN, RVNN, and dual-RVNI; curves
denote simulations, marks denote experiments) [35].
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1.6.3.2 Generalization Error and Its Dependence on the Coherence Here we
present statistic results obtained by repeating the above simulations as well as the
real-world experiment dealing with the heterodyne signals explained in Section 1.6.2.2.

Figure 1.10 is a three-dimensional representation of the square errors as the av-
erage of 100 learning trials for varicus coherence degree, namely, SNR= (a} oo,
(b) 20 dB, (c) 10 dB, and (d) 0 dB, as functions of time shift and amplitude change.
The learning points exist at ¢ = (0 and amplitude values of o = 0.2, 0.4, 0.6, and
(1.8. At these points we can find the errors are very small, which corresponds to the
almost zero residual errors in the learning curves. However, the errors at the teacher
points for lower SNRs are obviously positive. This is because the learning error in
some trials fails to converge at zero. As a whole, we notice in Fig. 1.10 that the
generalization error of the RVNN are larger than those of the CVNN, in particular
in the cases of higher SNR. When SNR is low (~0 dB), the error of the CVNN also
increases.

Figure 1.11 compares quantitatively the generalization errors, summed up for all
the sampling amplitude-phase points shown in Fig. 1.10, for the CVNN, RI-CVNN,
RVNN, and dual-RVNN as functions of the coherence degree, i.e., SNR. The four
curves show the resulis of the simulation, while the marks indicate experimental
results. In all the neural network cases, the generalization error reduces according
to the increase of the coherence (increase of SNR). The CVNN curve shows lower
errors than other network ones over a wide range of SNR. The dual-RVNN also
shows low errors though, at the middle SNR (S¥R = —5 to 15 dB) the value is 3 to
6 dB larger than that of the CVNN. The error of the simulated RVNN is about 2 dB
larger than the dual-RVNN in the low and middle SNR range. The experimental
results (marks) of the RVNN are slightly larger. Tt is remarkable that, in the higher
coherence region (SNR> 10 dB), the RVNN curve holds a floor at a nonnegligible
level. The RI-CVINN shows a large generalization error in the low coherence region.
This is not only because of the errors at non-teacher peints but also because of the
errors at teacher points. That is, the learning sometimes fails. In the high coherence
region (SNR>> 20 dB), however, the generalization error decreases and approaches
to the curves of the CVNN and dual-RVNN. In summary, we found that the four
neural networks present generalization characteristics different among them. The
experimental results have been found mostly near to the simulation results. In total,
the CVNN shows good generalization characteristics.

1.7 CONCLUSIONS

This chapter first presented recent advances in applications of complex-valued neu-
ral networks in varicus engineering fields, in particular in coherent systems. We also
mentioned the history briefly by referring to Parametron. Then we discussed their
merits intuitively concerning the degree of freedom in the learning in feedforward
layered neural networks as well as the metric specific to the complex-valued net-
works such as complex inner product. We also considered widely linear systems
and circularity not only in data but also in neural dynamics. In the latter part, we
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examined the generalization characteristics of complex-valued networks in compar-
ison with real-valued ones. We observed that the complex-valued neural networks
show smaller generalization error in the feedforward network to deal with coher-
ent signals. This fact leads to great merits in electronics and engineering fields that
deal with wave phenomena and wave-related information such as communications,
imaging and sensing, social systems such as traffic signals, frequency-domain pro-
cessing including frequency-domain multiplexing, and quantum compufation and
devices, Hypercomplex-valued networks are also promising in the fields related to
three-dimensional maotion, color processing, and other high-dimensional space infor-
mation,
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