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Part I
Multiscale
Simulation Theory

Atomistic and multiscale simulation research is one of the current focuses of computational mechanics.
In Part One we present a group of recent research studies in this active research area. Some of the
chapters presented in this book contain research topics that are reported or released for the first time in
the literature, and they touch almost every aspect of multiscale simulation research. In Chapter 1, Wagner
presents an atomistic-based multiscale method to simulate heat transfer and energy conversion, which
is a recent development of the bridging-scale method. In Chapter 2, Tang presents a detailed account
on how to provide an accurate boundary treatment for concurrent multiscale simulation including the
bridging-scale method. In Chapter 3, Liu and Li present for the first time a novel multiscale method
called multiscale crystal-defect dynamics (MCDD), which is intended for simulation of dislocation
motion, nanoscale plasticity, and small-scale fractures. In Chapter 4, Fu and To discuss their ingenious
construction of a novel nonequilibrium molecular dynamics, and then Park and Devel, in Chapter 5,
apply a coarse-grained multiscale method to study electromechanical coupling in surface-dominated
nanostructures. In this part, Wagner, Tang, and Park were the main members of Wing Liu’s research
group in the early 2000s and have worked with Wing Liu in developing the bridging-scale method. The
last chapter of this part is contributed by Dr. Fish, who presents a multiscale design theory and design
procedure for general composite materials based on a multiscale asymptotic homogenization theory.
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Atomistic-to-Continuum
Coupling Methods for Heat
Transfer in Solids

Gregory J. Wagner
Sandia National Laboratories, USA

1.1 Introduction
New scientific and technical knowledge and advances in fabrication techniques have led to a revolution in
the development of nanoscale devices and nanostructured materials. At the same time, improved compu-
tational resources and tools have allowed a continuously increased role for computational simulation in
the engineering design process, for products at all scales. For many nano-mechanical or nano-electronic
devices, models are sought that can accurately predict thermal and thermo-mechanical behavior under the
range of conditions to which the devices will be subjected. However, at these small scales the limitations
of continuum thermo-mechanical modeling techniques become apparent, as the effects of surfaces, grain
boundaries, defects, and other deviations from a perfect continuum become important. Fourier’s law,
q = −κ∇T (where q is heat flux density, κ is the thermal conductivity, and ∇T is the local temperature
gradient) may not be applicable, nor may macroscale stress and strain laws; in fact, concepts like stress,
strain, and even temperature may be difficult to define at the atomic scale.

Atomistic simulation techniques like molecular dynamics (MD) provide a way to simulate these
small-scale behaviors, especially when combined with an accurate and efficient interatomic potential or
force law that allows simulations of billions of atoms. However, even the very largest MD simulations
may not be able to capture large enough length scales to simulate the interscale interactions important in
real devices (since, typically, a nanoscale device must at some level be addressable from the macroscale
in order to provide useful function). Classical MD has other shortcomings, as well, especially for
real geometries at finite temperatures. For example, a number of approaches are available for holding
an MD simulation at fixed, constant temperature [1, 2]; however, it is more difficult to regulate a
spatially varying temperature, except through the use of discontinuous “blocks” of atoms held at different
temperatures.
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Limitations of MD have led to the development of atomistic-to-continuum coupling methods [3, 4],
in which a continuum description (usually a finite-element discretization) of the material is used where
valid, but a discrete atomistic representation of the material is used in regions where the continuum
assumptions break down. Such a breakdown may occur near defects like cracks or dislocations, or in
domains where the feature size is not much larger than the interatomic spacing. The atomistic and
continuum descriptions are coupled together at an interface or overlap region, usually by combining the
Hamiltonians of the two systems [5] or by ensuring that internal forces are properly balanced [6]. The
resulting system couples the momentum equations (or, for statics, the force equilibria) of the two regions.
Formation of a seamless coupling is nontrivial even for the static case (see Miller and Tadmoor [7] for an
excellent review). For the dynamic case, an additional difficulty is the wave impedance mismatch at the
MD–continuum boundary, leading to internal reflection of fine-scale waves back into the MD domain.
Several approaches have been studied for removing these unwanted wave reflections, usually through
some form of dissipation; typically, the goal in these situations is to completely remove the outgoing
energy and minimize the reflected energy, optimally to zero [8–10].

Often in these coupled simulations, even for dynamics, the system is assumed to be initially quiescent,
with no thermal vibrations about the mean atomic positions. This assumption is the basis of energy
dissipation techniques that seek to completely remove internal wave reflections by zeroing the incoming
energy. However, a more realistic environment for an actual nanoscale device, or nanostructured material,
is finite nonzero temperature. At finite temperatures, atoms can be assumed to be vibrating about their
mean positions with some thermal energy, and lattice waves can be recognized as energy-carrying
phonons. Of course, additional thermal energy may be added to the system in a number of ways, and
may propagate outward through the MD–continuum interface. However, in this case the goal is not to
dissipate away all incoming energy; rather, the correct balance of incoming and outgoing phonons should
be maintained, at least in some averaged sense.

Recently, methods have been developed that couple MD and continuum simulations, while allowing
two-way coupling of thermal information. These methods are the subject of this chapter. Two-way
coupling implies that heat in the simulation can be transferred both in the fine-to-coarse scale direction
(MD to continuum), and in the coarse-to-fine direction. In the former case, this means that energy added
to the MD domain as thermal vibrations may be transported to the neighboring continuum and lead
to an increased internal energy. Phenomena that may lead to an increase in thermal vibrations in the
MD region include friction, laser heating, fracture, and plastic failure. In the coarse-to-fine direction, it
is required that internal energy in the continuum can be transported into the MD domain and lead to
increased vibrational energy.

In addition to the spatial partitioning into MD and continuum regions used in these methods, another
important type of MD-to-continuum coupling for thermal fields is required for the simulation of heat
transfer in metals. For insulators, heat transfer is dominated by phonons, energy-carrying vibrations in
the atomic lattice. For metals and some semiconductors, however, a large amount of the thermal energy
is transported by electrons; in classical MD simulations, this contribution of the electron field to heat
transfer is missing, and thermal conductivity cannot be accurately predicted for these materials. On the
other hand, the contributions of the atomic lattice to thermal behavior cannot be ignored, especially
since many of the same phenomena discussed above (like friction) add heat to the system initially
through lattice vibrational degrees of freedom. To address this, several authors have developed coupled
atomistic-to-continuum implementations of the so-called two-temperature model (TTM) in which the
thermal energy is partitioned between lattice vibrations and electrons [11, 12]; lattice motion is simulated
using MD, while the electron temperature is solved using a continuum heat equation. Jones et al. [13]
built on this previous work, using energy-conserving techniques similar to those used in partitioned
domain coupling methods.

The central idea in much of this work is the simultaneous definition of a solution field, in this
case temperature, at multiple scales. This idea stems from the multiscale work by Wing Kam Liu
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and his research group at Northwestern University. In the context of atomistic-to-continuum coupling,
these ideas are captured in the bridging-scale method developed in that group [9, 14, 15], with ear-
lier roots in the multi-resolution and bridging-scale approaches developed for continuum simulations
[16–18].

In the remainder of this chapter we will summarize these newly developed methods, including the
development of the theory behind them, along with some demonstrations and applications.

1.2 The Coupled Temperature Field
An important step in developing a coupled method is to clearly define the relationship between the
atomic motions and the macroscale temperature. From classical (i.e., non-quantum) statistical physics,
for a system of atoms at equilibrium, the system temperature T can be written in terms of the system
kinetic energy [19]:

3

2
nakBT =

〈∑
α

1

2
mα|vα|2

〉
, (1.1)

where kB is Boltzmann’s constant, na is the number of atoms in the system, mα and vα are the mass
and velocity of atom α, and the angle brackets represent an ensemble or time average. Here, for
simplicity, we are assuming that the mean velocity of each atom is zero, but more generally the
velocity used in the temperature definition can be some perturbation about the mean (although the
precise definition of the “mean” must be determined). From Equation (1.1), we can identify an atomic
temperature Tα:

Tα ≡ 1

3kB
mα|vα|2. (1.2)

If it is assumed that the ensemble average in (1.1) is equivalent to an average over all atoms in an equi-
librium system, then the system temperature at equilibrium is just an average of the atomic temperature
Tα over the atoms.

In this work, we are primarily interested in nonequilibrium systems, where the temperature is not
necessarily constant for the entire system, so that (1.1) does not apply directly. However, we can use
the atomic temperature Tα , together with appropriate spatial- and time-averaging operators, to define a
spatially varying macroscale temperature field in terms of the atomic temperature.

1.2.1 Spatial Reduction

First, we will assume that the spatially varying macroscale temperature can be represented by an
interpolated field on a finite-element mesh (FEM), with an element size that is large compared with the
interatomic spacing. This interpolation can be written as

T FE(X, t) ≡
∑

I

NI (X)θI (t). (1.3)

In this expression, the sum is over the set of all nodes in the domain, θI is a temperature degree of freedom
defined on node I , and NI (X) is the finite-element shape function associated with node I evaluated
at X.
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One way to relate the macroscale and atomic temperature fields is to use a least-squares projection to
minimize the difference between the interpolated temperature T FE(X, t) and the atomic temperature at
every atomic location Xα . This is attractive, but leads to a matrix equation that must be solved. To simplify
this projection, we approximate the projection matrix with a row-sum lumping to get a diagonal matrix
(see Wagner et al. [20] for details), leading to a simple relationship between the nodal temperatures θI

and the atomic temperatures, through a scaled shape function N̂I :

θI =
∑
α∈A

N̂IαTα,

N̂Iα ≡ NIα�Vα∑
β∈ANIβ�Vβ

,

(1.4)

where �Vα is the volume associated with atom α and NIα is a shorthand notation for NI (Xα).

1.2.2 Time Averaging
Equation (1.4) defines an efficient spatial reduction from the atoms to the finite-element nodes. However,
even when the number of atoms is much larger than the number of nodes, experience shows that the
resulting nodal temperatures fluctuate in time even for what should be statistically steady states. To help
reduce these fluctuations, we can define a time filtering operation as

〈 f (t)〉τ ≡
∫ t

−∞
f (t ′)G(t − t ′) dt ′, (1.5)

where G(t) is a kernel function of the form

G(t) = 1

τ
e−t/τ (1.6)

and τ is the time scale of our filtering operation. This filtering operation commutes with time differen-
tiation, and for this choice of the kernel function G(t) the time derivative of a filtered function can be
rewritten as a simple, first-order ordinary differential equation:

d

dt
〈 f 〉τ = f − 〈 f 〉τ

τ
. (1.7)

The usefulness of this property should be apparent: by using (1.7) to update time-filtered values, the
filtered value of any quantity f can be computed without storing the time history of that quantity.

Ideally, the filtering timescale τ is much longer than the vibrational timescale of the atoms, but much
shorter than the timescale associated with the expected macroscale temperature changes due to phonon
heat transfer. If such a separation of scales is not possible, then a local macroscale temperature may be
hard to define, and the only way to reduce fluctuations in the nodal temperatures may be to increase the
number of atoms per node by coarsening the FEM.

By combining the spatial reduction (1.4) with the time filtering operator, we obtain a final expression
relating the atomic motion to the finite-element temperature field:

θI =
〈∑

α∈A
N̂IαTα

〉

τ

. (1.8)
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Figure 1.1 Coupled domain geometry

1.3 Coupling the MD and Continuum Energy
1.3.1 The Coupled System

The goal of our coupling strategy is to simulate domains decomposed as in Figure 1.1, in which a domain
� is discretized with a FEM, while an internal portion of the domain �md is represented by a set of
atoms A. The remaining portion of the domain in which there are no atoms but only finite elements
is denoted �fem; the boundary between the two subdomains is given by 	md, with normal vector nmd

oriented into the MD region. The purpose of this partitioning is to use classical MD, with atomic forces
derived from an interatomic potential, in those regions where the heat flow and corresponding dynamics
are too complex to be described by a simple continuum heat transfer law (like the Fourier law). Thus,
�md will typically include defects, dislocation, grain boundaries, or any other nanoscale structures that
may affect heat transfer.

To derive a coupled set of MD–FEM equations for this system, we assume that we can partition the
total energy of the system into two parts that correspond to the two subdomains:

E tot = Emd + E fem. (1.9)

For simplicity, we will assume that strain energy and the mean velocity of the FEM region can be
neglected, so that the energy of the finite-element region is just the thermal energy ρcpT h integrated
over �fem:

E fem =
∫

�fem

ρcpT h(X, t) dV, (1.10)

where the density ρ and the specific heat cp are intrinsic properties that can both be related to the
properties of the atomic lattice [19]. The energy of the MD region is the sum of the potential and kinetic
energies of the atoms, with time filtering applied:

Emd =
〈

U md + 1

2

∑
α

mα|vα|2
〉

τ

, (1.11)

where U md is the potential energy of the atoms in the MD region.
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1.3.2 Continuum Heat Transfer
Outside of the MD region, in �fem, we can write an equation for the evolution of the continuum
temperature field:

ρcpṪ (X, t) = −∇ · q(X, t), (1.12)

where q(X, t) is the heat flux. We will assume that the continuum region is well described by the Fourier
heat law with some known thermal conductivity κ:

q(X, t) = −κ∇T . (1.13)

The thermal conductivity should be matched as well as possible to the value predicted by the MD system
for a large, defect-free lattice; this can be calculated with a separate computation if needed.

The continuum heat equation applies only in �fem, but the FEM and the interpolated temperature field
exist in the entire domain, including in �md. For nodes whose supports fully or partially overlap the MD
region, the evolution of the nodal temperature includes a contribution from the atomic motion, so that
heat information passes smoothly from the fine scale to the coarse.

1.3.3 Augmented MD
A common way of thermostatting an MD system is by adding a drag force to each atom that is proportional
to the velocity of that atom [1, 2]. We can use a similar idea to include the effects of the continuum
region temperature on the MD region in our coupled simulations. The equation of motion solved for each
atom is

mα v̇α = fmd
α + fλ

α, (1.14)

where the classical MD force is computed from the potential energy

fmd
α = −∂U md

∂xα

(1.15)

and the drag force fλ
α is given by

fλ
α = −mα

2
λαvα. (1.16)

The parameter λα may be different for every atom, and we assume that it is a field that can be interpolated
from a set of nodal values λI defined on the FEM, using the nodal shape functions:

λα(t) =
∑

I

NIαλI (t). (1.17)

By enforcing conservation of total energy of the system (see Wagner et al. [20] for details), we can
derive a matrix equation for these nodal coefficients λI :

∑
J

(∑
α∈A

NIαTα NJα

)
λJ = 2

3kB

∫
	md

NI nmd · κ(∇T h + τ∇ Ṫ h) dA (1.18)
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Templeton et al. [21] extended this approach to allow a prescribed heat flux to be applied to the
boundary of an MD system through a modification of the equation for the λI coefficients.

The right-hand-side integral in (1.18) is a surface integral on the interface between the MD and
continuum regions. In effect, this expression relates the effect that the continuum has on the MD system
(through λI and the atomic drag forces) to the heat flux across the surface. This relation follows naturally
from our conservation of total system energy, and completes the formulation. However, the numerical
computation of this surface integral is not trivial, especially if the interface does not align with element
boundaries. Wagner et al. [20] give a technique for approximating this integral using the divergence
theorem together with a projection operation.

The final form of the evolution equation for the finite-element temperature field in the coupled system
is [20]:

∑
J∈N

(∫
�

NI NJ dV

)
θ̇J =

〈
2

3kB

∑
α∈A

NIαvα ·
(

fmd
α + 1

2
fλ
α

)
�Vα

〉

+
∑
J∈N

∑
α∈A

(
∇NI · κ

ρcp
∇NJ

)∣∣∣∣
α

θJ �Vα

−
∑
J∈N

(∫
�

∇NI · κ

ρcp
∇NJ dV

)
θJ .

(1.19)

1.4 Examples
1.4.1 One-Dimensional Heat Conduction
A simple but useful demonstration of the coupled method is the transient, nonequilibrium heat flux
through a quasi-one-dimensional domain [20]. Figure 1.2 shows the computational domain. The MD
system represents solid argon, with mα = 39.948 amu and lattice constant 
 = 5.406 Å. Interatomic
forces are computed from a Lennard-Jones potential with parameters ε/kB = 119.8 K and σ = 3.405 Å.
A continuum thermal conductivity of κ = 0.5 W/(m K) was assumed in the finite-element region [22].
The computational domain comprises an MD region of size (20 × 8 × 8)
, centered in an overlapping
finite-element domain of size (48 × 8 × 8)
. The entire domain was discretized using finite elements;
Figure 1.2 shows a mesh size of h = 4
, giving 48 elements in the mesh.

Y

X
Z

Figure 1.2 One-dimensional heat conduction: mesh and atomic positions for h = 4
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Figure 1.3 Temperature profiles for h = 2
 and τ = 25 ps at t = 0.0, 12.5, 1000.0 ps

Periodic boundary conditions are imposed on the lateral (±y and ±z) faces of the rectangular domain.
The temperature of the entire system was initially brought to 30 K via rescaling and, immediately
following the thermalization stage, the end temperatures were changed to 40 K and 20 K for the left (−x)
and right (+x) ends, respectively. The longitudinal temperature traces, Figure 1.3, of this essentially
one-dimensional problem show good agreement with the corresponding solution of the classical heat
conduction equation. There is no discernible effect in this plot of the MD–finite-element interface on the
temperature solution.

1.4.2 Thermal Response of a Composite System

An extension of the coupled atomistic-to-continuum heat transfer method by Templeton et al. [21] allows
the application of fixed temperature and heat flux boundary conditions to be specified on the continuum-
scale temperature field and transmitted to the embedded MD system, even when the MD domain fills
the entire continuum mesh. In this case, the goal of the coupling is not to partition the domain, but to
allow the application of constraints in a straightforward way to the simulation of a nanoscale device,
equivalent to the ease with which boundary conditions are applied in a typical finite-element simulation.
An example is demonstrated using the domain pictured in Figure 1.4. Here, a device is represented by a
block of atoms, an FCC lattice with approximate lateral dimensions of 100 nm and thickness of 25 nm.
The interatomic forces for this material are assumed to be well-represented by a Lennard-Jones potential.
Coating this block is a single layer of graphene-structured material, with parameters chosen to give high
thermal conductivity compared with the Lennard-Jones material. An adaptive intermolecular reactive
bond-order formulation [23, 24] is used to model the interactions of the graphene-structured material.
Cross-interactions between the two materials are modeled with a separate set of Lennard-Jones forces.
Details of parameters are given in Templeton et al. [21].

The MD system is overlaid with a 5 × 5 × 4 FEM, allowing the application of spatially varying
boundary conditions through the finite-element temperature field. After initializing the system at 300 K,
a fixed boundary temperature is applied that varies linearly in the x direction, and is also ramped linearly
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Z

Y

X

Figure 1.4 Schematic of the composite system example problem. Lennard-Jones atoms are colored
light gray and graphene-structured atoms are colored dark gray. The FEM is overlaid

in time over 0.1 ns; at the final time, the +x surface has a fixed temperature of 400 K, while the −x
surface remains at 300 K. After the device reaches an equilibrium (but spatially varying) temperature,
a spatially varying heat flux with a Gaussian profile is applied on the bottom (−z) face of the device,
leading to further heat-up. This applied flux represents the intensity profile from laser heating of a
nano-device. Figure 1.5 shows the continuum-scale temperature of top and bottom faces of the Lennard-
Jones block, and of the graphene-structured layer, after 0.3 ns. An asymmetric temperature profile
results in the slab from the linearly varying boundary condition. The graphene-structured layer is heated,
but because of its high thermal conductivity the heat is well distributed through the layer. This example
demonstrates how a coupled method like this might be used to simulate heat mitigation in a real nano-scale
semiconductor device.

(a) (b) (c)

Figure 1.5 Time-averaged temperature profiles of the Lennard-Jones (LJ) atoms as viewed from the
bottom (a) and top (b), compared with the graphene-structured layer (c). Temperatures are in kelvin
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1.5 Coupled Phonon-Electron Heat Transport
As discussed in Section 1.1, the role of electrons in the transport of heat is crucial in metals and semi-
metals. In classical MD simulations, this electron transport is missing. On the other hand, MD represents
well the transport of heat by phonons, in both the ballistic and diffusive regimes [25–27]; a method that
couples the phonon and electron modes of heat transport can allow more accurate simulations of thermal
behavior for a number of applications, including laser processing of materials [28–31], thermoelectric
material design [32–35], heat transport in conducting nanotubes and nanowires [32, 36], and heat transport
at material interfaces [37].

A well-explored method for coupling phononic and electronic heat transport is the TTM [38–42].
This model treats the internal energy residing in both sets of carriers as a continuum temperature field;
energy is transferred between the two fields through an exchange term that ensures conservation of the
total energy:

ρeceṪe = −∇ · qe − g + Se, (1.20a)

ρpcpṪp = −∇ · qp + g + Sp. (1.20b)

The temperatures T , densities ρ, heat capacities c, heat fluxes q, and source terms S are subscripted
with “e” or “p” to denote the electron or phonon quantities. The heat fluxes are typically modeled as
functions of their respective temperatures and temperature gradients (e.g., qp = −κp∇Tp in the Fourier
model). The energy exchange g is the rate of heat transferred from the electrons to the phonons, and is
usually taken as a function of the temperature difference between the two sets of carriers, g = g(Te − Tp).
In this model, both temperature fields exist everywhere in the solution domain.

Replacing the continuum representation of the phonon temperature (Equation (1.20b)) with an MD
system requires a procedure for injecting energy into the phonons that is equal to the energy lost by
the electrons, so that energy conservation is maintained. This energy exchange is still desired to be a
function of the difference between the phonon and electron energy, where now the phonon energy must
be computed through some spatial–temporal averaging on the MD system, as in earlier sections in this
chapter. Jones et al. [13] developed a method that ensures this energy conservation, and at the same time
allows a domain partitioning such that a finite-element representation of the phonon temperature can
be used where a continuum representation is sufficient, and MD can be used locally in regions where
it is not.

The geometry partitioning considered is like that represented in Figure 1.1, with an MD system
embedded locally in an overlaying FEM. In the TTM case, both the phonon and electron temperatures
are represented as interpolated fields everywhere on the FEM. As in Section 1.3, the total energy is
partitioned between the MD and FEM parts:

E tot = Emd + E fem. (1.21)

However, now the continuum-scale energy includes both the phonon energy in the FEM region �fem and
the electron energy in the entire domain �:

E fem =
∫

�fem

ρpcpTp dV +
∫

�

ρeceTe dV . (1.22)

The MD energy is again the sum of the potential and kinetic energies of the atoms:

Emd = U md + 1

2

∑
α

mα|vα|2. (1.23)
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Note that Jones et al. [13] do not consider time filtering. As in previous sections (cf. Equation (1.14)),
an augmented molecular dynamics force is used, where the added drag force is again

fλ
α = −mα

2
vα

∑
I

NIαλI . (1.24)

An expression for the nodal coefficients λI that define the drag force on the atoms can be derived
through an energy conservation equation. For simplicity, let us assume that a heat flux q̄ in the direction
of the outward normal is defined everywhere on the outer boundary 	 in Figure 1.1. The change in the
total energy is determined by this boundary heat flux and the source terms Sp and Se:

Ė tot =
∫

�

(Sp + Se) dV −
∫

	

q̄ dA. (1.25)

Taking the time derivatives of (1.22) and (1.23) and substituting into (1.25) gives

∫
�

(Sp + Se) dV −
∫

	

q̄ dA = −1

2

∑
α

mα|vα|2
∑

J

NJαλJ

+
∫

�fem

(−∇ · qp + g + Sp) dV

+
∫

�

(−∇ · qe − g + Se) dV .

(1.26)

In arriving at this expression we have assumed that Equation (1.20a) applies in � and applied in �fem

(i.e., outside the MD system); we have also used (1.14) and (1.24) to rewrite the rate of change of the
MD energy. Using the divergence theorem on the heat flux integrals, noting that the boundary heat flux
q̄ on 	 is composed of phonon and electron parts, and canceling some integrals gives a global energy
conservation expression of the form

3kB

2

∑
α

Tα

∑
J

NJαλJ = −
∫

�md

(Sp + g) dV −
∫

	md

nmd · qp dA. (1.27)

The definition of the atomic temperature from (1.2) has been used to simplify this expression. The
left-hand side of this expression is related to the energy removed from the MD system by the augmented
force term, through the coefficients λJ . The right-hand side represents the change in the phonon energy in
�md due to source and electron transfer terms, as well as heat flux across the boundary at the continuum
interface. The minus sign on the right-hand side corresponds to the fact that positive values of the λJ

represent a drag force that removes energy from the MD system.
In order to write an expression that can be solved for the λJ coefficients, we can take this global energy

balance and localize it through the use of finite-element shape functions NI :

3kB

2

∑
J

∑
α

NIαTα NJαλJ = −
∫

�md

NI (Sp + g) dV −
∫

	md

NI nmd · qp dA. (1.28)

Satisfaction of (1.28) implies satisfaction of (1.27), which can be verified by summing (1.28) over all
nodes I and noting that the finite-element shape functions are a partition of unity (

∑
I NI = 1). However,

(1.28) is not the only localized form that guarantees global energy conservation, and alternatives are
possible that result in modified expressions.
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Equation (1.28) defines a matrix equation for the nodal coefficients λJ in terms of known quantities that
are either given or computable from the continuum electron and phonon temperature fields. Comparison
with the similar Equation (1.18) derived for the case without electrons shows that the expressions are
equivalent in the absence of source and electron transfer terms, if a Fourier law is used for the phonon
heat transfer at the boundary and if time filtering is ignored (τ = 0).

Jones et al. [13] also derived governing equations for the finite-element fields representing the electron
and phonon temperatures. These fields are parameters by nodal coefficients θeJ and θpJ , respectively,
and satisfy the following weak forms of the energy equation:

∑
J

(∫
�

NI ρece NJ dV

)
(θ̇e)J =

∫
�

[∇NI · qe + NI (Se − g)] dV −
∫

	

NI q̄e dA, (1.29a)

∑
J

(∫
�

NI ρpcp NJ dV

)
(θ̇p)J = 2

∑
α

NIαvα · (
fmd
α + fλ

α

)

+
∫

�fem

[∇NI · qp + NI (S + g)] dV −
∫

	

NI q̄p dA.

(1.29b)

In these equations, it is assumed that the prescribed heat flux q̄ on the boundary 	 can be decomposed
into phonon (q̄p) and electron parts (q̄e). These two equations, together with (1.14) for each atom and
(1.28) for the nodal λ coefficients, completes the set of equations to be solved for the coupled MD–FEM,
TTM system.

1.6 Examples: Phonon–Electron Coupling
1.6.1 Equilibration of Electron/Phonon Energies
A simple verification of the method for domain-partitioned MD–FEM with a TTM is obtained through
simulation of a block of material in which the electrons have an initial temperature that is spatially
varying and higher than the initial phonon temperature. Over time we expect that the two sets of carriers
should equilibrate to a constant, common temperature. The test domain is shown in Figure 1.6. A square
film of material 24 unit cells on each side and six unit cells deep is represented by a 12 × 12 × 1 FEM;
periodic boundary conditions are used in the out-of-plane direction. The central 12 × 12 unit cells of the
domain are represented with atoms whose interatomic force is computed from a Lennard-Jones potential.
In Figure 1.6, the dark atoms are “ghost” atoms used to constrain the inner MD system and provide a full
complement of neighbors for all of the atoms. The exchange energy g is assumed to be a linear function
of the temperature difference between electrons and phonons: g = ge–p(Te − Tp). Geometry, interatomic
potential, and material parameters are taken from Jones et al. [13].

The initial temperature of the phonons is 20 K, and in the simulation an initial equilibration phase is
used to thermostat the MD system at this temperature. The initial electron temperature is a radially varying
function with a Gaussian profile, Te = 20[3 e(r/25)2 + 5] (in degrees kelvin), where r = (x2 + y2)1/2 is
the distance from the center of the domain in the x–y plane. After initialization, the system is run with
no other source terms and with adiabatic (q̄e = q̄p = 0) boundary conditions. In Figure 1.6, the FEM is
colored by the initial electron temperature, while the atoms are colored by the instantaneous values of
the atomic temperature Tα at time t = 0.

Figure 1.7a shows a time sequence of temperature profiles measured along the x-axis. A combination
of diffusion and phonon-electron exchange drive the temperatures to a spatially constant common value.
Spatial fluctuations in the phonon temperature are visible in the central region because of the stochastic
nature of the MD system. In Figure 1.7b, the conservation of total energy is demonstrated; the energy of
the electrons decreases while that of the phonons and MD system increase, such that the total remains
constant in this adiabatic system.
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Figure 1.6 Configuration of the MD lattice (colored by the atomic temperature Tα) embedded in a
finite-element grid (colored by the electron temperature). Note the five layers of ghosts (dark color) are
fixed and, therefore, have zero kinetic temperature

1.6.2 Laser Heating of a Carbon Nanotube

Another example application is the heating of a carbon nanotube [13]. A metallic (8, 8) armchair
nanotube, with length 12.6 nm, is suspended with its ends embedded in solid graphite (Figure 1.8).
The nanotube is modeled using a Tersoff potential for the interatomic forces [43], while the graphite is
modeled as a continuum with the same thermal properties as the nanotube. For a nanotube, the phonon
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Figure 1.7 (a) Sequence of temperature profiles through a cross-section aligned with the x-axis. The
arrows indicate the progression of profiles with time. (b) Evolution of energy. The atomic thermal energy
is calculated for the lattice, phonon energy is calculated in �fem, and the electron energy is integrated
over the full domain �
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Figure 1.8 Metallic carbon nanotube embedded in an FEM showing phonon temperature near the
beginning of the heating phase, t = 10 ps

electron exchange is highly nonlinear in temperature [44], g = h(Te − Tp)5 with h = 3.7 × 104 W/m3K5.
Experiments [25] demonstrate mixed ballistic and diffusive modes of heat transport due to phonon
transport in carbon nanotubes, and the MD representation is able to model both of these modes.

The ends of the graphene regions are held fixed at Te = Tp = 300 K. Laser heating of the nanotube is
modeled with a source term on the electron energy that is spatially varying:

Se = (1.6 × 10−12 W/m3) exp

(
− x2 + y2

0.01

)
, (1.30)

where distances are measured in nanometers. This source term is applied for a time of 50 ps and the
system is then allowed to relax.

Figure 1.9 shows sequences of temperature profiles over time for both the phonon and electron
temperatures. The electrons, which are heated directly, show a very localized heating, while the indirectly
heated phonons have a more diffuse temperature profile.

Figure 1.10 shows the average temperatures of the nanotube and the graphene reservoirs over time.
The large oscillations in the nanotube temperature correspond to the excitation of a fundamental mode
resonance in the tube, as can be seen in a plot of the displaced atoms and mesh in Figure 1.11.
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Figure 1.9 Sequence of (a) temperature and (b) electron temperature profiles along the axis of the
carbon nanotube. Note that the two plots show different temperature ranges
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Figure 1.11 Fundamental mode excited by focused irradiation. The atoms and the mesh are both
colored by the phonon temperature

1.7 Discussion
The methods and demonstrations in this chapter represent steps toward the ability to simulate heat transfer
in nanoscale systems, including non-continuum effects, with the same ease with which finite-element
models can today be used to define and solve macroscale heat transfer problems. Through the coupled
atomistic-to-continuum approach, we are able to apply spatially varying boundary and initial conditions
on temperature, as well as spatially and temporally varying heat fluxes, to MD systems. At the same time,
we can choose to use MD only in isolated regions of the domain, improving computational efficiency.
Finally, we can use the coupling to a continuum field to capture effects, such as electronic heat transfer,
that are otherwise missed by classical MD simulations.

It should be pointed out that many of the assumptions made in the continuum models presented in
this chapter are easy to relax in the methods presented. For example, although we have assumed that
a Fourier heat law describes the continuum region in Section 1.3.2, it is straightforward to replace
this with the Maxwell–Cattaneo–Vernotte model typically employed to represent the finite speed of
propagation of heat waves [45, 46]; the derivation of the coupled system proceeds in a similar way.
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Likewise, a drift-diffusion model [47] can be used for the electron energy propagation rather than the
simpler Fourier-diffusion form used in Section 1.5; the drift-diffusion model is explored in this context
by Jones et al. [48].

An efficient, portable implementation of any new computational method is key to its future develop-
ment and usefulness. To this end, many of the interscale coupling operations used in the work presented
in this chapter have been implemented as an optional package available with the popular LAMMPS
MD code [49], available for download at (http://lammps.sandia.gov). The USER-ATC package within
LAMMPS includes FEM definitions, projection operators, interpolation functions, coupling thermostats,
time integrators, and post-processors that enable the simulations presented in this chapter.
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