
Chapter 1

Background, Motivation,
and Overview

1.1 INTRODUCTION

The word “university” is derived from the word “universal” (Newman, 1927) in that the
university is the foremost setting for teaching universal knowledge. Philosophy, chemistry,
agriculture, mechanics, theology, biology, and so on are all topics of learning, teaching, and
exploring at the true university. The study of vibrations is a microcosm of the ideal univer-
sity, encompassing aspects of dynamics, fluid mechanics, structural deformation and
fatigue, electromagnetism, feedback control, sound, and other phenomena. Confronting
this, the eager investigator feels great satisfaction in drawing ideas from each area and then
forging solutions to vibration problems. As an athlete develops calves and biceps, shoulders,
and forearms and then enjoys using these in harmony and mutual support in competition, so
the vibration engineer delights in recognizing and using many disciplines to tame vibrations.

With its arsenal of anomalies—fastener looseness, structural member fatigue and
failure, noise, internal rubs in machinery, human fatigue and distractions, optical instrumen-
tation and machining errors, and so on—vibration continues to present formidable engineer-
ing challenges and to limit energy efficiency and cost reduction in machinery and structures
in the twenty-first century. New machinery that pushes the envelopes of efficiency and
power density; new structures that stretch the imagination in size, materials, light weights,
and locations; and new vehicles that propel us through land, air, sea, and space with ever
increasing speed and comfort level all hold great promise for an efficient and convenient
future. These advances will come at a price though and vibration will be there to collect
its due. The author extends his best wishes for success to those who meet the vibration chal-
lenges that continue to arise in mankind’s quest to subdue nature and use its awesome forces
for peace, human dignity, and prosperity.

1.2 BACKGROUND

The following sections provide discussions of many important aspects of vibration. The
intent of this section is to provide some basic backgroundmaterial to facilitate understanding
of the following sections. Vibration is the study of dynamic motions of mechanical, struc-
tural, or anatomical components or systems about their static equilibrium configurations.
The motion may be sinusoidal periodic, complex periodic, quasiperiodic, transient, chaotic,
or random. Monotone (single-frequency) sinusoidal vibration is characterized by an
equilibrium position xeq and the dynamic displacement amplitude (Ax), phase angle (ϕx),
frequency ( f ), and period (T ) as shown in Figure 1.2.1.
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The period and frequency are related by

f =
1
T

cycles s or Hz, ω= 2πf circular frequency in rad s 1 2 1

Period markers are seen to occur at 0, 2π/ω, 4π/ω,…. This may represent a once per
revolution event on a rotating shaft or just some arbitrarily referenced pulse that indicates
the beginning of a new forcing period. The motion is described using the expression

x t =Ax cos ωt +ϕx 1 2 2

The positive peaks occur when the argument of the cosine function is a multiple of 2π,
that is,

ωtpn +ϕx = 2πn n = 1,2,… 1 2 3

which implies
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Thus, it is seen by comparison of (1.2.4) and Figure 1.2.1 that the phase angle ϕx has a
physical interpretation, namely, it provides a measure of the time between x(t) experiencing
a positive peak and the occurrence of a period marker. This time lag is

Δtp =
ϕx

ω
1 2 5

The velocity and acceleration expressions are obtained by differentiating (1.2.2)

v t = x t =Av cos ωt +ϕv 1 2 6

a t = v t = x t =Aa cos ωt +ϕa 1 2 7

where

Av =ωAx, ϕv =ϕx +
π

2

Aa =ωAv =ω2Ax, ϕa =ϕv +
π

2
=ϕx + π

1 2 8

The motion depicted in Figure 1.2.1 could result from displacing or striking the com-
ponent and allowing it to freely vibrate as in the case of a swing, traffic light, car antenna,
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Figure 1.2.1 Pure tone sinusoidal vibration
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cantilevered ruler, bell, or guitar string. The frequency of this natural or “free” motion is
called a “natural frequency.” Alternatively, the motion could result from being forced by
some source that has a frequency ω, as in the case of a washing machine with an unbalanced
load, a vehicle with a slightly oval tire, or an offshore platform subjected to periodic wave
forces at frequency ω. The oval tire would actually induce a vibration at frequency 2ω if its
rotation frequency is ω.

So what happens if the forcing (source) frequency nearly equals the structural compo-
nent’s natural frequency? The answer is that the vibration may become very large and even
cause failure of the component. This phenomenon is called resonance, and it was a major
reason for the spectacular failure of the Tacoma Bridge in Washington, United States, on
November 7, 1940. Many years later, resonance still persists as a common source of failure
for many structures and machines. An explanation for the increase in vibration amplitude at
resonance accentuates a major distinction between static deflection and dynamic motion,
namely, the existence of an inertial force. The stiffness force in a component is proportional
to its deflection and acts to restore it to its equilibrium state when deflected. The inertial force
is proportional to acceleration which is 180 out of phase with the displacement as shown
by (1.2.8). The inertial force may become large and cancel the restoring stiffness force. This
causes the dynamic motion (vibration) to become very large and destructive. This simplified
example of resonance is extended to complex systems in Chapter 7.

Free (unforced) vibration decays with time due to energy dissipating forces such as:

• Viscous, dry, or atmospheric friction

• Material hysteresis

• Eddy current generated magnetic forces of an electrically conductive component that
vibrates in a magnetic field

This vibration decay is illustrated in Figure 1.2.2. The presence of the damping force
prevents exact cancellation of the stiffness restoring force by the inertial force at resonance.
This, and nonlinear effects, reduces the infinite amplitude, resonant vibrations to finite
values. Thus, damping is generally good for attenuating resonant vibrations. As with most
things in life though, too much of a good thing may be bad, and damping is no exception.
The velocity at the point where a viscous damper is attached to a flexible body will become
zero as the damper strength increases. The energy dissipated by the damper is proportional to
the square of the velocity of the attachment point. Therefore, very little energy is dissipated
and all other points on the flexible body may vibrate severely. Thus, an optimum level of
damping is sought in practice.

Systems may vibrate with many free and/or forced frequencies simultaneously. This
results because:

• Actual components such as buildings, piping systems, shafts, blades, guitar strings, and
so on have many natural frequencies.

Figure 1.2.2 Damped free vibrations
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• Some systems are excited by multiple sources at different frequencies. For example, a jet
engine generally has two coaxial shafts: one a power turbine and the other a gas generator.
Mass imbalances on the two shafts exert forces on the engine at the power turbine spin
frequency and at the gas generator spin frequency.

• Some forces are periodic but not purely sinusoidal such as piston pressure or crankshaft/
connecting rod/piston inertial forces in a vehicle engine or reciprocating pump or com-
pressor, or a jack hammer striking building flooring, and so on.

Multifrequency vibration is referred to generally as complex periodic and is illustrated
by Figure 1.2.3. A Fourier series expansion (see Chapter 2) will reveal all of the amplitudes,
phase angles, and frequencies of the constituent sine waves that are superimposed to form
the complex waveform.

Some vibrations are not entirely periodic since these result from nonperiodic excitations
such as step, impulse, ramp, or more general shock inputs. Finally, some excitations such as
atmospheric buffeting of airplanes or helicopters may be random, which causes the
responses also to be random. Complex and random vibration waveforms may display many
sinusoidal components of varying amplitude and duration. A common measure of severity
determined from these responses is the root mean square (rms) value

xrms =
1
T

T

0
x2 t dt 1 2 9

Figure 1.2.3 Lowest four constituent harmonics and their sum
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where T is the period of measurement. For single-frequency sinusoidal motion, (1.2.9)
yields

xrms =
1
T

T

0
Ax cos ωt +ϕx

2dt =
Ax

2
1 2 10

where T is one cycle of the motion. For multiharmonic complex motion, (1.2.9) yields

xrms =
1
T

T

0
Ax1 cos ωt +ϕx1 +Ax2 cos 2ωt +ϕx2 + +Axn cos nωt +ϕxn

2dt

=
1
2

A2
x1 +A

2
x2 + +A2

xn

1 2 11

where T equals the period of the lowest (fundamental) harmonic

T =
2π
ω

1 2 12

which is also the period of the complex, multiharmonic waveform.

1.2.1 Units

The vast majority of the units in this text are metric. Some helpful conversions are
given below:

1g (gravity constant) = 9.81 m/s2 = 386 in./s2 (on earth)

1 mil = 0.001 in. = 0.0254 mm = 25.4 μm
1 in. = 0.254 m = 2.54 cm = 25.4 mm

1m = 39.37 in. = 3.281 ft

1 km = 0.62 miles

1 N = 0.219 lbf

1 lbf = 4.54 N

1 N/m = 0.0056 lb/in.

1 lb/in. = 178.6 N/m

1 N/m2 = 1 Pa = 1.42 × 10−4 lb/in.2

1 lb/in.2 = 7032.3 N/m2

1 in.4 = 4.162 × 10−7 m4

1 m4 = 2.403 × 106 in.4

1 lb.s/in. = 178.6 N.s/m

1 N.s/m = 0.0056 lb.s/in.

1 in.lb/rad = 0.1153 N.m/rad

1 N.m/rad = 8.672 in.lb/rad

Weight of 1 kg = 9.81 N = 2.161 lbf (on earth)
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1.3 OUR VIBRATING WORLD

The term vibration has many different connotations but is most often connected with
oscillatory motion of an object about some equilibrium position and/or operating point.
The Merriam-Webster dictionary entry for vibration provides a commendable description
for the “vibrations” studied in this text, that is, “periodic motion of the particles of an elastic
body or medium in alternately opposite directions from the position of equilibrium when
that equilibrium has been disturbed (as when a stretched cord produces musical tones or
molecules in the air transmit sounds to the ear).” A vibration engineer might add “a source
of cyclic fatigue, looseness, human health or contact damage which limits the performance
of machines and people.”

Vibrations are often related to a natural frequency and resonance. Objects vibrate at
certain characteristic frequencies due to the periodic exchange of energy between kinetic
and potential forms. So bells, traffic lights, pendulums, car antennas, turbine blades, and
so on sway and ring at certain frequencies when displaced and released. Resonance occurs
when an excitation or disturbance acts on an object with nearly the same frequency as the
object’s natural frequency. The result may be large, damaging, and sometimes catastrophic
vibrations.

1.3.1 Small-Scale Vibrations

The potential energy that is created when atoms are collected in a lattice produces forces that
act like spring connecting the atoms. These masses connected by “springs” vibrate and are
particularly sensitive to certain excitation frequencies referred to as resonance frequencies.
Cesium 133 atoms have a resonant frequency at 9,192,631,770 cycles/s. When excited at
this frequency, the atoms change state. A voltage applied to a piezoelectric crystal causes
it to deform. The vibrating piezoelectric is utilized to create microwaves which impinge on
the cesium atoms. If the frequency of the voltage varies near 9,192,631,770 Hz, the micro-
waves cause the cesium 133 to experience a peak in the number of transformed atoms as
resonance occurs at the atomic natural frequency. These atoms are continuously counted
as the frequency of the voltage applied to the piezoelectric is varied. A peak count indicates
that the frequency is exactly 9,192,631,770 Hz (cesium 133 atomic resonant frequency).
The cycles are counted and every 9,192,631,770 cycles form 1 second. Hence, vibrations
even on the atomic level reveal a practical usage, that is, an atomic clock.

The lens-free atomic force microscope (AFM) employs a tiny 100 μm length cantilever
beam to measure local sample height (topography) at the atomic level. The beam has a very
low spring stiffness (0.1 N/m) yet very high natural frequency. Mounted on the end of the
cantilever is a sharp tip that is typically a 3 μm tall pyramid with 10–30 nm end radius. The
deflection of the tip is measured with a laser. The beam and tip may also function in a non-
contact mode where topographic images are derived frommeasurements of attractive forces.
Environmental vibration, that is, due to a passing truck, can cause severe distortion of the
images produced by an AFM.

On a slightly larger scale, a tiny quartz crystal in a watch may vibrate (ring) for minutes
similar to a tuning fork due to a lack of damping. Deflection of the quartz (piezoelectric)
crystal creates a voltage that can be amplified and reapplied to the crystal to sustain the vibra-
tion at its “natural” frequency. This frequency is known and constant so a count of the num-
ber of cycles executed provides a means to determine the passing of 1 second—that is, the
fundamental time unit for the watch.

Vibrations occur in the human body on a very small scale yet they are also very impor-
tant. Consider the auditory system consisting of the external, middle, and inner ear. The
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outer portion of the external ear (auricle) directs sound waves to the 2.5 cm long ear canal,
passing to the ear drum (tympanic membrane). The ear drum is about 1 cm in diameter, has
a concave shape, and vibrates in response to the incoming sound waves. Its displacement
amplitude during normal speech (~60 dB sound level) is estimated to be about equal to
the size of a molecule of hydrogen. The middle ear consists of three solid material
“ossicles,” the hammer (malleus), the anvil (incus), and the stirrup (stapes), which increase
the vibratory force about 20 times as it is transmitted from the ear drum to the “oval win-
dow.” This results from lever action of the ossicles and the decrease in area between the ear
drum and oval window. The stapes displaces the oval window as it transmits the sound
waves (vibration). This oval window acts as a piston oscillating the fluid (perilymph)
within the snail-shaped cochlea which winds about 23/4 turns. The fluid causes the “basilar
membrane” in the cochlea to vibrate in different manners according with the frequency of
the exciting sound wave. Frequencies below 50 Hz cause vibration of the entire mem-
brane, whereas higher frequencies (15–24 KHz) cause the membrane to vibrate only at
its base attachment point. The membrane is covered with hair cells that move against a
second membrane (tectorial). Microvilli (minute projections of cell membranes that
greatly increase surface area) that are embedded in the tectorial membrane bend in
response to movement of the basilar membrane. Bending of the microvilli causes ionic
actions that stimulate nerves connected to the acoustic cortex in the brain, via the basilar
hair cells. As mentioned, different frequencies cause different parts of the basilar mem-
brane to deflect which in turn bends different microvilli, which in turn affect different
nerves that synapse (membrane-to-membrane contact of two nerve cells that promotes
transmission of nerve impulses) with the basilar hair cells. These nerves are connected
to different positions along the acoustic cortex. Thus, the frequency of the sound waves
determines which part of the basilar membrane vibrates, which tectorial membrane micro-
villi bend, which basilar membrane hairs synapse with nerves to the acoustic cortex, and
which portion of the acoustic cortex is stimulated. The audible frequency range extends
from 20 Hz to 24 KHz. For reference, the lowest frequency of a piano is 27.5 Hz and
the highest is 4186 Hz. In addition, middleC is 400 Hz, and the nextC is one octave (factor
of 2) higher at 800 Hz. J. S. Bach divided each octave into 12 equal frequency intervals
to include flats and sharps (Cannon, 1967). Each note is then 21/12 (1.0595) higher in
frequency than the next lower note. From this discussion, it is clear that the ear acts as
a transduction device that converts vibrations into nerve impulses.

Small vibrations also occur in the vocal folds (chords) of the human throat. The left
and right vocal folds are made of muscles and form a “V” when viewed from above. The
folds are pulled apart from one another when breathing and are pulled together during
speech. Talking, singing, and humming cause the two folds to open and close very
quickly as air passes from the lungs through the windpipe and then through the folds.
The folds are forced open by the higher air pressure in the windpipe but quickly close
as the pressure decreases due to the escaping air. The windpipe pressure builds up again
and the pattern is repeated at a high frequency. Thus, sound is produced as the small jets
of air pass through the moving vocal folds. The shape of the vocal tract changes as the
tongue, jaw, palate, and lips are moved. This causes the air in the voice tract to respond
(resonate) at different frequencies (acoustic natural frequencies) to the vocal fold vibra-
tion and corresponding air jets. This is similar to blowing across the openings of several
bottles that are filled to different levels with water, each producing a distinct pitch due
to the difference in cavity shape. The lowest (fundamental) spoken frequency is about
100 Hz and the highest about 3000 Hz. Articulation is the action of changing the vocal
tract geometry to produce desired sounds. Vowels resonate in the throat and consonants
in the nasal passages.
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1.3.2 Medium-Scale (Mesoscale) Vibrations

Trucks, autos, buses, trains, and amusement park rides bounce and buzz due to road or
track unevenness and machinery forces developed in the engine, transmission, and aux-
iliary equipment. Airplanes shake and vibrate due to air turbulence and dynamic forces in
their engines. The same scenario exists for helicopters with the addition of torque trans-
mission-related dynamic forces for the main and tail rotor. Ships utilize many machines
(turbines, gear boxes, propellers, pumps, ventilation fans, and so on) that cause vibration
and also experience sea wave excitation. Industrial chemical, petroleum, paper product,
and power plants utilize hundreds of compressors, turbines, pump, fans, and so on that
vibrate due to rotating imbalance, misalignment, gear and blade forces, and so on and in
turn excite many kilometers of attached piping and vessels. Mills, lathes, drill presses, and
saws shake and vibrate due to imbalance and cutting forces in thousands of machine
shops and manufacturing facilities. This may cause delirious effects on surface finish,
and limit the depth and rate of cut, and consequently the tool performance. Buildings
for the most part buzz and vibrate due to HVAC equipment and sway due to wind buf-
feting. Precision optical instruments such as lasers, telescopes, microscopes, and interfe-
rometers vibrate due to transmission of forces from neighboring machinery and forces,
oftentimes degrading the instrument’s performance. Musical instruments (strings and
drums) vibrate but in a (hopefully) pleasant manner. Skis, baseball bats, tennis rackets,
and golf clubs also vibrate in response to impact loading. These medium-scale vibrations
typically occur with an amplitude range of 0.01–10.0 mm and a frequency range of
2–2000 Hz. These vibrations are rarely detectable with the naked eye but can have cat-
astrophic consequences.

1.3.3 Large-Scale Vibrations

About 100 earthquakes occur each year with the strength to cause significant damage. The
earth’s crust (outer layer) surrounds its hot liquid inner core and is broken up into giant
plates of rock. Sometimes two plates collide along a fault and pressure builds up until
the plates snap into a new position. The release of this traction (pressure) causes vibrations
that we feel as an earthquake. When the vibration of the earth has the same frequency as the
natural frequency of a building, a resonance occurs and the building vibrations may
become very destructive. The Mexico City earthquake of 1985 was especially destructive
for buildings 10–14 stories tall since they had natural frequencies near the ground shake
frequency. The Northridge, California, earthquake of 1994 registered 6.7 on the Richter
scale and yielded motions up to 0.35 m. Typical earthquake frequencies range from 0.2
to 5.0 Hz.

The field of helioseismology has discovered that the sun, being a deformable ball of hot
gas, vibrates in millions of resonant modes with the major ones ringing at frequencies
between 1 and 5 milli-hz. These modes may ring for days or even months before decaying
away. Similar phenomena have been observed by astronomers noting the brightness of
other very distant stars. The radial vibration velocity observed in one case was in the
1–3 km/s range.

Our universe is filled with vibrating objects: some big–some small, some near–some
far, some good–some bad, shaking an atom and shaking a star! Feel like vibrating?
Place your fingertips on your throat and say a long “e” with a big cavity and with a small
cavity-shaped throat. Feel the vibes! This level of vibration would be considered as
severe if it was measured on the bearing housings of a large industrial turbine or
compressor.
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1.4 HARMFUL EFFECTS OF VIBRATION

Some beneficial reasons to create vibrations include:

(a) Music

(b) Radar/sonar/radio/microwaves

(c) Back massagers

(d) Lithotripsy (for kidney stone fragmentation)

(e) Industrial vibrators for clearing blockages and hang-ups of grain screenings, soya meal,
gypsum coal, refined ore, and other materials in bins, chutes, hoppers, and silos

These are the good vibrations. In contrast, most vibrations are adverse to human,
machinery, and structural health, and an important engineering objective is to reduce them
to harmless levels.

1.4.1 Human Exposure Limits

Body vibration is usually classified according to “whole body vibration” (WBV) or “local
vibration” (Griffin, 1990). The three principal possibilities for WBV are sitting on a vibrat-
ing seat, standing on a vibrating floor, or lying on a vibrating surface. Local vibration results
when a limb or the head contacts a vibrating surface. Effects of vibration on the body depend
on frequency, amplitude, and duration and range from “motion sickness” (low frequency–
high amplitude) to fatigue-decreased proficiency and permanent damage to hands and arms
(high frequency–low amplitude).

The International Standard Organization’s (ISO) Standard ISO 2631-1, 1997 “Mechan-
ical Vibration and Shock—Evaluation of Human Exposure to Whole Body Vibration” pro-
vides a quantitative, measurable means to determine how severe a particular vibration may
be on human health, based on statistical surveys. This document should be directly con-
sulted in an actual design study; however, some general guidelines are that WBV acceler-
ation vibrations less than 0.75 m/s2 may be mildly disagreeable, from 0.75 to 1.5 m/s2 may
be disagreeable, and higher levels may be very disagreeable. The Standard parses these gen-
eral divisions into much more finely divided levels and is a “living document” that is peri-
odically updated. Continuous exposure to vibration over some duration of time may be risky
to health as illustrated by the ISO standards.

A measure of vibration exposure that includes both amplitude and duration is the vibra-
tion dose value (VDV). This is defined as (Griffin, 1990)

VDV=
T

t = 0
a4 t dt

1 4

1 4 1

where a(t) is the vibration acceleration in m/s2. The caution zone is reached when the VDV
is 8.5 m/s1.75 and a health risk occurs for VDV greater than 17 m/s1.75. Referring to British
standard 6472, Guide to evaluation of human exposure to vibration in buildings, Hassan
(2009) provides VDV levels for the threshold of “adverse comment” of people working
in various types of buildings and offices. These values range from 0.1 m/s1.75 for residential
buildings at night to 0.8 m/s1.75 for busy offices or workshops.

The transportation safety department of the Australian Transport Safety Bureau iden-
tified potential WBV-related health problems as:

(a) Discomfort and interference with activities

(b) Disorders of the joints and muscles and especially the spine
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(c) Cardiovascular, respiratory, endocrine, and metabolic changes

(d) Problems in the digestive system

(e) Reproductive damage in females

(f) Impairment of vision or balance

(g) Low back pain arising from early degeneration of the lumbar system

(h) Muscular fatigue and stiffness

The motions referred to thus far represent input motions to the whole body. The vibra-
tions of certain parts of the body could be much worse if internal resonance occurs. Griffin
(1990) states that a human body should only be considered to act rigidly for frequencies
less than 2 Hz. For instance, the eye’s natural frequency (fn) falls in the range 20–70 Hz,
the head relative to shoulders fn lies between 20 and 30 Hz, and the trunk’s fn lies between
4 and 6 Hz.

Local body vibration may also cause serious health problems. An example of this is
vibration that is localized to the hand and arm. Prolonged exposure may result in the
hand–arm vibration syndrome (HAVS), which is also known as “white finger,” “dead
finger,” or “Raynaud’s syndrome” (Griffin, 1990). HAVS is a vascular (blood vessel) dis-
order-related disease of increased risk with exposure to cold, loud noise, and tobacco smoke
(CDC, 1994). Early signs of HAVS include:

• Tingling fingertips

• Fingertips turning white or blue

• Trouble picking up small objects

• Numbness

• Clumsiness with hands

• Trouble buttoning and zipping clothes

• Reduced sense of heat, cold, and pain in hands

According to the US National Institute of Occupational Safety and Health (NIOSH,
1989), HAVS reduces blood circulation due to narrowing of the blood vessels. This results
in one or more fingers becoming white and cold. This condition may become irreversible
with long-term vibration exposure. The disease is prevalent among workers using chipping
hammers, drills, riveters, grinding wheels, chain saws, and driving motorcycles. Relevant
information on HAVS exposure limits may be found in ISO Standards 5349 and 8662
and ANSI S3.34-1986 (American National Standard) as well as in Griffin (1990). Thus,
for example, these references indicate that a vibration acceleration level of 30 m/s2

(≈ 3g s) is generally safe for 1 hour exposure but it may be unsafe for 2 hours or more
of exposure. The actual standards should be referenced in any industrial design study.
Appropriate use of the standards requires measurement of the acceleration component direc-
ted into the hand so as to generate compression rather than shear motion. The standard
should be applied to the worst frequency component of the acceleration signal’s Fourier
series (spectrum). There is also a probabilistic aspect to interpreting the standards. This
is illustrated by noting, for instance, that for the 4–8-hour exposure zone, a latency period
of 10–20 years is expected to yield vascular symptoms in 10% of the exposed population.
The harmful effects of long-term exposure to hand and arm vibration extend beyond blood
circulation (vascular) disorders to include a large number of bone and joint disorders
(Griffin, 1990).
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1.4.2 High-Cycle Fatigue Failure

The intent here is to present a primer on high-cycle fatigue (HCF) to illustrate the practical
importance of studying vibrations. More advanced texts such as Nicholas (2006) or Lee et al.
(2012) should be referenced for a more in-depth understanding and for applications. Stress is
a measure of the internal or surface force density in an object. For example, the beam shown
in Figure 1.4.1 has a cantilever support and a circular cross section and is subjected to a
transverse force F(t), axial force P(t), and twisting torque τ(t). The vibrations caused by
these excitations create an internal shear force V(x, t), internal bending moment M(x, t),
internal axial force f(x, t), and internal torque Γ(x, t) at position x. These internal actions cre-
ate stresses in beams described by the strength of materials type formulas

σbend t =
M t c

I
, σaxial t =

P t

A
, τshear t =

V t

A
, τtors t =

Γ t c

J
1 4 2

where A is the cross-sectional area, I is the bending area moment of inertia, and J is the tor-
sion constant. As implied by (1.4.2), loads and resulting stresses generally vary with time.

Materials are compared and characterized by the amount of stress they can withstand
before breaking. For example, the ultimate strength (stress) for high-strength 340 Aermet
steel is σut≈325000lb in 2, where the more common A36 steel has an ultimate strength
σut≈56000lb in 2. Guess which costs more, or which is more likely to be found in a
high-performance aircraft, given that they both have the same density? The amount of stress
that a component can tolerate is reduced if the stress varies cyclically with time. This impor-
tant fact gave birth to the entire subject of fatigue. To demonstrate this, bend an ordinary
metal coat hanger by 180 , and you’ll find it does not break. However, if the bending defor-
mation is repeated many times, failure will occur, even for angles that are much less than
180 . This phenomenon is referred to as low-cycle fatigue failure if the bent section breaks
in less than approximately 1000 cycles and the maximum stress is near the tensile (ultimate)
strength Sut. HCF represents the same phenomena of cyclic stress; however, failures occur
after 103, 104, 105, 106 or higher cycles and the failure stress may be much less than Sut or
even much less than the yield stress.

How does this relate to vibrations? Well, within the limits of linear theory, stresses are
proportional to strains, which are in turn proportional to displacements, aka vibration. Thus,
the larger the vibration deformation becomes, the larger the stress. HCF failures may occur
when vibrations become excessive as will be the case if the component has low damping and
is being forced at a frequency near to one of its free vibration (natural) frequencies, that is,
near resonance.

Several practical examples from industry will illustrate the importance of HCF consid-
erations. Gas turbine engines mix compressed air with fuel, combust the mixture, and expel

Figure 1.4.1 Simple cantilever pipe subjected to bending, axial, and torsional loads
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the resulting hot gases through a turbine wheel. The torque that this causes on the turbine
wheel may spin a compressor creating compressed air or a generator creating electricity. The
air that flows through the compressor is directed by stationary (nonrotating) stator vanes
to optimally impinge on the rotating blades. A similar situation occurs with the hot gases
in the turbine. Any rotating blade experiences an impulse-type force as it collides with
the flow through the passage between two stator vanes. The rotor blade is then excited at
the frequency

fexcit = Rotor spin frequency ∗ Number of stator vanes 1 4 3

which is referred to as the blade-pass frequency. This excitation causes the blades to vibrate
causing time-varying (alternating) stresses along with the static, centrifugal-induced stress
in the blades. The level of alternating stress that is tolerable is reduced by the presence of the
static (mean), tensile, and centrifugal stresses. Figure 1.4.2 shows an HCF crack on a blade
from an aircraft gas turbine engine.

The combination of alternating stress and mean stress may cause an HCF failure (cat-
astrophic crack) if the rotor blade is not properly designed. The vibration (and stress) level
will substantially increase if fexcit or one of its harmonics is in the vicinity of a rotor blade
natural frequency, that is, a resonant condition. HCF of blades is a constant concern of all
turbine and compressor designers with applications to steam or gas turbines for power gen-
eration, aircraft, helicopters, ships, chemical processing, or even to the space shuttle main
engines. The consequences of “throwing off” a cracked blade are frequently catastrophic
and sometimes fatal. The US Air Force has determined that more than 50% of accidents
involving aircraft damage result from HCF.

Piping and tubing systems are also subjected to vibration-induced cyclic stress due to
pressure pulsation forces generated by attached machinery, such as reciprocating compres-
sors, or from internally generated vortices. These systems are also subjected to static stress
from internal pressure and partially constrained thermal expansion. Experienced chemical
plant personnel know that an HCF-induced crack in a high-pressure gas line will sometimes
emit a high-pitch whistle as the gas escapes through the crack, signaling all nearby workers
to shut down the machinery and flee.

Figure 1.4.2 Turbine blade with high-cycle fatigue crack. Reproduced with permission from
Transport Safety Board of Canada
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These examples illustrate cases where vibration of machinery and structures induces
cyclic stress, which may cause HCF failure. This may occur at stress levels well below
the yield stress or ultimate/tensile strength (Sut), which is illustrated by the simplified
S–N (alternating stress amplitude vs. number of cycles to cause failure) diagram in
Figure 1.4.3. The sloped portion of the curve is of primary interest and has the general
form

Sfailure = γN
α 1 4 4

where the constants γ and α are determined experimentally and are a property of the material.
The endurance limit stress Se is defined as the level below which failure will not occur

independent of the number of cycles. The value of Se is most accurately obtained by exper-
iment with the material and geometry of interest; however, it is sometimes approximated for
steels as (Shigley, 1989)

Se =

0 50∗Sut, Sut ≤ 1400MPa 200kpsi

700MPa, Sut > 1400MPa

100kpsi, Sut > 200kpsi

Se = kSe

1 4 5

where k is a series product of modifying factors and Se is the endurance stress limit of a
highly polished, cylindrical specimen at room temperature. The modifying (Marin) factors
account for surface condition, size, load types, temperature, plating, corrosion, and so on. In
addition, a modifying factor also may be applied to account for the reliability of Se, which is
a statistical quantity, typically provided in tables as a mean value over many tests of “iden-
tical” specimens. This modifying factor is usually based on the assumption of a Gaussian
distribution for the measured endurance limit and a ratio of its standard deviation to the mean
value of, for instance, 8%. The maximum value of stress taken over the entire component
should be utilized in Figure 1.4.3 since stress varies spatially.

Figure 1.4.4 shows a weight attached to the end of a cantilevered beam. The static
weight causes a static deflection and strain, which causes a constant mean stress σm that
is maximum at the wall since the moment is largest there and the nominal beam stress is
magnified by the local geometry (stress concentration) at the connection to the wall. The
weight vibrates about its statically deflected position creating a time-varying deflection
and corresponding alternating stress.

Figure 1.4.3 Simplified S–N curve for HCF failure evaluation plotted on log–log format
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Stress waveforms may contain components at several frequencies including a static
component as illustrated in Figure 1.4.5. Define the alternating stress amplitude as

σa =
σmax−σmin

2
1 4 6

Thenσa can be utilized in Figure 1.4.3 to estimate the life of the component. Collins (1981)
states that the minor “frequency component” (small bumps) in Figure 1.4.5 may be ignored if
they are substantially smaller than the primary component. The effective cycle period becomes
Teff as shown in Figure 1.4.5. The effect of the “static” or “mean” stress in Figure 1.4.5

σm =
σmax + σmin

2
1 4 7

is to reduce the alternating stress level below which HCF failure will not occur, that is,
reduce the infinite life stress threshold to a value less than Se. This is illustrated by the mod-
ified Goodman diagram in Figure 1.4.6. The failure line connecting Se and Sut provides the
effective endurance limit Se,eff as a function of the mean stress σm.

Figure 1.4.6 Modified Goodman diagram
for combined static and dynamic stresses

Figure 1.4.4 (a) Cantilevered block with (b) static (mean) and (c) static plus dynamic deflections and stresses

Figure 1.4.5 Stress response with multiple frequencies and a static component
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This figure is only applicable for positive values of σm (tensile stress). For compressive
σm values, the part will eventually fail if σa > Se or will fail if σm > Sut, that is, the static and
dynamic failure criteria are uncoupled. The obvious implication of the Goodman diagram is
that the effective endurance limit Se,eff decreases as mean stress increases. Another view is
that the alternating stress amplitude should be divided by this same reduction factor when
using the S–N curve in Figure 1.4.3, that is, utilize the following effective alternating stress
in Figure 1.4.3:

σa,eff =
σa

1−σm Sut
1 4 8

Although the endurance limit may decrease with increasing tensile mean stress, the
maximum total stress (mean plus alternating) for which failure will eventually occur typi-
cally increases with mean stress as indicated by Figure 1.4.7.

Fatigue test data is generally consistent with Figure 1.4.7. Fatigue data is available from
several sources and is generally presented in the form depicted in Figure 1.4.8. This figure is
“Figure 2.3.1.3.8(l). Best-fit S–N curves for notched, KT = 3.3, AISI 4340 alloy steel bar,
FTU = 200 ksi, longitudinal direction” in the extensive database supported by MMPDS-08,
Battelle Memorial Institute, at www.mmpds.org. The “stress ratio” R is defined by

R=
σmin

σmax
=
σm−σa
σm + σa

=
1−σa

σm

1 + σa
σm

1 4 9

which increases monotonically as σa/σm decreases. Note that R= −1 corresponds to a zero
mean stress, σm = 0, condition, that is, the maximum stress is the amplitude of the alternating
stress. Similarly, R = 1 corresponds to a zero alternating stress, σa = 0, condition, that is, the
maximum stress is the mean stress. The test data is typically accompanied by curve fits in
forms similar to

Cycles to failure = 10 a1 −a2 ∗ log10 σmax ∗ 1−R a3 −a4 1 4 10

where σmax is in units of ksi and the ai are constants. Care must be taken to utilize the curve
fit equation only when the argument σmax ∗ 1−R a3 −a4 of the logarithm is positive.

Note that the peak allowable stress increases as R increases, indicating an increase in
total allowable stress as σa/σm decreases. Some components experience a nearly pure state of
torsional shear stress such as a shaft in an industrial machinery train. The shear stress in a
circular shaft or coupling due to pure torsional torque loading is given by

τ =
T router

J
where J =

π

2
r4outer−r

4
inner 1 4 11

Figure 1.4.7 Peak stress at failure
versus mean tensile stress
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where τ is the shear stress, T is the transmitted torque through the coupling/shaft, router is the
outer radius of the coupling/shaft, rinner is the inner radius of the coupling/shaft, and J is the
torsion constant. For this case, Wang (2006) states that “Experimental results tend to show
that the value of the mean shear stress has no influence on the fatigue life of a ductile struc-
tural component subjected to cyclic torsional loading as long as the maximum stress is less
than the yield strength of the material. Hence, the plot of the alternating shear stress τa versus
mean shear stress τm is bound by a horizontal line with τa = τe and a 45 deg yield line.” This
is illustrated in Figure 1.4.9.

The parameters in Figure 1.4.9 are τe, the torsional endurance limit; τy, the torsional
yield strength; τm, the torsional mean stress; and τa, the torsional alternating stress. The
material will fail after a finite number of stress cycles if either

if
τm < τy−τe and τa > τe 1 4 12

Figure 1.4.8 Typical S–N curves for various R values MMPDS-08. (Figure 2.3.1.3.8(I). Best-fit S–N
curves for notched, KT = 3.3, AISI 4340 alloy steel bar, FTU = 200 ksi, longitudinal direction.)
Reproduced with permission of Battelle Memorial Institute

Figure 1.4.9 Plot of effective
torsional stress endurance limit
(solid line) versus mean torsional
shear stress
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then τa,eff = τa (mean stress has no influence)

or if

τm > τy−τe and τa > τy−τm 1 4 13

then τa,eff = τa
τe

τy−τm
(mean stress has influence).

Most components of structural systems are subjected in general to complex states of
combined normal and shear stresses. The above approach for evaluating HCF failure
may still be utilized by employing the equivalent, or “von Mises (VM)”, stress utilized
in the von Mises–Hencky, or distortion energy yielding failure theory. This failure theory
states that the material will yield if the actual structure’s local, distortion-strain energy
density, due solely to distortion and not to the hydrostatic stress components, exceeds
the distortion-strain energy density in a uniaxially loaded test specimen, at the yield condi-
tion. This condition produces the following condition for yield failure

σ ≥
SY
n

1 4 14

where SY is the yield strength of the material (in general another statistical quantity), n is the
selected design safety factor, and σ is the so-called von Mises, or equivalent, stress

σ =
1

2
σ1−σ2

2 + σ2−σ3
2 + σ3−σ1

2

=
1

2
σX −σY

2 + σY −σZ
2 + σZ −σX

2 + 6 τ2XY + τ
2
Y Z + τ

2
XZ

1 4 15

where (1, 2, 3) indicates principal normal stresses and (X, Y, Z) indicates Cartesian coordi-
nate, component stresses. The alternating amplitude and mean value for each component
or principal stress in (1.4.15) are evaluated by applying equations (1.4.6) and (1.4.7) to
the respective stress’s time history. These alternating and mean values are then utilized
to determine the equivalent mean VM stress and the equivalent alternating VM stress as
follows:

mσ =
1

2
mσX −

mσY
2
+ mσY −

mσZ
2
+ mσZ −

mσX
2
+ 6 mτ2XY +

mτ2YZ +
mτ2XZ

1 4 16

a
σ =

1

2
aσX −

aσY
2
+ aσY −

aσZ
2
+ aσZ −

aσX
2
+ 6 aτ2XY +

aτ2YZ +
aτ2XZ 1 4 17

Then mσ and aσ are employed in Figure 1.4.6, in place of σm and σa, respectively, to
determine whether HCF failure will occur, including the effects of the corresponding safety
factor and the reduced value of the endurance limit due to the mean stress mσ . Vibration
simulation models are frequently assembled from beam, plate, bar, or other structural mod-
eling components that provide nominal stress values. Consideration of abrupt changes in
geometry such as holes, fillets, welds, and so on requires multiplication of the nominal stres-
ses by respective stress concentration factors to obtain accurate stress values (Budynas and
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Nisbett, 2008). The equivalent stresses in (1.4.16) and (1.4.17) then assume the more com-
plicated forms

mσ =
1

2

mσXKX −mσYKY
2
+ mσYKY −mσZKZ

2
+ mσZKZ −mσXKX

2

+ 6 mτXYKXY
2
+ mτYZKYZ

2
+ mτXZKXZ

2 1 4 18

aσ =
1

2

aσXKX − aσYKY
2
+ aσYKY − aσZKZ

2
+ aσZKZ − aσXKX

2

+ 6 aτXYKXY
2
+ aτYZKYZ

2
+ aτXZKXZ

2 1 4 19

where the K terms are stress concentration factors derived from test data or analysis (Pilkey,
1997). The K factors can also be modified from their static load values for application to
fatigue problems as indicated in Budynas and Nisbett (2008).

1.4.2.1 Miner–Palmgren Rule

Suppose an object is exposed to Nloads distinct sets of loadings characterized by effective
alternating stress amplitudes σai, actual number of load cycles ni at this stress amplitude,
and number of load cycles Ni for failure at this stress amplitude. Define the damage done
by the ith load set as

Ri =
ni
Ni

1 4 20

Then the object is predicted to fail by the Miner–Palmgren rule when the damage

D=
Nloads

i= 1

Ri = β 1 4 21

where typically β = 1; however, for a more conservative approach, some researchers utilize
0.6 or 0.7 instead. Stress will be calculated at many locations in the component’s model, and
the part will be predicted to fail if any of these locations have a cumulative fatigue damage
that exceeds β. A thorough fatigue analysis requires that the damage be evaluated at many
locations.

1.4.2.2 Rainflow Cycle Counting

In general, loading may be nonperiodic (Chapter 6) but recurring and cause vibratory deflec-
tions and stresses. The most common example is random excitation as might occur on
a wind turbine blade or offshore platform. Another occurrence is a system subjected to a
transient load that causes vibratory stresses and is applied at well-separated and varying
time intervals, such as the transient start-up torque applied by an electric motor to a machin-
ery train. It is not obvious how one should properly identify load cycles and equivalent
alternating stress amplitudes to utilize (1.4.20), (1.4.21), and Figure 1.4.2 to predict
damage and life for this type of loading. The “rainflow method” is the most common of
the “cycle counting” techniques that provide a systematic means to identify arrays of alter-
nating stress amplitudes and corresponding mean stresses during an arbitrary varying stress
time history.
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Consider the following definitions:

Extremum: a point Pi in a stress versus time history when the stress is either a local
maximum or minimum. The plural of extremum is extrema. Reference Figure 1.4.10.

Extrema set: collection of extremum points in a stress versus time history.

Extrema pair: two members in an extrema set.

Extrema trio: three consecutive members (a, b, c) in an extrema set.

Begin point: first point in an extrema set.

Change C: absolute value of the difference between two stresses in an extrema pair.

Mean stress: average of the two stresses in an extrema pair.

Alternating stress: one-half of the absolute difference of the two stresses in an extrema pair.

The overarching logic of themethod is to systematically locate extrema trios (a, b, c) such
that the changeCbc between (b, c) is greater than the changeCab between (a, b). This justifies
counting Cbc as ½ load cycle. The rainflow procedure is illustrated by the example given
below. Start with the extrema set that contains all extrema in a stress versus time history,
for example,P1 throughP14 in Figure 1.4.10. These extrema and their values (in ksi) are given
in row 1 of Table 1.4.1. Table 1.4.1 lists the 14 steps needed to identify the equivalent load
cycles for given stress time history. The extrema set of step i is given by the numbers in row i of
Table 1.4.1. The number of members in the extrema set diminishes as the rainflow process
proceeds. Each step considers a new trio (a, b, c) of points in the current extrema set and com-
pares the respective changesCab andCbc of extrema pairs (a, b) and (b, c). The trio (a, b, c) are
boldened for each step in Table 1.4.1.

As demonstrated in Table 1.4.2 for each rainflow step:

• Trio (a, b, c) are always three consecutive points in the updated extrema set.

• The trio (a, b, c) is updated in going from step i to step i+ 1 in the following manner:
Point “c” is the next point in the extrema set in going from step i to step i+ 1, with the
exception that if in step i (point “a” is not the begin point of the extrema set and
Cbc Cab ≥ 1), then in step i+ 1 point “a” is set equal to the begin point.

• If Cbc Cab ≥ 1 and the begin point and “a” are the same, then remove point “a” from the
extrema set, and accumulate ½ cycle of stress with the mean and alternating stress of
extrema pair (a, b).

• If Cbc Cab ≥ 1 and the begin point and “a” are different, then remove points “a” and “b”
from the extrema set, and accumulate 1 cycle of stress with the mean and alternating stress
of extrema pair (a, b).

• If Cbc Cab < 1, then no points are removed from the extrema set and no load cycles are
accumulated.

Figure 1.4.10 Stress extrema set in a stress versus time history
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Table 1.4.2 Rainflow cycle counts for Figure 1.4.10

Step
Begin
point a b c Cab Cbc

Removeda

point “a” or
“a” and “b”

Number
of cycles
of (a,b)a σmin

b σmax
b σm

b σa
b

1 1 1 2 3 20 26 1 ½ −12 8 −2 10
2 2 2 3 4 26 28 2 ½ −12 14 1 13
3 3 3 4 5 28 32 3 ½ −14 14 0 14
4 4 4 5 6 32 22 — — — — — —

5 4 5 6 7 14 11 — — — — — —

6 4 6 7 8 11 31 6 and 7 1 4 15 9.5 5.5
7 4 4 5 8 32 34 4 ½ −14 18 2 16
8 5 5 8 9 34 21 — — — — — —

9 5 8 9 10 21 13 — — — — — —

10 5 9 10 11 13 28 9 and 10 1 −8 5 −1.5 6.5
11 5 5 8 11 34 36 5 ½ −16 18 1 17
12 8 8 11 12 36 17 — — — — — —

13 8 11 12 13 17 13 — — — — — —

14 8 12 13 14 13 9 — — — — — —

15 8 8 11 — 36 — 8 ½ −16 20 2 18
16 11 11 12 — 17 — 11 ½ 3 20 11.5 8.5
17 12 12 13 — 13 — 12 ½ 3 16 9.5 6.5
18 13 13 14 — 9 — 13 ½ 7 16 11.5 4.5

a Only if Cbc >Cab.
b Values for extrema pair interval (a, b).

Table 1.4.1 Rainflow points for Figure 1.4.10

Point
step

1
(8)

2
(−12)

3
(14)

4
(−14)

5
(18)

6
(4)

7
(15)

8
(−16)

9
(5)

10
(−8)

11
(20)

12
(3)

13
(16)

14
(7)

1 1 2 3 4 5 6 7 8 9 10 11 12 1 14
2 — 2 3 4 5 6 7 8 9 10 11 12 13 14
3 — — 3 4 5 6 7 8 9 10 11 12 13 14
4 — — — 4 5 6 7 8 9 10 11 12 13 14
5 — — — 4 5 6 7 8 9 10 11 12 13 14
6 — — — 4 5 6 7 8 9 10 11 12 13 14
7 — — — 4 5 — — 8 9 10 11 12 13 14
8 — — — — 5 — — 8 9 10 11 12 13 14
9 — — — — 5 — — 8 9 10 11 12 13 14

10 — — — — 5 — — 8 9 10 11 12 13 14
11 — — — — 5 — — 8 — — 11 12 13 14
12 — — — — — — — 8 — — 11 12 13 14
13 — — — — — — — 8 — — 11 12 13 14
14 — — — — — — — 8 — — 11 12 13 14

Parentheses: stress value in ksi.
Bold indicates “a,” “b,” and “c” points of current step.
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The above procedure is repeated until point “c” of the trio (a, b, c) is the last extrema
point. A ½ load cycle is counted for each of the surviving consecutive extrema pairs in the
final extrema set. This is illustrated by steps 15–18 in Table 1.4.2.

For the sake of illustration, assume that Se = 5ksi, Sut = 25ksi and the S–N curve follows
the following common form (Budynas and Nisbett, 2008):

γ =
ϕSut

2

Se
= 80000, α= −

1
3
log10

ϕSut
Se

= −0 200

Cycles to failure =N =
σa,eff
γ

1 α

if σa,eff > Se

∞ if σa,eff < Se

where ϕ is a constant that is taken as 0.8 for this example. The effective alternating stress is
obtained from the modified Goodman formula (1.4.8) as

σa,eff =

σa
1− σm Sut

if σm > 0

σa if σm ≤ 0

Table 1.4.3 summarizes the load cycles obtained by the rainflow method in Table 1.4.2,
the corresponding effective alternating stresses, and the cycles to failure.

The damage as given by (1.4.21) is

D=
11

i= 1

ni
Ni

= 0013

This implies that for aD = 1 failure criteria, 1/D = 765 repetitions of the sample load set
would be required to fail the component.

The rainflow counting algorithm is tedious by hand for a large data set and is frequently
implemented in an automated form such as found in the MATLAB code (Nieslony, 2010).
Additional reading on the rainflow method may be found in ASTM E-1049–85 (2011).

1.4.3 Rotating Machinery Vibration

Spinning shafts of industrial, aviation, and aerospace machinery such as turbines, compres-
sors, motors, fans, and so on vibrate due to their inherent imbalance, misalignment, loose-
ness, resonance, inadequate damping, interaction with the transmitted liquid or gas, gear

Table 1.4.3 Load cycles for example in Table 1.4.1

j 1 2 3 4 5 6 7 8 9 10 11

No. of
cycles ni

½ ½ ½ 1 ½ 1 ½ ½ ½ ½ ½

σm (ksi) −2 1 0 9.5 2 −1.5 1 2 11.5 9.5 11.5
σa (ksi) 10 13 14 5.5 16 6.5 17 18 8.5 6.5 4.5
σa,eff (ksi) 10 13.5 14 8.9 17.4 6.5 17.7 19.6 15.7 10.5 8.3

Ni × 105 0.33 0.07 0.06 0.60 0.02 2.82 0.019 0.011 0.034 0.259 0.815
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forces, failed bearings, and so on. Most of the machines mentioned above operate at high
speeds (1000–50 000 rpm) and have very small clearances between the spinning (rotor) and
stationary (stator) components. These clearances may be as small as 0.01 mm per 1 cm of
shaft diameter. This accentuates the potential seriousness of controlling vibration, which
may lead to internal rubs followed by loss of machinery, product, and, in rare instances,
lives. For this reason, standards have been established to aid in purchasing and operating
various types of rotating machine. The American Petroleum Institute (API) standards are
often utilized throughout the petrochemical and process industries. Some API standards
include:

• API STD 610—Centrifugal Pumps for General Refinery Service

• API STD 611—General Purpose Steam Turbines for Petroleum, Chemical, and Gas
Industry Services

• API STD 617—Axial and Centrifugal Compressors and Expander—Compressors for
Petroleum, Chemical, and Gas Industry Services

• API Standard Paragraphs Rotordynamic Tutorial: Lateral Critical Speeds, Unbalance
Response, Stability, Train Torsionals, and Rotor Balancing. API Recommended Practice
684, 2nd Ed., August 2005, Reaffirmed, November 2010

An example rule from API STD 617 is as follows: Let x represent the peak-to-peak
vibration of the rotating shaft relative to the stator at the bearing locations, and then the max-
imum allowable value for x is

x ≤ 25∗ 12000
Nmax

μm, p-p 1 4 22

where Nmax is the maximum continuous speed of the compressor in revolutions per minute.
It is very important to note that the API standards are “living documents” that are being con-
tinuously updated by panels of experts and that the standards should be consulted directly
for use of the most up-to-date formulas for actual industrial applications.

Recall the phenomenon of resonance that was discussed in Sections 1.2 (Tacoma Nar-
rows Bridge), 1.3 (clocks and earthquakes), and 1.4 (human body). Machinery resonance is
a particularly detrimental problem, which may lead to premature and possibly catastrophic
failure. Resonance occurs when an excitation (forcing) frequency coincides with a natural
frequency. An excitation frequency in rotating machinery is the spin (rotational speed) fre-
quency since mass imbalance forces of the rotor vary sinusoidally at the spin frequency.
Consequently, the operating speed range of most machinery is kept well separated from
any bending natural frequencies of the spinning shaft. API 684 provides rules pertaining
to designing and operating rotating machinery in a manner to avoid resonance, which for
rotating machinery is referred to as “critical speed.” The API standards account for the pos-
sible presence of a resonance both above and below the operating speed (rpm) range (OSR)
of the machine, by defining a below OSR minimum separation margin (SM) and an above
OSRminimum SM. As one might expect, the specified minimum SM increases as the inten-
sity (danger) of the resonance increases. Intensity is quantified as the amplification factor
AF, which increases as the resonance peak increases in relative height, and is calculated
using the half power point method (Eqs. (7.3.52) and (7.3.53), Figure 7.3.9).

A second source for vibration severity guidelines in rotating machinery is the Interna-
tional Organization for Standardization (ISO). The ISO Standard ISO 3945-1977(E)
entitled “Mechanical Vibration for Large Rotating Machines with Speed Ranges from
10 to 200 rev/s—Measurement and Evaluation of Vibration Severity in situ” bases vibration

22 Vibration Theory and Applications with Finite Elements and Active Vibration Control



severity on the measured velocity of vibration on all bearing housings of a machine.
Specifically, the rms velocity

vrms =
1
T

T

0
v2 t dt 1 4 23

is utilized, where T is the total measurement period and v(t) is the measured vibration
velocity in the frequency range 10–1000 Hz. The velocity severity measure vrms may also
be evaluated from the relation (1.2.11)

vrms≈
1
2

v21 + v
2
2 + + v2n 1 4 24

if the Fourier frequency component amplitudes v1 v2 vn of v(t) are known. Let vmax
rms

represent the maximum value of vrms over all measurement locations (typically two bearing
housings) and directions (typically horizontal, vertical, and axial) on a machine. Similar
standards are published by other organizations and vibration instrumentation manufacturers.
Table 1.4.4 shows a sample chart presented only for illustration purposes. Actual standards
from ISO or other sources should be consulted in practice.

It is notable that the intent of the standard is to provide an evaluation of machinery
health based upon a relatively easily taken set of measurements and the accumulated expe-
rience of the standard’s authors. This approach is clearly justified by the time and cost asso-
ciated with surveying large numbers of rotating machines in chemical, refinery, paper
processing, power, steel, and equipment manufacturing plants and also on ships. A more
detailed set of measurements such as stress, force, and so on should be made if high vibration
is indicated by use of tables in the standards.

Vibration in rotating machinery most often results frommass imbalance of the spinning
shaft. This causes centrifugal forces that deflect the shaft and react against the bearings and
machinery support structure in a sinusoidally varying manner. The corresponding excitation
frequency is the rotational speed frequency of the shaft. ISO has developed standards to
specify acceptable imbalance levels since the imbalance force is an important driver (source)
of vibrations. For process equipment such as gas and steam turbines, turbo-compressors,
turbine-driven pumps, and so on, ISO 1940-1973(E) recommends

eω ≤ 2 5mm s 1 4 25

where

e= offset of the rotating assembly’smass center

relative to its geometric center spin axis inmm
1 4 26

Table 1.4.4 Example vibration severity table—in terms of peak,
RMS vibration velocity

vrms (mm/s) vrms (in./s) Condition

<1.27 <0.05 Smooth
>1.27 and <3.8 >0.15 and <0.15 Mild
>3.8 and <10.2 >0.15 and <0.4 Rough
>10.2 and <15.2 >0.4 and <0.6 Severe
>15.2 >0.6 Unacceptable
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ω= spin frequency of the rotating assembly in rad s 1 4 27

For example, consider a steam turbine rotor that weighs 1000 N and spins at 10 000 rpm
(1047 rad/s). The recommended maximum eccentricity level becomes

e =
2 5mm s
1047rad s

= 2 4μm 1 4 28

The centrifugal force corresponding to this mass eccentricity and speed is

Fc =meω
2 =

1000N
9 8m s2

∗2 4 × 10−6m∗ 1047s−1
2
= 268N 1 4 29

This represents the dynamic force transmitted through the bearings only if the rotational
speed frequency is well below all rotating assembly or support natural frequencies. The
transmitted force may be much higher at resonance and much lower at shaft speeds well
above resonance.

It is important to note that most standards are “living documents” that evolve as the
understanding of related anomalous vibrations is increased through experience and research.
The latest standards should be referred to in actual practice.

EXAMPLE 1.4.1 Effective Endurance Limit, Safety Factor, and Vibration Severity

A large, motor-driven fan is supported at the end of a uniform pipe, which is fastened to a
fixed wall. The pipe is modeled as a massless, cantilevered Euler beam (Figure E1.4.1(a)).

The pipe may eventually fail (crack) due to HCF if the alternating component of the von
Mises stress aσ at the wall exceeds the effective endurance limit for the pipe material
accounting for the mean von Mises stress mσ . The equation for the boundary curve in
the modified Goodman diagram of Figure 1.4.6 provides the effective endurance limit as

Se,eff = Se−
Se
Sut

mσ 1

The vertical, transverse deflection δTtip t at the tip of the beam has a mean (constant)

component δTm due to the weight of the motor/fan assembly and a sinusoidally varying
component δTa t due to the rotating imbalance force of the fan

δT t = δTm + δTa t = δTm + δTa sin ωt 2

Figure E1.4.1(a) Motor supported by cantilever pipe
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The term δ
T
a sin ωt represents the vibration. In addition, the fan blade–air interaction

forces cause a static torque Γfan about the pipe axis and a static, tensile force Ffan along the
pipe axis. These cause the constant axial and torsional deflections δAm and θAm, respectively, at
the tip of the beam.

Let Fwall, Mwall, and Γwall be the axial force, bending moment, and torque at the wall,
respectively. Then the maximum values of the component, nominal stresses at the wall
become

σaxial =
Fwall

A
, σbend =

Mwall ∗DO

2I
, τshear =

Γwall ∗DO

2J
3

where

I = bending moment of inertia =
π

64
D4

O−D
4
I

J = torsion moment of inertia =
π

32
D4

O−D
4
I

A= pipe cross-sectional area =
π

4
D2

O−D
2
I

DO,DI = outer and inner diameters of the pipe

4

The load combination described above only produces a normal stress σX along the
direction of the pipe axis and a shear stress τX Y on the pipe cross section. The corresponding
stress concentration factors at the pipe-wall connection plane are KX and KX Y, respectively.
All of the remaining stress components are zero. The parameter values for this problem are

E = 30 0 × 106psi, G= 12 0 × 106psi, KX = 3 0, KXY = 2 0, L= 40in , DO = 3 5in., DI = 3 0in.

Sut = 100000psi, Se = 25000psi for a zero mean stress state and includes

Marin correction factors

δ
T
m = 0 080in., δTa = 0 020in., δAm = 0 0005in., θAm = 0 002 rad

5

where X is the axial direction along the pipe axis and Y is the vertical direction. In general,KX

will be different for axial and bending loads, in which case the component stresses are ampli-
fied (multiplied) by their respectiveKX values prior to forming σX. For the sake of simplicity,
the KX values are the same in this problem:

(a) Determine the amplitude of the alternating and the mean (steady) transverse forces that
the motor/fan exerts on the free end of the pipe:

Alternating Mean

Ftip
a =

3EI
L3

∗δTa Ftip
m =

3EI
L3

∗δTm
Ftip
a = 95 3lb Ftip

m = 381lb

6

(b) Determine the mean (steady) axial force and torque exerted by the wall on the pipe:

Faxial =
EA

L
∗δAm = 957 2lb, Γ =

GJ

L
θAm = 4068 in lb 7
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(c) Determine the maximum x component of mean pipe stress including both bending and
axial load contributions:

σaxialm =
Faxial

A
, σbendm =

Mm ∗D0 2
I

, σxm = σaxialm + σbendm , σxm = 8250psi 8

(d) Determine the maximum x component of alternating pipe stress:

σbenda =
Ma∗D0 2

I
, σxa = σ

bend
a , σxa = 1969psi 9

(e) Determine the pipe’s mean shear stress at the wall:

τm =
Γ∗D0 2

J
, τm = 1050psi 10

(f) Determine the maximum von Mises, mean pipe stress:

σm =
1

2
2 KX ∗σxm 2

+ 6 τm ∗KXY
2, σm = 25016psi 11

(g) Determine the maximum von Mises, alternating pipe stress:

σa = σ
x
a ∗KX , σa = 5906psi 12

(h) Determine the effective endurance limit “Se,eff” at the wall where the above von Mises
stresses occur:

Se,eff = −
Se
Sut

σm + Se, Se,eff = 18746 13

Note that this is lower than the endurance limit (Se = 25000psi) in the absence of a
mean stress.

(i) What is the safety factor on the vibration amplitude δTa relative to the effective endurance

limit, that is, what factor applied to δ
T
a will cause the alternating von Mises stress to

exceed the effective endurance limit “Se,eff.”

The alternating stress increases in proportion to δ
T
a ; therefore, the factor on δ

T
a to

exceed Se,eff is

Se,eff
σa

= 3 17

(j) Assume that the fan spins and the beam vibrates at ω= 100rad s. Also assume that the

vibration amplitude on the fan bearing is the same as δTa , and the supports are considered
to be flexible. Provide a qualitative description of the vibration severity level. Provide a
numerical justification for your answer.

The vibration velocity amplitude is v =ωδTa so its rms value is

vrms =
ωδ

T
a

2
=
100∗0 020

2
= 1 414in s = 36mm s

Table 1.4.4 shows this is an unacceptable level of vrms.
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Military standard MIL-STD-810D “Environmental Test Methods and Engineering Guide-
lines” provides guidance for inspectors and vendors of jet engine aircraft, propeller aircraft,
and helicopters. Specifically, its objectives are:

(a) “To disclose deficiencies and defects and verify corrective actions”

(b) “To assess equipment suitability for its intended operational environment”

(c) “To verify contractual compliance”

Excessive vibration is considered to be potentially harmful due to the possibility of

• Wire chafing

• Loosening of fasteners

• Intermittent electrical content

• Touching and shorting of electrical parts

• Seal deformation (leakage)

• Component fatigue

• Optical misalignment

• Cracking and rupturing

Although these considerations concern mechanical distress, pilot fatigue is also a major
concern. Standard MIL-STD-810D is a very comprehensive document, which contains a
section on vibrations (section 514). Category 6 of section 514 considers helicopter vibration,
which has a broadband random nature with strong sinusoidal vibrations due to onboard
rotating machinery. This machinery includes engines, main and tail rotors, and meshing
gears (transmission). The major peaks in the vibration spectrum are usually harmonics of
the main rotor’s blade-pass frequency (no. of blades ∗ main rotor spin frequency); however,
different areas of the helicopter will have different sources at different frequencies as shown
in Figure 1.4.11. The standard contains severity tables similar with Table 1.4.4 for various
types of helicopters and general locations on the helicopters.

1.4.4 Machinery Productivity

Tool speed and depth of cut play a major role in productivity in machining and woodwork-
ing processes. Both of these factors are limited due to vibration. Chatter type vibrations
result as the tool bit interacts with previously cut paths in milling, drilling, and boring opera-
tions. Suppressing these vibrations can yield a significant payoff in increased productivity.

Figure 1.4.11 Helicopter dominant vibration zones
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1.4.5 Fastener Looseness

Preloaded bolts (or nuts) rotate loose, when relative motion between the male and female
threads takes place. This motion reduces the friction grip and permits the off-torque, which
is proportional to the preload and thread pitch, to loosen the fastener. Transversely applied
alternating forces generate the most severe condition for self-loosening. Appropriate
choice of washers, installation of tie wires, and use of special bolts with more uniform load
distributions between mating thread surfaces are some means to reduce bolt loosening.
Attenuation of vibration treats this problem at its source. Fastener looseness is an especially
important concern in high-performance machinery such as aircraft, helicopters, space
shuttle, race cars, trains, roller coasters, and so on.

1.4.6 Optical Instrument Blurring

Lasers, telescopes, microscopes, interferometers, mirrors, and so on require a nearly
vibration-free environment. This is typically accomplished by passive or active isolation
of the equipment. Vibration has been called “the curse” in airplane- or helicopter-based aer-
ial photography. Engine dynamic forces are transmitted through the airframe and into the
camera resulting in blurry photos. High shutter speeds alleviate this problem at the expense
of grainy photographs with less contrast. The camera must be soft mounted (isolated), which
is more of a challenge for helicopter installations since the main rotor has a typically low
frequency (e.g., ~30 Hz) and the camera must also be isolated from the tail rotor and engine
frequencies (e.g., ~150 and ~250 Hz).

On the very small level, the lens-free AFM employs a tiny 100 μm length cantilever beam
to measure local sample height (topography) at the atomic level. The beam has a very low
spring stiffness (0.1 N/m) yet very high natural frequency. Mounted on the end of the cantilever
is a sharp tip that is typically a 3 μmtall pyramidwith 10–30 nmend radius. The deflection of the
tip is measured with a laser. The beam and tip may also function in a noncontact mode where
topographic images are derived frommeasurements of attractive forces. Environmental vibration
can cause severe blurring of the topographic image produced by an AFM.

The space-based Hubble Space Telescope (HST) (Figure 1.4.12) experienced poor
imaging due to vibrations of its original solar panels. The “jitter” interfered with operation

Figure 1.4.12 Hubble space-based telescope with original flexible and new rigid, smaller, and more
powerful solar arrays.Reproduced with permission from NASA Goddard Space Flight Center
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of the onboard optical instrumentation. The vibrations were induced by thermal deforma-
tions resulting from its cyclic exposure to 45 minutes of searing heat and 45 minutes of
frigid cold during every 90 minutes orbit around the earth. The transition from extreme
hot to extreme cold occurs almost instantaneously subjecting the solar arrays to a transient
thermal shock load in a very low vacuum. The vibration frequency of the arrays occurred
at about 0.1 Hz (1 cycle/10 seconds).

1.4.7 Ethics and Professional Responsibility

Section 1.4 has stressed some practical aspects of vibrations and why they should be tamed.
I once heard a person say “why worry about standards, there are not the law.” This is true
however from a commercial and sometimes litigation standpoint they have very high impor-
tance. It may be quite difficult to sell a machine that vibrates in excess of the limits defined
by the standards during commissioning of the machine to industry or government users.
Similarly, it may be challenging to defend operation of a machine prior to failure that
may have resulted in loss of millions of dollars of products, facility damage, injury, or even
death, if vibrations were related to the failure and the operating vibrations exceeded the lim-
its provided in the standards. Insurance companies which pay for failures and accidents and
judicial arbiters view industry and government standards with great seriousness, sometimes
even more so than arguments based on detailed testing or simulation model results.

1.4.8 Lifelong Learning Opportunities

The list of vibration standards and related materials is very long and includes documents
from many countries. A web search at the time of the writing of this book identified the
following:

(a) International Organization for Standardization (ISO—130 member countries)
http://www.iso.org/iso/home/store/catalogue_ics.htm (search vibration)

(b) US Military Standards (MIL)
http://quicksearch.dla.mil/ (search vibration)

(c) UK Health and Safety Executive
www.hse.gov.uk/index.htm (search vibration)

(d) American Petroleum Institute (API)
http://www.api.org/Standards/

This large number of standards is just one example of the fact that it is truly a lifelong
learning experience to be a vibrations expert.

1.5 STIFFNESS, INERTIA, AND DAMPING FORCES

Systems vibrate due to the interplay (energy exchange) between stiffness (restoring), inertia
(mass), and damping (drag) related forces. Figure 1.5.1 shows the top view of a horizontal
spring/mass/damper system. The deflection of the spring in Figure 1.5.1(a) would always be

x t =
F t

k
1 5 1

in a world without mass. This follows from Newton’s second law (with mass = 0) and the
spring’s force–deflection relation. Equation 1.5.1 shows that point p will vibrate (oscillate)
only if the external force F is oscillatory (periodic). Experience reveals that real systems
oscillate even in the absence of oscillatory external forces, that is, the occurrence of natural
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vibrations or vibrations due to a nonperiodic force. To understand why, consider the follow-
ing discussion.

The spring stiffness acts to pull point p back toward its static equilibrium position
(SEP). In fact, if k became infinite, it would pull x to the SEP independent of a finite valued
F(t). Equation (1.5.1) implies that

x =
F0 k, F t =F0

0, F t = 0
1 5 2

so that x would instantaneously become zero at the moment F(t) was removed. Suppose a
mass is now attached to point p as shown in Figure 1.5.1(b). This mass will deflect by
x0 =F0 k if F(t) is pseudostatically increased from zero to F0. Should the response in
(1.5.2) still be expected if F0 is suddenly removed with m attached? Intuition tells us no
for several reasons:

(a) The spring has potential energy PE = 1 2 kx20 when deflected at x= x0. If x becomes
zero, its P.E. is zero. Where did the potential energy go? The answer is kinetic energy,
which implies that x t is not equal to zero at x = 0.

(b) By (a) m has velocity −v0 , that is, momentum as it passes through x = 0 at t = t0.
The spring force needs time to change the momentum of m from zero at x = x0
to −mv0 at x = 0. This results from the impulse and momentum theorem

Ik = impulse onm from spring k =
t0

0
−kxdt =Δ mv =mΔv= −mv0 1 5 3

Thus, x cannot return to zero instantaneously as was the case with no mass m in (1.5.2).
The spring force exerts a positive impulse as soon as x becomes less than zero som begins to
decelerate. This implies that v0 is the maximum velocity of m. The potential energy of the
spring will become 1 2 kx20 at x= −x0. Therefore, the mass must have zero kinetic energy at
x= −x0 by conservation of energy, so its velocity is zero. The spring’s impulse increases and
m’s velocity again becomes positive. In this manner, the impulse of the spring force peri-
odically changes m’smomentum (velocity direction) alternately positive and negative. This
is the mechanism of free vibration. Both k andm influence the period of free vibration as can
be seen from Equation (1.5.3).

The work performed on m by the damper in Figure 1.5.1(c) is negative since

Wc =
x2

x1

Fcdx=
t2

t1

−cxxdt = −c
t2

t1

x2dt < 0 1 5 4

Figure 1.5.1 Response of spring/mass/damper system to external force F(t)
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Energy is therefore removed from the system by damper c and the vibration diminishes
to zero. This diminution to zero will not occur if another external force performs positive
work on the system.

The word stiffness typically invokes an image of a coil spring that may deform in stretch
or compression creating a force or in torsion creating a torque. Ultrahigh-strength springs as
shown in Figure 1.5.2 are used in a myriad of machinery, instrument, transportation, and/or
other applications.

In general, stiffness results from the restoring force capability of strain energy in a
deformed elastic object. Table 1.5.1 shows an assortment of typical stiffness elements.

Table 1.5.1 Assorted stiffness elements

Entry Description Figure Stiffness

1 Free cantilever k =
F

δ
= 3

EI

L3

2 Guided cantilever (zero rotation at tip) k =
F

δ
= 12

EI

L3

3 Simply supported beam k =
F

δ
= 48

EI

L3

4 Coiled spring (round wire)

k =
F

δ
=

Gd4

8D3N

G = shear modulus

N = number of coils

5 Stretched rod k =
F

δ
=
EA

L

6 Torsion spring

kT =
Fd

θ
=
GJ

L
G = shear modulus

J = torsion constant

Figure 1.5.2 Assortment of extension–compression and torsion springs.Reproduced with permission from
Murphy & Read Spring Manufacturing Co.
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Likewise, Tables 1.5.2 and 1.5.3 show assortments of mass and damping elements. Finally,
Table 1.5.4 shows a table of force expressions.

The following analysis shows a derivation of entry 2 (Table 1.5.3). A liquid flowing
with velocity u and laminar Reynolds (Re) number ((ρudH)/μ) experiences the pressure drop

Δp = ρ
L

dH

u2

2
f 1 5 5

as it flows through a pipe of length L. The laminar flow friction factor may be obtained from
most fluid mechanics text as

f =
64
Re

=
64μ
udHρ

1 5 6

Substitute (1.5.6) into (1.5.5) to obtain

Δp = 32
Lμu

d2H
1 5 7

Let A be the entire area of the piston and “a” the area of a single hole. Then the time rate
of change of the upper volume is

ΔV
Δt

= vA =
Δx
Δt

A 1 5 8

Table 1.5.2 Assorted mass elements

Entry Description Figure Inertia

1 Hollow cylinder
m=

ρπL D2−d2

4

Iy =
m

8
D2 + d2

Ix = Iz =m
L2

12
+

D2 + d2

16

ρ =mass density
G = mass center

2 Long slender rod m =ALρ

Ix = Iz =
mL2

12

G = mass center

3 Vibration of soil in liquid Cross-sections

Motion2c

Motion
b

a

Motion

2b
2a

Added mass per unit length
ρ = density of liquid ρπc2

ρπb2

1.15 ρπa2, (a = b)
1.14 ρπa2, (a = 10b)
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The volumetric flow rate through the n holes is

QH = nua 1 5 9

Conservation of the mass for an incompressible liquid requires that

QH =
ΔV
Δt

u =
v

n

A

a
=
v

n

πD2 4
πd2H 4

=
v

n

D

dH

2

1 5 10

Substitute (1.5.10) into (1.5.7)

Δp =
32Lμ

d2H

v

n

D2

d2H
1 5 11

The net force on the piston is

F =ΔpA =
πD2

4
Δp 1 5 12

Table 1.5.3 Assorted damping elements

Entry Description Figure Damping

1 Parallel plate damper
C =

F

v
=
μA

tA = plate wetted area
μ = absolute viscosity

2 Orifice damper
C =

F

v
=
8πLμ
n

D

dH

4

μ = fluid absolute viscosity
n = no. of orifice holes

3 Torsional damper
CT =

Γ
ω
=
2πμLD3

8gμ = fluid absolute viscosity
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if na<<A. Insert (1.5.11) into (1.5.12) to obtain

F = cv 1 5 13

where

c=
8Lμπ
n

D

dH

4

1 5 14

1.6 APPROACHES FOR OBTAINING THE DIFFERENTIAL
EQUATIONS OF MOTION

The equations of motion for a vibrating system model provide a starting point for simulating
the system’s response to initial conditions, external forces, or parametric excitation (time-
dependent system parameters). Approaches for deriving the equations of motion for a model
of a vibrating system are discussed below.

(a) Newton’s Laws (Chapter 3)
These laws represent the balance between external and inertial forces as first proposed
by Sir Isaac Newton. Practical applications required extension of this balance from a
particle to a collection of particles and finally to a rigid body. The translational and rota-
tional forms of Newton’s laws for rigid bodies are presented in Chapter 3.

Table 1.5.4 Assorted force expressions

Entry Description Figure Force

1 Pressure force F(t) = pA(t)

2 Wave force on
circular cylinder

F y, t = force per unit length

= g1 y g2
πD

L
∗cos ωt−g3

T = wave period
g1 y =

2ρgH
k

cosh k d + y
cosh kd

ω=wave frequency

= 2π T g2
πD

L
= J1

πD

L

2

+ Y1
πD

L

2 −1 2

k =wave frequency

= 2π L g3 = tan−1

J1
πD

L

Y1
πD

L
ρ = mass density of

water
J1 = derivative of the first order Bessel function

of the first kind
g = gravity constant Y1 = derivative of the second order Bessel

function of the second kind
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(b) The Power Conservation Approach (Chapter 4)
Applying power conservation for deriving the equations of motion has a physical intu-
ition appeal. The potential and kinetic energy expressions form the starting point for
applying the method. This approach has an advantage of being able to disregard all
forces that perform a net work of zero, as discussed in Chapter 4.

(c) The Lagrange–Hamilton Approach (Chapter 4)

The Lagrange–Hamilton approach utilizes expressions for kinetic and potential energy
to develop the equations of motion for the system. This approach may be interpreted as a
restatement of Newton’s laws or an entirely different physical principle based on mak-
ing an “action” integral stationary, using the calculus of variations.

The Lagrange approach for formulating the equations of motion of a rigid or flex-
ible body model circumvents some tasks for direct application of Newton’s law. These
include:

• No direct evaluation of acceleration vectors for the mass center(s)

• Less applications of Newton’s third law for equal and opposite reactions in many
instances

• Less sign determination for many forces

• Direct use of potential energy to evaluate internal force effects in a flexible body

• Direct means to formulate equations of motion in terms of any generalized coordi-
nate, which may consist of an actual physical coordinate or of a parameter that gov-
erns a distributed shape for deflections (this is a key capability in the assumed modes
and finite element methods)

The Lagrange approach is discussed extensively in Chapter 4.

1.7 FINITE ELEMENT METHOD

The finite elementmethod (FEM) iswidely used in industry for avoidingmachinery and struc-
tural vibration problems. User-friendly graphically driven interfaces have greatly facilitated
the efficient use of thismethod.Direct conversionof solidmodeler geometry descriptions into
finite element “meshes” is quickly becoming standardpractice for the simulationof vibrations
of components and systems of all sizes and shapes. This is illustrated in Figure 1.7.1.

The meshes consist of discrete node points that define finite-sized subvolumes referred
to as elements. The motions within any element are approximated by interpolation func-
tions, which interpolate the displacements at the node points throughout the element.
The interpolation functions are generally linear or quadratic functions of position but
may be more complex as a result of “isoparametric” transformations that enable the element
to possess general 2- or 3-dimensional shapes. The FEM has its theoretical foundations in
the more general areas of energy principles and weighted residual methods. The former uti-
lizes the variational approach of determining the solution of the equilibrium equations by
finding solutions that make a companion functional stationary (maximum or minimum),
as in the case of the principle of virtual work, Hamilton’s principle, or the principle of min-
imum total potential energy. The latter develops a “weak” form of the original equilibrium
equations by integrating products of weight functions times the equilibrium equations while
lowering continuity requirements on the interpolation functions utilizing integration by parts
(divergence theorem). The net result is typically a very large order system of linear differ-
ential equations that are numerically integrated to obtain the time-varying displacements at
the node points. These displacements can then be utilized to solve for stresses, which are in
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turn utilized to predict fatigue life. The system of equations can also be solved to obtain
eigenvalues and eigenvectors, which describe the “mode” shapes and “natural” frequencies
of the modeled system in free (unforced) vibration. This is illustrated in Figure 1.7.2 for the
finite element model in Figure 1.7.1.

So why study finite element theory when its application tools are quickly progressing
toward a nearly automated state? There are several very good reasons, including:

(a) Cost: The “honeymoon is over” as far as cheap software when one leaves the university
and enters industry or private practice. Single seat, annual licensing fees in the tens of
thousands of dollar range for industrial users are common.

(b) Proper usage of commercial software (CS): CS can be easily misused by not under-
standing the limitations (assumptions) of the theory implemented by the CS. Under-
standing the theory will guide one to utilize the appropriate software options and
avoid the ineffective ones.

(c) Advancement and customization: Engineering technology is advancing at an incredible
rate requiring the use of novel materials, smart and multidisciplinary systems, newly
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Figure 1.7.2 Vibration “mode shape” obtained from a finite element model
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Figure 1.7.1 Finite element mesh generated from a solid model of a shaft
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discovered empirical force descriptions, and so on. CS sometimes lags behind these
needs requiring engineers to develop their own finite element software. Customer input
and output requirements may also motivate engineers to develop their own finite ele-
ment software.

(d) General innovation: Who knows what new methods of modeling and simulation lies
over the horizon? It’s hard to say, however, chances are good that it will build on
the theory of existing methods. Knowledge of finite element theory will provide a foot-
hold to reach out and develop new theoretical approaches for simulation.

The book provides the necessary theory and implementation tools required to develop
your own finite element codes. The progression of element sophistication is ordered from
simple spring mass systems to general 3D solids in the book to facilitate comprehension and
to provide results of significant practical value.

1.8 ACTIVE VIBRATION CONTROL

Passive vibration control seeks to achieve vibration mitigation goals via structural modifi-
cation and installation of devices such as absorber masses, spring, and dampers to reduce the
system sensitivity to external disturbances and to self-excitation forces, that is, instability.
Passive devices have limits though in adaptability and environmental operating conditions.
Active vibration control AVC devices can replicate the behavior of a passive device as
described and also produce forces with a more general dependence on motion variables.
AVC devices may also adapt to changing operating condition variables and function well
even in extreme temperature and pressure environments, including vacuum conditions.
Chapter 12 provides an in-depth introduction to the methodology of AVC. This includes
discussions of modeling methods, common architecture, simulation and solution proce-
dures, and analysis of electromagnetic and piezoelectric actuators.

1.9 CHAPTER 1 EXERCISES

1.9.1 Exercise Location

All exercises may be conveniently viewed and downloaded at the following website:
www.wiley.com/go/palazzolo. This new feature greatly reduces the length of the printed
book, yielding a significant cost savings for the college student and allows the author to
provide additional exercises.

1.9.2 Exercise Goals

The goal of the Exercises in Chapter 1 is to strengthen the student’s understanding and
related engineering problem-solving skills in the following areas:

(a) The presence of vibrations in natural and industrial processes and devices

(b) The deleterious effects of vibration on the reliability, efficiency, and safety of industrial
processes and devices and on human health

(c) The quantified descriptions of vibrations

(d) The determination of failure and life of a vibrating object

(e) The use of vibration standards established by industry and government
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1.9.3 Sample Exercises: 1.6 and 1.11

Exercise 1.6 illustrates the use of machinery vibration standards for multiharmonic vibra-
tions of an electric motor-driven pump. Exercise 1.11 considers a vibrating, pulsation sup-
pression vessel for a natural gas transmission compressor. This exercise requires evaluation
of component and von Mises (equivalent) stresses and component life, given mean and
alternating (vibrating) motions. This exercise should impress on the student the role that
vibration analysis plays in designing machines for greater reliability and sharpen skills in
fatigue-related failure.

REFERENCES

ASTM E-1049–85, Standard Practices for Cycle Counting in Fatigue Analysis, (Reapproved 2011),
http://www.astm.org/DownloadStandardB.html?ASTM%20HC=ASTM&DESIGNATION=
E1049&AdID=&Split=&Campaign=Individual%20Standards%207&gclid=COf9kujhlcgCFYM-
aQodJ5cD4w (accessed 15 October 2015).

BUDYNAS, R. and NISBETT, J., Shigley’s Mechanical Engineering Design, 8th ed., McGraw Hill,
New York, 2008.

CANNON, R. H., Dynamics of Physical System, 1st ed., McGraw Hill, New York, 1967.
CDC, Health Hazard Report No. 94-0425, 1994.
COLLINS, J. A., Failure of Materials in Mechanical Design, 1st ed., John Wiley & Sons, New

York, 1981.
GRIFFIN, M. J., Handbook of Human Vibration, 1st ed., Academic Press, London, 1990.
HASSAN, O. A. B., Building Acoustics and Vibrations, 1st ed., World Scientific Publishing,

Singapore, 2009.

38 Vibration Theory and Applications with Finite Elements and Active Vibration Control



LEE, Y.-L., BARKEY, M. E., and KANG, H. T., Metal Fatigue Analysis Handbook: Practical Problem-
Solving Techniques for Computer-Aided Engineering, Elsevier, Waltham, MA, 2012.

NEWMAN, CARDINAL, J. H., The Idea of a University, edited by D. M. O’Connell, Loyola University
Press, Chicago, IL, 1927.

NICHOLAS, T., High Cycle Fatigue: A Mechanics of Materials Perspective, Elsevier, Oxford, 2006.
NIESLONY, A., Rainflow Counting Algorithm, MATLAB, Mathworks, Inc., Natick, MA, 2010.
NIOSH, Occupational Exposure to Hand-Arm Vibration, US Department of Health and Human

Services, Cincinnati, OH, 1989. http://www.cdc.gov/niosh/docs/89-106/89-106.pdf. Accessed
August 4, 2015.

PILKEY, W. D., Peterson’s Stress Concentration Factors, 2nd ed., John Wiley & Sons, Inc., New
York, 1997.

SHIGLEY, J. E., Mechanical Engineering Design, McGraw Hill, New York, 1989.
WANG, S., Mean Shear Stress Effect for a Notch-Free Ductile Material Under Pure Cyclic Torsional

Loads, Journal of Pressure Vessel Technology, Vol. 128, pp. 667–669, 2006.

Chapter 1 Background, Motivation, and Overview 39




