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    1.1    MULTICORE CHIP WITH HIGHLY EFFICIENT CORES 

 A multicore chip is one of the most promising approaches to achieve high 
performance. Formerly, frequency scaling was the best approach. However, the 
scaling has hit the power wall, and frequency enhancement is slowing down. 
Further, the performance of a single processor core is proportional to the 
square root of its area, known as Pollack ’ s rule  [1] , and the power is roughly 
proportional to the area. This means lower performance processors can achieve 
higher power effi ciency. Therefore, we should make use of the multicore chip 
with relatively low performance processors. 

 The power wall is not a problem only for high - end server systems. Embed-
ded systems also face this problem for further performance improvements  [2] . 
MIPS is the abbreviation of million instructions per second, and a popular 
integer - performance measure of embedded processors. The same performance 
processors should take the same time for the same program, but the original 
MIPS varies, refl ecting the number of instructions executed for a program. 
Therefore, the performance of a Dhrystone benchmark relative to that of a 
VAX 11/780 minicomputer is broadly used  [3, 4] . This is because it achieved 1 
MIPS, and the relative performance value is called VAX MIPS or DMIPS, or 
simply MIPS. Then GIPS (giga - instructions per second) is used instead of the 
MIPS to represent higher performance. 

 Figure  1.1  roughly illustrates the power budgets of chips for various applica-
tion categories. The horizontal and vertical axes represent performance 
(DGIPS) and effi ciency (DGIPS/W) in logarithmic scale, respectively. The 
oblique lines represent constant power (W) lines and constant product lines 
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of the power – performance ratio and the power (DGIPS 2 /W). The product 
roughly indicates the attained degree of the design. There is a trade - off 
relationship between the power effi ciency and the performance. The power 
of chips in the server/personal computer (PC) category is limited at around 
100   W, and the chips above the 100 - W oblique line must be used. Similarly, the 
chips roughly above the 10 -  or 1 - W oblique line must be used for equipped -
 devices/mobile PCs, or controllers/mobile devices, respectively. Further, some 
sensors must use the chips above the 0.1 - W oblique line, and new categories 
may grow from this region. Consequently, we must develop high DGIPS 2 /W 
chips to achieve high performance under the power limitations.   

 Figure  1.2  maps various processors on a graph, whose horizontal and verti-
cal axes respectively represent operating frequency (MHz) and power –
 frequency ratio (MHz/W) in logarithmic scale. Figure  1.2  uses MHz or GHz 
instead of the DGIPS of Figure  1.1 . This is because few DGIPS of the server/
PC processors are disclosed. Some power values include leak current, whereas 
the others do not; some are under the worst conditions while the others are 
not. Although the MHz value does not directly represent the performance, 
and the power measurement conditions are not identical, they roughly repre-
sent the order of performance and power. The triangles and circles represent 
embedded and server/PC processors, respectively. The dark gray, light gray, 
and white plots represent the periods up to 1998, after 2003, and in between, 
respectively. The GHz 2 /W improved roughly 10 times from 1998 to 2003, but 
only three times from 2003 to 2008. The enhancement of single cores is appar-
ently slowing down. Instead, the processor chips now typically adopt a multi-
core architecture.   

 Figure  1.3  summarizes the multicore chips presented at the  International 
Solid - State Circuit Conference  ( ISSCC ) from 2005 to 2008. All the processor 
chips presented at ISSCC since 2005 have been multicore ones. The axes are 

     FIGURE 1.1.     Power budgets of chips for various application categories.  
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     FIGURE 1.2.     Performance and effi ciency of various processors.  
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     FIGURE 1.3.     Some multicore chips presented at ISSCC.  
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similar to those of Figure  1.2 , although the horizontal axis refl ects the number 
of cores. Each plot at the start and end points of an arrow represent single 
core and multicore, respectively.   

 The performance of multicore chips has continued to improve, which has 
compensated for the slowdown in the performance gains of single cores in 
both the embedded and server/PC processor categories. There are two types 
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of muticore chips. One type integrates multiple - chip functions into a single 
chip, resulting in a multicore SoC. This integration type has been popular for 
more than 10 years. Cell phone SoCs have integrated various types of  hard-
ware intellectual properties  ( HW - IPs ), which were formerly integrated into 
multiple chips. For example, an SH - Mobile G1 integrated the function of both 
the application and baseband processor chips  [5] , followed by SH - Mobile G2 
 [6]  and G3  [7, 8] , which enhanced both the application and baseband function-
alities and performance. The other type has increased number of cores to meet 
the requirements of performance and functionality enhancement. The RP - 1, 
RP - 2 and RP - X are the prototype SoCs, and an SH2A - DUAL  [9]  and an SH -
 Navi3  [10]  are the multicore products of this enhancement type. The transition 
from single core chips to multicore ones seems to have been successful on 
the hardware side, and various multicore products are already on the market. 
However, various issues still need to be addressed for future multicore 
systems. 

 The fi rst issue concerns memories and interconnects. Flat memory and 
interconnect structures are the best for software, but hardly possible in terms 
of hardware. Therefore, some hierarchical structures are necessary. The power 
of on - chip interconnects for communications and data transfers degrade power 
effi ciency, and a more effective process must be established. Maintaining the 
external input/output (I/O) performance per core is more diffi cult than increas-
ing the number of cores, because the number of pins per transistors decreases 
for fi ner processes. Therefore, a breakthrough is needed in order to maintain 
the I/O performance. 

 The second issue concerns runtime environments. The performance scal-
ability was supported by the operating frequency in single core systems, but 
it should be supported by the number of cores in multicore systems. There-
fore, the number of cores must be invisible or virtualized with small overhead 
when using a runtime environment. A multicore system will integrate differ-
ent subsystems called domains. The domain separation improves system reli-
ability by preventing interference between domains. On the other hand, the 
well - controlled domain interoperation results in an effi cient integrated system. 

 The third issue relates to the software development environments. Multi-
core systems will not be effi cient unless the software can extract applica-
tion parallelism and utilize parallel hardware resources. We have already 
accumulated a huge amount of legacy software for single cores. Some legacy 
software can successfully be ported, especially for the integration type of mul-
ticore SoCs, like the SH - Mobile G series. However, it is more diffi cult with the 
enhancement type. We must make a single program that runs on multicore, 
or distribute functions now running on a single core to multicore. Therefore, 
we must improve the portability of legacy software to the multicore systems. 
Developing new highly parallel software is another issue. An application or 
parallelization specialist could do this, although it might be necessary to have 
specialists in both areas. Further, we need a paradigm shift in the development, 
for example, a higher level of abstraction, new parallel languages, and assistant 
tools for effective parallelization.  
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   1.2    SUPERH  ™    RISC  ENGINE FAMILY ( SH ) PROCESSOR CORES 

 As mentioned above, a multicore chip is one of the most promising approaches 
to realize high effi ciency, which is the key factor to achieve high performance 
under some fi xed power and cost budgets. Therefore, embedded systems are 
employing multicore architecture more and more. The multicore is good for 
multiplying single - core performance with maintaining the core effi ciency, but 
does not enhance the effi ciency of the core itself. Therefore, we must use highly 
effi cient cores. SuperH  ™   (Renesas Electronics, Tokyo) reduced instruction set 
computer (RISC) engine family (SH) processor cores are highly effi cient 
typical embedded central processing unit (CPU) cores for both single -  and 
multicore chips. 

   1.2.1    History of  SH  Processor Cores 

 Since the beginning of the microprocessor history, a processor especially for 
PC/servers had continuously advanced its performance while maintaining a 
price range from hundreds to thousands of dollars  [11, 12] . On the other hand, 
a single - chip microcontroller had continuously reduced its price, resulting in 
the range from dozens of cents to several dollars with maintaining its perfor-
mance, and had been equipped to various products  [13] . As a result, there was 
a situation of no demand on the processor of the middle price range from tens 
to hundreds of dollars. 

 However, with the introduction of the home game console in the late 1980s 
and the digitization of the home electronic appliances from the 1990s, there 
occurred the demands to a processor suitable for multimedia processing in 
this price range. Instead of seeking high performance, such a processor has 
attached great importance to high effi ciency. For example, the performance is 
1/10 of a processor for PCs, but the price is 1/100, or the performance equals 
to a processor for PCs for the important function of the product, but the price 
is 1/10. The improvement of area effi ciency has become the important issue in 
such a processor. 

 In the late 1990s, a high performance processor consumed too high power 
for mobile devices, such as cellular phones and digital cameras, and the demand 
was increasing on the processor with higher performance and lower power for 
multimedia processing. Therefore, the improvement of the power effi ciency 
became the important issues. Furthermore, when the 2000s begins, more func-
tions were integrated by further fi ner processes, but on the other hand, the 
increase of the initial and development costs became a serious problem. As a 
result, the fl exible specifi cation and the cost reduction came to be important 
issues. In addition, the fi ner processes suffered from the more leakage current. 

 Under the above background, embedded processors were introduced to 
meet the requirements, and have improved the area, power, and development 
effi ciencies. The SH processor cores are one of such highly effi cient CPU cores. 

 The fi rst SH processor was developed based on SuperH architecture as one 
of embedded processors in 1993. Then the SH processors have been developed 
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as a processor with suitable performance for multimedia processing and area -
 and - power effi ciency. In general, performance improvement causes degra-
dation of the effi ciency as Pollack ’ s rule indicates  [1] . However, we can fi nd 
ways to improve both performance and effi ciency. Although individually each 
method is a small improvement, overall it can still make a difference. 

 The fi rst - generation product, SH - 1, was manufactured using a 0.8 -   μ  m 
process, operated at 20 MHz, and achieved performance of 16 MIPS in 500   mW. 
It was a high performance single - chip microcontroller, and integrated a read -
 only memory (ROM), a random access memory (RAM), a  direct memory 
access controller  ( DMAC ), and an interrupt controller. 

 The second - generation product, SH - 2, was manufactured using the same 
0.8 -   μ  m process as the SH - 1 in 1994  [14] . It operated at 28.5   MHz, and achieved 
performance of 25 MIPS in 500   mW by optimization on the redesign from 
the SH - 1. The SH - 2 integrated a cache memory and an SDRAM controller 
instead of the ROM and the RAM of the SH - 1. It was designed for the systems 
using external memories. The integrated SDRAM controller did not popular 
at that time, but enabled to eliminate an external circuitry, and contributed to 
system cost reduction. In addition, the SH - 2 integrated a 32 - bit multiplier and 
a divider to accelerate multimedia processing. And it was equipped to a home 
game console, which was one of the most popular digital appliances. The SH - 2 
extend the application fi eld of the SH processors to the digital appliances with 
multimedia processing. 

 The third - generation product SH - 3 was manufactured using a 0.5 -   μ  m 
process in 1995  [15] . It operated at 60   MHz, and achieved performance of 
60   MIPS in 500   mW. Its power effi ciency was improved for a mobile device. 
For example, the clock power was reduced by dividing the chip into plural 
clock regions and operating each region with the most suitable clock fre-
quency. In addition, the SH - 3 integrated a  memory management unit  ( MMU ) 
for such devices as a personal organizer and a handheld PC. The MMU is 
necessary for a general - purpose  operating system  ( OS ) that enables various 
application programs to run on the system. 

 The fourth - generation product, SH - 4, was manufactured using a 0.25 -   μ  m 
process in 1997  [16 – 18] . It operated at 200   MHz, and achieved performance 
of 360   MIPS in 900   mW. The SH - 4 was ported to a 0.18 -   μ  m process, and its 
power effi ciency was further improved. The power effi ciency and the product 
of performance and the effi ciency reached to 400   MIPS/W and 0.14   GIPS 2 /W, 
respectively, which were among the best values at that time. The product rough-
ly indicates the attained degree of the design, because there is a trade - off 
relationship between performance and effi ciency. 

 The fi fth - generation processor, SH - 5, was developed with a newly defi ned 
 instruction set architecture  ( ISA ) in 2001  [19 – 21] , and an SH - 4A, the advanced 
version of the SH - 4, was also developed with keeping the ISA compatibil-
ity in 2003. The compatibility was important, and the SH - 4A was used for 
various products. The SH - 5 and the SH - 4A were developed as a CPU core 
connected to other various HW - IPs on the same chip with a SuperHyway 
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standard internal bus. This approach was available using the fi ne process of 
0.13     μ  m, and enabled to integrate more functions on a chip, such as a video 
codec, 3D graphics, and  global positioning systems  ( GPS ). 

 An SH - X, the fi rst generation of the SH - 4A processor core series, achieved 
a performance of 720   MIPS with 250   mW using a 0.13 -   μ  m process  [22 – 26] . The 
power effi ciency and the product of performance and the effi ciency reached 
to 2,880   MIPS/W and 2.1   GIPS 2 /W, respectively, which were among the best 
values at that time. The low power version achieved performance of 360   MIPS 
and power effi ciency of 4,500   MIPS/W  [27 – 29] . 

 An SH - X2, the second - generation core, achieved 1,440   MIPS using a 90 - nm 
process, and the low power version achieved power effi ciency of 6,000   MIPS/W 
in 2005  [30 – 32] . Then it was integrated on product chips  [5 – 8] . 

 An SH - X3, the third - generation core, supported multicore features for 
both SMP and AMP  [33, 34] . It was developed using a 90 - nm generic process 
in 2006, and achieved 600   MHz and 1,080   MIPS with 360   mW, resulting in 
3,000   MIPS/W and 3.2   GIPS 2 /W. The fi rst prototype chip of the SH - X3 was a 
RP - 1 that integrated four SH - X3 cores  [35 – 38] , and the second one was a RP - 2 
that integrated eight SH - X3 cores  [39 – 41] . Then, it was ported to a 65 - nm low 
power process, and used for product chips  [10] . 

 An SH - X4, the latest fourth - generation core, was developed using a 45 - nm 
low power process in 2009, and achieved 648   MHz and 1,717   MIPS with 
106   mW, resulting in 16,240   MIPS/W and 28   GIPS 2 /W  [42 – 44] .  

   1.2.2    Highly Effi cient  ISA  

 Since the beginning of the RISC architecture, all the RISC processor had 
adopted a 32 - bit fi xed - length ISA. However, such a RISC ISA causes larger 
code size than a conventional complex instruction set computer (CISC) ISA, 
and requires larger capacity of program memories including an instruction 
cache. On the other hand, a CISC ISA has been variable length to defi ne 
the instructions of various complexities from simple to complicated ones. The 
variable length is good for realizing the compact code sizes, but requires 
complex decoding, and is not suitable for parallel decoding of plural instruc-
tions for the superscalar issue. 

 SH architecture with the 16 - bit fi xed - length ISA was defi ned in such a situ-
ation to achieve compact code sizes and simple decoding. The 16 - bit fi xed -
 length ISA was spread to other processor ISAs, such as ARM Thumb and 
MIPS16. 

 As always, there should be pros and cons of the selection, and there are 
some drawbacks of the 16 - bit fi xed - length ISA, which are the restriction of 
the number of operands and the short literal length in the code. For example, 
an instruction of a binary operation modifi es one of its operand, and an extra 
data transfer instruction is necessary if the original value of the modifi ed 
operand must be kept. A literal load instruction is necessary to utilize a longer 
literal than that in an instruction. Further, there is an instruction using an 
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implicitly defi ned register, which contributes to increase the number of operand 
with no extra operand fi eld, but requires special treatment to identify it, and 
spoils orthogonal characteristics of the register number decoding. Therefore, 
careful implementation is necessary to treat such special features.  

   1.2.3    Asymmetric In - Order Dual - Issue Superscalar Architecture 

 Since a conventional superscalar processor gave priority to performance, the 
superscalar architecture was considered to be ineffi cient, and scalar architec-
ture was still popular for embedded processors. However, this is not always 
true. Since the SH - 4 design, SH processors have adopted the superscalar archi-
tecture by selecting an appropriate microarchitecture with considering effi -
ciency seriously for an embedded processor. 

 The asymmetric in - order dual - issue superscalar architecture is the base 
microarchitecture of the SH processors. This is because it is diffi cult for a 
general - purpose program to utilize the simultaneous issue of more than two 
instructions effectively; a performance enhancement is not enough to compen-
sate the hardware increase for the out - of - order issue, and symmetric supers-
calar issue requires resource duplications. Then, the selected architecture can 
maintain the effi ciency of the conventional scalar issue one by avoiding the 
above ineffi cient choices. 

 The asymmetric superscalar architecture is sensitive to instruction catego-
rizing, because the same category instruction cannot be issued simultaneously. 
For example, if we categorize all fl oating - point instructions in the same cate-
gory, we can reduce the number of fl oating - point register ports, but cannot 
issue both fl oating - point instructions of arithmetic and  load/store /transfer oper-
ations at a time. This degrades the performance. Therefore, the categorizing 
requires careful trade - off consideration between performance and hardware 
cost. 

 First of all, both the integer and load/store instructions are used most fre-
quently, and categorized to different groups of integer (INT) and  load/store  
( LS ), respectively. This categorization requires address calculation unit in 
addition to the conventional  arithmetic logical unit  ( ALU ). Branch instruc-
tions are about one - fi fth of a program on average. However, it is diffi cult to 
use the ALU or the address calculation unit to implement the early - stage 
branch, which calculates the branch addresses at one - stage earlier than the 
other type of operations. Therefore, the branch instruction is categorized in 
another group of  branch  ( BR ) with a branch address calculation unit. Even a 
RISC processor has a special instruction that cannot fi t to the superscalar issue. 
For example, some instruction changes a processor state, and is categorized to 
a group of  nonsuperscalar  ( NS ), because most of instructions cannot be issued 
with it. 

 The 16 - bit fi xed - length ISA frequently uses an instruction to transfer a 
literal or register value to a register. Therefore, the transfer instruction is cat-
egorized to the BO group to be executable on both integer and load/store 



SH-X: A HIGHLY EFFICIENT CPU CORE  9

(INT and LS) pipelines, which were originally for the INT and LS groups. 
Then the transfer instruction can be issued with no resource confl ict. A usual 
program cannot utilize all the instruction issue slots of conventional RISC 
architecture that has three operand instructions and uses transfer instructions 
less frequently. Extra transfer instructions of the 16 - bit fi xed - length ISA can 
be inserted easily with no resource confl ict to the issue slots that would be 
empty for a conventional RISC. 

 The fl oating - point load/store/transfer and arithmetic instructions are cate-
gorized to the LS group and a  fl oating - point execution  ( FE ) group, respec-
tively. This categorization increases the number of the ports of the fl oating - point 
register fi le. However, the performance enhancement deserves the increase. 
The fl oating - point transfer instructions are not categorized to the BO group. 
This is because neither the INT nor FE group fi t to the instruction. The INT 
pipeline cannot use the fl oating - point register fi le, and the FE pipeline is 
too complicated to treat the simple transfer operation. Further, the transfer 
instruction is often issued with a FE group instruction, and the categorization 
to other than the FE group is enough condition for the performance. 

 The SH ISA supports fl oating - point sign negation and absolute value 
(FNEG and FABS) instructions. Although these instructions seem to fi t the 
FE group, they are categorized to the LS group. Their operations are simple 
enough to execute at the LS pipeline, and the combination of another arith-
metic instruction becomes a useful operation. For example, the FNEG and 
 fl oating - point multiply – accumulate  ( FMAC ) instructions became a multiply -
 and - subtract operation. 

 Table  1.1  summarizes the instruction categories for asymmetric super-
scalar architecture. Table  1.2  shows the ability of simultaneous issue of two 
instructions. As an asymmetric superscalar processor, each pipeline for 
the INT, LS, BR, or FE group is one, and the simultaneous issue is limited 
to a pair of different group instructions, except for a pair of the BO group 
instructions, which can be issued simultaneously using both the INT and 
LS pipelines. An NS group instruction cannot be issued with another 
instruction.     

   1.3     SH  -  X : A HIGHLY EFFICIENT  CPU  CORE 

 The SH - X has enhanced its performance by adopting superpipeline architec-
ture to the base micro - architecture of the asymmetric in - order dual - issue super-
scalar architecture. The operating frequency would be limited by an applied 
process without fundamental change of the architecture or microarchitecture. 
Although conventional superpipeline architecture was thought ineffi cient as 
was the conventional superscalar architecture before applying to the SH - 4, 
the SH - X core enhanced the operating frequency with maintaining the high 
effi ciency. 
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  TABLE 1.2.    Simultaneous Issue of Instructions 

     

   Second Instruction Category  

   BO     INT     LS     BR     FE     NS  

  First Instruction 
Category  

  BO     ✓      ✓      ✓      ✓      ✓       
  INT     ✓          ✓      ✓      ✓       
  LS     ✓      ✓          ✓      ✓       
  BR     ✓      ✓      ✓          ✓       
  FE     ✓      ✓      ✓      ✓           
  NS                          

  TABLE 1.1.    Instruction Categories for Asymmetric Superscalar Architecture 

   INT     FE  

  ADD; ADDC; ADDV; 
 SUB; SUBC; SUBV; 
 MUL; MULU; MULS; 
 DMULU; DMULS; 
 DIV0U; DIV0S; DIV1; 
 CMP; NEG; NEGC; NOT; 
 DT; MOVT; CLRT; SETT; 
 CLRMAC; CLRS; SETS; 
 TST Rm, Rn; TST imm, R0; 
 AND Rm, Rn; AND imm, R0; 
 OR Rm, Rn; OR imm, R0; 
 XOR Rm, Rn; XOR imm, R0; 
 ROTL; ROTR; ROTCL; ROTCR; 
 SHAL; SHAR; SHAD; SHLD; 
 SHLL; SHLL2; SHLL8; SHLL16; 
 SHLR; SHLR2; SHLR8; SHLR16; 
 EXTU; EXTS; SWAP; XTRCT  

  FADD; FSUB; FMUL;  
  FDIV; FSQRT; FCMP;  
  FLOAT; FTRC;  
  FCNVSD; FCNVDS;  
  FMAC; FIPR; FTRV;  
  FSRRA; FSCA;  
  FRCHG; FSCHG; FPCHG  

  BO  

  MOV imm, Rn;  
  MOV Rm, Rn; NOP  

  BR  

  BRA; BSR; BRAF; BSRF; 
 BT; BF; BT/S; BF/S; 
 JMP; JSR; RTS  

  NS  

  AND imm, @(R0,GBR); 
 OR imm, @(R0,GBR); 
 XOR imm, @(R0,GBR); 
 TST imm, @(R0,GBR); 
 MAC; SYNCO; 
 MOVLI; MOVCO; 
 LDC (SR/SGR/DBR); 
 STC (SR); RTE; 
 LDTLB; ICBI; PREFI; 
 TAS; TRAPA; SLEEP  

   LS  

  MOV (load/store);  
  MOVA; MOVCA;  
  FMOV; FLDI0; FLDI1;  
  FABS; FNEG;  
  FLDS; FSTS; LDS; STS;  
  LDC (except SR/SGR/DBR);  
  STC (except SR);  
  OCBI; OCBP; OCBWB; PREF  
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   1.3.1    Microarchitecture Selections 

 The SH - X has seven - stage superpipeline to maintain the effi ciency among 
various numbers of stages applied to various processors up to highly super-
pipelined 20 stages  [45] . The conventional seven - stage pipeline degraded the 
cycle performance compared with the fi ve - stage one that is popular for effi -
cient embedded processors. Therefore, appropriate methods were chosen 
to enhance and recover the cycle performance with the careful trade - off judg-
ment of performance and effi ciency. Table  1.3  summarizes the selection result 
of the microarchitecture.   

 An out - of - order issue is the popular method used by a high - end processor 
to enhance the cycle performance. However, it requires much hardware and 
is too ineffi cient especially for general - purpose register handling. The SH - X 
adopts an in - order issue except branch instructions using no general - purpose 
register. 

 The branch penalty is the serious problem for the superpipeline architec-
ture. The SH - X adopts a branch prediction and an out - of - order branch issue, 
but does not adopt a more expensive way with a  branch target buffer  ( BTB ) 
and an incompatible way with plural instructions. The branch prediction is 
categorized to static and dynamic ones, and the static ones require the archi-
tecture change to insert the static prediction result to the instruction. There-
fore, the SH - X adopts a dynamic one with a  branch history table  ( BHT ) and 
a global history. 

 The load/store latencies are also a serious problem, and the out - of - order 
issue is effective to hide the latencies, but too ineffi cient to adopt as mentioned 
above. The SH - X adopts a delayed execution and a store buffer as more effi -
cient methods. 

 The selected methods are effective to reduce the pipeline hazard caused by 
the superpipeline architecture, but not effective to avoid a long - cycle stall 
caused by a cache miss for an external memory access. Such a stall could be 
avoided by an out - of - order architecture with large - scale buffers, but is not a 
serious problem for embedded systems.  

  TABLE 1.3.    Microarchitecture Selections of  SH  -  X  

        Selections     Other Candidates     Merits  

  Pipeline stages    7    5, 6, 8, 10, 15, 20    1.4 times frequency 
enhancement  

  Branch 
acceleration  

  Out - of - order issue    BTB, branch with 
plural instructions  

  Compatibility, 
small area, 
for low 
frequency branch  

  Branch 
prediction  

  Dynamic (BHT, 
global history)  

  Static (fi xed 
direction, hint bit 
in instruction)  

  Latency 
concealing  

  Delayed execution, 
store buffers  

  Out - of - order issue    Simple, small  



12  LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

   1.3.2    Improved Superpipeline Structure 

 Figure  1.4  illustrates a conventional seven - stage superpipeline structure. The 
seven stages consist of 1st and 2nd instruction fetch (I1 and I2) stages and 
an  instruction decoding  ( ID ) stage for all the pipelines, 1st to 4th execution 
(E1, E2, E3, and E4) stages for the INT, LS, and FE pipelines. The FE pipeline 
has nine stages with two extra execution stages of E5 and E6.   

 A conventional seven - stage pipeline has less performance than a fi ve - stage 
one by 20%. This means the performance gain of the superpipeline architec-
ture is only 1.4    ×    0.8    =    1.12 times, which would not compensate the hardware 
increase. The branch and load - use - confl ict penalties increase by the increase 
of the instruction - fetch and data - load cycles, respectively. They are the main 
reason of the 20% performance degradation. 

 Figure  1.5  illustrates the seven - stage superpipeline structure of the SH - X 
with delayed execution, store buffer, out - of - order branch, and fl exible for-
warding. Compared with the conventional pipeline shown in Figure  1.4 , the 
INT pipeline starts its execution one - cycle later at the E2 stage, a store data 
is buffered to the store buffer at the E4 stage and stored to the data cache 
at the E5 stage, the data transfer of the fl oating - point unit (FPU) supports 

     FIGURE 1.4.     Conventional seven - stage superpipeline structure.  

Instruction FetchEarly Branch
I1
I2

Execution FPU
Arithmetic

Address
Instruction Decoding FPU Instruction DecodingBranch

FPU
DataData

ID
E1
E2 Execution

WB WB

TransferData
Load/Store

WB

E2
E3
E4
E5

WB
E5
E6

FELSINTBR

     FIGURE 1.5.     Seven - stage superpipeline structure of SH - X.  
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fl exible forwarding. The BR pipeline starts at the ID stage, but is not synchro-
nized to the other pipelines for an out - of - order branch issue.   

 The delayed execution is effective to reduce the load - use confl ict as Figure 
 1.6  illustrates. It also lengthens the decoding stages into two except for the 
address calculation, and relaxes the decoding time. With the conventional 
architecture shown in Figure  1.4 , a load instruction, MOV.L, set ups an R0 
value at the ID stage, calculates a load address at the E1 stage, loads a data 
from the data cache at the E2 and E3 stages, and the load data is available at 
the end of the E3 stage. An ALU instruction, ADD, setups R1 and R2 values 
at the ID stage, adds the values at the E1 stage. Then the load data is forwarded 
from the E3 stage to the ID stage, and the pipeline stalls two cycles. With 
the delayed execution, the load instruction execution is the same, and the add 
instruction setups R1 and R2 values at E1 stage, adds the values at the E2 
stage. Then the load data is forwarded from the E3 stage to the E1 stage, and 
the pipeline stalls only one cycle. This is the same cycle as those of conven-
tional fi ve - stage pipeline structures.   

 As illustrated in Figure  1.5 , a store instruction performs an address calcula-
tion, TLB (translation lookaside buffer) and cache - tag accesses, a store - data 
latch, and a data store to the cache at the E1, E2, E4, and E5 stages, respec-
tively, whereas a load instruction performs a cache access at the E2 stage. This 
means the three - stage gap of the cache access timing between the E2 and the 
E5 stages of a load and a store. However, a load and a store use the same port 
of the cache. Therefore, a load instruction gets the priority to a store instruc-
tion if the access is confl icted, and the store instruction must wait the timing 
with no confl ict. In the N - stage gap case, N entries are necessary for the store 
buffer to treat the worst case, which is a sequence of N consecutive store issues 
followed by N consecutive load issues, and the SH - X implemented three 
entries.  

   1.3.3    Branch Prediction and Out - of - Order Branch Issue 

 Figure  1.7  illustrates a branch execution sequence of the SH - X before branch 
acceleration with a program sequence consisting of compare, conditional -
 branch, delay - slot, and branch - target instructions.   

     FIGURE 1.6.     Load - use confl ict reduction by delayed execution.  
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 The conditional - branch and delay - slot instructions are issued three cycles 
after the compare instruction issue, and the branch - target instruction is issued 
three cycles after the branch issue. The compare operation starts at the E2 
stage by the delayed execution, and the result is available at the middle of the 
E3 stage. Then the conditional - branch instruction checks the result at the latter 
half of the ID stage, and generates the target address at the same ID stage, 
followed by the I1 and I2 stages of the target instruction. As a result, eight 
empty issue slots or four stall cycles are caused as illustrated. This means only 
one - third of the issue slots are used for the sequence. 

 Figure  1.8  illustrates the execution sequence of the SH - X after branch 
acceleration. The branch operation can start with no pipeline stall by a branch 
prediction, which predicts the branch direction that the branch is taken or not 

     FIGURE 1.8.     Branch execution sequence of SH - X.  

E1 E2 E4I2I1 ID E3 E4

IQ

I2I1

I2I1

I2I1

E1 E2 E3 E4

E1 E2 E3 E4

E1 E3 E4IQ

ID

ID

ID

E1 E2 E3 E4Compare I2I1 IQ

I1 E2IQ

I2I1 E1 E2 E3 E4IQ

ID

ID

I1

IQ IQ

Branch

Delay Slot

Target

IDI2I1

E1 E2 E3 E4I2I1

E3 E4I2

ID

IDTarget E1 E3I2

E1 E2

E2

E3 E4I2I1

IQI2I1

I2I1

E1 E2 E3 E4

E1 E2 E3IQ

ID

ID

ID E1 E2 E3 E4IQ

I2I1

I2I1 IQ

IQ
IQ

IQ

IQ

IQ

IQ

IQ

E1 E2 E3 E4

E1 E2 E3 E4

ID

ID

Fall Through

I2I1
I2I1

IQ

IQ
IQ

IQ

IQ

IQ

IQ

IQ

IQ

IQ

E2 E3 E4

IQ E1 E2 E3 E4

E1 E2 E3 E4IQ

ID

ID

(Prediction Miss)

2-Cycle Stall

     FIGURE 1.7.     Branch execution sequence before branch acceleration.  
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taken. However, this is not early enough to make the empty issue slots zero. 
Therefore, the SH - X adopted an out - of - order issue to the branches using no 
general - purpose register.   

 The SH - X fetches four instructions per cycle, and issues two instructions 
at most. Therefore, Instructions are buffered in an  instruction queue  ( IQ ) as 
illustrated. A branch instruction is searched from the IQ or an instruction -
 cache output at the I2 stage and provided to the ID stage of the branch pipe-
line for the out - of - order issue earlier than the other instructions provided to 
the ID stage in order. Then the conditional branch instruction is issued right 
after it is fetched while the preceding instructions are in the IQ, and the issue 
becomes early enough to make the empty issue slots zero. As a result, the 
target instruction is fetched and decoded at the ID stage right after the delay -
 slot instruction. This means no branch penalty occurs in the sequence when 
the preceding or delay - slot instructions stay two or more cycles in the IQ. 

 The compare result is available at the E3 stage, and the prediction is 
checked if it is hit or miss. In the miss case, the instruction of the correct fl ow 
is decoded at the ID stage right after the E3 stage, and two - cycle stall occurs. 
If the correct fl ow is not held in the IQ, the miss - prediction recovery starts 
from the I1 stage, and takes two more cycles. 

 Historically, the dynamic branch prediction method started from a BHT 
with 1 - bit history per entry, which recorded a branch direction of taken or not 
for the last time, and predicted the same branch direction. Then, a BHT with 
2 - bit history per entry became popular, and the four direction states of strongly 
taken, weekly taken, weekly not taken, and strongly not taken were used for 
the prediction to refl ect the history of several times. There were several types 
of the state transitions, including a simple up - down transition. Since each entry 
held only one or two bits, it is too expensive to attach a tag consisting of a part 
of the branch - instruction address, which was usually about 20   bits for a 32 - bit 
addressing. Therefore, we could increase the number of entries about ten or 
twenty times without the tag. Although the different branch instructions could 
not be distinguished without the tag and there occurred a false hit, the merit 
of the entry increase exceeded the demerit of the false hit. A global history 
method was also popular for the prediction, and usually used with the 2 - bit/
entry BHT. 

 The SH - X stalled only two cycles for the prediction miss, and the perfor-
mance was not so sensitive to the hit ratio. Further, the one - bit method required 
a state change only for a prediction miss, and it could be done during the stall. 
Therefore, the SH - X adopted a dynamic branch prediction method with a 
4K - entry 1 - bit/entry BHT and a global history. The size was much smaller than 
the instruction and data caches of 32   kB each.  

   1.3.4    Low Power Technologies 

 The SH - X achieved excellent power effi ciency by using various low - power 
technologies. Among them, hierarchical clock gating and pointer - controlled 
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pipeline are explained in this section. Figure  1.9  illustrates a conventional 
clock - gating method. In this example, the clock tree has four levels with A - , 
B - , C - , and D - drivers. The A - driver receives the clock from the clock generator, 
and distributes the clock to each module in the processor. Then, the B - driver 
of each module receives the clock and distributes it to various submodules, 
including 128 – 256  fl ip - fl op s ( F/F s). The B - driver gates the clock with the signal 
from the clock control register, whose value is statically written by software 
to stop and start the modules. Next, the C -  and D - drivers distribute the clock 
hierarchically to the leaf F/Fs with a  Control Clock Pin  ( CCP ). The leaf F/Fs 
are gated by hardware with the CCP to avoid activating them unnecessarily. 
However, the clock tree in the module is always active while the module is 
activated by software.   

 Figure  1.10  illustrates the clock - gating method of the SH - X. In addition to 
the clock gating at the B - driver, the C - drivers gate the clock with the signals 
dynamically generated by hardware to reduce the clock tree activity. As a 
result, the clock power is 30% less than that of the conventional method.   

 The superpipeline architecture improved operating frequency, but increased 
number of F/Fs and power. Therefore, one of the key design considerations 

     FIGURE 1.9.     Conventional clock - gating method. CCP, control clock pin; GCKD, 
gated clock driver cell.  
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     FIGURE 1.10.     Clock - gating method of SH - X. CCP, control clock pin; GCKD, gated 
clock driver cell.  
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was to reduce the activity ratio of the F/Fs. To address this issue, a pointer -
 controlled pipeline was developed. It realizes a pseudo pipeline operation with 
a pointer control. As shown in Figure  1.11 a, three pipeline F/Fs are connected 
in parallel, and the pointer is used to show which F/Fs correspond to which 
stages. Then, only one set of F/Fs is updated in the pointer - controlled pipeline, 
while all pipeline F/Fs are updated every cycle in the conventional pipeline, 
as shown in Figure  1.11 b.   

 Table  1.4  shows the relationship between F/Fs FF0 - FF2 and pipeline stages 
E2 - E4 for each pointer value. For example, when the pointer indexes zero, the 
FF0 holds an input value at E2 and keeps it for three cycles as E2, E3, and E4 
latches until the pointer indexes zero again and the FF0 holds a new input 
value. This method is good for a short latency operation in a long pipeline. The 
power of pipeline F/Fs decreases to 1/3 for transfer instructions, and decreases 
by an average of 25% as measured using Dhrystone 2.1.    

   1.3.5    Performance and Effi ciency Evaluations 

 The SH - X performance was measured using the Dhrystone 2.1 benchmark, as 
well as those of the SH - 3 and the SH - 4. The Dhrystone is a popular benchmark 

     FIGURE 1.11.     F/Fs of (a) pointer - controlled and (b) conventional pipelines.  
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  TABLE 1.4.    Relationship of  F / F s and Pipeline Stages 

   Pointer     FF0     FF1     FF2  

  0    E2    E4    E3  
  1    E3    E2    E4  
  2    E4    E3    E2  
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for evaluating integer performance of embedded processors. It is small enough 
to fi t all the program and data into the caches, and to use at the beginning 
of the processor development. Therefore, only the processor core architecture 
can be evaluated without the infl uence from the system level architecture, and 
the evaluation result can be fed back to the architecture design. On the con-
trary, the system level performance cannot be measured considering cache 
miss rates, external memory access throughput and latencies, and so on. 
The evaluation result includes compiler performance because the Dhrystone 
benchmark is described in C language. 

 Figure  1.12  shows the evaluated result of the cycle performance, architec-
tural performance, and actual performance. Starting from the SH - 3, fi ve major 
enhancements were adopted to construct the SH - 4 microarchitecture. The 
SH - 3 achieved 1.0   MIPS/MHz when it was released, and the SH - 4 compiler 
enhanced its performance to 1.1. The cycle performance of the SH - 4 was 
enhanced to 1.81   MIPS/MHz by Harvard architecture, superscalar architec-
ture, adding BO group, early - stage branch, and zero - cycle MOV operation. 
The SH - 4 enhanced the cycle performance by 1.65 times form the SH - 3, 
excluding the compiler contribution. The SH - 3 was a 60 - MHz processor in 
a 0.5 -   μ  m process, and estimated to be a 133 - MHz processor in a 0.25 -   μ  m 
process. The SH - 4 achieved 200   MHz in the same 0.25 -   μ  m process. Therefore, 
SH - 4 enhanced the frequency by 1.5 times form the SH - 3. As a result, the 

     FIGURE 1.12.     Performance improvement of SH - 4 and SH - X.  
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architectural performance of the SH - 4 is 1.65    ×    1.5    =    2.47 times as high as that 
of the SH - 3.   

 With adopting a conventional seven - stage superpipeline, the performance 
was decreased by 18% to 1.47   MIPS/MHz. Branch prediction, out - of - order 
branch issue, store buffer and delayed execution of the SH - X improve the 
cycle performance by 23%, and recover the 1.8   MIPS/MHz. Since 1.4 times 
high operating frequency was achieved by the superpipeline architecture, the 
architectural performance of the SH - X was also 1.4 times as high as that of 
the SH - 4. The actual performance of the SH - X was 720   MIPS at 400   MHz 
in a 0.13 -   μ  m process, and improved by two times from the SH - 4 in a 0.25 -   μ  m 
process. 

 Figures  1.13  and  1.14  show the area and power effi ciency improvements, 
respectively. The upper three graphs of both the fi gures show architectural 
performance, relative area/power, and architectural area – /power – performance 
ratio. The lower three graphs show actual performance, area/power, and area – /
power – performance ratio.   

 The area of the SH - X core was 1.8   mm 2  in a 0.13 -   μ  m process, and the area 
of the SH - 4 was estimated as 1.3   mm 2  if it was ported to a 0.13 -   μ  m process. 
Therefore, the relative area of the SH - X was 1.4 times as much as that of the 
SH - 4, and 2.26 times as much as the SH - 3. Then, the architectural area effi -
ciency of the SH - X was nearly equal to that of the SH - 4, and 1.53 times as 
high as the SH - 3. The actual area effi ciency of the SH - X reached 400   MIPS/
mm 2 , which was 8.5 times as high as the 74   MIPS/ mm 2  of the SH - 4. 

 SH - 4 was estimated to achieve 200   MHz, 360   MIPS with 140   mW at 1.15   V, 
and 280   MHz, 504   MIPS with 240   mW at 1.25   V. The power effi ciencies were 
2,500 and 2,100   MIPS/W, respectively. On the other hand, SH - X achieved 
200   MHz, 360   MIPS with 80   mW at 1.0   V, and 400   MHz, 720   MIPS with 

     FIGURE 1.13.     Area effi ciency improvement of SH - 4 and SH - X.  
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250   mW at 1.25   V. The power effi ciencies were 4,500 and 2,880   MIPS/W, 
respectively. As a result, the power effi ciency of the SH - X improved by 1.8 
times from that of the SH - 4 at the same frequency of 200   MHz, and by 1.4 
times at the same supply voltage with enhancing the performance by 1.4 times. 
These were architectural improvements, and actual improvements were mul-
tiplied by the process porting.   

   1.4     SH  -  X   FPU : A HIGHLY EFFICIENT  FPU  

 The fl oating - point architecture and microarchitecture of the SH processors 
achieve high multimedia performance and effi ciency. An FPU of the SH pro-
cessor is highly parallel with keeping the effi ciency for embedded systems in 
order to compensate the insuffi cient parallelism of the dual - issue superscalar 
architecture for highly parallel applications like 3D graphics. 

 In late 1990s, it became diffi cult to support higher resolution and advanced 
features of the 3D graphics. It was especially diffi cult to avoid overfl ow and 
underfl ow of fi xed - point data with small dynamic range, and there was a 
demand to use fl oating - point data. Since it was easy to implement a four - way 
parallel operation with fi xed - point data, equivalent performance had to be 
realized to change the data type to the fl oating - point format at reasonable 
costs. 

 Since an FPU was about three times as large as a fi xed - point unit, and a 
four - way SMID required four times as large a datapath, it was too expensive 

     FIGURE 1.14.     Power effi ciency improvement of SH - 4 and SH - X.  
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to integrate a four - way SMID FPU. The latency of the fl oating - point opera-
tions was long, and required more number of registers than the fi xed - point 
operations. Therefore, effi cient parallelization and latency - reduction methods 
had to be developed. 

   1.4.1     FPU  Architecture of  SH  Processors 

 Sixteen is the limit of the number of registers directly specifi ed by the 16 - 
bit fi xed - length ISA, but the SH FPU architecture defi nes 32 registers as 
two banks of 16 registers. The two banks are front and back banks, named 
FR0 - FR15 and XF0 - XF15, respectively, and they are switched by changing a 
control bit FPSCR.FR in a  fl oating - point status and control register  ( FPSCR ). 
Most of instructions use only the front bank, but some instructions use both 
the front and back banks. The front bank registers are used as eight pairs or 
four length - 4 vectors as well as 16 registers, and the back bank registers are 
used as eight pairs or a four - by - four matrix. They are defi ned as follows:
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 Since an ordinary SIMD architecture of an FPU is too expensive for an 
embedded processor as described above, another parallelism is applied to 
the SH processors. The large hardware of an FPU is for a mantissa alignment 
before the calculation and normalization and rounding after the calculation. 
Further, a popular FPU instruction, FMAC, requires three read and one write 
ports. The consecutive FMAC operations are a popular sequence to accumu-
late plural products. For example, an inner product of two length - 4 vectors 
is one of such sequences, and popular in a 3D graphics program. Therefore, a 
fl oating - point inner - product instruction (FIPR) is defi ned to accelerate the 
sequence with smaller hardware than that for the SIMD. It uses the two of 
four length - 4 vectors as input operand, and modifi es the last register of one 
of the input vectors to store the result. The defi ning formula is as follows:

   FR FV FV[ ] ( , : , , , ).n m n m n+ = ⋅3 0 4 8 12   
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 This modifying - type defi nition is similar to the other instructions. However, 
for a length - 3 vector operation, which is also popular, you can get the result 
without destroying the inputs, by setting one element of the input vectors to 
zero. 

 The FIPR produces only one result, which is one - fourth of a four - way 
SIMD, and can save the normalization and rounding hardware. It requires 
eight input and one output registers, which are less than the 12 input and four 
output registers for a four - way SIMD FMAC. Further, the FIPR takes much 
shorter time than the equivalent sequence of one FMUL and three FMACs, 
and requires small number of registers to sustain the peak performance. As a 
result, the hardware is about half of the four - way SIMD. 

 The rounding rule of the conventional fl oating - point operations is strictly 
defi ned by an American National Standards Institute/Institute of Electrical 
and Electronics Engineers (ANSI/IEEE) 754 fl oating - point standard. The rule 
is to keep accurate values before rounding. However, each instruction per-
forms the rounding, and the accumulated rounding error sometimes becomes 
very serious. Therefore, a program must avoid such a serious rounding error 
without relying to hardware if necessary. The sequence of one FMUL and three 
FMACs can also cause a serious rounding error. For example, the following 
formula results in zero if we add the terms in the order of the formula by 
FADD instructions:

   1 0 2 1 2 1 2 1 0 2127 102 102 127. . . . .× + × + × − ×FFFFFE FFFFFE   

 However, the exact value is 1   •   FFFFFE    ×    2 103 , and the error is 1   •   FFFFFE    ×    2 103  
for the formula, which causes the worst error of 2  − 23  times of the maximum 
term. We can get the exact value if we change the operation order properly. 
The fl oating - point standard defi nes the rule of each operation, but does not 
defi ne the result of the formula, and either of the result is fi ne for the 
conformance. Since the FIPR operation is not defi ned by the standard, we 
defi ned its max imum error as  “ 2 E − 25     +  rounding error of result ”  to make it 
better than or equal to the average and worst - case errors of the equivalent 
sequence that conforms the standard, where E is the maximum exponent of the 
four products. 

 A length - 4 vector transformation is also popular operation of a 3D graphics, 
and a fl oating - point transform vector instruction (FTRV) is defi ned. It requires 
20 registers to specify the operands in a modifi cation type defi nition. There-
fore, the defi ning formula is as follows, using a four - by - four matrix of all the 
back bank registers, XMTRX, and one of the four front - bank vector registers, 
FV0 - FV3:

   FV XMTRX FVn n n= ⋅ ( : , , , ).0 4 8 12   

 Since a 3D object consists of a lot of polygons expressed by the length - 4 
vectors, and one XMTRX is applied to a lot of the vectors of a 3D object, the 
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XMTRX is not so often changed, and is suitable for using the back bank. The 
FTRV operation is implemented as four inner - product operations by dividing 
the XMTRX into four vectors properly, and its maximum error is the same as 
the FIPR. 

 The newly defi ned FIPR and FTRV can enhance the performance, but data 
transfer ability becomes a bottleneck to realize the enhancement. Therefore, 
a pair load/store/transfer mode is defi ned to double the data move ability. In 
the pair mode, fl oating - point move instructions (FMOVs) treat 32 front -  and 
back - bank fl oating - point registers as 16 pairs, and directly access all the pairs 
without the bank switch controlled by the FPSCR.FR bit. The mode switch 
between the pair and normal modes is controlled by a move - size bit FPSCR.
SZ in the FPSCR. 

 The 3D graphics requires high performance but uses only a single precision. 
On the other hand, a double precision format is popular for server/PC market, 
and would eases a PC application porting to a handheld PC. Although the 
performance requirement is not so high as the 3D graphics, software emula-
tion is too slow compared with hardware implementation. Therefore, the SH 
architecture has single -  and double - precision modes, which are controlled by 
a precision bit FPSCR.PR of the FPSCR. Further, a fl oating - point register -
 bank, move - size, and precision change instructions (FPCRG, FSCHG, and 
FRCHG) were defi ned for fast changes of the modes defi ned above. This 
defi nition can save the small code space of the 16 - bit fi xed length ISA. Some 
conversion operations between the precisions are necessary, but not fi t to the 
mode separation. Therefore, SH architecture defi nes two conversion instruc-
tions in the double - precision mode. An FCNVSD converts a single - precision 
data to a double - precision one, and an FCNVDS converts vice versa. In the 
double - precision mode, eight pairs of the front - bank registers are used for 
double - precision data, and one 32 - bit register, FPUL, is used for a single -
 precision or integer data, mainly for the conversion. 

 The FDIV and fl oating-point square - root instruction (FSQRT) are long 
latency instructions, and could cause serious performance degradations. The 
long latencies are mainly from the strict operation defi nitions by the ANSI/
IEEE 754 fl oating - point standard. We have to keep accurate value before 
rounding. However, there is another way if we allow proper inaccuracies. 

 A  fl oating - point square - root reciprocal approximate  ( FSRRA ) is defi ned 
as an elementary function instruction to replace the FDIV, FSQRT, or their 
combination. Then we do not need to use the long latency instructions. 3D 
graphics applications especially require a lot of reciprocal and square - root 
reciprocal values, and the FSRRA is highly effective. Further, 3D graphics 
require less accuracy, and the single - precision without strict rounding is enough 
accuracy. The maximum error of the FSRRA is  ± 2 E − 21 , where E is the exponent 
value of an FSRRA result. The FSRRA defi nition is as follows:

   FR
FR

n
n

=
1

.   
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 A  fl oating - point sine and cosine approximate  ( FSCA ) is defi ned as another 
popular elementary function instruction. Once the FSRRA is introduced, 
extra hardware is not so large for the FSCA. The most poplar defi nition of 
the trigonometric function is to use radian for the angular unit. However, 
the period of the radian is 2 π , and cannot be expressed by a simple binary 
num ber. Therefore, the FSCA uses fi xed - point number of rotations as the 
angular expression. The number consists of 16 - bit integer and 16 - bit fraction 
parts. Then the integer part is not necessary to calculate the sine and cosine 
values by their periodicity, and the 16 - bit fraction part can express enough 
resolution of 360/65,536    =    0.0055 ° . The angular source operand is set to a 
CPU - FPU communication register FPUL because the angular value is a 
fi xed - point number. The maximum error of the FSCA is  ± 2  − 22 , which is an 
absolute value and not related to the result value. Then the FSCA defi nition 
is as follows:

   FR FPUL FR FPULn n= ⋅( ) + = ⋅( )sin , [ ] cos .2 1 2π π    

   1.4.2    Implementation of  SH  -  X   FPU  

 Table  1.5  shows the pitches and latencies of the FE - category instructions of 
the SH - 3E, SH - 4, and SH - X. As for the SH - X, the simple single - precision 
instructions of FADD, FSUB, FLOAT, and FTRC, have three - cycle latencies. 
Both single -  and double - precision FCMPs have two - cycle latencies. Other 
single - precision instructions of FMUL, FMAC, and FIPR, and the double -
 precision instructions, except FMUL, FCMP, FDIV, and FSQRT, have fi ve -
 cycle latencies. All the above instructions have one - cycle pitches.   

 The FTRV consists of four FIPR like operations resulting in four - cycle pitch 
and eight - cycle latency. The FDIV and FSQRT are out - of - order completion 
instructions having two - cycle pitches for the fi rst and last cycles to initiate a 
special resource operation and to perform postprocesses of the result. Their 
pitches of the special resource expressed in the parentheses are about halves 
of the mantissa widths, and the latencies are four cycles more than the special -
 resource pitches. The FSRRA has one - cycle pitch, three - cycle pitch of the 
special resource, and fi ve - cycle latency. The FSCA has three - cycle pitch, 
fi ve - cycle pitch of the special resource, and seven - cycle latency. The double -
 precision FMUL has three - cycle pitch and seven - cycle latency. 

  Multiply – accumulate  ( MAC ) is one of the most frequent operations in 
intensive computing applications. The use of four - way SIMD can achieve the 
same throughput as the FIPR, but the latency is longer and the register fi le 
has to be larger. Figure  1.15  illustrates an example of the differences accord-
ing to the pitches and latencies of the FE - category SH - X instructions shown 
in Table  1.5 . In this example, each box shows an operation issue slot. Since 
FMUL and FMAC have fi ve - cycle latencies, we must issue 20 independent 
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operations for peak throughput in the case of four - way SIMD. The result is 
available 20 cycles after the FMUL issue. On the other hand, fi ve indepen-
dent operations are enough to get the peak throughput of a program using 
FIPRs. Therefore, FIPR requires one - quarter of the program ’ s parallelism 
and registers.   

 Figure  1.16  compares the pitch and latency of an FSRRA and the equiva-
lent sequence of an FSQRT and an FDIV according to Table  1.5 . Each of 
the FSQRT and FDIV occupies 2 and 13 cycles of the MAIN FPU and 
special resources, respectively, and takes 17 cycles to get the result, and the 
result is available 34 cycles after the issue of the FSQRT. In contrast, the 
pitch and latency of the FSRRA are one and fi ve cycles that are only one -
 quarter and approximately one - fi fth of those of the equivalent sequences, 

  TABLE 1.5.    Pitch/Latency of  FE  - Category Instructions 

   Single Precision     SH - 3E     SH - 4     SH - X  

  FADD FR m , FR n     1/2    1/3    1/3  
  FSUB FR m , FR n     1/2    1/3    1/3  
  FMUL FR m , FR n     1/2    1/3    1/5  
  FDIV FR m , FR n     13/14    2 (10) /12    2 (13) /17  
  FSQRT FR n     13/14    2 (9) /11    2 (13) /17  
  FCMP/EQ FR m , FR n     1/1    1/2    1/2  
  FCMP/GT FR m , FR n     1/1    1/2    1/2  
  FLOAT FPUL, FR n     1/2    1/3    1/3  
  FTRC FR m , FPUL    1/2    1/3    1/3  
  FMAC FR0, FR m , FR n     1/2    1/3    1/5  
  FIPR FV m , FV n , FR n     +    3     –     1/4    1/5  
  FTRV XMTRX, FV n      –     4/7    4/8  
  FSRRA FR n      –      –     1 (3) /5  
  FSCA FPUL, DR n      –      –     3 (5) /7  

  Double Precision     –     SH - 4    SH - X  

  FADD DR m , DR n      –     6/8    1/5  
  FSUB DR m , DR n      –     6/8    1/5  
  FMUL DR m , DR n      –     6/8    3/7  
  FDIV DR m , DR n      –     5 (23) /25    2 (28) /32  
  FSQRT DR m , DR n      –     5 (22) /24    2 (28) /32  
  FCMP/EQ DR m ,DR n      –     2/2    1/2  
  FCMP/EQ DR m ,DR n      –     2/2    1/2  
  FLOAT DR n      –     2/4    1/5  
  FTRC DR m , FPUL     –     2/4    1/5  
  FCNVSD FPUL, FR n      –     2/4    1/5  
  FCNVDS DR m , FPUL     –     2/4    1/5  
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     FIGURE 1.16.     FSRRA versus equivalent sequence of FSQRT and FDIV.  
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     FIGURE 1.15.     Four - way SIMD versus FIPR.  
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respectively. The FSRRA is much faster using a similar amount of the hard-
ware resource.   

 The FSRRA can compute a reciprocal as shown in Figure  1.17 . The FDIV 
occupies 2 and 13 cycles of the MAIN FPU and special resources, respec-
tively, and takes 17 cycles to get the result. On the other hand, the FSRRA 
and FMUL sequence occupies 2 and 3 cycles of the MAIN FPU and special 
resources, respectively, and takes 10 cycles to get the result. Therefore, the 
FSRRA and FMUL sequence is better than using the FDIV if an application 
does not require a result conforming to the IEEE standard, and 3D graphics 
is one of such applications.   

 Figure  1.18  illustrates the FPU arithmetic execution pipeline. With the 
delayed execution architecture, the register - operand read and forwarding 
are done at the E1 stage, and the arithmetic operation starts at E2. The short 
arithmetic pipeline treats three - cycle latency instructions. All the arithmetic 
pipelines share one register write port to reduce the number of ports. There 
are four forwarding source points to provide the specifi ed latencies for any 
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cycle distance of the defi ne - and - use instructions. The FDS pipeline is occupied 
by 13/28 cycles to execute a single/double FDIV or FSQRT, and these instruc-
tions cannot be issued frequently. The FPOLY pipeline is three - cycles long and 
is occupied three or fi ve times to execute an FSRRA or FSCA instruction. 
Therefore, the third E4 stage and E6 stage of the main pipeline are synchro-
nized for the FSRRA, and the FPOLY pipeline output merges with the main 
pipeline at this point. The FSCA produce two outputs, and the fi rst output is 
produced at the same timing of the FSRRA, and the second one is produced 
two - cycle later, and the main pipeline is occupied for three cycles, although 

     FIGURE 1.17.     FDIV versus equivalent sequence of FSRRA and FMUL.  
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     FIGURE 1.18.     Arithmetic execution pipeline of SH - X FPU.  
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the second cycle is not used. The FSRRA and FSCA are implemented by 
calculating the cubic polynomials of the properly divided periods. The width 
of the third - order term is 8   bits, which adds only a small area overhead, while 
enhancing accuracy and reducing latency.   

 Figure  1.19  illustrates the structure of the main FPU pipeline. There are 
four single - precision multiplier arrays at E2 to execute FIPR and FTRV and 
to emulate double - precision multiplication. Their total area is less than that of 
a double - precision multiplier array. The calculation of exponent differences 
is also done at E2 for alignment operations by four aligners at E3. The four 
aligners align eight terms consisting of four sets of sum and carry pairs of four 
products generated by the four multiplier arrays, and a reduction array reduces 
the aligned eight terms to two at E3. The exponent value before normalization 
is also calculated by an exponent adder at E3. A  carry propagate adder  ( CPA ) 
adds two terms from the reduction array, and a  leading nonzero  ( LNZ ) detec-
tor searches the LNZ position of the absolute value of the CPA result from 
the two CPA inputs precisely and with the same speed as the CPA at E4. 
Therefore, the result of the CPA can be normalized immediately after the CPA 
operation with no correction of position errors, which is often necessary when 
using a conventional 1 - bit error LNZ detector. Mantissa and exponent normal-
izers normalize the CPA and exponent - adder outputs at E5 controlled by the 
LNZ detector output. Finally, the rounder rounds the normalized results into 
the ANSI/IEEE 754 format. The extra hardware required for the special FPU 
instructions of the FIPR, FTRV, FSRRA and FSCA is about 30% of the origi-
nal FPU hardware, and the FPU area is about 10 – 20% of the processor core 
depending on the size of the fi rst and second on - chip memories. Therefore, the 
extra hardware is about 3 – 6% of the processor core.   

     FIGURE 1.19.     Main pipeline of SH - X FPU.  
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 The SH - X FPU can use four 24 - by - 24 multipliers for the double - precision 
FMUL emulation. Since the double - precision mantissa width is more than 
twice of the single - precision one, we have to divide a multiplication into nine 
parts. Then we need three cycles to emulate the nine partial multiplications by 
four multipliers. Figure  1.20  illustrates the fl ow of the emulation. At the fi rst 
step, a lower - by - lower product is produced, and its lower 23   bits are added by 
the CPA. Then the CPA output is ORed to generate a sticky bit. At the second 
step, four products of middle - by - lower, lower - by - middle, upper - by - lower, and 
lower - by - upper are produced and accumulated to the lower - by - lower product 
by the reduction array, and its lower 23   bits are also used to generate a sticky 
bit. At the third step, the remaining four products of middle - by - middle, upper -
 by - middle, middle - by - upper, and upper - by - upper are produced and accumu-
lated to the already accumulated intermediate values. Then, the CPA adds the 
sum and carry of the fi nal product, and 53 - bit result and guard/round/sticky 
bits are produced. The accumulated terms of the second and third steps are 
10 because each product consists of sum and carry, but the bitwise position of 
some terms are not overlapped. Therefore, the eight - term reduction array is 
enough to accumulate them.    

   1.4.3    Performance Evaluations with 3 D  Graphics Benchmark 

 The fl oating - point architecture was evaluated by a simple 3D graphics bench-
mark shown in Figure  1.21 . It consists of coordinate transformations, perspec-
tive transformations, and intensity calculations of a parallel beam of light in 
Cartesian coordinates. A 3D - object surface is divided into triangular polygons 
to be treated by the 3D graphics. The perspective transformation assumes a 
fl at screen expressed as  z     =    1. A strip model is used, which is a 3D object 
expression method to reduce the number of vertex vectors. In the model, each 

     FIGURE 1.20.     Double - precision FMUL emulation by four multipliers.  
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triangle has three vertexes, but each vertex is shared by three triangles, 
and the number of vertex per triangle is one. The benchmark is expressed 
as follows, where T represents a transformation matrix, V and N represent 
vertex and normal vectors of a triangle before the coordinate transforma-
tions, respectively, N ′  and V ′  represent the ones after the transformations, 
respectively, S x  and S y  represent x and y coordinates of the projection of V ′ , 
respectively, L represents a vector of the parallel beam of light, I represents a 
intensity of a triangle surface, and V ′′  is an intermediate value of the coordi-
nate transformations.  
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 The coordinate and perspective transformations require 7 FMULs, 12 FMACs, 
and 2 FDIVs without FTRV, FIPR, and FSRRA, and 1 FTRV, 5 FMULs, and 
2 FSRRAs with them. The intensity calculation requires 7 FMULs, 12 FMACs, 
1 FSQRT, and 1 FDIV without them, and 1 FTRV, 2 FIPRs, 1 FSRRA, and 1 
FMUL with them. 

     FIGURE 1.21.     Simple 3D graphics benchmark.  
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 Figure  1.22  shows the resource - occupying cycles of the SH - 3E, SH - 4, and 
SH - X. After program optimization, no register confl ict occurs, and perfor-
mance is restricted only by the fl oating - point resource - occupying cycles. The 
gray areas of the graph represent the cycles of the coordinate and perspective 
transformations.   

 The Conventional SH - 3E architecture takes 68 cycles for coordinate and 
perspective transformations, and 142 cycles when intensity is also calculated. 
Applying superscalar architecture and SRT method for FDIV/FSQRT with 
keeping the SH - 3E ISA, they become 39 and 81 cycles, respectively. The SH - 
4 architecture having the FIPR/FTRV and the out - of - order FDIV/FSQRT 
makes them 20 and 39 cycles, respectively. The performance is good, but only 
the FDIV/FSQRT resource is busy in this case. Further, applying the super-
pipline architecture with keeping the SH - 4 ISA, they become 26 and 52 cycles, 
respectively. Although the operating frequency grows higher by the super-
pipline architecture, the cycle performance degradation is serious, and almost 
no performance gain is achieved. In the SH - X ISA case with the FSRRA, they 
become 11 and 19 cycles, respectively. Clearly, the FSRRA solves the long 
pitch problem of the FDIV/FSQRT. 

 Since we emphasized the importance of the effi ciency, we evaluated the 
area and power effi ciencies. Figure  1.23  shows the area effi ciencies. The upper 
half shows architectural performance, relative area, and architectural area –
 performance ratio to compare the area effi ciencies with no process porting 
effect. According to the above cycles, the relative cycle performance of the 
coordinate and perspective transformations of the SH - 4 and SH - X to the 

     FIGURE 1.22.     Resource occupying cycles for a 3D benchmark.  
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SH - 3E are 68/20    =    3.4 and 68/11    =    6.2, respectively. As explained in Section 
 1.3.5 , the relative frequency of the SH - 4 and SH - X are 1.5 and 2.1, respec-
tively. Then the architectural performance of the SH - 4 and SH - X are 3.4    ×    1.5    =    
5.1 and 6.2    ×    2.1    =    13, respectively. Although the relative areas increased, 
the performance improvements are much higher, and the effi ciency is greatly 
enhanced. The lower half shows real performance, area, and area – performance 
ratio. The frequencies of the SH - 3E, SH - 4 in 0.25 -  and 0.18 -   μ  m and SH - X are 
66, 200, 240, and 400   MHz, respectively. The effi ciency is further enhanced 
using the fi ner process. Similarly, the power effi ciency is also enhanced greatly, 
as shown in Figure  1.24 .     

     FIGURE 1.24.     Power effi ciencies of SH - 3E, SH - 4, and SH - X.  

0 1 0 2 4 6 8
Relative
power

Architectural
power–performance ratio

2 3

1.0

0 1000 2000

500

1200

2000

600 1.6

73

10

5.0

0 20 40 60 80
Power
(mW)

Power–performance ratio
(M polygons/s/W)

0
Architectural
Performance

4 8 12

13

5.1

1.0

5.1

SH-3E

SH-4

SH-X

0.5 m

36

12

10

0.97

0 10 20 30
Performance

(M polygons/s)

0.25 m

0.18 m

0.13 m

SH-3E

SH-4

SH-X

0.5 m

0.25 m

0.18 m

0.13 m

3.6

4.6

4.2 3.1

1.4

1.1

1.0

¥ 2.2

¥ 7.3

µ

µ
µ

µ

µ
µ
µ

µ

     FIGURE 1.23.     Area effi ciencies of SH - 3E, SH - 4, and SH - X.  

0 0 1 2 0 2 4
Architectural
Performance

Relative
FPU area

Architectural
area–performance ratio

4 8 12

13

5.1

1.0

5.1

2.0

1.9

2.7

1.0

6

6.5

2.7

1.9

1.0SH-3E

SH-4

SH-X

0.5 m

36

12

10

0.97

0 10 20 30 0 2 4 6 8

1.6

3.0

8.0

7.0

0 10 20

0.14

23

4.0

1.3

Performance
(M polygons/s)

FPU area
(mm2)

Area–performance ratio
(M polygons/s/mm2)

0.25 m

0.18 m

0.13 m

SH-3E

SH-4

SH-X

0.5 m

0.25 m

0.18 m

0.13 m

¥ 2.4

µ

µ
µ

µ

µ

µ
µ

µ

¥ 5.8



SH-X2: FREQUENCY AND EFFICIENCY ENHANCED CORE  33

   1.5     SH  -  X 2: FREQUENCY AND EFFICIENCY ENHANCED CORE 

 An SH - X2 was developed as the second - generation core, and achieved per-
formance of 1,440   MIPS at 800   MHz using a 90 - nm process. The low power 
version achieved the power effi ciency of 6,000   MIPS/W. The performance and 
effi ciency are greatly enhanced from the SH - X by both the architecture and 
micro - architecture tuning and the process porting. 

   1.5.1    Frequency Enhancement 

 According to the SH - X analyzing, the ID stage was the most critical timing 
part, and the branch acceleration successfully reduced the branch penalty. 
Therefore, we added the third instruction fetch stage (I3) to the SH - X2 pipe-
line to relax the ID stage timing. The cycle performance degradation was negli-
gible small by the successful branch architecture, and the SH - X2 achieved the 
same cycle performance of 1.8   MIPS/MHz as the SH - X. 

 Figure  1.25  illustrates the pipeline structure of the SH - X2. The I3 stage was 
added, and performs branch search and instruction predecoding. Then the ID 
stage timing was relaxed, and the achievable frequency increased.   

 Another critical timing path was in  fi rst - level  ( L1 ) memory access logic. 
SH - X had L1 memories of a local memory and I -  and D - caches, and the local 
memory was unifi ed for both instruction and data accesses. Since all the 
memories could not be placed closely, a memory separation for instruction 
and data was good to relax the critical timing path. Therefore, the SH - X2 
separated the unifi ed L1 local memory of the SH - X into instruction and data 
local memories (ILRAM and OLRAM). With the other various timing tuning, 
the SH - X2 achieved 800   MHz using a 90 - nm generic process from the SH - X ’ s 
400   MHz using a 130 - nm process. The improvement was far higher than the 
process porting effect.  

     FIGURE 1.25.     Eight - stage superpipeline structure of SH - X2.  
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   1.5.2    Low Power Technologies 

 The SH - X2 enhanced the low power technologies from that of the SH - X. 
Figure  1.26  shows the clock gating method of the SH - X2. The D - drivers also 
gate the clock with the signals dynamically generated by hardware, and the 
leaf F/Fs requires no CCP. As a result, the clock tree and total powers are 14 
and 10% lower, respectively, than in the SH - X method.   

 The SH - X2 adopted a way prediction method to the instruction cache. The 
SH - X2 aggressively fetched the instructions using branch prediction and early 
branch techniques to compensate branch penalty caused by long pipeline. The 
power consumption of the instruction cache reached 17% of the SH - X2, and 
the 64% of the instruction cache power was consumed by data arrays. The way 
prediction misses were less than 1% in most cases, and was 0% for the Dhrys-
tone 2.1. Then, the 56% of the array access was eliminated by the prediction 
for the Dhrystone. As a result, the instruction cache power was reduced by 
33%, and the SH - X2 power was reduced by 5.5%.   

   1.6     SH  -  X 3: MULTICORE ARCHITECTURE EXTENSION 

 Continuously, the SH cores has achieved high effi ciency as described above. 
The SH - X3 core is the third generation of the SH - 4A processor core series to 
achieve higher performance with keeping the high - effi ciency maintained in 
all the SH core series. The multicore architecture is the next approach for 
the series. 

   1.6.1     SH  -  X 3 Core Specifi cations 

 Table  1.6  shows the specifi cations of an SH - X3 core designed based on the 
SH - X2 core. The most of the specifi cations are the same as that of the SH - X2 
core as the successor of it. In addition to such succeeded specifi cations, 

     FIGURE 1.26.     Clock - gating method of SH - X2. GCKD, gated clock driver cell.  
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the core supports both symmetric and asymmetric multiprocessor (SMP and 
AMP) features with interrupt distribution and interprocessor interrupt, in 
corporate with an interrupt controller of such SoCs as RP - 1 and RP - 2. 
Each core of the cluster can be set to one of the SMP and AMP modes 
individually.   

 It also supports three low power modes of light sleep, sleep, and resume 
standby. The new light - sleep mode is to respond to a snoop request from the 
SNC while the core is inactive. In this mode, the data cache is active for the 
snoop operation, but the other modules are inactive. 

 In a chip multiprocessor, the core loads are not equal, and each SH - X3 core 
can operate at a different operating frequency and in a different low power 
mode to minimize the power consumption for the load. The core can support 
the SMP features even such heterogeneous operation modes of the cores.  

   1.6.2    Symmetric and Asymmetric Multiprocessor Support 

 The four SH - X3 cores constitute a cluster sharing an SNC and a DBG to 
support  symmetric multiprocessor  ( SMP ) and multicore debug features. 
The SNC has a  duplicated address array  ( DAA ) of data caches of all the four 
cores, and is connected to the cores by a dedicated snoop bus separated from 
the SuperHyway to avoid both deadlock and interference by some cache 
coherency protocol operations. The DAA minimizes the number of data cache 
accesses of the cores for the snoop operations, resulting in the minimum coher-
ency maintenance overhead. 

  TABLE 1.6.    SH - X3 Processor Core Specifi cations 

    ISA     SuperH 16 - Bit Encoded ISA  
  Pipeline structure    Dual - issue superscalar 8 - stage pipeline  
  Operating frequency    600   MHz (90 - nm generic CMOS process)  
  Performance  

  Dhrystone 2.1    1080   MIPS  
  FPU (Peak)    4.2/0.6 GFLOPS (single/double)  

  Caches    8 – 64   KB I/D each  
  Local memories  

  1st/2nd level    4 – 128   KB I/D each/128   KB to 1   MB  
  Power/power effi ciency    360   mW/3,000   MIPS/W  
  Multiprocessor support  

  SMP support    Coherency for data caches (up to 4 cores)  
  AMP support    DTU for local memories  
  Interrupt    Interrupt distribution and Inter - processor interrupt  

  Low power modes    Light sleep, sleep, and resume standby  
  Power management    Operating frequency and low power mode can be 

different for each core.  
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 The supported SMP data cache coherency protocols are standard MESI 
(modifi ed, exclusive, shared, invalid) and ESI modes for copyback and write -
 through modes, respectively. The copyback and MESI modes are good for 
performance, and the write - through and ESI modes are suitable to control 
some accelerators that cannot control the data cache of the SH - X3 cores 
properly. 

 The SH - X3 outputs one of the following snoop requests of the cache line 
to the SNC with the line address and write - back data, if any:

   1.     Invalidate request for write and shared case.  
  2.     Fill - data request for read and cache - miss case.  
  3.     Fill - data and invalidate request for write and cache - miss case.  
  4.     Write - back request to replace a dirty line.    

 The SNC transfers a request other than a write - back one to proper cores by 
checking its DAA, and the requested core processes the requests. 

 The on - chip RAMs and the data transfer among the various memories 
are the key features for the AMP support. The use of on - chip RAM makes it 
possible to control the data access latency, which cannot be controlled well in 
systems with on - chip caches. Therefore, each core integrates L1 instruction 
and data RAMs, and a  second - level  ( L2 ) unifi ed RAM. The RAMs are glob-
ally addressed to transfer data to/from the other globally addressed memories. 
Then, application software can place data in proper timing and location. The 
SH - X3 integrates a  data transfer unit  ( DTU ) to accelerate the data transfer 
to/from the other modules.  

   1.6.3    Core Snoop Sequence Optimization 

 Each core should operate at the proper frequency for its load, but in some 
cases of the SMP operation, a low frequency core can cause a long stall of a 
high frequency core. We optimized the cache snoop sequences for the SMP 
mode to minimize such stalls. Table  1.7  summarizes the coherency overhead 
cycles. These cycles vary according to various conditions; the table indicates a 
typical case.   

 Figure  1.27 a,b show examples of core snoop sequences before and after the 
optimization. The case shown is a  “ write access to a shared line, ”  which is the 
third case in the table. The operating frequencies of core #0, #1, and #2 are 
600, 150, and 600   MHz, respectively. Initially, all the data caches of the cores 
hold a common cache line, and all the cache - line states are  “ shared. ”    

 Sequence (a) is as follows:

   1.     Core Snoop Request :      Core #0 stores data in the cache, changes the 
stored - line state from  “ Shared ”  to  “ Modifi ed, ”  and sends a  “ Core Snoop 
Request ”  of the store address to the SNC.  
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  TABLE 1.7.    Coherency Overhead Cycles 

   Access 
Type  

   Cache Line State     Overhead (SCLK Cycles)  

   Accessed 
Core  

   Snooped 
Core  

   Snooped Core: 
600   MHz  

   Snooped Core: 
150   MHz  

   Not 
Optimized     Optimized  

   Not 
Optimized     Optimized  

  Read    S, E, M     –     0    0    0    0  
  Write    E, M     –     0    0    0    0  

  S    S    10     4     19     4   
  Read or 

Write  
  Miss    Miss    5    5    5    5  

  S    10     5     19     5   
  E    10    10    19    19  
  M    13    13    22    22  

     FIGURE 1.27.     Core snoop sequences (a) before and (b) after optimization.  

Core #0 (600MHz)
State: S to M

Core #1 (150MHz)
State: S to I

Core #2 (600MHz)
State: S to I

DAA

(1) Core Snoop Request

(3) Invalidate Request

(4) D$ Update 

(5) Invalidate Acknowledge 

(6) Snoop Acknowledge 

(2) DAA
Update

D$

D$

Snoop Latency

time

Core #0 (600MHz)
State: S to M

Core #1 (150MHz)
State: S to I

Core #2 (600MHz)
State: S to I

DAA

(1) Core Snoop Request

(3) Invalidate Request

(4) D$ Update 

(5) Invalidate Acknowledge 

(3) Snoop Acknowledge 

(2) DAA
Update

D$

D$

Snoop Latency

time

(a)

(b)



38  LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

  2.     DAA Update :      The SNC searches the DAA of all the cores, and changes 
the states of the hit lines from  “ Shared ”  to  “ Modifi ed ”  for core #0 
and  “ Invalid ”  for cores #1 and #2. The SNC runs at SCLK frequency 
(300   MHz).  

  3.     Invalidate Request :      The SNC sends  “ Invalidate Request ”  to cores #1 
and #2.  

  4.     Data Cache Update :      Cores #1 and #2 change the states of the corre-
sponding cache lines from  “ Shared ”  to  “ Invalid. ”  The processing time 
depends on each core ’ s ICLK.  

  5.     Invalidate Acknowledge :      Cores #1 and #2 return  “ Invalidate Acknowl-
edge ”  to the SNC.  

  6.     Snoop Acknowledge :      The SNC returns  “ Snoop Acknowledge ”  to 
core #0.    

 As shown in Figure  1.27 a, the return from core #1 is late due to its low fre-
quency, resulting in long snoop latency. 

 Sequence (b) is as follows by the optimization:

   1.     Core Snoop Request  
  2.     DAA Update  
  3.     Snoop Acknowledge and Invalidate Request  
  4.     Data Cache Update  
  5.     Invalidate Acknowledge    

 The  “ Snoop Acknowledge ”  is moved from the 6th to the 3rd step by eliminat-
ing the wait of the  “ Invalidate Acknowledge, ”  and the late response of the 
slow core does not affect the operation of the fast core. In the optimized 
sequence, the SNC is busy for some cycles after the  “ Snoop Acknowledge, ”  
and the next  “ Core Snoop Request ”  must wait if the SNC is still busy. However, 
this is rare for ordinary programs. 

 The sequence of another case, a  “ read miss and hit to another core ’ s modi-
fi ed line, ”  which is the last case in the table, is as follows:

   1.     Core Snoop Request :      A data read of core #0 misses its cache and sends 
a  “ Core Snoop Request ”  of the access address to the SNC.  

  2.     DAA Update :      The SNC searches the DAA of all the cores, and changes 
the states of the hit lines from  “ Modifi ed ”  to  “ Shared. ”   

  3.     Data Transfer Request :      The SNC sends a  “ Data Transfer Request ”  to the 
core of the hit line for the cache fi ll data of core #0.  

  4.     Data Cache Update :      The requested core reads the requested data and 
changes the states of the corresponding line of the DAA to  “ Shared. ”  
The processing time depends on each core ’ s ICLK.  
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  5.     Data Transfer Response and Write - Back Request :      The requested core 
returns the requested data and requests a write back to the SNC.  

  6.     Snoop Acknowledge and Write - Back Request :      The SNC returns  “ Snoop 
Acknowledge ”  to core #0 with the fi ll data, and requests a write - back of 
the returned data to the main memory.  

  7.      Data Cache Update 2 :   Core #0 completes the  “ Read ”  operation by 
replacing a cache line with the fi ll data.    

 In this case, core #0 must wait for the fi ll data, and the early  “ Snoop Acknowl-
edge ”  is impossible.  

   1.6.4    Dynamic Power Management 

 Each core can operate at different CPU clock (ICLK) frequencies and can 
stop individually while other processors are running with a short switching 
time in order to achieve both the maximum processing performance and the 
minimum operating power for various applications. A data cache coherency is 
maintained during operations at different frequencies, including frequencies 
lower than the on - chip system bus clock (SCLK). The following four schemes 
make it possible to change each ICLK frequency individually while maintain-
ing data cache coherency.

   1.     Each core has its own clock divider for an individual clock frequency 
change.  

  2.     A handshake protocol is executed before the frequency change to avoid 
confl icts in bus access, while keeping the other cores running.  

  3.     Each core supports various ICLK frequency ratios to SCLK, including 
a lower frequency than that of SCLK.  

  4.     Each core has a light - sleep mode to stop its ICLK while maintaining data 
cache coherency.    

 The global ICLK and the SCLK that run up to 600 and 300   MHz, respec-
tively, are generated by a  global clock pulse generator  ( GCPG ) and distrib-
uted to each core. Both the global ICLK and SCLK are programmable by 
setting the frequency control register in the GCPG. Each local ICLK is gener-
ated from the global ICLK by the clock divider of each core. The local CPG 
(LCPG) of a core executes a handshake sequence dynamically when the fre-
quency control register of the LCPG is changed, so that it can keep the other 
cores running and can maintain coherency in data transfers of the core. The 
previous approach assumed a low frequency in a clock frequency change, and 
it stopped all the cores when a frequency was changed. The core supports 
 “ light - sleep mode ”  to stop its ICLK except for its data cache in order to main-
tain the data cache coherency. This mode is effective for reducing the power 
of an SMP system.  
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   1.6.5     RP  - 1 Prototype Chip 

 The RP - 1 is the fi rst multicore chip with four SH - X3 CPU cores. It supports 
both symmetric and asymmetric multiprocessor (SMP and AMP) features 
for embedded applications. The SMP and AMP modes can be mixed to con-
struct a hybrid system of the SMP and AMP. Each core can operate at dif-
ferent frequencies and can stop individually with maintaining its data - cache 
coherency while the other processors are running in order to achieve both 
the maximum processing performance and the minimum operating power for 
various applications. 

   1.6.5.1     RP  - 1 Specifi cations     Table  1.8  summarizes the RP - 1 specifi cations. 
It was fabricated as a prototype chip using a 90 - nm CMOS process to acceler-
ate the research and development of various embedded multicore systems. 
The RP - 1 achieved a total of 4,320   MIPS at 600   MHz by the four SH - X3 cores 
measured using the Dhrystone 2.1 benchmark. The RP - 1 integrates four SH - 
X3 cores with a  snoop controller  ( SNC ) to maintain the data - cache coher-
ency among the cores, DDR2 - SDRAM and SRAM memory interfaces, a PCI - 
Express interface, some HW - IPs for various types of processing, and some 
peripheral modules. The HW - IPs include a DMA controller, a display unit, 
and accelerators. Each SH - X3 core includes a 32 - kB four - way set - associative 
instruction and data caches, an 8 - kB instruction local RAM (ILRAM), a 16 - kB 
operand local RAM (OLRAM), and a 128 - kB unifi ed RAM (URAM).   

 Figure  1.28  illustrates a block diagram of the RP - 1. The four SH - X3 cores, 
a snoop controller (SNC), and a debug module (DBG) constitute a cluster. 

  TABLE 1.8.     RP  - 1 Specifi cations 

  Process technology    90 - nm, 8 - layer Cu, triple - Vth, CMOS  
  Chip size/power    97.6   mm 2  (9.88   mm    ×    9.88   mm)/3   W (typical, 

1.0   V)  
  Supply voltage/clock frequency    1.0   V (internal), 1.8/3.3   V(I/O)/600   MHz  
  SH - X3 core  

  Size    2.60   mm    ×    2.80   mm  
  I/D - cache    32 - kB four - way set - associative (each)  
  ILRAM/OLRAM/URAM    8/16/128   KB (unifi ed)  

  Snoop controller (SNC)    Duplicated Address Array (DAA) of four 
D - caches  

   Centralized shared memory  ( CSM )    128   kB  
  External interfaces    DDR2 - SDRAM, SRAM, PCI - Express  
  Performance  

  CPU    4,320   MIPS (Dhrystone 2.1, 4 core total)  
  FPU    16.8 GFLOPS (peak, 4 core total)  

  Package    FCBGA 554 pin, 29    ×    29   mm  
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     FIGURE 1.28.     Block diagram of RP - 1. SNC, snoop controller (cntl.); DAA, duplicated 
address array; CRU, cache RAM control unit; I$/D$, instruction (inst.)/data cache; IL/
DL, Inst./data local memory; URAM, unifi ed RAM; DBG, debug module; GCPG/
LCPG, global/local CPG; INTC, interrupt cntl.; SHPB,HPB, peripheral bus bridge; 
CSM, centralized shared memory; DMAC, direct memory access cntl.; PCIe, PCIexpress 
interface (i/f); SCIF, serial communication i/f; GPIO, general purpose IO; TMU, 
timer unit.  
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The HW - IPs are connected to an on - chip system bus (SuperHyway). The 
arrows to/from the SuperHyway indicate connections from/to initiator/target 
ports, respectively.    

   1.6.5.2    Chip Integration and Evaluations     Figure  1.29  shows the chip 
micrograph of the RP - 1. The chip was integrated in two steps to minimize the 
design period of the physical integration, and successfully fabricated: (1) First, 
a single core was laid out as a hard macro and completed timing closure of 
the core, and (2) the whole chip was laid out with instancing the core four 
times.   

 We evaluated the processing performance and power reduction in parallel 
processing on the RP - 1. Figure  1.30  plots the time required to execute the 
SPLASH - 2 suite  [46]  depending on the number of threads on an SMP Linux 
system. The RP - 1 reduced the processing time to 50.5 – 52.6% and 27.1 – 36.9% 
with two and four threads, respectively. The time should be 50 and 25% for 
ideal performance scalability. The major overhead was synchronization and 
snoop time. The SNC improved cache coherency performance, and the perfor-
mance overhead by snoop transactions was reduced to up to 0.1% when 
SPLASH - 2 was executed.   
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 Figure  1.31  shows the power consumption of the SPLASH - 2 suite. The suite 
ran at 600   MHz and at 1.0   V. The average power consumption of one, two, and 
four threads was 251, 396, and 675   mW, respectively. This included 104   mW of 
active power for the idle tasks of SMP Linux. The results of the performance 
and power evaluation showed that the power effi ciency was maintained or 
enhanced when the number of threads increased.   

     FIGURE 1.30.     Execution time of SPLASH - 2 suite.  
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     FIGURE 1.31.     Active power of SPLASH - 2 suite.  
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     FIGURE 1.29.     Chip micrograph of RP - 1.  

Core

DAA

Core
#0

SNC

#1

ra
ls

R t SNC

Core er
ip
he

Router

Core
#2

Core
#3 P

e

GCPGGCPG



SH-X3: MULTICORE ARCHITECTURE EXTENSION  43

 Figure  1.32  shows the energy consumption with low power modes. These 
modes were implemented to save power when fewer threads were running 
than available on CPU cores. As a benchmark, two threads of fast Fourier 
transform (FFT) were running on two CPU cores, and two CPU cores were 
idle. The energy consumed in the light sleep, sleep, and module stop modes at 
600   MHz was 4.5, 22.3, and 44.0% lower than in the normal mode, respectively, 
although these modes took some time to stop and start the CPU core and to 
save and return the cache. The execution time increased by 79.5% at 300   MHz, 
but the power consumption decreased, and the required energy decreased by 
5.2%.     

   1.6.6     RP  - 2 Prototype Chip 

 The RP - 2 is a prototype multicore chip with eight SH - X3 CPU cores. It was 
fabricated in a 90 - nm CMOS process that was the same process used for the 
RP - 1. The RP - 2 achieved a total of 8,640   MIPS at 600   MHz by the eight SH - X3 
cores measured with the Dhrystone 2.1 benchmark. Because it is diffi cult to 
lay out the eight cores close to each other, we did not select a tightly coupled 
cluster of eight cores. Instead, the RP - 2 consists of two clusters of four cores, 
and the cache coherency is maintained in each cluster. Therefore, the interclu-
ster cache coherency must be maintained by software if necessary. 

   1.6.6.1     RP  - 2 Specifi cations     Table  1.9  summarizes the RP - 2 specifi cations. 
The RP - 2 integrates eight SH - X3 cores as two clusters of four cores, DDR2 -
 SDRAM and SRAM memory interfaces, DMA controllers, and some periph-
eral modules. Figure  1.33  illustrates a block diagram of the RP - 2. The arrows 
to/from the SuperHyway indicate connections from/to initiator/target ports, 
respectively.      

   1.6.6.2    Power Domain and Partial Power Off     Power - effi cient chip design 
for embedded applications requires several independent power domains 
where the power of unused domains can be turned off. The power domains 
were initially introduced to an SoC for mobile phones  [5] , which defi ned 20 
hierarchical power domains. In contrast, high performance multicore chips use 
leaky low - Vt transistors for CPU cores, and reducing the leakage power of 
such cores is the primary goal. 

     FIGURE 1.32.     Energy consumption with low power modes.  
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 The RP - 2 was developed for target use in power - effi cient high performance 
embedded applications. Sixteen power domains were defi ned so that they can 
be independently powered off. A resume - standby mode was also defi ned for 
fast resume operation, and the power levels of the CPU and the URAM of a 
core are off and on, respectively. Each processor core can operate at a different 
frequency or even dynamically stop the clock to maintain processing perfor-
mance while reducing the average operating power consumption. 

 Figure  1.34  illustrates the power domain structure of eight CPU cores with 
eight URAMs. Each core is allocated to a separate power domain so that 

  TABLE 1.9.     RP  - 2 Specifi cations 

  Process technology    90 - nm, 8 - layer Cu, triple - Vth, CMOS  
  Chip size/power    104.8   mm 2 /2.8   W (typical, 1.0   V, Dhrystone 2.1)  
  Supply voltage/clock frequency    1.0   V (internal), 1.8/3.3   V(I/O)/600   MHz  
  SH - X3 core  

  Size    6.6   mm 2  (3.36    ×    1.96   mm)  
  I/D - cache    16 - kB four - way set - associative (each)  
  ILRAM/OLRAM/URAM    8/32/64   kB (unifi ed)  

  CSM/external interfaces    128   kB/DDR2 - SDRAM, SRAM  
  Performance  

  CPU    8,640   MIPS (Dhrystone 2.1, 8 core total)  
  FPU    33.6 GFLOPS (peak, 8 core total)  

     FIGURE 1.33.     Block diagram of RP - 2.  
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the power supply can be cut off while unused. Two power domains (Cn and 
Un, for  n  ranging from 0 to 7) are assigned to each core, where Un is allocated 
only for URAM. By keeping the power of Un on, the CPU status is saved to 
URAM before the Cn power is turned off, and restored from URAM after 
Cn power is turned on. This shortens the restart time compared with a power -
 off mode in which both Cn and Un are powered off together. Each power 
domain is surrounded by power switches and controlled by a power switch 
controller (VSWC).   

 Table  1.10  summarizes the power modes of each CPU. Light sleep mode 
is suitable for dynamic power saving while cache coherency is maintained. In 
sleep mode, almost all clocks for the CPU core are stopped. In resume standby 
mode, the leakage current for eight cores is reduced to 22 from 162   mA in 
sleep mode, and leakage power is reduced by 86%.    

   1.6.6.3    Synchronization Support Hardware     The RP - 2 has barrier registers 
to support CPU core synchronization for multiprocessor systems. Software can 

     FIGURE 1.34.     Power domain structure of eight CPU cores with eight URAMs.  
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  TABLE 1.10.    Power Modes of  CPU  Cores 

   CPU Power Modes     Normal     Light Sleep     Sleep     Resume     Power Off  

  Clock for CPU and URAM    On    Off    Off    Off    Off  
  Clock for I/D Cache    On    On    Off    Off    Off  
  Power supply for CPU    On    On    On    Off    Off  
  Power supply for URAM    On    On    On    On    Off  
  Leakage current (mA)   a       162    162    162    22    0  

     a       Measured at room temperature at 1.0   V, eight - core total.   
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use these registers for fast synchronization between the cores. In the synchro-
nization, one core waits for other cores to reach a specifi c point in a program. 
Figure  1.35  illustrates the barrier registers for the synchronization. In a con-
ventional software solution, the cores have to test and set a specifi c memory 
location, but this requires long cycles. We provide three sets of barrier registers 
to accelerate the synchronization. Each CPU core has a 1 - bit barrier write 
(BARW) register that it notifi es when it reaches a specifi c point. The BARW 
values of all the cores are gathered by hardware to form an 8 - bit barrier read 
(BARR) register of each core so that each core can obtain all the BARW 
values from its BARR register with a single instruction. As a result, the syn-
chronization is fast and does not disturb other transactions on the Super-
Hyway bus.   

 Figure  1.36  shows an example of the barrier register usage. In the beginning, 
all the BARW values are initialized to zero. Then each core inverts its BARW 

     FIGURE 1.35.     Barrier registers for synchronization.  
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     FIGURE 1.36.     Synchronization example using barrier registers.  
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value when it reaches a specifi c point, and it checks and waits until all its 
BARR values are ones refl ecting the BARW values. The synchronization is 
complete when all the BARW values are inverted to ones. The next synchro-
nization can start immediately with the BARWs being ones, and is complete 
when all the BARW values are inverted to zeros.   

 Table  1.11  compares the results of eight - core synchronizations with and 
without the barrier registers. The average number of clock cycles required for 
a certain task to be completed with and without barrier registers is 8,510 and 
52,396 cycles, respectively. The average differences in the synchronizing cycles 
between the fi rst and last cores are 10 and 20,120 cycles, with and without 
the barrier registers, respectively. These results show that the barrier registers 
effectively improve the synchronization.    

   1.6.6.4    Chip Integration and Evaluations     The RP - 2 was fabricated using 
the same 90 - nm CMOS process as that for the RP - 1. Figure  1.37  is the chip 
micrograph of the RP - 2. It achieved a total of 8,640   MIPS at 600   MHz by the 
eight SH - X3 cores measured with the Dhrystone 2.1 benchmark, and con-
sumed 2.8   W at 1.0   V, including leakage power.   

 The fabricated RP - 2 chip was evaluated using the SPLASH - 2 benchmarks 
on an SMP Linux OS. Figure  1.38  plots the RP - 2 execution time on one cluster 
based on the number of POSIX threads. The processing time was reduced to 
51 – 63% with two threads and to 41 – 27% with four or eight threads running 
on one cluster. Since there were fewer cores than threads, the eight - thread 
case showed similar performance to the four - thread one. Furthermore, in 
some cases, the increase in the number of threads resulted in an increase in 
the processing time due to the synchronization overhead.      

   1.7     SH  -  X 4:  ISA  AND ADDRESS SPACE EXTENSION 

 Continuously, embedded systems expand their application fi elds, and enhance 
their performance and functions in each fi eld. As a key component of the 
system, embedded processors must enhance their performance and func-
tions with maintaining or enhancing their effi ciencies. As the latest SH proces-
sor core, the SH - X4 extended its ISA and address space effi ciently for this 
purpose. 

  TABLE 1.11.    Eight - Core Synchronization Cycles 

     
   Conventional Method 

(via External Memory)  
   RP - 2 Method (via 

BARW/BARR registers)  

  Average clock cycles    52,396    8,510  
  Average difference    20,120    10  
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     FIGURE 1.37.     Chip micrograph of RP - 2.  
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     FIGURE 1.38.     RP - 2 execution time according to number of POSIX threads.  

1.0

0.8

0.6

0.4

0.2

0.0
Barnes OceanWater FFT LU Radix

R
el

at
iv

e 
Ex

ec
ut

io
n 

Ti
m

e

1 Thread
2 Threads
4 Threads
8 Threads

16 Threads

 The SH - X4 was integrated on the RP - X heterogeneous multicore chip as 
two 4 - core clusters with four Flexible Engine/Generic ALU Arrays (FE - GAs) 
 [47, 48] , two MX - 2 matrix processors  [49] , a  Video Processing Unit 5  ( VPU5 ) 
 [50, 51] , and various peripheral modules. 

   1.7.1     SH  -  X 4 Core Specifi cations 

 Table  1.12  shows the specifi cations of an SH - X4 core designed based on the 
SH - X3 core. The most of the specifi cations are the same as those of the SH - X3 
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core, and the same ones are not shown. The SH - X4 extended the ISA with 
some prefi xes, and the cycle performance is enhanced from 2.23 to 2.65 MIPS/
MHz. As a result, the SH - X4 achieved 1,717   MIPS at 648   MHz. The 648   MHz 
is not so high compared with the 600   MHz of the SH - X3, but the SH - X4 
achieved the 648   MHz in a low power process. Then, the typical power con-
sumption is 106   mW, and the power effi ciency reached as high as 16   GIPS/W.    

   1.7.2    Effi cient  ISA  Extension 

 The 16 - bit fi xed - length ISA of the SH cores is an excellent feature enabling a 
higher code density than that of 32 - bit fi xed - length ISAs of conventional 
RISCs. However, we made some trade - off to establish the 16 - bit ISA. Operand 
fi elds are carefully shortened to fi t the instructions into the 16   bits according 
to the code analysis of typical embedded programs in the early 1990s. The 
16 - bit ISA was the best choice at that time and the following two decades. 
However, required performance grew higher and higher, program size and 
treating data grew larger and larger. Therefore, we decided to extend the ISA 
by some prefi x codes. 

 The week points of the 16 - bit ISA are (1) short - immediate operand, (2) 
lack of three - operand operation instructions, and (3) implicit fi xed - register 
operand. The short - immediate ISA uses a two - instruction sequence of a long -
 immediate load and a use of the loaded data, instead of a long immediate 
instruction. A three - operand operation becomes a two - instruction sequence 
of a move instruction and a two - operand instruction. The implicit fi xed - register 
operand makes register allocation diffi cult, and causes ineffi cient register 
allocations. 

 The popular ISA extension from the 16 - bit ISA is a variable - length ISA. 
For example, an IA - 32 is a famous variable - length ISA, and ARM Thumb - 2 
is a variable - length ISA of 16 and 32   bits. However, a variable - length instruc-
tion consists of plural unit - length codes, and each unit - length code has plural 
meaning depending on the preceding codes. Therefore, the variable - length 
ISA causes complicated, large, and slow parallel - issue logic with serial code 
analysis. 

  TABLE 1.12.     SH - X 4 Processor Core Specifi cations 

    ISA     SuperH 16 - Bit ISA with Prefi x Extension  

  Operating frequency    648   MHz (45 - nm low power CMOS process)  
  Performance  

  Dhrystone 2.1    1,717   MIPS (2.65   MIPS/MHz)  
  FPU (peak)    4.5/0.6 GFLOPS (single/double)  

  Power/power effi ciency    106   mW/16   GIPS/W  
  Address space  

  Logical    32   bits, 4   GB  
  Physical    40   bits, 1   TB  
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 Another way is using prefi x codes. The IA - 32 uses some prefi xes, as well as 
the variable - length instructions, and using prefi x codes is one of the conven-
tional ways. However, if we use the prefi x codes but not use the variable - length 
instructions, we can implement a parallel instruction decoding easily. The 
SH - X4 introduced some 16 - bit prefi x codes to extend the 16 - bit fi xed - length 
ISA. 

 Figure  1.39  shows some examples of the ISA extension. The fi rst example 
(#1) is an operation  “ Rc    =    Ra    +    Rb (Ra, Rb, Rc: registers) ” , which requires a 
two - instruction sequence of  “ MOV Ra, Rc (Rc    =    Ra) ”  and  “ ADD Rb, Rc (Rc 
 +     =    Rb) ”  before extension, but only one instruction  “ ADD Ra, Rb, Rc ”  after 
the extension. The new instruction is made of the  “ ADD Ra, Rb ”  by a prefi x 
to change a destination register operand Rb to a new register operand Rc. The 
code sizes are the same, but the number of issue slots reduces from two to one. 
Then the next instruction can be issued simultaneously if there is no other 
pipeline stall factor.   

 The second example (#2) is an operation  “ Rc    =    @(Ra    +    Rb), ”  which 
requires a two - instruction sequence of  “ MOV Rb, R0 (R0    =    Rb) ”  and  “ MOV.L 
@(Ra, R0), Rc (Rc    =    @(Ra    +    R0)) ”  before extension, but only an instruction 
 “ MOV.L @(Ra, Rb), Rc ”  after the extension. The new instruction is made of 
the  “ MOV @(Ra, R0), Rc ”  by a prefi x to change the R0 to a new register 
operand. Then we do not need to use the R0, which is the third implicit fi xed 
operand with no operand fi eld to specify. It makes the R0 busy and register 
allocation ineffi cient to use the R0 - fi xed operand, but the above extension 
solve the problem. 

 The third example (#3) is an operation  “ Rc    =    @(Ra    +    lit8) (lit8: 8 - 
bit literal), ”  which requires a two - instruction sequence of  “ MOV lit8, R0 

     FIGURE 1.39.     Examples of ISA extension.  
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(R0    =    lit8) ”  and  “ MOV.L @(Ra, R0), Rc (Rc    =    @(Ra    +    R0)) ”  before exten-
sion, but only an instruction  “ MOV.L @(Ra, lit8), Rc ”  after the extension. The 
new instruction is made of the  “ MOV.L @(Ra, lit4), Rc (lit4: 4 - bit literal) ”  by 
a prefi x to extend the lit4 to lit8. The prefi x can specify the loaded data size 
in memory and the extension type of signed or unsigned if the size is 8 or 
16   bits, as well as the extra 4 - bit literal. 

 Figure  1.40  illustrates the instruction decoder of the SH - X4 enabling a dual 
issue, including extended instructions by prefi x codes. The gray parts are the 
extra logic for the extended ISA. Instruction registers at the I3 stage hold fi rst 
four 16 - bit codes, which was two codes for the conventional 16 - bit fi xed - length 
ISA. The simultaneous dual - issue of the instructions with prefi xes consumes 
the four codes per cycle at peak throughput. Then, a predecoder checks each 
code in parallel if it is a prefi x or not, and outputs control signals of multiplex-
ers MUX to select the inputs of prefi x and normal decoders properly.   

 The Table  1.13  summarizes all cases of the input patterns and corresponding 
selections. A code after the prefi x code is always a normal code, and hardware 

     FIGURE 1.40.     Instruction decoder of SH - X4.  
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  TABLE 1.13.    Input Patterns and Selections 

   Input      Output  

  C0    C1    C2    C3    PD0    ID0    PD1    ID1  
  N    N     –      –      –     C0     –     C1  
  N    P     –      –      –     C0    C1    C2  
  P     –     N     –     C0    C1     –     C2  
  P     –     P     –     C0    C1    C2    C3  

   P, prefi x; n, normal;  – , arbitrary code.   
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need not check it. Each prefi x decoder decodes a provided prefi x code, and 
overrides the output of the normal decoder appropriately. As a result, the 
instruction decoder performs the dual issue of instructions with prefi xes.   

 Figure  1.41  shows evaluation results of the extended ISA with four bench-
mark programs. The performance of Dhrystone 2.1 was accelerated from 2.24 
to 2.65   MIPS/MHz by 16%. The performance of FFT, fi nite impulse response 
(FIR), and JPEG encoding were improved by 23, 34, and 10%, respectively. 
On the other hand, area overhead of the prefi x code implementation was less 
than 2% of the SH - X4. This means the ISA extension by the prefi x codes 
enhanced both performance and effi ciency.    

   1.7.3    Address Space Extension 

 The 32 - bit address can defi ne an address space of 4   GB. The space consists 
of main memory, on - chip memories, various IO spaces, and so on. Then the 
maximum linearly addressed space is 2   GB for the main memory. However, 
the total memory size is continuously increasing, and will soon exceed 2   GB 
even in an embedded system. Therefore, we extended the number of physical 
address bits to 40   bits, which can defi ne 1 - TB address space. The logical address 
space remains 32 - bit, and the programming model is unchanged. Then the 
binary compatibility is maintained. The logical address space extension would 
require the costly 32 -  to 64 - bit extensions of register fi les, integer executions, 
branch operations, and so on. 

 Figure  1.42  illustrates an example of the extension. The 32 - bit logical address 
space is compatible to the predecessors of the SH - X4. The MMU translates 
the logical address to a 32/40 - bit physical address by TLB or  privileged map-
ping buffer  ( PMB ) in 32/40 - bit physical address mode, respectively. The TLB 
translation is a well - known dynamic method, but the original PMB translation 
is a static method to avoid exceptions possible for the TLB translation. There-
fore, the PMB page sizes are larger than that of the TLB to cover the PMB 
area effi ciently.   

 The logical space is divided into fi ve regions, and the attribute of each 
region can be specifi ed as user - mode accessible or inaccessible, translated 
by TLB or PMB, and so on. In the example, the P0/U0 region is user - mode 

     FIGURE 1.41.     Performance improvement ratio by prefi x codes.  
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accessible and translated by TLB, the P1 and P2 region are user - mode inac-
cessible and translated by PMB, and the P3 region is user - mode inaccessible 
and translated by TLB. The P4 region includes a control register area that is 
mapped on the bottom of physical space so that the linear physical space is 
not divided by the control register area.  

   1.7.4    Data Transfer Unit 

 High - speed and effi cient data transfer is one of the key features for multicore 
performance. The SH - X4 core integrates a DTU for this purpose. A DMAC 
is conventional hardware for the data transfer. However, the DTU has some 
advantage to the DMAC, because the DTU is a part of an SH - X4 core. For 
example, when a DMAC transfer the data between a memory in an SH - X4 
core and a main memory, the DMAC must initiate two SuperHyway bus 
transactions between the SH - X4 core and the DMAC and between the DMAC 
and the main memory. On the other hand, the DTU can perform the transfer 
with one SuperHyway bus transaction between the SH - X4 core and the main 
memory. In addition, the DTU can use the initiator port of the SH - X4 core, 
whereas the DMAC must have its own initiator port, and even if all the SH - X4 
cores have a DTU, no extra initiator port is necessary. Another merit is that 
the DTU can share the unifi ed TLB (UTLB) of the SH - X4 core, and the DTU 
can handle a logical address. 

 Figure  1.43  shows an example of a data transfer between an SH - X4 core 
and an FE - GA. The DTU has a transfer TLB (TTLB) as a micro TLB that 
caches UTLB entries of the CPU for independent executions. The DTU can 
get a UTLB entry when the translation misses the TTLB. The DTU action is 
defi ned by a command chain in a local memory. The DTU can execute the 
command chain of plural commands without CPU control. In the example, 
the DTU transfers data in a local memory of the SH - X4 to a memory in the 
FE - GA. The source data specifi ed by the source address from the command 

     FIGURE 1.42.     An example of logical and physical address spaces of SH - X4.  
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is read from the local memory, and the destination address specifi ed by the 
command is translated by the TTLB. Then the address and data are output to 
the SuperHyway via the bus interface, and the data are transferred to the 
destination memory of the FE - GA.    

   1.7.5     RP  -  X  Prototype Chip 

 A heterogeneous multicore is one of the most promising approaches to attain 
high performance with low frequency and power, for consumer electronics or 
scientifi c applications. The RP - X is the latest prototype multicore chip with 
eight SH - X4 cores, four FE - GAs, two MX - 2s, a VPU5, and various peripheral 
modules. It was fabricated using 45 - nm CMOS process. The RP - X achieved 
13.7   GIPS at 648   MHz by the eight SH - X4 cores measured using the Dhrys-
tone 2.1 benchmark, and a total of 114.7 GOPS with 3.07   W. It attained a 
power effi ciency of 37.3 GOPS/W. 

   1.7.5.1     RP  -  X  Specifi cations     The RP - X specifi cations are summarized in 
Table  1.14 . It was fabricated using a 45 - nm CMOS process, integrating eight 
SH - X4 cores, four FE - GAs, two MX - 2s, one VPU5, one SPU, and various 
peripheral modules as a heterogeneous multicore SoC, which is one of the 
most promising approaches to attain high performance with low frequency 
and power, for consumer electronics or scientifi c applications.   

 The eight SH - X4 cores achieved 13.7   GIPS at 648   MHz measured using the 
Dhrystone 2.1 benchmark. Four FE - GAs, dynamically reconfi gurable proces-
sors, were integrated and attained a total performance of 41.5GOPS and 
a power consumption of 0.76   W. Two 1024 - way MX - 2s were integrated and 
attained a total performance of 36.9GOPS and a power consumption of 1.10   W. 
Overall, the effi ciency of the RP - X was 37.3 GOPS/W at 1.15   V, excluding 
special - purpose cores of a VPU5 and an SPU. This was the highest among 
comparable processors. The operation granularity of the SH - X4, FE - GA and 
MX - 2 processors are 32, 16, and 4   bits, respectively, and thus, we can assign 
the appropriate processor cores for each task in an effective manner. 

     FIGURE 1.43.     An example of DTU transfer between SH - X4 and FE - GA.  
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 Figure  1.44  illustrates the structure of the RP - X. The processor cores of the 
SH - X4, FE - GA, and MX - 2, the programmable special purpose cores of the 
VPU5 and SPU, and the various modules are connected by three SuperHyway 
buses to handle high - volume and high - speed data transfers. SuperHyway - 0 
connects the modules for an OS, general tasks, and video processing, 
SuperHyway - 1 connects the modules for media acceleration, and SuperHyway - 2 
connects media IPs except for the VPU5. Some peripheral buses and modules 
are not shown in the fi gure.   

  TABLE 1.14.     RP - X  Specifi cations 

  Process technology    45 - nm, 8 - layer Cu, triple - Vth, CMOS  
  Chip size    153.76   mm 2  (12.4   mm    ×    12.4   mm)  
  Supply voltage    1.0 – 1.2   V (internal), 1.2/1.5/1.8/2.5/3.3   V (I/O)  
  Clock frequency    648   MHz (SH - X4), 324   MHz (FE - GA, MX - 2)  
  Total power consumption    3.07   W (648   MHz, 1.15   V)  
  Processor cores and 

performances  
  8 ×  SH - X4     CPU    13.7   GIPS (Dhrystone 2.1, 8 - core total)  

  FPU    36.3 GFLOPS (8 - core total)  
  4 ×  FE - GA    41.5 GOPS (4 - core total)  
  2 ×  MX - 2    36.9 GOPS (2 - core total)  

  Programmable special 
purpose cores  

  VPU5 (video processing unit) for MPEG2, H.264, 
VC - 1 

 SPU (sound processing unit) for AAC, MP3  
  Total performances and 

power  
  114.7 GOPS, 3.07   W, 37.3 GOPS/W (648   MHz, 

1.15   V)  
  External interfaces    2 ×  DDR3 - SDRAM (32 - bit, 800   MHz), SRAM, 

PCIexpress (rev 2.0, 2.5   GHz, 4 lanes), serial ATA  

     FIGURE 1.44.     Block diagram of RP - X.  
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 A DTU was implemented in each SH - X4 core to transfer data to and from 
the special - purpose cores or various memories without using CPU instruc-
tions. In this kind of system, multiple OSes are used to control various func-
tions, and thus high - volume and high - speed memories are required.  

   1.7.5.2    Chip Integration and Evaluations     The RP - X was fabricated using 
a 45 - nm low power CMOS process. A chip micrograph of the RP - X is in Figure 
 1.45 . It achieved a total of 13,738   MIPS at 648   MHz by the eight SH - X4 cores 
measured using the Dhrystone 2.1 benchmark, and consumed 3.07   W at 1.15   V 
including leakage power.   

 The RP - X is a prototype chip for consumer electronics or scientifi c applica-
tions. As an example, we produced a digital TV prototype system with IP net -
works (IP - TV), including image recognition and database search. Its system 
confi guration and memory usage are shown in Figure  1.46 . The system is capa-
ble of decoding 1080i audio/video data using a VPU and an SPU on the OS#1. 
For image recognition, the MX - 2s are used for image detection and feature 
quantity calculation, and the FE - GAs are used for optical fl ow calculation of 
a VGA (640    ×    480) video at 15 fps on the OS#2. These operations required 
30.6 and 0.62 GOPS of the MX - 2 and FE - GA, respectively. The SH - X4 cores 
are used for database search using the results of the above operations on the 
OS#3, as well as supporting of all the processing, including OS#1, OS#2, OS#3, 

     FIGURE 1.45.     Chip micrograph of RP - X.  
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and data transfers between the cores. The main memories of 0.4, 0.6, 1.6, and 
1.8   GB are assigned to OS#1, OS#2, OS#3, and PCI, respectively, for a total of 
4.4   GB.   

 Table  1.15  lists the total performance and power consumption at 1.15 V 
when eight CPU cores, four FE - GAs, and two MX - 2s are used at the same 
time. The power effi ciency of the CPU cores, FE - GAs, and MX - 2s reached 42.9 
GFLOPS/W, 41.5 GOPS/W, and 36.9 GOPS/W, respectively. The power con-
sumption of the other components was reduced to 0.40 W by clock gating 
of 31 out of 44 modules. In total, if we count 1 GFLOPS as 1 GOPS, the RP - X 
achieved 37.3 GOPS/W at 1.15   V, excluding I/O area power consumption.      
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