
 1 Low Power Multicore Processors
for Embedded Systems

 FUMIO ARAKAWA

Embedded Systems: Hardware, Design, and Implementation, First Edition.
Edited by Krzysztof Iniewski.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

1

 1.1 MULTICORE CHIP WITH HIGHLY EFFICIENT CORES

 A multicore chip is one of the most promising approaches to achieve high
performance. Formerly, frequency scaling was the best approach. However, the
scaling has hit the power wall, and frequency enhancement is slowing down.
Further, the performance of a single processor core is proportional to the
square root of its area, known as Pollack ’ s rule [1] , and the power is roughly
proportional to the area. This means lower performance processors can achieve
higher power effi ciency. Therefore, we should make use of the multicore chip
with relatively low performance processors.

 The power wall is not a problem only for high - end server systems. Embed-
ded systems also face this problem for further performance improvements [2] .
MIPS is the abbreviation of million instructions per second, and a popular
integer - performance measure of embedded processors. The same performance
processors should take the same time for the same program, but the original
MIPS varies, refl ecting the number of instructions executed for a program.
Therefore, the performance of a Dhrystone benchmark relative to that of a
VAX 11/780 minicomputer is broadly used [3, 4] . This is because it achieved 1
MIPS, and the relative performance value is called VAX MIPS or DMIPS, or
simply MIPS. Then GIPS (giga - instructions per second) is used instead of the
MIPS to represent higher performance.

 Figure 1.1 roughly illustrates the power budgets of chips for various applica-
tion categories. The horizontal and vertical axes represent performance
(DGIPS) and effi ciency (DGIPS/W) in logarithmic scale, respectively. The
oblique lines represent constant power (W) lines and constant product lines

CO
PYRIG

HTED
 M

ATERIA
L

2 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

of the power – performance ratio and the power (DGIPS 2 /W). The product
roughly indicates the attained degree of the design. There is a trade - off
relationship between the power effi ciency and the performance. The power
of chips in the server/personal computer (PC) category is limited at around
100 W, and the chips above the 100 - W oblique line must be used. Similarly, the
chips roughly above the 10 - or 1 - W oblique line must be used for equipped -
 devices/mobile PCs, or controllers/mobile devices, respectively. Further, some
sensors must use the chips above the 0.1 - W oblique line, and new categories
may grow from this region. Consequently, we must develop high DGIPS 2 /W
chips to achieve high performance under the power limitations.

 Figure 1.2 maps various processors on a graph, whose horizontal and verti-
cal axes respectively represent operating frequency (MHz) and power –
 frequency ratio (MHz/W) in logarithmic scale. Figure 1.2 uses MHz or GHz
instead of the DGIPS of Figure 1.1 . This is because few DGIPS of the server/
PC processors are disclosed. Some power values include leak current, whereas
the others do not; some are under the worst conditions while the others are
not. Although the MHz value does not directly represent the performance,
and the power measurement conditions are not identical, they roughly repre-
sent the order of performance and power. The triangles and circles represent
embedded and server/PC processors, respectively. The dark gray, light gray,
and white plots represent the periods up to 1998, after 2003, and in between,
respectively. The GHz 2 /W improved roughly 10 times from 1998 to 2003, but
only three times from 2003 to 2008. The enhancement of single cores is appar-
ently slowing down. Instead, the processor chips now typically adopt a multi-
core architecture.

 Figure 1.3 summarizes the multicore chips presented at the International
Solid - State Circuit Conference (ISSCC) from 2005 to 2008. All the processor
chips presented at ISSCC since 2005 have been multicore ones. The axes are

 FIGURE 1.1. Power budgets of chips for various application categories.

50

Sensors

New Categories

5

10

Mobile Devices

Controllers

/W

1 Mobile PC

Equipped Devices

D
G

IP
S

/

1

0.5

S /PC

0.1
1 50 5 100 1 50 100

erver

DGIPS1 50.5 100.1 50 100DGIPS

MULTICORE CHIP WITH HIGHLY EFFICIENT CORES 3

 FIGURE 1.2. Performance and effi ciency of various processors.

10

100

1000

30 100 1000 3000300

3000

30

300

Operating Frequency (MHz)

Embedded
Server/PC

VR5432

EC603e

SH3 -DSP

ARM710

SA110

V851

VR4121

CF5202

CF5307

PPC401GF

PPC403GA
PPC405CR

i960JT

SH-4

SH-3

SH-2

ARM9

Alpha 21264

UltraII

PA8000

Pentium Pro
Alpha 21164

R10000
Ultra

PentiumIIR12000 POWER5POWER4

PPC7400

Ultra IIe

PA8800

MobilePentium III

PentiumIII
Xeon

Itanium

Itanium2

TM5400

PPC750FX

PPC750GX

POWER3

POWER4+

Athlon

Opteron

Alpha 21364
UltraIIIPA8500

PA8600

R14000
R16000PPC750

TM3120

ARM10

XScale
VR4122

VR4131

VR5500

ARM11

MIPS5Kc

MIPS4Kc

MIPS20Kc

Pentium4

POWER6Itanium
SPARC v9

Niagara

Xeon

PPC970

PAsemi
Merom

3rdG SPARC

SH-X

CaviumFR-V

SH-X2/X3

C64+

Atom

Cortex-A8/A9

—’98—’03—P
ow

er
–F

re
qu

en
cy

 R
at

io
 （

M
H

z/
W
）

 FIGURE 1.3. Some multicore chips presented at ISSCC.

Opteron

100

1000

1000 10000 300003000

3000

30

300

M
H

z/
W

1¥, 2¥, 4¥, 8¥, or 16¥ of Operating Frequency (MHz)

ISSCC 2005

Cavium

Itanium

SPARC v9

Niagara

FR-V

Xeon

PPC970
POWER6

SH-X3

PAsemi
Merom

3rdG SPARC

ISSCC 2006
ISSCC 2007
ISSCC 2008

CELL

4¥

8¥

4¥
16¥

8¥

8¥
16¥

4¥

4¥

similar to those of Figure 1.2 , although the horizontal axis refl ects the number
of cores. Each plot at the start and end points of an arrow represent single
core and multicore, respectively.

 The performance of multicore chips has continued to improve, which has
compensated for the slowdown in the performance gains of single cores in
both the embedded and server/PC processor categories. There are two types

4 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

of muticore chips. One type integrates multiple - chip functions into a single
chip, resulting in a multicore SoC. This integration type has been popular for
more than 10 years. Cell phone SoCs have integrated various types of hard-
ware intellectual properties (HW - IPs), which were formerly integrated into
multiple chips. For example, an SH - Mobile G1 integrated the function of both
the application and baseband processor chips [5] , followed by SH - Mobile G2
 [6] and G3 [7, 8] , which enhanced both the application and baseband function-
alities and performance. The other type has increased number of cores to meet
the requirements of performance and functionality enhancement. The RP - 1,
RP - 2 and RP - X are the prototype SoCs, and an SH2A - DUAL [9] and an SH -
 Navi3 [10] are the multicore products of this enhancement type. The transition
from single core chips to multicore ones seems to have been successful on
the hardware side, and various multicore products are already on the market.
However, various issues still need to be addressed for future multicore
systems.

 The fi rst issue concerns memories and interconnects. Flat memory and
interconnect structures are the best for software, but hardly possible in terms
of hardware. Therefore, some hierarchical structures are necessary. The power
of on - chip interconnects for communications and data transfers degrade power
effi ciency, and a more effective process must be established. Maintaining the
external input/output (I/O) performance per core is more diffi cult than increas-
ing the number of cores, because the number of pins per transistors decreases
for fi ner processes. Therefore, a breakthrough is needed in order to maintain
the I/O performance.

 The second issue concerns runtime environments. The performance scal-
ability was supported by the operating frequency in single core systems, but
it should be supported by the number of cores in multicore systems. There-
fore, the number of cores must be invisible or virtualized with small overhead
when using a runtime environment. A multicore system will integrate differ-
ent subsystems called domains. The domain separation improves system reli-
ability by preventing interference between domains. On the other hand, the
well - controlled domain interoperation results in an effi cient integrated system.

 The third issue relates to the software development environments. Multi-
core systems will not be effi cient unless the software can extract applica-
tion parallelism and utilize parallel hardware resources. We have already
accumulated a huge amount of legacy software for single cores. Some legacy
software can successfully be ported, especially for the integration type of mul-
ticore SoCs, like the SH - Mobile G series. However, it is more diffi cult with the
enhancement type. We must make a single program that runs on multicore,
or distribute functions now running on a single core to multicore. Therefore,
we must improve the portability of legacy software to the multicore systems.
Developing new highly parallel software is another issue. An application or
parallelization specialist could do this, although it might be necessary to have
specialists in both areas. Further, we need a paradigm shift in the development,
for example, a higher level of abstraction, new parallel languages, and assistant
tools for effective parallelization.

SUPERH™ RISC ENGINE FAMILY (SH) PROCESSOR CORES 5

 1.2 SUPERH ™ RISC ENGINE FAMILY (SH) PROCESSOR CORES

 As mentioned above, a multicore chip is one of the most promising approaches
to realize high effi ciency, which is the key factor to achieve high performance
under some fi xed power and cost budgets. Therefore, embedded systems are
employing multicore architecture more and more. The multicore is good for
multiplying single - core performance with maintaining the core effi ciency, but
does not enhance the effi ciency of the core itself. Therefore, we must use highly
effi cient cores. SuperH ™ (Renesas Electronics, Tokyo) reduced instruction set
computer (RISC) engine family (SH) processor cores are highly effi cient
typical embedded central processing unit (CPU) cores for both single - and
multicore chips.

 1.2.1 History of SH Processor Cores

 Since the beginning of the microprocessor history, a processor especially for
PC/servers had continuously advanced its performance while maintaining a
price range from hundreds to thousands of dollars [11, 12] . On the other hand,
a single - chip microcontroller had continuously reduced its price, resulting in
the range from dozens of cents to several dollars with maintaining its perfor-
mance, and had been equipped to various products [13] . As a result, there was
a situation of no demand on the processor of the middle price range from tens
to hundreds of dollars.

 However, with the introduction of the home game console in the late 1980s
and the digitization of the home electronic appliances from the 1990s, there
occurred the demands to a processor suitable for multimedia processing in
this price range. Instead of seeking high performance, such a processor has
attached great importance to high effi ciency. For example, the performance is
1/10 of a processor for PCs, but the price is 1/100, or the performance equals
to a processor for PCs for the important function of the product, but the price
is 1/10. The improvement of area effi ciency has become the important issue in
such a processor.

 In the late 1990s, a high performance processor consumed too high power
for mobile devices, such as cellular phones and digital cameras, and the demand
was increasing on the processor with higher performance and lower power for
multimedia processing. Therefore, the improvement of the power effi ciency
became the important issues. Furthermore, when the 2000s begins, more func-
tions were integrated by further fi ner processes, but on the other hand, the
increase of the initial and development costs became a serious problem. As a
result, the fl exible specifi cation and the cost reduction came to be important
issues. In addition, the fi ner processes suffered from the more leakage current.

 Under the above background, embedded processors were introduced to
meet the requirements, and have improved the area, power, and development
effi ciencies. The SH processor cores are one of such highly effi cient CPU cores.

 The fi rst SH processor was developed based on SuperH architecture as one
of embedded processors in 1993. Then the SH processors have been developed

6 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

as a processor with suitable performance for multimedia processing and area -
 and - power effi ciency. In general, performance improvement causes degra-
dation of the effi ciency as Pollack ’ s rule indicates [1] . However, we can fi nd
ways to improve both performance and effi ciency. Although individually each
method is a small improvement, overall it can still make a difference.

 The fi rst - generation product, SH - 1, was manufactured using a 0.8 - μ m
process, operated at 20 MHz, and achieved performance of 16 MIPS in 500 mW.
It was a high performance single - chip microcontroller, and integrated a read -
 only memory (ROM), a random access memory (RAM), a direct memory
access controller (DMAC), and an interrupt controller.

 The second - generation product, SH - 2, was manufactured using the same
0.8 - μ m process as the SH - 1 in 1994 [14] . It operated at 28.5 MHz, and achieved
performance of 25 MIPS in 500 mW by optimization on the redesign from
the SH - 1. The SH - 2 integrated a cache memory and an SDRAM controller
instead of the ROM and the RAM of the SH - 1. It was designed for the systems
using external memories. The integrated SDRAM controller did not popular
at that time, but enabled to eliminate an external circuitry, and contributed to
system cost reduction. In addition, the SH - 2 integrated a 32 - bit multiplier and
a divider to accelerate multimedia processing. And it was equipped to a home
game console, which was one of the most popular digital appliances. The SH - 2
extend the application fi eld of the SH processors to the digital appliances with
multimedia processing.

 The third - generation product SH - 3 was manufactured using a 0.5 - μ m
process in 1995 [15] . It operated at 60 MHz, and achieved performance of
60 MIPS in 500 mW. Its power effi ciency was improved for a mobile device.
For example, the clock power was reduced by dividing the chip into plural
clock regions and operating each region with the most suitable clock fre-
quency. In addition, the SH - 3 integrated a memory management unit (MMU)
for such devices as a personal organizer and a handheld PC. The MMU is
necessary for a general - purpose operating system (OS) that enables various
application programs to run on the system.

 The fourth - generation product, SH - 4, was manufactured using a 0.25 - μ m
process in 1997 [16 – 18] . It operated at 200 MHz, and achieved performance
of 360 MIPS in 900 mW. The SH - 4 was ported to a 0.18 - μ m process, and its
power effi ciency was further improved. The power effi ciency and the product
of performance and the effi ciency reached to 400 MIPS/W and 0.14 GIPS 2 /W,
respectively, which were among the best values at that time. The product rough-
ly indicates the attained degree of the design, because there is a trade - off
relationship between performance and effi ciency.

 The fi fth - generation processor, SH - 5, was developed with a newly defi ned
 instruction set architecture (ISA) in 2001 [19 – 21] , and an SH - 4A, the advanced
version of the SH - 4, was also developed with keeping the ISA compatibil-
ity in 2003. The compatibility was important, and the SH - 4A was used for
various products. The SH - 5 and the SH - 4A were developed as a CPU core
connected to other various HW - IPs on the same chip with a SuperHyway

SUPERH™ RISC ENGINE FAMILY (SH) PROCESSOR CORES 7

standard internal bus. This approach was available using the fi ne process of
0.13 μ m, and enabled to integrate more functions on a chip, such as a video
codec, 3D graphics, and global positioning systems (GPS).

 An SH - X, the fi rst generation of the SH - 4A processor core series, achieved
a performance of 720 MIPS with 250 mW using a 0.13 - μ m process [22 – 26] . The
power effi ciency and the product of performance and the effi ciency reached
to 2,880 MIPS/W and 2.1 GIPS 2 /W, respectively, which were among the best
values at that time. The low power version achieved performance of 360 MIPS
and power effi ciency of 4,500 MIPS/W [27 – 29] .

 An SH - X2, the second - generation core, achieved 1,440 MIPS using a 90 - nm
process, and the low power version achieved power effi ciency of 6,000 MIPS/W
in 2005 [30 – 32] . Then it was integrated on product chips [5 – 8] .

 An SH - X3, the third - generation core, supported multicore features for
both SMP and AMP [33, 34] . It was developed using a 90 - nm generic process
in 2006, and achieved 600 MHz and 1,080 MIPS with 360 mW, resulting in
3,000 MIPS/W and 3.2 GIPS 2 /W. The fi rst prototype chip of the SH - X3 was a
RP - 1 that integrated four SH - X3 cores [35 – 38] , and the second one was a RP - 2
that integrated eight SH - X3 cores [39 – 41] . Then, it was ported to a 65 - nm low
power process, and used for product chips [10] .

 An SH - X4, the latest fourth - generation core, was developed using a 45 - nm
low power process in 2009, and achieved 648 MHz and 1,717 MIPS with
106 mW, resulting in 16,240 MIPS/W and 28 GIPS 2 /W [42 – 44] .

 1.2.2 Highly Effi cient ISA

 Since the beginning of the RISC architecture, all the RISC processor had
adopted a 32 - bit fi xed - length ISA. However, such a RISC ISA causes larger
code size than a conventional complex instruction set computer (CISC) ISA,
and requires larger capacity of program memories including an instruction
cache. On the other hand, a CISC ISA has been variable length to defi ne
the instructions of various complexities from simple to complicated ones. The
variable length is good for realizing the compact code sizes, but requires
complex decoding, and is not suitable for parallel decoding of plural instruc-
tions for the superscalar issue.

 SH architecture with the 16 - bit fi xed - length ISA was defi ned in such a situ-
ation to achieve compact code sizes and simple decoding. The 16 - bit fi xed -
 length ISA was spread to other processor ISAs, such as ARM Thumb and
MIPS16.

 As always, there should be pros and cons of the selection, and there are
some drawbacks of the 16 - bit fi xed - length ISA, which are the restriction of
the number of operands and the short literal length in the code. For example,
an instruction of a binary operation modifi es one of its operand, and an extra
data transfer instruction is necessary if the original value of the modifi ed
operand must be kept. A literal load instruction is necessary to utilize a longer
literal than that in an instruction. Further, there is an instruction using an

8 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

implicitly defi ned register, which contributes to increase the number of operand
with no extra operand fi eld, but requires special treatment to identify it, and
spoils orthogonal characteristics of the register number decoding. Therefore,
careful implementation is necessary to treat such special features.

 1.2.3 Asymmetric In - Order Dual - Issue Superscalar Architecture

 Since a conventional superscalar processor gave priority to performance, the
superscalar architecture was considered to be ineffi cient, and scalar architec-
ture was still popular for embedded processors. However, this is not always
true. Since the SH - 4 design, SH processors have adopted the superscalar archi-
tecture by selecting an appropriate microarchitecture with considering effi -
ciency seriously for an embedded processor.

 The asymmetric in - order dual - issue superscalar architecture is the base
microarchitecture of the SH processors. This is because it is diffi cult for a
general - purpose program to utilize the simultaneous issue of more than two
instructions effectively; a performance enhancement is not enough to compen-
sate the hardware increase for the out - of - order issue, and symmetric supers-
calar issue requires resource duplications. Then, the selected architecture can
maintain the effi ciency of the conventional scalar issue one by avoiding the
above ineffi cient choices.

 The asymmetric superscalar architecture is sensitive to instruction catego-
rizing, because the same category instruction cannot be issued simultaneously.
For example, if we categorize all fl oating - point instructions in the same cate-
gory, we can reduce the number of fl oating - point register ports, but cannot
issue both fl oating - point instructions of arithmetic and load/store /transfer oper-
ations at a time. This degrades the performance. Therefore, the categorizing
requires careful trade - off consideration between performance and hardware
cost.

 First of all, both the integer and load/store instructions are used most fre-
quently, and categorized to different groups of integer (INT) and load/store
(LS), respectively. This categorization requires address calculation unit in
addition to the conventional arithmetic logical unit (ALU). Branch instruc-
tions are about one - fi fth of a program on average. However, it is diffi cult to
use the ALU or the address calculation unit to implement the early - stage
branch, which calculates the branch addresses at one - stage earlier than the
other type of operations. Therefore, the branch instruction is categorized in
another group of branch (BR) with a branch address calculation unit. Even a
RISC processor has a special instruction that cannot fi t to the superscalar issue.
For example, some instruction changes a processor state, and is categorized to
a group of nonsuperscalar (NS), because most of instructions cannot be issued
with it.

 The 16 - bit fi xed - length ISA frequently uses an instruction to transfer a
literal or register value to a register. Therefore, the transfer instruction is cat-
egorized to the BO group to be executable on both integer and load/store

SH-X: A HIGHLY EFFICIENT CPU CORE 9

(INT and LS) pipelines, which were originally for the INT and LS groups.
Then the transfer instruction can be issued with no resource confl ict. A usual
program cannot utilize all the instruction issue slots of conventional RISC
architecture that has three operand instructions and uses transfer instructions
less frequently. Extra transfer instructions of the 16 - bit fi xed - length ISA can
be inserted easily with no resource confl ict to the issue slots that would be
empty for a conventional RISC.

 The fl oating - point load/store/transfer and arithmetic instructions are cate-
gorized to the LS group and a fl oating - point execution (FE) group, respec-
tively. This categorization increases the number of the ports of the fl oating - point
register fi le. However, the performance enhancement deserves the increase.
The fl oating - point transfer instructions are not categorized to the BO group.
This is because neither the INT nor FE group fi t to the instruction. The INT
pipeline cannot use the fl oating - point register fi le, and the FE pipeline is
too complicated to treat the simple transfer operation. Further, the transfer
instruction is often issued with a FE group instruction, and the categorization
to other than the FE group is enough condition for the performance.

 The SH ISA supports fl oating - point sign negation and absolute value
(FNEG and FABS) instructions. Although these instructions seem to fi t the
FE group, they are categorized to the LS group. Their operations are simple
enough to execute at the LS pipeline, and the combination of another arith-
metic instruction becomes a useful operation. For example, the FNEG and
 fl oating - point multiply – accumulate (FMAC) instructions became a multiply -
 and - subtract operation.

 Table 1.1 summarizes the instruction categories for asymmetric super-
scalar architecture. Table 1.2 shows the ability of simultaneous issue of two
instructions. As an asymmetric superscalar processor, each pipeline for
the INT, LS, BR, or FE group is one, and the simultaneous issue is limited
to a pair of different group instructions, except for a pair of the BO group
instructions, which can be issued simultaneously using both the INT and
LS pipelines. An NS group instruction cannot be issued with another
instruction.

 1.3 SH - X : A HIGHLY EFFICIENT CPU CORE

 The SH - X has enhanced its performance by adopting superpipeline architec-
ture to the base micro - architecture of the asymmetric in - order dual - issue super-
scalar architecture. The operating frequency would be limited by an applied
process without fundamental change of the architecture or microarchitecture.
Although conventional superpipeline architecture was thought ineffi cient as
was the conventional superscalar architecture before applying to the SH - 4,
the SH - X core enhanced the operating frequency with maintaining the high
effi ciency.

10 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 TABLE 1.2. Simultaneous Issue of Instructions

 Second Instruction Category

 BO INT LS BR FE NS

 First Instruction
Category

 BO ✓ ✓ ✓ ✓ ✓
 INT ✓ ✓ ✓ ✓
 LS ✓ ✓ ✓ ✓
 BR ✓ ✓ ✓ ✓
 FE ✓ ✓ ✓ ✓
 NS

 TABLE 1.1. Instruction Categories for Asymmetric Superscalar Architecture

 INT FE

 ADD; ADDC; ADDV;
 SUB; SUBC; SUBV;
 MUL; MULU; MULS;
 DMULU; DMULS;
 DIV0U; DIV0S; DIV1;
 CMP; NEG; NEGC; NOT;
 DT; MOVT; CLRT; SETT;
 CLRMAC; CLRS; SETS;
 TST Rm, Rn; TST imm, R0;
 AND Rm, Rn; AND imm, R0;
 OR Rm, Rn; OR imm, R0;
 XOR Rm, Rn; XOR imm, R0;
 ROTL; ROTR; ROTCL; ROTCR;
 SHAL; SHAR; SHAD; SHLD;
 SHLL; SHLL2; SHLL8; SHLL16;
 SHLR; SHLR2; SHLR8; SHLR16;
 EXTU; EXTS; SWAP; XTRCT

 FADD; FSUB; FMUL;
 FDIV; FSQRT; FCMP;
 FLOAT; FTRC;
 FCNVSD; FCNVDS;
 FMAC; FIPR; FTRV;
 FSRRA; FSCA;
 FRCHG; FSCHG; FPCHG

 BO

 MOV imm, Rn;
 MOV Rm, Rn; NOP

 BR

 BRA; BSR; BRAF; BSRF;
 BT; BF; BT/S; BF/S;
 JMP; JSR; RTS

 NS

 AND imm, @(R0,GBR);
 OR imm, @(R0,GBR);
 XOR imm, @(R0,GBR);
 TST imm, @(R0,GBR);
 MAC; SYNCO;
 MOVLI; MOVCO;
 LDC (SR/SGR/DBR);
 STC (SR); RTE;
 LDTLB; ICBI; PREFI;
 TAS; TRAPA; SLEEP

 LS

 MOV (load/store);
 MOVA; MOVCA;
 FMOV; FLDI0; FLDI1;
 FABS; FNEG;
 FLDS; FSTS; LDS; STS;
 LDC (except SR/SGR/DBR);
 STC (except SR);
 OCBI; OCBP; OCBWB; PREF

SH-X: A HIGHLY EFFICIENT CPU CORE 11

 1.3.1 Microarchitecture Selections

 The SH - X has seven - stage superpipeline to maintain the effi ciency among
various numbers of stages applied to various processors up to highly super-
pipelined 20 stages [45] . The conventional seven - stage pipeline degraded the
cycle performance compared with the fi ve - stage one that is popular for effi -
cient embedded processors. Therefore, appropriate methods were chosen
to enhance and recover the cycle performance with the careful trade - off judg-
ment of performance and effi ciency. Table 1.3 summarizes the selection result
of the microarchitecture.

 An out - of - order issue is the popular method used by a high - end processor
to enhance the cycle performance. However, it requires much hardware and
is too ineffi cient especially for general - purpose register handling. The SH - X
adopts an in - order issue except branch instructions using no general - purpose
register.

 The branch penalty is the serious problem for the superpipeline architec-
ture. The SH - X adopts a branch prediction and an out - of - order branch issue,
but does not adopt a more expensive way with a branch target buffer (BTB)
and an incompatible way with plural instructions. The branch prediction is
categorized to static and dynamic ones, and the static ones require the archi-
tecture change to insert the static prediction result to the instruction. There-
fore, the SH - X adopts a dynamic one with a branch history table (BHT) and
a global history.

 The load/store latencies are also a serious problem, and the out - of - order
issue is effective to hide the latencies, but too ineffi cient to adopt as mentioned
above. The SH - X adopts a delayed execution and a store buffer as more effi -
cient methods.

 The selected methods are effective to reduce the pipeline hazard caused by
the superpipeline architecture, but not effective to avoid a long - cycle stall
caused by a cache miss for an external memory access. Such a stall could be
avoided by an out - of - order architecture with large - scale buffers, but is not a
serious problem for embedded systems.

 TABLE 1.3. Microarchitecture Selections of SH - X

 Selections Other Candidates Merits

 Pipeline stages 7 5, 6, 8, 10, 15, 20 1.4 times frequency
enhancement

 Branch
acceleration

 Out - of - order issue BTB, branch with
plural instructions

 Compatibility,
small area,
for low
frequency branch

 Branch
prediction

 Dynamic (BHT,
global history)

 Static (fi xed
direction, hint bit
in instruction)

 Latency
concealing

 Delayed execution,
store buffers

 Out - of - order issue Simple, small

12 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 1.3.2 Improved Superpipeline Structure

 Figure 1.4 illustrates a conventional seven - stage superpipeline structure. The
seven stages consist of 1st and 2nd instruction fetch (I1 and I2) stages and
an instruction decoding (ID) stage for all the pipelines, 1st to 4th execution
(E1, E2, E3, and E4) stages for the INT, LS, and FE pipelines. The FE pipeline
has nine stages with two extra execution stages of E5 and E6.

 A conventional seven - stage pipeline has less performance than a fi ve - stage
one by 20%. This means the performance gain of the superpipeline architec-
ture is only 1.4 × 0.8 = 1.12 times, which would not compensate the hardware
increase. The branch and load - use - confl ict penalties increase by the increase
of the instruction - fetch and data - load cycles, respectively. They are the main
reason of the 20% performance degradation.

 Figure 1.5 illustrates the seven - stage superpipeline structure of the SH - X
with delayed execution, store buffer, out - of - order branch, and fl exible for-
warding. Compared with the conventional pipeline shown in Figure 1.4 , the
INT pipeline starts its execution one - cycle later at the E2 stage, a store data
is buffered to the store buffer at the E4 stage and stored to the data cache
at the E5 stage, the data transfer of the fl oating - point unit (FPU) supports

 FIGURE 1.4. Conventional seven - stage superpipeline structure.

Instruction FetchEarly Branch
I1
I2

Execution FPU
Arithmetic

Address
Instruction Decoding FPU Instruction DecodingBranch

FPU
DataData

ID
E1
E2 Execution

WB WB

TransferData
Load/Store

WB

E2
E3
E4
E5

WB
E5
E6

FELSINTBR

 FIGURE 1.5. Seven - stage superpipeline structure of SH - X.

Execution FPU
Arithmetic
Execution

Address

WB

Tag

Data
Store

WB
-

WB

Instruction
Decoding

Instruction FetchI1
I2
ID
E1
E2
E3
E4
E5
E6
E7

Out-of-Order
Branch

FPU Instruction
Decoding

Branch

Flexible Forwarding

FPU
Data

Transfer

Data
Load

WB

BR INT LS FE

Store Buffer

SH-X: A HIGHLY EFFICIENT CPU CORE 13

fl exible forwarding. The BR pipeline starts at the ID stage, but is not synchro-
nized to the other pipelines for an out - of - order branch issue.

 The delayed execution is effective to reduce the load - use confl ict as Figure
 1.6 illustrates. It also lengthens the decoding stages into two except for the
address calculation, and relaxes the decoding time. With the conventional
architecture shown in Figure 1.4 , a load instruction, MOV.L, set ups an R0
value at the ID stage, calculates a load address at the E1 stage, loads a data
from the data cache at the E2 and E3 stages, and the load data is available at
the end of the E3 stage. An ALU instruction, ADD, setups R1 and R2 values
at the ID stage, adds the values at the E1 stage. Then the load data is forwarded
from the E3 stage to the ID stage, and the pipeline stalls two cycles. With
the delayed execution, the load instruction execution is the same, and the add
instruction setups R1 and R2 values at E1 stage, adds the values at the E2
stage. Then the load data is forwarded from the E3 stage to the E1 stage, and
the pipeline stalls only one cycle. This is the same cycle as those of conven-
tional fi ve - stage pipeline structures.

 As illustrated in Figure 1.5 , a store instruction performs an address calcula-
tion, TLB (translation lookaside buffer) and cache - tag accesses, a store - data
latch, and a data store to the cache at the E1, E2, E4, and E5 stages, respec-
tively, whereas a load instruction performs a cache access at the E2 stage. This
means the three - stage gap of the cache access timing between the E2 and the
E5 stages of a load and a store. However, a load and a store use the same port
of the cache. Therefore, a load instruction gets the priority to a store instruc-
tion if the access is confl icted, and the store instruction must wait the timing
with no confl ict. In the N - stage gap case, N entries are necessary for the store
buffer to treat the worst case, which is a sequence of N consecutive store issues
followed by N consecutive load issues, and the SH - X implemented three
entries.

 1.3.3 Branch Prediction and Out - of - Order Branch Issue

 Figure 1.7 illustrates a branch execution sequence of the SH - X before branch
acceleration with a program sequence consisting of compare, conditional -
 branch, delay - slot, and branch - target instructions.

 FIGURE 1.6. Load - use confl ict reduction by delayed execution.

MOV.L @R0,R1
1 2

E1 E2 E3Load: ID
E1 E2ADD R1,R2 E3ALU:

Conventional Architecture: 2-Cycle Stalls

ID

MOV.L @R0,R1
ADD R1 R2

E1 E2 E3Load: ID
E1 E2ADD R1,R2 E3ALU:

Delayed Execution: 1-Cycle Stall

ID

14 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 The conditional - branch and delay - slot instructions are issued three cycles
after the compare instruction issue, and the branch - target instruction is issued
three cycles after the branch issue. The compare operation starts at the E2
stage by the delayed execution, and the result is available at the middle of the
E3 stage. Then the conditional - branch instruction checks the result at the latter
half of the ID stage, and generates the target address at the same ID stage,
followed by the I1 and I2 stages of the target instruction. As a result, eight
empty issue slots or four stall cycles are caused as illustrated. This means only
one - third of the issue slots are used for the sequence.

 Figure 1.8 illustrates the execution sequence of the SH - X after branch
acceleration. The branch operation can start with no pipeline stall by a branch
prediction, which predicts the branch direction that the branch is taken or not

 FIGURE 1.8. Branch execution sequence of SH - X.

E1 E2 E4I2I1 ID E3 E4

IQ

I2I1

I2I1

I2I1

E1 E2 E3 E4

E1 E2 E3 E4

E1 E3 E4IQ

ID

ID

ID

E1 E2 E3 E4Compare I2I1 IQ

I1 E2IQ

I2I1 E1 E2 E3 E4IQ

ID

ID

I1

IQ IQ

Branch

Delay Slot

Target

IDI2I1

E1 E2 E3 E4I2I1

E3 E4I2

ID

IDTarget E1 E3I2

E1 E2

E2

E3 E4I2I1

IQI2I1

I2I1

E1 E2 E3 E4

E1 E2 E3IQ

ID

ID

ID E1 E2 E3 E4IQ

I2I1

I2I1 IQ

IQ
IQ

IQ

IQ

IQ

IQ

IQ

E1 E2 E3 E4

E1 E2 E3 E4

ID

ID

Fall Through

I2I1
I2I1

IQ

IQ
IQ

IQ

IQ

IQ

IQ

IQ

IQ

IQ

E2 E3 E4

IQ E1 E2 E3 E4

E1 E2 E3 E4IQ

ID

ID

(Prediction Miss)

2-Cycle Stall

 FIGURE 1.7. Branch execution sequence before branch acceleration.

ID ID

ID ID

Branch

Delay Slot

Target

2 Cycles

E1 E2 E3 E4IDCompare I2I1

E1 E2 E3 E4IDI2I1

E1 E2 E3 E4IDI2I1

E1 E2 E3 E4IDI2I1

ID

ID

ID

ID

Empty
Issue Slots

2 Cycles

IQ

SH-X: A HIGHLY EFFICIENT CPU CORE 15

taken. However, this is not early enough to make the empty issue slots zero.
Therefore, the SH - X adopted an out - of - order issue to the branches using no
general - purpose register.

 The SH - X fetches four instructions per cycle, and issues two instructions
at most. Therefore, Instructions are buffered in an instruction queue (IQ) as
illustrated. A branch instruction is searched from the IQ or an instruction -
 cache output at the I2 stage and provided to the ID stage of the branch pipe-
line for the out - of - order issue earlier than the other instructions provided to
the ID stage in order. Then the conditional branch instruction is issued right
after it is fetched while the preceding instructions are in the IQ, and the issue
becomes early enough to make the empty issue slots zero. As a result, the
target instruction is fetched and decoded at the ID stage right after the delay -
 slot instruction. This means no branch penalty occurs in the sequence when
the preceding or delay - slot instructions stay two or more cycles in the IQ.

 The compare result is available at the E3 stage, and the prediction is
checked if it is hit or miss. In the miss case, the instruction of the correct fl ow
is decoded at the ID stage right after the E3 stage, and two - cycle stall occurs.
If the correct fl ow is not held in the IQ, the miss - prediction recovery starts
from the I1 stage, and takes two more cycles.

 Historically, the dynamic branch prediction method started from a BHT
with 1 - bit history per entry, which recorded a branch direction of taken or not
for the last time, and predicted the same branch direction. Then, a BHT with
2 - bit history per entry became popular, and the four direction states of strongly
taken, weekly taken, weekly not taken, and strongly not taken were used for
the prediction to refl ect the history of several times. There were several types
of the state transitions, including a simple up - down transition. Since each entry
held only one or two bits, it is too expensive to attach a tag consisting of a part
of the branch - instruction address, which was usually about 20 bits for a 32 - bit
addressing. Therefore, we could increase the number of entries about ten or
twenty times without the tag. Although the different branch instructions could
not be distinguished without the tag and there occurred a false hit, the merit
of the entry increase exceeded the demerit of the false hit. A global history
method was also popular for the prediction, and usually used with the 2 - bit/
entry BHT.

 The SH - X stalled only two cycles for the prediction miss, and the perfor-
mance was not so sensitive to the hit ratio. Further, the one - bit method required
a state change only for a prediction miss, and it could be done during the stall.
Therefore, the SH - X adopted a dynamic branch prediction method with a
4K - entry 1 - bit/entry BHT and a global history. The size was much smaller than
the instruction and data caches of 32 kB each.

 1.3.4 Low Power Technologies

 The SH - X achieved excellent power effi ciency by using various low - power
technologies. Among them, hierarchical clock gating and pointer - controlled

16 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

pipeline are explained in this section. Figure 1.9 illustrates a conventional
clock - gating method. In this example, the clock tree has four levels with A - ,
B - , C - , and D - drivers. The A - driver receives the clock from the clock generator,
and distributes the clock to each module in the processor. Then, the B - driver
of each module receives the clock and distributes it to various submodules,
including 128 – 256 fl ip - fl op s (F/F s). The B - driver gates the clock with the signal
from the clock control register, whose value is statically written by software
to stop and start the modules. Next, the C - and D - drivers distribute the clock
hierarchically to the leaf F/Fs with a Control Clock Pin (CCP). The leaf F/Fs
are gated by hardware with the CCP to avoid activating them unnecessarily.
However, the clock tree in the module is always active while the module is
activated by software.

 Figure 1.10 illustrates the clock - gating method of the SH - X. In addition to
the clock gating at the B - driver, the C - drivers gate the clock with the signals
dynamically generated by hardware to reduce the clock tree activity. As a
result, the clock power is 30% less than that of the conventional method.

 The superpipeline architecture improved operating frequency, but increased
number of F/Fs and power. Therefore, one of the key design considerations

 FIGURE 1.9. Conventional clock - gating method. CCP, control clock pin; GCKD,
gated clock driver cell.

A-drv.
128-256 F/FsModule

Clock
Gen.

B-drv.

Cl kClock
Control

Registers Hardware (dynamic)

GCKD

Software
(static)()

ph1 edge trigger F/F ph2 transparent latch

D-drvs.
Leaf

F/Fs with CCPC-drv.

 FIGURE 1.10. Clock - gating method of SH - X. CCP, control clock pin; GCKD, gated
clock driver cell.

A-drv.
256 F/FsModule

Clock
Gen.

Cl kock
Control

Registers Hardware (dynamic)

GCKD

Software
(static)

Hardware
(dynamic)

ph1 edge trigger F/F ph2 transparent latch

128-256 F/FsModule

D-drvs.
Leaf
F/Fs with CCPB-drv. C-drv.

GCKD

SH-X: A HIGHLY EFFICIENT CPU CORE 17

was to reduce the activity ratio of the F/Fs. To address this issue, a pointer -
 controlled pipeline was developed. It realizes a pseudo pipeline operation with
a pointer control. As shown in Figure 1.11 a, three pipeline F/Fs are connected
in parallel, and the pointer is used to show which F/Fs correspond to which
stages. Then, only one set of F/Fs is updated in the pointer - controlled pipeline,
while all pipeline F/Fs are updated every cycle in the conventional pipeline,
as shown in Figure 1.11 b.

 Table 1.4 shows the relationship between F/Fs FF0 - FF2 and pipeline stages
E2 - E4 for each pointer value. For example, when the pointer indexes zero, the
FF0 holds an input value at E2 and keeps it for three cycles as E2, E3, and E4
latches until the pointer indexes zero again and the FF0 holds a new input
value. This method is good for a short latency operation in a long pipeline. The
power of pipeline F/Fs decreases to 1/3 for transfer instructions, and decreases
by an average of 25% as measured using Dhrystone 2.1.

 1.3.5 Performance and Effi ciency Evaluations

 The SH - X performance was measured using the Dhrystone 2.1 benchmark, as
well as those of the SH - 3 and the SH - 4. The Dhrystone is a popular benchmark

 FIGURE 1.11. F/Fs of (a) pointer - controlled and (b) conventional pipelines.

E1

E2
FF to other m

odules

FF0

from
 other m

odules

from
 other m

odules

to other m
odules

E1

E3
FFE2

E4

E4

E5 Register file

Register fileE5

E5

(a) (b)

FF

FF1 FF2

 TABLE 1.4. Relationship of F / F s and Pipeline Stages

 Pointer FF0 FF1 FF2

 0 E2 E4 E3
 1 E3 E2 E4
 2 E4 E3 E2

18 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

for evaluating integer performance of embedded processors. It is small enough
to fi t all the program and data into the caches, and to use at the beginning
of the processor development. Therefore, only the processor core architecture
can be evaluated without the infl uence from the system level architecture, and
the evaluation result can be fed back to the architecture design. On the con-
trary, the system level performance cannot be measured considering cache
miss rates, external memory access throughput and latencies, and so on.
The evaluation result includes compiler performance because the Dhrystone
benchmark is described in C language.

 Figure 1.12 shows the evaluated result of the cycle performance, architec-
tural performance, and actual performance. Starting from the SH - 3, fi ve major
enhancements were adopted to construct the SH - 4 microarchitecture. The
SH - 3 achieved 1.0 MIPS/MHz when it was released, and the SH - 4 compiler
enhanced its performance to 1.1. The cycle performance of the SH - 4 was
enhanced to 1.81 MIPS/MHz by Harvard architecture, superscalar architec-
ture, adding BO group, early - stage branch, and zero - cycle MOV operation.
The SH - 4 enhanced the cycle performance by 1.65 times form the SH - 3,
excluding the compiler contribution. The SH - 3 was a 60 - MHz processor in
a 0.5 - μ m process, and estimated to be a 133 - MHz processor in a 0.25 - μ m
process. The SH - 4 achieved 200 MHz in the same 0.25 - μ m process. Therefore,
SH - 4 enhanced the frequency by 1.5 times form the SH - 3. As a result, the

 FIGURE 1.12. Performance improvement of SH - 4 and SH - X.

0.0 0.5 1.0 1.5 2.0

Published value

+ Delayed execution

+ Store buffer

+ Out-of-order branch

+ Branch prediction

+ Superpipeline

Compiler + porting

+ 0-cycle MOV

+ Early branch

+ BO type

+ Harvard

Compiler + porting

SH-3

Cycle Performance
(MIPS/MHz)

0 1 2 3 4
Architectural
performance

720
808

760

720
676

656

560

361

354

319

255

146

60

0 200 400 600 800
Performance

(MIPS)

1.80

2.02

1.90

1.80

1.69

1.64

2.00

1.81

1.77

1.59

1.27

1.10

1.00

3.78

4.24

3.99

3.78

3.55

3.44

3.00

2.71

2.65

2.39

1.91

1.10

1.00

SH-4

SH-X

+ Superscalar 2981.49 2.24

SH-X: A HIGHLY EFFICIENT CPU CORE 19

architectural performance of the SH - 4 is 1.65 × 1.5 = 2.47 times as high as that
of the SH - 3.

 With adopting a conventional seven - stage superpipeline, the performance
was decreased by 18% to 1.47 MIPS/MHz. Branch prediction, out - of - order
branch issue, store buffer and delayed execution of the SH - X improve the
cycle performance by 23%, and recover the 1.8 MIPS/MHz. Since 1.4 times
high operating frequency was achieved by the superpipeline architecture, the
architectural performance of the SH - X was also 1.4 times as high as that of
the SH - 4. The actual performance of the SH - X was 720 MIPS at 400 MHz
in a 0.13 - μ m process, and improved by two times from the SH - 4 in a 0.25 - μ m
process.

 Figures 1.13 and 1.14 show the area and power effi ciency improvements,
respectively. The upper three graphs of both the fi gures show architectural
performance, relative area/power, and architectural area – /power – performance
ratio. The lower three graphs show actual performance, area/power, and area – /
power – performance ratio.

 The area of the SH - X core was 1.8 mm 2 in a 0.13 - μ m process, and the area
of the SH - 4 was estimated as 1.3 mm 2 if it was ported to a 0.13 - μ m process.
Therefore, the relative area of the SH - X was 1.4 times as much as that of the
SH - 4, and 2.26 times as much as the SH - 3. Then, the architectural area effi -
ciency of the SH - X was nearly equal to that of the SH - 4, and 1.53 times as
high as the SH - 3. The actual area effi ciency of the SH - X reached 400 MIPS/
mm 2 , which was 8.5 times as high as the 74 MIPS/ mm 2 of the SH - 4.

 SH - 4 was estimated to achieve 200 MHz, 360 MIPS with 140 mW at 1.15 V,
and 280 MHz, 504 MIPS with 240 mW at 1.25 V. The power effi ciencies were
2,500 and 2,100 MIPS/W, respectively. On the other hand, SH - X achieved
200 MHz, 360 MIPS with 80 mW at 1.0 V, and 400 MHz, 720 MIPS with

 FIGURE 1.13. Area effi ciency improvement of SH - 4 and SH - X.

1.10 1.00 1.10SH-3 ¥1.5

3.78

2.71

2.26

1.63

1.67

1.66SH-4

SH-X

0 1 2 3
Architectural
performance

Relative area
0 1 2 0 0.5 1.0

Architectural area–
performance ratio

SH-3

SH-4 4.9

7.0

74

8.6

361

60

SH-X

0 400 600 4 7
2

2 6 200 400200 31 50 0 100 300

1.8 400720

Performance
(MIPS)

Area (mm2) Area–performance
ratio (MIPS/mm2)

1.5

20 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

250 mW at 1.25 V. The power effi ciencies were 4,500 and 2,880 MIPS/W,
respectively. As a result, the power effi ciency of the SH - X improved by 1.8
times from that of the SH - 4 at the same frequency of 200 MHz, and by 1.4
times at the same supply voltage with enhancing the performance by 1.4 times.
These were architectural improvements, and actual improvements were mul-
tiplied by the process porting.

 1.4 SH - X FPU : A HIGHLY EFFICIENT FPU

 The fl oating - point architecture and microarchitecture of the SH processors
achieve high multimedia performance and effi ciency. An FPU of the SH pro-
cessor is highly parallel with keeping the effi ciency for embedded systems in
order to compensate the insuffi cient parallelism of the dual - issue superscalar
architecture for highly parallel applications like 3D graphics.

 In late 1990s, it became diffi cult to support higher resolution and advanced
features of the 3D graphics. It was especially diffi cult to avoid overfl ow and
underfl ow of fi xed - point data with small dynamic range, and there was a
demand to use fl oating - point data. Since it was easy to implement a four - way
parallel operation with fi xed - point data, equivalent performance had to be
realized to change the data type to the fl oating - point format at reasonable
costs.

 Since an FPU was about three times as large as a fi xed - point unit, and a
four - way SMID required four times as large a datapath, it was too expensive

 FIGURE 1.14. Power effi ciency improvement of SH - 4 and SH - X.

0 200 400 600
Performance

(MIPS)

SH-3

SH-4

SH-X

1.25 V, 400 MHz
1.00 V, 200 MHz

1.95 V, 240 MHz
1.80 V, 166 MHz

1.50 V, 133 MHz

360

720

240

300

430

60

0 600200 400
Power
(mW)

80

250

240

400
700

600

4500

2880

1000

750
610

100

0 2000 4000
Power–performance

ratio (MIPS/W)

3.30 V, 60 MHz

0 1 2 3
Architectural
performance

SH-3

SH-4

3.78

2.71

1.10

Architectural power–
performance ratio

0 11 2 2
Relative power

0

2.10

2.12

1.00

1.80

1.27

1.10 ¥1.2
¥1.4

SH-X

SH-X FPU: A HIGHLY EFFICIENT FPU 21

to integrate a four - way SMID FPU. The latency of the fl oating - point opera-
tions was long, and required more number of registers than the fi xed - point
operations. Therefore, effi cient parallelization and latency - reduction methods
had to be developed.

 1.4.1 FPU Architecture of SH Processors

 Sixteen is the limit of the number of registers directly specifi ed by the 16 -
bit fi xed - length ISA, but the SH FPU architecture defi nes 32 registers as
two banks of 16 registers. The two banks are front and back banks, named
FR0 - FR15 and XF0 - XF15, respectively, and they are switched by changing a
control bit FPSCR.FR in a fl oating - point status and control register (FPSCR).
Most of instructions use only the front bank, but some instructions use both
the front and back banks. The front bank registers are used as eight pairs or
four length - 4 vectors as well as 16 registers, and the back bank registers are
used as eight pairs or a four - by - four matrix. They are defi ned as follows:

 DR FR FR[n n n n= +(,])(: , , , , , , ,),1 0 2 4 6 8 10 12 14

 FV FV0

0

1

2

3

4

4

5

6

7

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

FR

FR

FR

FR

FR

FR

FR

FR

, , FFV FV8

8

9

10

11

12

12

13

14

15

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜

FR

FR

FR

FR

FR

FR

FR

FR

,

⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟

,

 XD XF XF[n n n n= +(,])(: , , , , , , ,),1 0 2 4 6 8 10 12 14

 XMTRX =

XF XF XF XF

XF XF XF XF

XF XF XF XF

XF XF XF XF

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 115

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

 Since an ordinary SIMD architecture of an FPU is too expensive for an
embedded processor as described above, another parallelism is applied to
the SH processors. The large hardware of an FPU is for a mantissa alignment
before the calculation and normalization and rounding after the calculation.
Further, a popular FPU instruction, FMAC, requires three read and one write
ports. The consecutive FMAC operations are a popular sequence to accumu-
late plural products. For example, an inner product of two length - 4 vectors
is one of such sequences, and popular in a 3D graphics program. Therefore, a
fl oating - point inner - product instruction (FIPR) is defi ned to accelerate the
sequence with smaller hardware than that for the SIMD. It uses the two of
four length - 4 vectors as input operand, and modifi es the last register of one
of the input vectors to store the result. The defi ning formula is as follows:

 FR FV FV[] (, : , , ,).n m n m n+ = ⋅3 0 4 8 12

22 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 This modifying - type defi nition is similar to the other instructions. However,
for a length - 3 vector operation, which is also popular, you can get the result
without destroying the inputs, by setting one element of the input vectors to
zero.

 The FIPR produces only one result, which is one - fourth of a four - way
SIMD, and can save the normalization and rounding hardware. It requires
eight input and one output registers, which are less than the 12 input and four
output registers for a four - way SIMD FMAC. Further, the FIPR takes much
shorter time than the equivalent sequence of one FMUL and three FMACs,
and requires small number of registers to sustain the peak performance. As a
result, the hardware is about half of the four - way SIMD.

 The rounding rule of the conventional fl oating - point operations is strictly
defi ned by an American National Standards Institute/Institute of Electrical
and Electronics Engineers (ANSI/IEEE) 754 fl oating - point standard. The rule
is to keep accurate values before rounding. However, each instruction per-
forms the rounding, and the accumulated rounding error sometimes becomes
very serious. Therefore, a program must avoid such a serious rounding error
without relying to hardware if necessary. The sequence of one FMUL and three
FMACs can also cause a serious rounding error. For example, the following
formula results in zero if we add the terms in the order of the formula by
FADD instructions:

 1 0 2 1 2 1 2 1 0 2127 102 102 127.× + × + × − ×FFFFFE FFFFFE

 However, the exact value is 1 • FFFFFE × 2 103 , and the error is 1 • FFFFFE × 2 103
for the formula, which causes the worst error of 2 − 23 times of the maximum
term. We can get the exact value if we change the operation order properly.
The fl oating - point standard defi nes the rule of each operation, but does not
defi ne the result of the formula, and either of the result is fi ne for the
conformance. Since the FIPR operation is not defi ned by the standard, we
defi ned its max imum error as “ 2 E − 25 + rounding error of result ” to make it
better than or equal to the average and worst - case errors of the equivalent
sequence that conforms the standard, where E is the maximum exponent of the
four products.

 A length - 4 vector transformation is also popular operation of a 3D graphics,
and a fl oating - point transform vector instruction (FTRV) is defi ned. It requires
20 registers to specify the operands in a modifi cation type defi nition. There-
fore, the defi ning formula is as follows, using a four - by - four matrix of all the
back bank registers, XMTRX, and one of the four front - bank vector registers,
FV0 - FV3:

 FV XMTRX FVn n n= ⋅ (: , , ,).0 4 8 12

 Since a 3D object consists of a lot of polygons expressed by the length - 4
vectors, and one XMTRX is applied to a lot of the vectors of a 3D object, the

SH-X FPU: A HIGHLY EFFICIENT FPU 23

XMTRX is not so often changed, and is suitable for using the back bank. The
FTRV operation is implemented as four inner - product operations by dividing
the XMTRX into four vectors properly, and its maximum error is the same as
the FIPR.

 The newly defi ned FIPR and FTRV can enhance the performance, but data
transfer ability becomes a bottleneck to realize the enhancement. Therefore,
a pair load/store/transfer mode is defi ned to double the data move ability. In
the pair mode, fl oating - point move instructions (FMOVs) treat 32 front - and
back - bank fl oating - point registers as 16 pairs, and directly access all the pairs
without the bank switch controlled by the FPSCR.FR bit. The mode switch
between the pair and normal modes is controlled by a move - size bit FPSCR.
SZ in the FPSCR.

 The 3D graphics requires high performance but uses only a single precision.
On the other hand, a double precision format is popular for server/PC market,
and would eases a PC application porting to a handheld PC. Although the
performance requirement is not so high as the 3D graphics, software emula-
tion is too slow compared with hardware implementation. Therefore, the SH
architecture has single - and double - precision modes, which are controlled by
a precision bit FPSCR.PR of the FPSCR. Further, a fl oating - point register -
 bank, move - size, and precision change instructions (FPCRG, FSCHG, and
FRCHG) were defi ned for fast changes of the modes defi ned above. This
defi nition can save the small code space of the 16 - bit fi xed length ISA. Some
conversion operations between the precisions are necessary, but not fi t to the
mode separation. Therefore, SH architecture defi nes two conversion instruc-
tions in the double - precision mode. An FCNVSD converts a single - precision
data to a double - precision one, and an FCNVDS converts vice versa. In the
double - precision mode, eight pairs of the front - bank registers are used for
double - precision data, and one 32 - bit register, FPUL, is used for a single -
 precision or integer data, mainly for the conversion.

 The FDIV and fl oating-point square - root instruction (FSQRT) are long
latency instructions, and could cause serious performance degradations. The
long latencies are mainly from the strict operation defi nitions by the ANSI/
IEEE 754 fl oating - point standard. We have to keep accurate value before
rounding. However, there is another way if we allow proper inaccuracies.

 A fl oating - point square - root reciprocal approximate (FSRRA) is defi ned
as an elementary function instruction to replace the FDIV, FSQRT, or their
combination. Then we do not need to use the long latency instructions. 3D
graphics applications especially require a lot of reciprocal and square - root
reciprocal values, and the FSRRA is highly effective. Further, 3D graphics
require less accuracy, and the single - precision without strict rounding is enough
accuracy. The maximum error of the FSRRA is ± 2 E − 21 , where E is the exponent
value of an FSRRA result. The FSRRA defi nition is as follows:

 FR
FR

n
n

=
1

.

24 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 A fl oating - point sine and cosine approximate (FSCA) is defi ned as another
popular elementary function instruction. Once the FSRRA is introduced,
extra hardware is not so large for the FSCA. The most poplar defi nition of
the trigonometric function is to use radian for the angular unit. However,
the period of the radian is 2 π , and cannot be expressed by a simple binary
num ber. Therefore, the FSCA uses fi xed - point number of rotations as the
angular expression. The number consists of 16 - bit integer and 16 - bit fraction
parts. Then the integer part is not necessary to calculate the sine and cosine
values by their periodicity, and the 16 - bit fraction part can express enough
resolution of 360/65,536 = 0.0055 ° . The angular source operand is set to a
CPU - FPU communication register FPUL because the angular value is a
fi xed - point number. The maximum error of the FSCA is ± 2 − 22 , which is an
absolute value and not related to the result value. Then the FSCA defi nition
is as follows:

 FR FPUL FR FPULn n= ⋅() + = ⋅()sin , [] cos .2 1 2π π

 1.4.2 Implementation of SH - X FPU

 Table 1.5 shows the pitches and latencies of the FE - category instructions of
the SH - 3E, SH - 4, and SH - X. As for the SH - X, the simple single - precision
instructions of FADD, FSUB, FLOAT, and FTRC, have three - cycle latencies.
Both single - and double - precision FCMPs have two - cycle latencies. Other
single - precision instructions of FMUL, FMAC, and FIPR, and the double -
 precision instructions, except FMUL, FCMP, FDIV, and FSQRT, have fi ve -
 cycle latencies. All the above instructions have one - cycle pitches.

 The FTRV consists of four FIPR like operations resulting in four - cycle pitch
and eight - cycle latency. The FDIV and FSQRT are out - of - order completion
instructions having two - cycle pitches for the fi rst and last cycles to initiate a
special resource operation and to perform postprocesses of the result. Their
pitches of the special resource expressed in the parentheses are about halves
of the mantissa widths, and the latencies are four cycles more than the special -
 resource pitches. The FSRRA has one - cycle pitch, three - cycle pitch of the
special resource, and fi ve - cycle latency. The FSCA has three - cycle pitch,
fi ve - cycle pitch of the special resource, and seven - cycle latency. The double -
 precision FMUL has three - cycle pitch and seven - cycle latency.

 Multiply – accumulate (MAC) is one of the most frequent operations in
intensive computing applications. The use of four - way SIMD can achieve the
same throughput as the FIPR, but the latency is longer and the register fi le
has to be larger. Figure 1.15 illustrates an example of the differences accord-
ing to the pitches and latencies of the FE - category SH - X instructions shown
in Table 1.5 . In this example, each box shows an operation issue slot. Since
FMUL and FMAC have fi ve - cycle latencies, we must issue 20 independent

SH-X FPU: A HIGHLY EFFICIENT FPU 25

operations for peak throughput in the case of four - way SIMD. The result is
available 20 cycles after the FMUL issue. On the other hand, fi ve indepen-
dent operations are enough to get the peak throughput of a program using
FIPRs. Therefore, FIPR requires one - quarter of the program ’ s parallelism
and registers.

 Figure 1.16 compares the pitch and latency of an FSRRA and the equiva-
lent sequence of an FSQRT and an FDIV according to Table 1.5 . Each of
the FSQRT and FDIV occupies 2 and 13 cycles of the MAIN FPU and
special resources, respectively, and takes 17 cycles to get the result, and the
result is available 34 cycles after the issue of the FSQRT. In contrast, the
pitch and latency of the FSRRA are one and fi ve cycles that are only one -
 quarter and approximately one - fi fth of those of the equivalent sequences,

 TABLE 1.5. Pitch/Latency of FE - Category Instructions

 Single Precision SH - 3E SH - 4 SH - X

 FADD FR m , FR n 1/2 1/3 1/3
 FSUB FR m , FR n 1/2 1/3 1/3
 FMUL FR m , FR n 1/2 1/3 1/5
 FDIV FR m , FR n 13/14 2 (10) /12 2 (13) /17
 FSQRT FR n 13/14 2 (9) /11 2 (13) /17
 FCMP/EQ FR m , FR n 1/1 1/2 1/2
 FCMP/GT FR m , FR n 1/1 1/2 1/2
 FLOAT FPUL, FR n 1/2 1/3 1/3
 FTRC FR m , FPUL 1/2 1/3 1/3
 FMAC FR0, FR m , FR n 1/2 1/3 1/5
 FIPR FV m , FV n , FR n + 3 – 1/4 1/5
 FTRV XMTRX, FV n – 4/7 4/8
 FSRRA FR n – – 1 (3) /5
 FSCA FPUL, DR n – – 3 (5) /7

 Double Precision – SH - 4 SH - X

 FADD DR m , DR n – 6/8 1/5
 FSUB DR m , DR n – 6/8 1/5
 FMUL DR m , DR n – 6/8 3/7
 FDIV DR m , DR n – 5 (23) /25 2 (28) /32
 FSQRT DR m , DR n – 5 (22) /24 2 (28) /32
 FCMP/EQ DR m ,DR n – 2/2 1/2
 FCMP/EQ DR m ,DR n – 2/2 1/2
 FLOAT DR n – 2/4 1/5
 FTRC DR m , FPUL – 2/4 1/5
 FCNVSD FPUL, FR n – 2/4 1/5
 FCNVDS DR m , FPUL – 2/4 1/5

26 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 FIGURE 1.16. FSRRA versus equivalent sequence of FSQRT and FDIV.

FSQRT FSRRA

17 cycles

5 cycles

11

(Postprocess)

4P
rogram

 F
low

FDIV
4

11

17 cycles

11

4
(Postprocess)

Result is available here

 FIGURE 1.15. Four - way SIMD versus FIPR.

4-way SIMD

FMUL FIPR

5 cycles

20 operations for
peak throughput

P
rogram

 F
low

5 operations

FMAC 20

FMAC

FMAC
Result is

 cycles
available here

respectively. The FSRRA is much faster using a similar amount of the hard-
ware resource.

 The FSRRA can compute a reciprocal as shown in Figure 1.17 . The FDIV
occupies 2 and 13 cycles of the MAIN FPU and special resources, respec-
tively, and takes 17 cycles to get the result. On the other hand, the FSRRA
and FMUL sequence occupies 2 and 3 cycles of the MAIN FPU and special
resources, respectively, and takes 10 cycles to get the result. Therefore, the
FSRRA and FMUL sequence is better than using the FDIV if an application
does not require a result conforming to the IEEE standard, and 3D graphics
is one of such applications.

 Figure 1.18 illustrates the FPU arithmetic execution pipeline. With the
delayed execution architecture, the register - operand read and forwarding
are done at the E1 stage, and the arithmetic operation starts at E2. The short
arithmetic pipeline treats three - cycle latency instructions. All the arithmetic
pipelines share one register write port to reduce the number of ports. There
are four forwarding source points to provide the specifi ed latencies for any

SH-X FPU: A HIGHLY EFFICIENT FPU 27

cycle distance of the defi ne - and - use instructions. The FDS pipeline is occupied
by 13/28 cycles to execute a single/double FDIV or FSQRT, and these instruc-
tions cannot be issued frequently. The FPOLY pipeline is three - cycles long and
is occupied three or fi ve times to execute an FSRRA or FSCA instruction.
Therefore, the third E4 stage and E6 stage of the main pipeline are synchro-
nized for the FSRRA, and the FPOLY pipeline output merges with the main
pipeline at this point. The FSCA produce two outputs, and the fi rst output is
produced at the same timing of the FSRRA, and the second one is produced
two - cycle later, and the main pipeline is occupied for three cycles, although

 FIGURE 1.17. FDIV versus equivalent sequence of FSRRA and FMUL.

FSRRA

17 cycles

5 cyccles 4P
rogram

 F
low

13 cycles

3 cycles

11

4

FMUL5 cycles

Postprocess

4

4
Resource is
available here

Result is available here

FDIV

 FIGURE 1.18. Arithmetic execution pipeline of SH - X FPU.

Register Read Forwarding Register Read

E1

E2

g

E2

E3 Short FPOLY
FDS

FLS

E4 Main

E5

E6

Register Write

E7 Register Write

LS FELS FE

28 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

the second cycle is not used. The FSRRA and FSCA are implemented by
calculating the cubic polynomials of the properly divided periods. The width
of the third - order term is 8 bits, which adds only a small area overhead, while
enhancing accuracy and reducing latency.

 Figure 1.19 illustrates the structure of the main FPU pipeline. There are
four single - precision multiplier arrays at E2 to execute FIPR and FTRV and
to emulate double - precision multiplication. Their total area is less than that of
a double - precision multiplier array. The calculation of exponent differences
is also done at E2 for alignment operations by four aligners at E3. The four
aligners align eight terms consisting of four sets of sum and carry pairs of four
products generated by the four multiplier arrays, and a reduction array reduces
the aligned eight terms to two at E3. The exponent value before normalization
is also calculated by an exponent adder at E3. A carry propagate adder (CPA)
adds two terms from the reduction array, and a leading nonzero (LNZ) detec-
tor searches the LNZ position of the absolute value of the CPA result from
the two CPA inputs precisely and with the same speed as the CPA at E4.
Therefore, the result of the CPA can be normalized immediately after the CPA
operation with no correction of position errors, which is often necessary when
using a conventional 1 - bit error LNZ detector. Mantissa and exponent normal-
izers normalize the CPA and exponent - adder outputs at E5 controlled by the
LNZ detector output. Finally, the rounder rounds the normalized results into
the ANSI/IEEE 754 format. The extra hardware required for the special FPU
instructions of the FIPR, FTRV, FSRRA and FSCA is about 30% of the origi-
nal FPU hardware, and the FPU area is about 10 – 20% of the processor core
depending on the size of the fi rst and second on - chip memories. Therefore, the
extra hardware is about 3 – 6% of the processor core.

 FIGURE 1.19. Main pipeline of SH - X FPU.

Exponent
Difference

Multiplier
Array

Multiplier
Array

Multiplier
Array

Multiplier
Array

Aligner Aligner Aligner Aligner Exponent
Adder

E2

E3
Reduction Array

Carry Propagate
Adder (CPA)

Leading Nonzero
(LNZ) Detector

E4

Mantissa Normalizer
Exponent

Normalizer
E5

RounderE6

SH-X FPU: A HIGHLY EFFICIENT FPU 29

 The SH - X FPU can use four 24 - by - 24 multipliers for the double - precision
FMUL emulation. Since the double - precision mantissa width is more than
twice of the single - precision one, we have to divide a multiplication into nine
parts. Then we need three cycles to emulate the nine partial multiplications by
four multipliers. Figure 1.20 illustrates the fl ow of the emulation. At the fi rst
step, a lower - by - lower product is produced, and its lower 23 bits are added by
the CPA. Then the CPA output is ORed to generate a sticky bit. At the second
step, four products of middle - by - lower, lower - by - middle, upper - by - lower, and
lower - by - upper are produced and accumulated to the lower - by - lower product
by the reduction array, and its lower 23 bits are also used to generate a sticky
bit. At the third step, the remaining four products of middle - by - middle, upper -
 by - middle, middle - by - upper, and upper - by - upper are produced and accumu-
lated to the already accumulated intermediate values. Then, the CPA adds the
sum and carry of the fi nal product, and 53 - bit result and guard/round/sticky
bits are produced. The accumulated terms of the second and third steps are
10 because each product consists of sum and carry, but the bitwise position of
some terms are not overlapped. Therefore, the eight - term reduction array is
enough to accumulate them.

 1.4.3 Performance Evaluations with 3 D Graphics Benchmark

 The fl oating - point architecture was evaluated by a simple 3D graphics bench-
mark shown in Figure 1.21 . It consists of coordinate transformations, perspec-
tive transformations, and intensity calculations of a parallel beam of light in
Cartesian coordinates. A 3D - object surface is divided into triangular polygons
to be treated by the 3D graphics. The perspective transformation assumes a
fl at screen expressed as z = 1. A strip model is used, which is a 3D object
expression method to reduce the number of vertex vectors. In the model, each

 FIGURE 1.20. Double - precision FMUL emulation by four multipliers.

Lower ¥ Lower (46 b)

Middle ¥ Lower (47 b)
23 b

Lower ¥ Middle (47 b)

+ Lower ¥ Upper (29 b)

CPA OutputUpper ¥ Lower (29 b)

Middle ¥ Middle (48 b)

Reduction Array Output

+

=

23 b
Upper ¥ Middle (30 b)

Middle ¥ Upper (30 b) CPA Output

Upper ¥ Upper (12b)

Reduction Array Output

+

=

CPA Output (53 b + Guard/Round) Sticky

30 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

triangle has three vertexes, but each vertex is shared by three triangles,
and the number of vertex per triangle is one. The benchmark is expressed
as follows, where T represents a transformation matrix, V and N represent
vertex and normal vectors of a triangle before the coordinate transforma-
tions, respectively, N ′ and V ′ represent the ones after the transformations,
respectively, S x and S y represent x and y coordinates of the projection of V ′ ,
respectively, L represents a vector of the parallel beam of light, I represents a
intensity of a triangle surface, and V ′′ is an intermediate value of the coordi-
nate transformations.

 V TV V
V
V

S
V
V

S
V

V
N TN, I

L N

N Nw
x

x

z
y

y

z

″ ′
″

′
′

′ ′
= =

′′
= ′

′
=

′
′

= = ()
()

, , , ,
,

,
,

 T

T T T T

T T T T

T T T T

T T T T

xx xy xz xw

yx yy yz yw

zx zy zz zw

wx wy wz ww

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

′ =

′
′
′

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

′′ =, , ,V

V

V

V
V

V

V

V
V

x

y

z

x

y

z

1 1

′′′
′′
′′
′′

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

V

V

V

V

x

y

z

w

,

 N

N

N

N
N

N

N

N
L

L

L

L

x

y

z

x

y

z

x

y

z

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

′
′
′

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

0 0 0

, ,′

⎝⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.

 The coordinate and perspective transformations require 7 FMULs, 12 FMACs,
and 2 FDIVs without FTRV, FIPR, and FSRRA, and 1 FTRV, 5 FMULs, and
2 FSRRAs with them. The intensity calculation requires 7 FMULs, 12 FMACs,
1 FSQRT, and 1 FDIV without them, and 1 FTRV, 2 FIPRs, 1 FSRRA, and 1
FMUL with them.

 FIGURE 1.21. Simple 3D graphics benchmark.

screen
(z = 1) z

y

x

V’

V
SxSy

N

N’ LI

SH-X FPU: A HIGHLY EFFICIENT FPU 31

 Figure 1.22 shows the resource - occupying cycles of the SH - 3E, SH - 4, and
SH - X. After program optimization, no register confl ict occurs, and perfor-
mance is restricted only by the fl oating - point resource - occupying cycles. The
gray areas of the graph represent the cycles of the coordinate and perspective
transformations.

 The Conventional SH - 3E architecture takes 68 cycles for coordinate and
perspective transformations, and 142 cycles when intensity is also calculated.
Applying superscalar architecture and SRT method for FDIV/FSQRT with
keeping the SH - 3E ISA, they become 39 and 81 cycles, respectively. The SH -
4 architecture having the FIPR/FTRV and the out - of - order FDIV/FSQRT
makes them 20 and 39 cycles, respectively. The performance is good, but only
the FDIV/FSQRT resource is busy in this case. Further, applying the super-
pipline architecture with keeping the SH - 4 ISA, they become 26 and 52 cycles,
respectively. Although the operating frequency grows higher by the super-
pipline architecture, the cycle performance degradation is serious, and almost
no performance gain is achieved. In the SH - X ISA case with the FSRRA, they
become 11 and 19 cycles, respectively. Clearly, the FSRRA solves the long
pitch problem of the FDIV/FSQRT.

 Since we emphasized the importance of the effi ciency, we evaluated the
area and power effi ciencies. Figure 1.23 shows the area effi ciencies. The upper
half shows architectural performance, relative area, and architectural area –
 performance ratio to compare the area effi ciencies with no process porting
effect. According to the above cycles, the relative cycle performance of the
coordinate and perspective transformations of the SH - 4 and SH - X to the

 FIGURE 1.22. Resource occupying cycles for a 3D benchmark.

FMOV

FDIV

FDIV

0 20 4026

Arithmetic

11

FSQRT FDIV

FSQRT

52

FMULFIPR

19

Arithmetic

Resource-occupying cycles

FDIV FSQRT FDIV

FTRV FDIV

FMUL
FIPR

SH-X ISA (with FSRRA)

FMUL

FTRV FSRRA

FMUL

33% longer30% longer

51% shorter

39

SH-4

SH-X

45% shorter

60 8081

SH-3E ISA, Superscalar, SRT FDIV/FSQRT

FMUL FMAC

49% shorter

SH-4 ISA (with FIPR, FTRV), Out-of-Order FDVI/FSQRT

Conventional SH-3E Architecture

FDIVFMUL FMAC FMOV
FSQRT FDIVFMUL FMAC

FSQRT FDIVFMUL FMAC

Coordinate & Perspective
Transformations
Intensity Calculation

52% shorter

68 74

142

32 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

SH - 3E are 68/20 = 3.4 and 68/11 = 6.2, respectively. As explained in Section
 1.3.5 , the relative frequency of the SH - 4 and SH - X are 1.5 and 2.1, respec-
tively. Then the architectural performance of the SH - 4 and SH - X are 3.4 × 1.5 =
5.1 and 6.2 × 2.1 = 13, respectively. Although the relative areas increased,
the performance improvements are much higher, and the effi ciency is greatly
enhanced. The lower half shows real performance, area, and area – performance
ratio. The frequencies of the SH - 3E, SH - 4 in 0.25 - and 0.18 - μ m and SH - X are
66, 200, 240, and 400 MHz, respectively. The effi ciency is further enhanced
using the fi ner process. Similarly, the power effi ciency is also enhanced greatly,
as shown in Figure 1.24 .

 FIGURE 1.24. Power effi ciencies of SH - 3E, SH - 4, and SH - X.

0 1 0 2 4 6 8
Relative
power

Architectural
power–performance ratio

2 3

1.0

0 1000 2000

500

1200

2000

600 1.6

73

10

5.0

0 20 40 60 80
Power
(mW)

Power–performance ratio
(M polygons/s/W)

0
Architectural
Performance

4 8 12

13

5.1

1.0

5.1

SH-3E

SH-4

SH-X

0.5 m

36

12

10

0.97

0 10 20 30
Performance

(M polygons/s)

0.25 m

0.18 m

0.13 m

SH-3E

SH-4

SH-X

0.5 m

0.25 m

0.18 m

0.13 m

3.6

4.6

4.2 3.1

1.4

1.1

1.0

¥ 2.2

¥ 7.3

µ

µ
µ

µ

µ
µ
µ

µ

 FIGURE 1.23. Area effi ciencies of SH - 3E, SH - 4, and SH - X.

0 0 1 2 0 2 4
Architectural
Performance

Relative
FPU area

Architectural
area–performance ratio

4 8 12

13

5.1

1.0

5.1

2.0

1.9

2.7

1.0

6

6.5

2.7

1.9

1.0SH-3E

SH-4

SH-X

0.5 m

36

12

10

0.97

0 10 20 30 0 2 4 6 8

1.6

3.0

8.0

7.0

0 10 20

0.14

23

4.0

1.3

Performance
(M polygons/s)

FPU area
(mm2)

Area–performance ratio
(M polygons/s/mm2)

0.25 m

0.18 m

0.13 m

SH-3E

SH-4

SH-X

0.5 m

0.25 m

0.18 m

0.13 m

¥ 2.4

µ

µ
µ

µ

µ

µ
µ

µ

¥ 5.8

SH-X2: FREQUENCY AND EFFICIENCY ENHANCED CORE 33

 1.5 SH - X 2: FREQUENCY AND EFFICIENCY ENHANCED CORE

 An SH - X2 was developed as the second - generation core, and achieved per-
formance of 1,440 MIPS at 800 MHz using a 90 - nm process. The low power
version achieved the power effi ciency of 6,000 MIPS/W. The performance and
effi ciency are greatly enhanced from the SH - X by both the architecture and
micro - architecture tuning and the process porting.

 1.5.1 Frequency Enhancement

 According to the SH - X analyzing, the ID stage was the most critical timing
part, and the branch acceleration successfully reduced the branch penalty.
Therefore, we added the third instruction fetch stage (I3) to the SH - X2 pipe-
line to relax the ID stage timing. The cycle performance degradation was negli-
gible small by the successful branch architecture, and the SH - X2 achieved the
same cycle performance of 1.8 MIPS/MHz as the SH - X.

 Figure 1.25 illustrates the pipeline structure of the SH - X2. The I3 stage was
added, and performs branch search and instruction predecoding. Then the ID
stage timing was relaxed, and the achievable frequency increased.

 Another critical timing path was in fi rst - level (L1) memory access logic.
SH - X had L1 memories of a local memory and I - and D - caches, and the local
memory was unifi ed for both instruction and data accesses. Since all the
memories could not be placed closely, a memory separation for instruction
and data was good to relax the critical timing path. Therefore, the SH - X2
separated the unifi ed L1 local memory of the SH - X into instruction and data
local memories (ILRAM and OLRAM). With the other various timing tuning,
the SH - X2 achieved 800 MHz using a 90 - nm generic process from the SH - X ’ s
400 MHz using a 130 - nm process. The improvement was far higher than the
process porting effect.

 FIGURE 1.25. Eight - stage superpipeline structure of SH - X2.

Execution FPU
Arithmetic
Execution

Address

WB

Tag

Data
Store

WB
-

WB

Instruction
Decoding

Instruction Fetch
I1
I2

ID
E1
E2
E3
E4
E5
E6
E7

Out-of-Order
Branch

FPU Instruction
Decoding

Branch

Flexible Forwarding

FPU
Data

Transfer

Data
Load

WB

BR INT LS FE

Store Buffer

I3 Branch Search / Instruction Predecoding

34 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 1.5.2 Low Power Technologies

 The SH - X2 enhanced the low power technologies from that of the SH - X.
Figure 1.26 shows the clock gating method of the SH - X2. The D - drivers also
gate the clock with the signals dynamically generated by hardware, and the
leaf F/Fs requires no CCP. As a result, the clock tree and total powers are 14
and 10% lower, respectively, than in the SH - X method.

 The SH - X2 adopted a way prediction method to the instruction cache. The
SH - X2 aggressively fetched the instructions using branch prediction and early
branch techniques to compensate branch penalty caused by long pipeline. The
power consumption of the instruction cache reached 17% of the SH - X2, and
the 64% of the instruction cache power was consumed by data arrays. The way
prediction misses were less than 1% in most cases, and was 0% for the Dhrys-
tone 2.1. Then, the 56% of the array access was eliminated by the prediction
for the Dhrystone. As a result, the instruction cache power was reduced by
33%, and the SH - X2 power was reduced by 5.5%.

 1.6 SH - X 3: MULTICORE ARCHITECTURE EXTENSION

 Continuously, the SH cores has achieved high effi ciency as described above.
The SH - X3 core is the third generation of the SH - 4A processor core series to
achieve higher performance with keeping the high - effi ciency maintained in
all the SH core series. The multicore architecture is the next approach for
the series.

 1.6.1 SH - X 3 Core Specifi cations

 Table 1.6 shows the specifi cations of an SH - X3 core designed based on the
SH - X2 core. The most of the specifi cations are the same as that of the SH - X2
core as the successor of it. In addition to such succeeded specifi cations,

 FIGURE 1.26. Clock - gating method of SH - X2. GCKD, gated clock driver cell.

Clock
Gen.

A-drv.

B-drv. C-drv.

Hardware
(dynamic)Software

(static)

Clock
Control

Registers

128 -256 F/FsModule

Hardware (dynamic)

D-drvs. F/Fs

GCKD GCKD
GCKD

ph1 edge trigger F/F ph2 transparent latch

SH-X3: MULTICORE ARCHITECTURE EXTENSION 35

the core supports both symmetric and asymmetric multiprocessor (SMP and
AMP) features with interrupt distribution and interprocessor interrupt, in
corporate with an interrupt controller of such SoCs as RP - 1 and RP - 2.
Each core of the cluster can be set to one of the SMP and AMP modes
individually.

 It also supports three low power modes of light sleep, sleep, and resume
standby. The new light - sleep mode is to respond to a snoop request from the
SNC while the core is inactive. In this mode, the data cache is active for the
snoop operation, but the other modules are inactive.

 In a chip multiprocessor, the core loads are not equal, and each SH - X3 core
can operate at a different operating frequency and in a different low power
mode to minimize the power consumption for the load. The core can support
the SMP features even such heterogeneous operation modes of the cores.

 1.6.2 Symmetric and Asymmetric Multiprocessor Support

 The four SH - X3 cores constitute a cluster sharing an SNC and a DBG to
support symmetric multiprocessor (SMP) and multicore debug features.
The SNC has a duplicated address array (DAA) of data caches of all the four
cores, and is connected to the cores by a dedicated snoop bus separated from
the SuperHyway to avoid both deadlock and interference by some cache
coherency protocol operations. The DAA minimizes the number of data cache
accesses of the cores for the snoop operations, resulting in the minimum coher-
ency maintenance overhead.

 TABLE 1.6. SH - X3 Processor Core Specifi cations

 ISA SuperH 16 - Bit Encoded ISA
 Pipeline structure Dual - issue superscalar 8 - stage pipeline
 Operating frequency 600 MHz (90 - nm generic CMOS process)
 Performance

 Dhrystone 2.1 1080 MIPS
 FPU (Peak) 4.2/0.6 GFLOPS (single/double)

 Caches 8 – 64 KB I/D each
 Local memories

 1st/2nd level 4 – 128 KB I/D each/128 KB to 1 MB
 Power/power effi ciency 360 mW/3,000 MIPS/W
 Multiprocessor support

 SMP support Coherency for data caches (up to 4 cores)
 AMP support DTU for local memories
 Interrupt Interrupt distribution and Inter - processor interrupt

 Low power modes Light sleep, sleep, and resume standby
 Power management Operating frequency and low power mode can be

different for each core.

36 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 The supported SMP data cache coherency protocols are standard MESI
(modifi ed, exclusive, shared, invalid) and ESI modes for copyback and write -
 through modes, respectively. The copyback and MESI modes are good for
performance, and the write - through and ESI modes are suitable to control
some accelerators that cannot control the data cache of the SH - X3 cores
properly.

 The SH - X3 outputs one of the following snoop requests of the cache line
to the SNC with the line address and write - back data, if any:

 1. Invalidate request for write and shared case.
 2. Fill - data request for read and cache - miss case.
 3. Fill - data and invalidate request for write and cache - miss case.
 4. Write - back request to replace a dirty line.

 The SNC transfers a request other than a write - back one to proper cores by
checking its DAA, and the requested core processes the requests.

 The on - chip RAMs and the data transfer among the various memories
are the key features for the AMP support. The use of on - chip RAM makes it
possible to control the data access latency, which cannot be controlled well in
systems with on - chip caches. Therefore, each core integrates L1 instruction
and data RAMs, and a second - level (L2) unifi ed RAM. The RAMs are glob-
ally addressed to transfer data to/from the other globally addressed memories.
Then, application software can place data in proper timing and location. The
SH - X3 integrates a data transfer unit (DTU) to accelerate the data transfer
to/from the other modules.

 1.6.3 Core Snoop Sequence Optimization

 Each core should operate at the proper frequency for its load, but in some
cases of the SMP operation, a low frequency core can cause a long stall of a
high frequency core. We optimized the cache snoop sequences for the SMP
mode to minimize such stalls. Table 1.7 summarizes the coherency overhead
cycles. These cycles vary according to various conditions; the table indicates a
typical case.

 Figure 1.27 a,b show examples of core snoop sequences before and after the
optimization. The case shown is a “ write access to a shared line, ” which is the
third case in the table. The operating frequencies of core #0, #1, and #2 are
600, 150, and 600 MHz, respectively. Initially, all the data caches of the cores
hold a common cache line, and all the cache - line states are “ shared. ”

 Sequence (a) is as follows:

 1. Core Snoop Request : Core #0 stores data in the cache, changes the
stored - line state from “ Shared ” to “ Modifi ed, ” and sends a “ Core Snoop
Request ” of the store address to the SNC.

SH-X3: MULTICORE ARCHITECTURE EXTENSION 37

 TABLE 1.7. Coherency Overhead Cycles

 Access
Type

 Cache Line State Overhead (SCLK Cycles)

 Accessed
Core

 Snooped
Core

 Snooped Core:
600 MHz

 Snooped Core:
150 MHz

 Not
Optimized Optimized

 Not
Optimized Optimized

 Read S, E, M – 0 0 0 0
 Write E, M – 0 0 0 0

 S S 10 4 19 4
 Read or

Write
 Miss Miss 5 5 5 5

 S 10 5 19 5
 E 10 10 19 19
 M 13 13 22 22

 FIGURE 1.27. Core snoop sequences (a) before and (b) after optimization.

Core #0 (600MHz)
State: S to M

Core #1 (150MHz)
State: S to I

Core #2 (600MHz)
State: S to I

DAA

(1) Core Snoop Request

(3) Invalidate Request

(4) D$ Update

(5) Invalidate Acknowledge

(6) Snoop Acknowledge

(2) DAA
Update

D$

D$

Snoop Latency

time

Core #0 (600MHz)
State: S to M

Core #1 (150MHz)
State: S to I

Core #2 (600MHz)
State: S to I

DAA

(1) Core Snoop Request

(3) Invalidate Request

(4) D$ Update

(5) Invalidate Acknowledge

(3) Snoop Acknowledge

(2) DAA
Update

D$

D$

Snoop Latency

time

(a)

(b)

38 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 2. DAA Update : The SNC searches the DAA of all the cores, and changes
the states of the hit lines from “ Shared ” to “ Modifi ed ” for core #0
and “ Invalid ” for cores #1 and #2. The SNC runs at SCLK frequency
(300 MHz).

 3. Invalidate Request : The SNC sends “ Invalidate Request ” to cores #1
and #2.

 4. Data Cache Update : Cores #1 and #2 change the states of the corre-
sponding cache lines from “ Shared ” to “ Invalid. ” The processing time
depends on each core ’ s ICLK.

 5. Invalidate Acknowledge : Cores #1 and #2 return “ Invalidate Acknowl-
edge ” to the SNC.

 6. Snoop Acknowledge : The SNC returns “ Snoop Acknowledge ” to
core #0.

 As shown in Figure 1.27 a, the return from core #1 is late due to its low fre-
quency, resulting in long snoop latency.

 Sequence (b) is as follows by the optimization:

 1. Core Snoop Request
 2. DAA Update
 3. Snoop Acknowledge and Invalidate Request
 4. Data Cache Update
 5. Invalidate Acknowledge

 The “ Snoop Acknowledge ” is moved from the 6th to the 3rd step by eliminat-
ing the wait of the “ Invalidate Acknowledge, ” and the late response of the
slow core does not affect the operation of the fast core. In the optimized
sequence, the SNC is busy for some cycles after the “ Snoop Acknowledge, ”
and the next “ Core Snoop Request ” must wait if the SNC is still busy. However,
this is rare for ordinary programs.

 The sequence of another case, a “ read miss and hit to another core ’ s modi-
fi ed line, ” which is the last case in the table, is as follows:

 1. Core Snoop Request : A data read of core #0 misses its cache and sends
a “ Core Snoop Request ” of the access address to the SNC.

 2. DAA Update : The SNC searches the DAA of all the cores, and changes
the states of the hit lines from “ Modifi ed ” to “ Shared. ”

 3. Data Transfer Request : The SNC sends a “ Data Transfer Request ” to the
core of the hit line for the cache fi ll data of core #0.

 4. Data Cache Update : The requested core reads the requested data and
changes the states of the corresponding line of the DAA to “ Shared. ”
The processing time depends on each core ’ s ICLK.

SH-X3: MULTICORE ARCHITECTURE EXTENSION 39

 5. Data Transfer Response and Write - Back Request : The requested core
returns the requested data and requests a write back to the SNC.

 6. Snoop Acknowledge and Write - Back Request : The SNC returns “ Snoop
Acknowledge ” to core #0 with the fi ll data, and requests a write - back of
the returned data to the main memory.

 7. Data Cache Update 2 : Core #0 completes the “ Read ” operation by
replacing a cache line with the fi ll data.

 In this case, core #0 must wait for the fi ll data, and the early “ Snoop Acknowl-
edge ” is impossible.

 1.6.4 Dynamic Power Management

 Each core can operate at different CPU clock (ICLK) frequencies and can
stop individually while other processors are running with a short switching
time in order to achieve both the maximum processing performance and the
minimum operating power for various applications. A data cache coherency is
maintained during operations at different frequencies, including frequencies
lower than the on - chip system bus clock (SCLK). The following four schemes
make it possible to change each ICLK frequency individually while maintain-
ing data cache coherency.

 1. Each core has its own clock divider for an individual clock frequency
change.

 2. A handshake protocol is executed before the frequency change to avoid
confl icts in bus access, while keeping the other cores running.

 3. Each core supports various ICLK frequency ratios to SCLK, including
a lower frequency than that of SCLK.

 4. Each core has a light - sleep mode to stop its ICLK while maintaining data
cache coherency.

 The global ICLK and the SCLK that run up to 600 and 300 MHz, respec-
tively, are generated by a global clock pulse generator (GCPG) and distrib-
uted to each core. Both the global ICLK and SCLK are programmable by
setting the frequency control register in the GCPG. Each local ICLK is gener-
ated from the global ICLK by the clock divider of each core. The local CPG
(LCPG) of a core executes a handshake sequence dynamically when the fre-
quency control register of the LCPG is changed, so that it can keep the other
cores running and can maintain coherency in data transfers of the core. The
previous approach assumed a low frequency in a clock frequency change, and
it stopped all the cores when a frequency was changed. The core supports
 “ light - sleep mode ” to stop its ICLK except for its data cache in order to main-
tain the data cache coherency. This mode is effective for reducing the power
of an SMP system.

40 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 1.6.5 RP - 1 Prototype Chip

 The RP - 1 is the fi rst multicore chip with four SH - X3 CPU cores. It supports
both symmetric and asymmetric multiprocessor (SMP and AMP) features
for embedded applications. The SMP and AMP modes can be mixed to con-
struct a hybrid system of the SMP and AMP. Each core can operate at dif-
ferent frequencies and can stop individually with maintaining its data - cache
coherency while the other processors are running in order to achieve both
the maximum processing performance and the minimum operating power for
various applications.

 1.6.5.1 RP - 1 Specifi cations Table 1.8 summarizes the RP - 1 specifi cations.
It was fabricated as a prototype chip using a 90 - nm CMOS process to acceler-
ate the research and development of various embedded multicore systems.
The RP - 1 achieved a total of 4,320 MIPS at 600 MHz by the four SH - X3 cores
measured using the Dhrystone 2.1 benchmark. The RP - 1 integrates four SH -
X3 cores with a snoop controller (SNC) to maintain the data - cache coher-
ency among the cores, DDR2 - SDRAM and SRAM memory interfaces, a PCI -
Express interface, some HW - IPs for various types of processing, and some
peripheral modules. The HW - IPs include a DMA controller, a display unit,
and accelerators. Each SH - X3 core includes a 32 - kB four - way set - associative
instruction and data caches, an 8 - kB instruction local RAM (ILRAM), a 16 - kB
operand local RAM (OLRAM), and a 128 - kB unifi ed RAM (URAM).

 Figure 1.28 illustrates a block diagram of the RP - 1. The four SH - X3 cores,
a snoop controller (SNC), and a debug module (DBG) constitute a cluster.

 TABLE 1.8. RP - 1 Specifi cations

 Process technology 90 - nm, 8 - layer Cu, triple - Vth, CMOS
 Chip size/power 97.6 mm 2 (9.88 mm × 9.88 mm)/3 W (typical,

1.0 V)
 Supply voltage/clock frequency 1.0 V (internal), 1.8/3.3 V(I/O)/600 MHz
 SH - X3 core

 Size 2.60 mm × 2.80 mm
 I/D - cache 32 - kB four - way set - associative (each)
 ILRAM/OLRAM/URAM 8/16/128 KB (unifi ed)

 Snoop controller (SNC) Duplicated Address Array (DAA) of four
D - caches

 Centralized shared memory (CSM) 128 kB
 External interfaces DDR2 - SDRAM, SRAM, PCI - Express
 Performance

 CPU 4,320 MIPS (Dhrystone 2.1, 4 core total)
 FPU 16.8 GFLOPS (peak, 4 core total)

 Package FCBGA 554 pin, 29 × 29 mm

SH-X3: MULTICORE ARCHITECTURE EXTENSION 41

 FIGURE 1.28. Block diagram of RP - 1. SNC, snoop controller (cntl.); DAA, duplicated
address array; CRU, cache RAM control unit; I$/D$, instruction (inst.)/data cache; IL/
DL, Inst./data local memory; URAM, unifi ed RAM; DBG, debug module; GCPG/
LCPG, global/local CPG; INTC, interrupt cntl.; SHPB,HPB, peripheral bus bridge;
CSM, centralized shared memory; DMAC, direct memory access cntl.; PCIe, PCIexpress
interface (i/f); SCIF, serial communication i/f; GPIO, general purpose IO; TMU,
timer unit.

On-chip system bus (SuperHyway)

G
C

P
G

HPB

G
P

IO

S
C

IF
0

-3

T
M

U
0/

1

D
D

R
2

i/f

S
R

A
M

 i/
f

C
S

M

H
W

 IP
s

H
W

 IP
s

H
W

 IP
s

D
M

A
C

P
C

Ie

S
H

P
B

IN
T

C

SH-X3 Cluster

SH-X3 Core3

SH-X3 Core2

SH-X3 Core1

SH-X3 Core0

CPU FPU

URAM
DIIL DL

S
N

C
0

D
A

A
CRU

LC
P

G
3

LC
P

G
2

LC
P

G
1

LC
P

G
0

DBG

The HW - IPs are connected to an on - chip system bus (SuperHyway). The
arrows to/from the SuperHyway indicate connections from/to initiator/target
ports, respectively.

 1.6.5.2 Chip Integration and Evaluations Figure 1.29 shows the chip
micrograph of the RP - 1. The chip was integrated in two steps to minimize the
design period of the physical integration, and successfully fabricated: (1) First,
a single core was laid out as a hard macro and completed timing closure of
the core, and (2) the whole chip was laid out with instancing the core four
times.

 We evaluated the processing performance and power reduction in parallel
processing on the RP - 1. Figure 1.30 plots the time required to execute the
SPLASH - 2 suite [46] depending on the number of threads on an SMP Linux
system. The RP - 1 reduced the processing time to 50.5 – 52.6% and 27.1 – 36.9%
with two and four threads, respectively. The time should be 50 and 25% for
ideal performance scalability. The major overhead was synchronization and
snoop time. The SNC improved cache coherency performance, and the perfor-
mance overhead by snoop transactions was reduced to up to 0.1% when
SPLASH - 2 was executed.

42 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 Figure 1.31 shows the power consumption of the SPLASH - 2 suite. The suite
ran at 600 MHz and at 1.0 V. The average power consumption of one, two, and
four threads was 251, 396, and 675 mW, respectively. This included 104 mW of
active power for the idle tasks of SMP Linux. The results of the performance
and power evaluation showed that the power effi ciency was maintained or
enhanced when the number of threads increased.

 FIGURE 1.30. Execution time of SPLASH - 2 suite.

1.00

FFT

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
al

iz
ed

)

0.75

0.50

0.25

0
LU Radix Water

1 Thread
2 Threads
4 Threads
Barrier

 FIGURE 1.31. Active power of SPLASH - 2 suite.

FFT

A
ct

iv
e

 P
o

w
e

r
(m

W
)

1 Thread

2 Threads

4 Threads

600

400

200

0
LU Radix Water

Linux

 FIGURE 1.29. Chip micrograph of RP - 1.

Core

DAA

Core
#0

SNC

#1

ra
ls

R t SNC

Core er
ip
he

Router

Core
#2

Core
#3 P

e

GCPGGCPG

SH-X3: MULTICORE ARCHITECTURE EXTENSION 43

 Figure 1.32 shows the energy consumption with low power modes. These
modes were implemented to save power when fewer threads were running
than available on CPU cores. As a benchmark, two threads of fast Fourier
transform (FFT) were running on two CPU cores, and two CPU cores were
idle. The energy consumed in the light sleep, sleep, and module stop modes at
600 MHz was 4.5, 22.3, and 44.0% lower than in the normal mode, respectively,
although these modes took some time to stop and start the CPU core and to
save and return the cache. The execution time increased by 79.5% at 300 MHz,
but the power consumption decreased, and the required energy decreased by
5.2%.

 1.6.6 RP - 2 Prototype Chip

 The RP - 2 is a prototype multicore chip with eight SH - X3 CPU cores. It was
fabricated in a 90 - nm CMOS process that was the same process used for the
RP - 1. The RP - 2 achieved a total of 8,640 MIPS at 600 MHz by the eight SH - X3
cores measured with the Dhrystone 2.1 benchmark. Because it is diffi cult to
lay out the eight cores close to each other, we did not select a tightly coupled
cluster of eight cores. Instead, the RP - 2 consists of two clusters of four cores,
and the cache coherency is maintained in each cluster. Therefore, the interclu-
ster cache coherency must be maintained by software if necessary.

 1.6.6.1 RP - 2 Specifi cations Table 1.9 summarizes the RP - 2 specifi cations.
The RP - 2 integrates eight SH - X3 cores as two clusters of four cores, DDR2 -
 SDRAM and SRAM memory interfaces, DMA controllers, and some periph-
eral modules. Figure 1.33 illustrates a block diagram of the RP - 2. The arrows
to/from the SuperHyway indicate connections from/to initiator/target ports,
respectively.

 1.6.6.2 Power Domain and Partial Power Off Power - effi cient chip design
for embedded applications requires several independent power domains
where the power of unused domains can be turned off. The power domains
were initially introduced to an SoC for mobile phones [5] , which defi ned 20
hierarchical power domains. In contrast, high performance multicore chips use
leaky low - Vt transistors for CPU cores, and reducing the leakage power of
such cores is the primary goal.

 FIGURE 1.32. Energy consumption with low power modes.

1000

750

500

250

0
600 MHz 300 MHz

En
er

gy
 (

m
W

·S
)

2CPU Run + 2CPU Idle
2CPU Run + 2CPU Light Sleep
2CPU Run + 2CPU Sleep
2CPU Run + 2CPU Module Stop

44 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 The RP - 2 was developed for target use in power - effi cient high performance
embedded applications. Sixteen power domains were defi ned so that they can
be independently powered off. A resume - standby mode was also defi ned for
fast resume operation, and the power levels of the CPU and the URAM of a
core are off and on, respectively. Each processor core can operate at a different
frequency or even dynamically stop the clock to maintain processing perfor-
mance while reducing the average operating power consumption.

 Figure 1.34 illustrates the power domain structure of eight CPU cores with
eight URAMs. Each core is allocated to a separate power domain so that

 TABLE 1.9. RP - 2 Specifi cations

 Process technology 90 - nm, 8 - layer Cu, triple - Vth, CMOS
 Chip size/power 104.8 mm 2 /2.8 W (typical, 1.0 V, Dhrystone 2.1)
 Supply voltage/clock frequency 1.0 V (internal), 1.8/3.3 V(I/O)/600 MHz
 SH - X3 core

 Size 6.6 mm 2 (3.36 × 1.96 mm)
 I/D - cache 16 - kB four - way set - associative (each)
 ILRAM/OLRAM/URAM 8/32/64 kB (unifi ed)

 CSM/external interfaces 128 kB/DDR2 - SDRAM, SRAM
 Performance

 CPU 8,640 MIPS (Dhrystone 2.1, 8 core total)
 FPU 33.6 GFLOPS (peak, 8 core total)

 FIGURE 1.33. Block diagram of RP - 2.

DMAC1

S
H

P
B

DDR2 i/f SRAM i/f CSM

DMAC0 GCPG

HPB GPIO

TMU0-3

IN
T

CSH-X3 C3

SH-X3 C2

SH-X3 C1

SH-X3 C0
CPU FPU

URAM

DIIL DL

S
N

C
0

D
A

A

CRU

LC
P

G
3

LC
P

G
2

LC
P

G
1

LC
P

G
0

SH-X3 C7

SH-X3 C6

SH-X3 C5

SH-X3 C4
CPUFPU

URAM

D$ I$ ILDL

S
N

C
1

D
A

A

CRU

LC
P

G
7

LC
P

G
6

LC
P

G
5

LC
P

G
4

DBG1DBG0

JTAG i/f

On-chip system bus (SuperHyway)

SH-X3: MULTICORE ARCHITECTURE EXTENSION 45

the power supply can be cut off while unused. Two power domains (Cn and
Un, for n ranging from 0 to 7) are assigned to each core, where Un is allocated
only for URAM. By keeping the power of Un on, the CPU status is saved to
URAM before the Cn power is turned off, and restored from URAM after
Cn power is turned on. This shortens the restart time compared with a power -
 off mode in which both Cn and Un are powered off together. Each power
domain is surrounded by power switches and controlled by a power switch
controller (VSWC).

 Table 1.10 summarizes the power modes of each CPU. Light sleep mode
is suitable for dynamic power saving while cache coherency is maintained. In
sleep mode, almost all clocks for the CPU core are stopped. In resume standby
mode, the leakage current for eight cores is reduced to 22 from 162 mA in
sleep mode, and leakage power is reduced by 86%.

 1.6.6.3 Synchronization Support Hardware The RP - 2 has barrier registers
to support CPU core synchronization for multiprocessor systems. Software can

 FIGURE 1.34. Power domain structure of eight CPU cores with eight URAMs.

Power Control Register

VSWC for Core

C0
U0

C2U2

C6
U6

C4
U4

C1
U1

C3 U3

C7
U7

C5
U5

URAM

VSSM
(virtual ground)

VSS

120 mm

Core

70 mm

50 mm

VSWC for URAM

 TABLE 1.10. Power Modes of CPU Cores

 CPU Power Modes Normal Light Sleep Sleep Resume Power Off

 Clock for CPU and URAM On Off Off Off Off
 Clock for I/D Cache On On Off Off Off
 Power supply for CPU On On On Off Off
 Power supply for URAM On On On On Off
 Leakage current (mA) a 162 162 162 22 0

 a Measured at room temperature at 1.0 V, eight - core total.

46 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

use these registers for fast synchronization between the cores. In the synchro-
nization, one core waits for other cores to reach a specifi c point in a program.
Figure 1.35 illustrates the barrier registers for the synchronization. In a con-
ventional software solution, the cores have to test and set a specifi c memory
location, but this requires long cycles. We provide three sets of barrier registers
to accelerate the synchronization. Each CPU core has a 1 - bit barrier write
(BARW) register that it notifi es when it reaches a specifi c point. The BARW
values of all the cores are gathered by hardware to form an 8 - bit barrier read
(BARR) register of each core so that each core can obtain all the BARW
values from its BARR register with a single instruction. As a result, the syn-
chronization is fast and does not disturb other transactions on the Super-
Hyway bus.

 Figure 1.36 shows an example of the barrier register usage. In the beginning,
all the BARW values are initialized to zero. Then each core inverts its BARW

 FIGURE 1.35. Barrier registers for synchronization.

Cluster1

BARW for each core BARR for each core

Core0 Core1 Core2 Core3

Cluster0

Core7Core6Core5Core4

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

 FIGURE 1.36. Synchronization example using barrier registers.

Barrier Synchronization (Each core waits its BARR to be all ones)

Barrier Synchronization (Each core waits its BARR to be all zeros)

Barrier Initialization (Each core clear its BARW to zero)

Executions (Each core runs and sets its BARW to one at specific point)

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 07

Executions (Each core runs and clears its BARW to zero at specific point)

SH-X4: ISA AND ADDRESS SPACE EXTENSION 47

value when it reaches a specifi c point, and it checks and waits until all its
BARR values are ones refl ecting the BARW values. The synchronization is
complete when all the BARW values are inverted to ones. The next synchro-
nization can start immediately with the BARWs being ones, and is complete
when all the BARW values are inverted to zeros.

 Table 1.11 compares the results of eight - core synchronizations with and
without the barrier registers. The average number of clock cycles required for
a certain task to be completed with and without barrier registers is 8,510 and
52,396 cycles, respectively. The average differences in the synchronizing cycles
between the fi rst and last cores are 10 and 20,120 cycles, with and without
the barrier registers, respectively. These results show that the barrier registers
effectively improve the synchronization.

 1.6.6.4 Chip Integration and Evaluations The RP - 2 was fabricated using
the same 90 - nm CMOS process as that for the RP - 1. Figure 1.37 is the chip
micrograph of the RP - 2. It achieved a total of 8,640 MIPS at 600 MHz by the
eight SH - X3 cores measured with the Dhrystone 2.1 benchmark, and con-
sumed 2.8 W at 1.0 V, including leakage power.

 The fabricated RP - 2 chip was evaluated using the SPLASH - 2 benchmarks
on an SMP Linux OS. Figure 1.38 plots the RP - 2 execution time on one cluster
based on the number of POSIX threads. The processing time was reduced to
51 – 63% with two threads and to 41 – 27% with four or eight threads running
on one cluster. Since there were fewer cores than threads, the eight - thread
case showed similar performance to the four - thread one. Furthermore, in
some cases, the increase in the number of threads resulted in an increase in
the processing time due to the synchronization overhead.

 1.7 SH - X 4: ISA AND ADDRESS SPACE EXTENSION

 Continuously, embedded systems expand their application fi elds, and enhance
their performance and functions in each fi eld. As a key component of the
system, embedded processors must enhance their performance and func-
tions with maintaining or enhancing their effi ciencies. As the latest SH proces-
sor core, the SH - X4 extended its ISA and address space effi ciently for this
purpose.

 TABLE 1.11. Eight - Core Synchronization Cycles

 Conventional Method

(via External Memory)
 RP - 2 Method (via

BARW/BARR registers)

 Average clock cycles 52,396 8,510
 Average difference 20,120 10

48 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 FIGURE 1.37. Chip micrograph of RP - 2.

Core1Core0

I L I $

S
N

C
0

URAM DL D$
LB

S
C

Core2 Core3

Router W
C

Core6 Core7
C

1

V
S

W

Core4 Core5

SN

DDRPAD

C
S

M

GCPGDBSC

DDRPAD

 FIGURE 1.38. RP - 2 execution time according to number of POSIX threads.

1.0

0.8

0.6

0.4

0.2

0.0
Barnes OceanWater FFT LU Radix

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e

1 Thread
2 Threads
4 Threads
8 Threads

16 Threads

 The SH - X4 was integrated on the RP - X heterogeneous multicore chip as
two 4 - core clusters with four Flexible Engine/Generic ALU Arrays (FE - GAs)
 [47, 48] , two MX - 2 matrix processors [49] , a Video Processing Unit 5 (VPU5)
 [50, 51] , and various peripheral modules.

 1.7.1 SH - X 4 Core Specifi cations

 Table 1.12 shows the specifi cations of an SH - X4 core designed based on the
SH - X3 core. The most of the specifi cations are the same as those of the SH - X3

SH-X4: ISA AND ADDRESS SPACE EXTENSION 49

core, and the same ones are not shown. The SH - X4 extended the ISA with
some prefi xes, and the cycle performance is enhanced from 2.23 to 2.65 MIPS/
MHz. As a result, the SH - X4 achieved 1,717 MIPS at 648 MHz. The 648 MHz
is not so high compared with the 600 MHz of the SH - X3, but the SH - X4
achieved the 648 MHz in a low power process. Then, the typical power con-
sumption is 106 mW, and the power effi ciency reached as high as 16 GIPS/W.

 1.7.2 Effi cient ISA Extension

 The 16 - bit fi xed - length ISA of the SH cores is an excellent feature enabling a
higher code density than that of 32 - bit fi xed - length ISAs of conventional
RISCs. However, we made some trade - off to establish the 16 - bit ISA. Operand
fi elds are carefully shortened to fi t the instructions into the 16 bits according
to the code analysis of typical embedded programs in the early 1990s. The
16 - bit ISA was the best choice at that time and the following two decades.
However, required performance grew higher and higher, program size and
treating data grew larger and larger. Therefore, we decided to extend the ISA
by some prefi x codes.

 The week points of the 16 - bit ISA are (1) short - immediate operand, (2)
lack of three - operand operation instructions, and (3) implicit fi xed - register
operand. The short - immediate ISA uses a two - instruction sequence of a long -
 immediate load and a use of the loaded data, instead of a long immediate
instruction. A three - operand operation becomes a two - instruction sequence
of a move instruction and a two - operand instruction. The implicit fi xed - register
operand makes register allocation diffi cult, and causes ineffi cient register
allocations.

 The popular ISA extension from the 16 - bit ISA is a variable - length ISA.
For example, an IA - 32 is a famous variable - length ISA, and ARM Thumb - 2
is a variable - length ISA of 16 and 32 bits. However, a variable - length instruc-
tion consists of plural unit - length codes, and each unit - length code has plural
meaning depending on the preceding codes. Therefore, the variable - length
ISA causes complicated, large, and slow parallel - issue logic with serial code
analysis.

 TABLE 1.12. SH - X 4 Processor Core Specifi cations

 ISA SuperH 16 - Bit ISA with Prefi x Extension

 Operating frequency 648 MHz (45 - nm low power CMOS process)
 Performance

 Dhrystone 2.1 1,717 MIPS (2.65 MIPS/MHz)
 FPU (peak) 4.5/0.6 GFLOPS (single/double)

 Power/power effi ciency 106 mW/16 GIPS/W
 Address space

 Logical 32 bits, 4 GB
 Physical 40 bits, 1 TB

50 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 Another way is using prefi x codes. The IA - 32 uses some prefi xes, as well as
the variable - length instructions, and using prefi x codes is one of the conven-
tional ways. However, if we use the prefi x codes but not use the variable - length
instructions, we can implement a parallel instruction decoding easily. The
SH - X4 introduced some 16 - bit prefi x codes to extend the 16 - bit fi xed - length
ISA.

 Figure 1.39 shows some examples of the ISA extension. The fi rst example
(#1) is an operation “ Rc = Ra + Rb (Ra, Rb, Rc: registers) ” , which requires a
two - instruction sequence of “ MOV Ra, Rc (Rc = Ra) ” and “ ADD Rb, Rc (Rc
 + = Rb) ” before extension, but only one instruction “ ADD Ra, Rb, Rc ” after
the extension. The new instruction is made of the “ ADD Ra, Rb ” by a prefi x
to change a destination register operand Rb to a new register operand Rc. The
code sizes are the same, but the number of issue slots reduces from two to one.
Then the next instruction can be issued simultaneously if there is no other
pipeline stall factor.

 The second example (#2) is an operation “ Rc = @(Ra + Rb), ” which
requires a two - instruction sequence of “ MOV Rb, R0 (R0 = Rb) ” and “ MOV.L
@(Ra, R0), Rc (Rc = @(Ra + R0)) ” before extension, but only an instruction
 “ MOV.L @(Ra, Rb), Rc ” after the extension. The new instruction is made of
the “ MOV @(Ra, R0), Rc ” by a prefi x to change the R0 to a new register
operand. Then we do not need to use the R0, which is the third implicit fi xed
operand with no operand fi eld to specify. It makes the R0 busy and register
allocation ineffi cient to use the R0 - fi xed operand, but the above extension
solve the problem.

 The third example (#3) is an operation “ Rc = @(Ra + lit8) (lit8: 8 -
bit literal), ” which requires a two - instruction sequence of “ MOV lit8, R0

 FIGURE 1.39. Examples of ISA extension.

ADD Ra,Rc(Rc+=Ra)
Rc Ra

ADD Ra,Rb,Rc(Rc=Ra+Rb)
Rb Ra codeRc

Rc Rb
MOV Rb,Rc(Rc=Rb)

codecode code

codecodecodecode

MOV.L @(Ra,R0),Rc(Rc=@(Ra+R0))

MOV.L @(Ra,Rb),Rc (Rc=@(Ra+Rb))

w/o Prefix

w/ Prefix

#1)

Rc Ra

Rc Ra codeRb

R0 Rb
MOV Rb,R0(R0=Rb)

codecode code

codecodecodecodew/o Prefix

w/ Prefix

#2)

MOV.L @(Ra,lit8),Rc (Rc=@(Ra+lit8))
Rc Ra

Rc Ralit4

R0 Rb
MOV lit8,R0(R0=lit8)

codecode code

codecodecodecodew/o Prefix

w/ Prefix

#3)

lit4

MOV.L @(Ra,R0),Rc(Rc=@(Ra+R0))

SH-X4: ISA AND ADDRESS SPACE EXTENSION 51

(R0 = lit8) ” and “ MOV.L @(Ra, R0), Rc (Rc = @(Ra + R0)) ” before exten-
sion, but only an instruction “ MOV.L @(Ra, lit8), Rc ” after the extension. The
new instruction is made of the “ MOV.L @(Ra, lit4), Rc (lit4: 4 - bit literal) ” by
a prefi x to extend the lit4 to lit8. The prefi x can specify the loaded data size
in memory and the extension type of signed or unsigned if the size is 8 or
16 bits, as well as the extra 4 - bit literal.

 Figure 1.40 illustrates the instruction decoder of the SH - X4 enabling a dual
issue, including extended instructions by prefi x codes. The gray parts are the
extra logic for the extended ISA. Instruction registers at the I3 stage hold fi rst
four 16 - bit codes, which was two codes for the conventional 16 - bit fi xed - length
ISA. The simultaneous dual - issue of the instructions with prefi xes consumes
the four codes per cycle at peak throughput. Then, a predecoder checks each
code in parallel if it is a prefi x or not, and outputs control signals of multiplex-
ers MUX to select the inputs of prefi x and normal decoders properly.

 The Table 1.13 summarizes all cases of the input patterns and corresponding
selections. A code after the prefi x code is always a normal code, and hardware

 FIGURE 1.40. Instruction decoder of SH - X4.

C0

MUX MUX MUX MUX

Predecoder
C1 C2 C3

PD0 ID0 PD1 ID1

MUX

Output 0

Prefix
Dec. 1

Prefix
Dec. 0 Normal

Dec. 1
Normal
Dec. 0

MUX

Output 1

 TABLE 1.13. Input Patterns and Selections

 Input Output

 C0 C1 C2 C3 PD0 ID0 PD1 ID1
 N N – – – C0 – C1
 N P – – – C0 C1 C2
 P – N – C0 C1 – C2
 P – P – C0 C1 C2 C3

 P, prefi x; n, normal; – , arbitrary code.

52 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

need not check it. Each prefi x decoder decodes a provided prefi x code, and
overrides the output of the normal decoder appropriately. As a result, the
instruction decoder performs the dual issue of instructions with prefi xes.

 Figure 1.41 shows evaluation results of the extended ISA with four bench-
mark programs. The performance of Dhrystone 2.1 was accelerated from 2.24
to 2.65 MIPS/MHz by 16%. The performance of FFT, fi nite impulse response
(FIR), and JPEG encoding were improved by 23, 34, and 10%, respectively.
On the other hand, area overhead of the prefi x code implementation was less
than 2% of the SH - X4. This means the ISA extension by the prefi x codes
enhanced both performance and effi ciency.

 1.7.3 Address Space Extension

 The 32 - bit address can defi ne an address space of 4 GB. The space consists
of main memory, on - chip memories, various IO spaces, and so on. Then the
maximum linearly addressed space is 2 GB for the main memory. However,
the total memory size is continuously increasing, and will soon exceed 2 GB
even in an embedded system. Therefore, we extended the number of physical
address bits to 40 bits, which can defi ne 1 - TB address space. The logical address
space remains 32 - bit, and the programming model is unchanged. Then the
binary compatibility is maintained. The logical address space extension would
require the costly 32 - to 64 - bit extensions of register fi les, integer executions,
branch operations, and so on.

 Figure 1.42 illustrates an example of the extension. The 32 - bit logical address
space is compatible to the predecessors of the SH - X4. The MMU translates
the logical address to a 32/40 - bit physical address by TLB or privileged map-
ping buffer (PMB) in 32/40 - bit physical address mode, respectively. The TLB
translation is a well - known dynamic method, but the original PMB translation
is a static method to avoid exceptions possible for the TLB translation. There-
fore, the PMB page sizes are larger than that of the TLB to cover the PMB
area effi ciently.

 The logical space is divided into fi ve regions, and the attribute of each
region can be specifi ed as user - mode accessible or inaccessible, translated
by TLB or PMB, and so on. In the example, the P0/U0 region is user - mode

 FIGURE 1.41. Performance improvement ratio by prefi x codes.

Dhrystone v2.1

FFT

FIR

JPEG Encode 110%

134%

123%

0 50 100 (%)

116%2.28 2.65 MIPS/MHz

SH-X4: ISA AND ADDRESS SPACE EXTENSION 53

accessible and translated by TLB, the P1 and P2 region are user - mode inac-
cessible and translated by PMB, and the P3 region is user - mode inaccessible
and translated by TLB. The P4 region includes a control register area that is
mapped on the bottom of physical space so that the linear physical space is
not divided by the control register area.

 1.7.4 Data Transfer Unit

 High - speed and effi cient data transfer is one of the key features for multicore
performance. The SH - X4 core integrates a DTU for this purpose. A DMAC
is conventional hardware for the data transfer. However, the DTU has some
advantage to the DMAC, because the DTU is a part of an SH - X4 core. For
example, when a DMAC transfer the data between a memory in an SH - X4
core and a main memory, the DMAC must initiate two SuperHyway bus
transactions between the SH - X4 core and the DMAC and between the DMAC
and the main memory. On the other hand, the DTU can perform the transfer
with one SuperHyway bus transaction between the SH - X4 core and the main
memory. In addition, the DTU can use the initiator port of the SH - X4 core,
whereas the DMAC must have its own initiator port, and even if all the SH - X4
cores have a DTU, no extra initiator port is necessary. Another merit is that
the DTU can share the unifi ed TLB (UTLB) of the SH - X4 core, and the DTU
can handle a logical address.

 Figure 1.43 shows an example of a data transfer between an SH - X4 core
and an FE - GA. The DTU has a transfer TLB (TTLB) as a micro TLB that
caches UTLB entries of the CPU for independent executions. The DTU can
get a UTLB entry when the translation misses the TTLB. The DTU action is
defi ned by a command chain in a local memory. The DTU can execute the
command chain of plural commands without CPU control. In the example,
the DTU transfers data in a local memory of the SH - X4 to a memory in the
FE - GA. The source data specifi ed by the source address from the command

 FIGURE 1.42. An example of logical and physical address spaces of SH - X4.

00000000

7FFFFFFF
80000000

FFFFFFFF

32-bit
Logical Space

E0000000

32-bit
Physical Space

40-bit
Physical Space

00 00000000

FF E0000000
FF FFFFFFFF

P0/U0
(TLB)

P1 (PMB)
P2 (PMB)
P3 (TLB)
P4

3.5GB
Linear
Space

(232–229

bytes)

P4

1TB
Linear
Space

(240–229

bytes)

P4

54 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

is read from the local memory, and the destination address specifi ed by the
command is translated by the TTLB. Then the address and data are output to
the SuperHyway via the bus interface, and the data are transferred to the
destination memory of the FE - GA.

 1.7.5 RP - X Prototype Chip

 A heterogeneous multicore is one of the most promising approaches to attain
high performance with low frequency and power, for consumer electronics or
scientifi c applications. The RP - X is the latest prototype multicore chip with
eight SH - X4 cores, four FE - GAs, two MX - 2s, a VPU5, and various peripheral
modules. It was fabricated using 45 - nm CMOS process. The RP - X achieved
13.7 GIPS at 648 MHz by the eight SH - X4 cores measured using the Dhrys-
tone 2.1 benchmark, and a total of 114.7 GOPS with 3.07 W. It attained a
power effi ciency of 37.3 GOPS/W.

 1.7.5.1 RP - X Specifi cations The RP - X specifi cations are summarized in
Table 1.14 . It was fabricated using a 45 - nm CMOS process, integrating eight
SH - X4 cores, four FE - GAs, two MX - 2s, one VPU5, one SPU, and various
peripheral modules as a heterogeneous multicore SoC, which is one of the
most promising approaches to attain high performance with low frequency
and power, for consumer electronics or scientifi c applications.

 The eight SH - X4 cores achieved 13.7 GIPS at 648 MHz measured using the
Dhrystone 2.1 benchmark. Four FE - GAs, dynamically reconfi gurable proces-
sors, were integrated and attained a total performance of 41.5GOPS and
a power consumption of 0.76 W. Two 1024 - way MX - 2s were integrated and
attained a total performance of 36.9GOPS and a power consumption of 1.10 W.
Overall, the effi ciency of the RP - X was 37.3 GOPS/W at 1.15 V, excluding
special - purpose cores of a VPU5 and an SPU. This was the highest among
comparable processors. The operation granularity of the SH - X4, FE - GA and
MX - 2 processors are 32, 16, and 4 bits, respectively, and thus, we can assign
the appropriate processor cores for each task in an effective manner.

 FIGURE 1.43. An example of DTU transfer between SH - X4 and FE - GA.

CPU

DTU

Source
DATA

BUS I/F

UTLB

FE-GA

TTLB

Local Mem.

Src.Adr.Dst.Adr.

Command

Command

SH-X4

SuperHyway

Dst.
Mem.

SH-X4: ISA AND ADDRESS SPACE EXTENSION 55

 Figure 1.44 illustrates the structure of the RP - X. The processor cores of the
SH - X4, FE - GA, and MX - 2, the programmable special purpose cores of the
VPU5 and SPU, and the various modules are connected by three SuperHyway
buses to handle high - volume and high - speed data transfers. SuperHyway - 0
connects the modules for an OS, general tasks, and video processing,
SuperHyway - 1 connects the modules for media acceleration, and SuperHyway - 2
connects media IPs except for the VPU5. Some peripheral buses and modules
are not shown in the fi gure.

 TABLE 1.14. RP - X Specifi cations

 Process technology 45 - nm, 8 - layer Cu, triple - Vth, CMOS
 Chip size 153.76 mm 2 (12.4 mm × 12.4 mm)
 Supply voltage 1.0 – 1.2 V (internal), 1.2/1.5/1.8/2.5/3.3 V (I/O)
 Clock frequency 648 MHz (SH - X4), 324 MHz (FE - GA, MX - 2)
 Total power consumption 3.07 W (648 MHz, 1.15 V)
 Processor cores and

performances
 8 × SH - X4 CPU 13.7 GIPS (Dhrystone 2.1, 8 - core total)

 FPU 36.3 GFLOPS (8 - core total)
 4 × FE - GA 41.5 GOPS (4 - core total)
 2 × MX - 2 36.9 GOPS (2 - core total)

 Programmable special
purpose cores

 VPU5 (video processing unit) for MPEG2, H.264,
VC - 1

 SPU (sound processing unit) for AAC, MP3
 Total performances and

power
 114.7 GOPS, 3.07 W, 37.3 GOPS/W (648 MHz,

1.15 V)
 External interfaces 2 × DDR3 - SDRAM (32 - bit, 800 MHz), SRAM,

PCIexpress (rev 2.0, 2.5 GHz, 4 lanes), serial ATA

 FIGURE 1.44. Block diagram of RP - X.

RP-X
Media

IPs

SH-X4
Cluster#1

SH -X4SH -X4SH -X4SH -X4
CPU CRU FPU
I$ DTU D$

ILM UM DLM

SNC
L2

PWC

SuperHyway-0 SuperHyway-1

SH -X4
Cluster#0

SH -X4SH -X4SH -X4SH -X4
CPU CRU FPU
I$ DTU D$

ILM UM DLM

SNC
L2

PWC

C
S

M
#

0

D
D

R
3

#
0

PCIexpress S-ATA

SPU2LBSC

SuperHyway-2 VPU5
Video

Processing
Unit P

W
C

C
S

M
#

1
D

D
R

3
#

1FE-GA
FE-GA

FE-GA
FE-GA

LM

MX-2
MX-2
LM

56 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 A DTU was implemented in each SH - X4 core to transfer data to and from
the special - purpose cores or various memories without using CPU instruc-
tions. In this kind of system, multiple OSes are used to control various func-
tions, and thus high - volume and high - speed memories are required.

 1.7.5.2 Chip Integration and Evaluations The RP - X was fabricated using
a 45 - nm low power CMOS process. A chip micrograph of the RP - X is in Figure
 1.45 . It achieved a total of 13,738 MIPS at 648 MHz by the eight SH - X4 cores
measured using the Dhrystone 2.1 benchmark, and consumed 3.07 W at 1.15 V
including leakage power.

 The RP - X is a prototype chip for consumer electronics or scientifi c applica-
tions. As an example, we produced a digital TV prototype system with IP net -
works (IP - TV), including image recognition and database search. Its system
confi guration and memory usage are shown in Figure 1.46 . The system is capa-
ble of decoding 1080i audio/video data using a VPU and an SPU on the OS#1.
For image recognition, the MX - 2s are used for image detection and feature
quantity calculation, and the FE - GAs are used for optical fl ow calculation of
a VGA (640 × 480) video at 15 fps on the OS#2. These operations required
30.6 and 0.62 GOPS of the MX - 2 and FE - GA, respectively. The SH - X4 cores
are used for database search using the results of the above operations on the
OS#3, as well as supporting of all the processing, including OS#1, OS#2, OS#3,

 FIGURE 1.45. Chip micrograph of RP - X.

PCIe
S-ATA

Media
IPs

D
D

R
3

MX-2

Core 0-3

FEFE

M di

D
D

R
3

Core 4-7Media
IPs

REFERENCES 57

and data transfers between the cores. The main memories of 0.4, 0.6, 1.6, and
1.8 GB are assigned to OS#1, OS#2, OS#3, and PCI, respectively, for a total of
4.4 GB.

 Table 1.15 lists the total performance and power consumption at 1.15 V
when eight CPU cores, four FE - GAs, and two MX - 2s are used at the same
time. The power effi ciency of the CPU cores, FE - GAs, and MX - 2s reached 42.9
GFLOPS/W, 41.5 GOPS/W, and 36.9 GOPS/W, respectively. The power con-
sumption of the other components was reduced to 0.40 W by clock gating
of 31 out of 44 modules. In total, if we count 1 GFLOPS as 1 GOPS, the RP - X
achieved 37.3 GOPS/W at 1.15 V, excluding I/O area power consumption.

 REFERENCES

 [1] P.P. Gelsinger , “ Microprocessors for the new millennium challenges, opportunities,
and new frontiers , ” in ISSCC Digest of Technical Papers , Session 1.3, Feb. 2001 .

 [2] F. Arakawa , “ Multicore SoC for embedded systems , ” in International SoC Design
Conference (ISOCC) 2008 , Nov. 2008 , pp. I - 180 – I - 183 .

 [3] R.P. Weicker , “ Dhrystone: a synthetic programming benchmark , ” Communica-
tions of ACM , 27 (10), Oct. 1984 , pp. 1013 – 1030 .

 [4] R.P. Weicker , “ Dhrystone benchmark: rationale for version 2 and measurement
rules , ” ACM SIGPLAN Notices , 23 (8), Aug. 1988 , pp. 49 – 62 .

 FIGURE 1.46. System confi guration and memory usage of a digital TV.

Optical Flow
Calculation

Image
Detection

Feature Quantity
Calculation

Audio/Video
Decode

Database
Search

OS#2OS#1OS#0

0.4 GB 0.6 GB 1.6 GB

I/O
PCI

1.8 GB

Total 4.4 GB

VGA (640 × 480), 15 fps1080i
VPU, SPU FE (0.62GOPS)MX-2 (30.6GOPS)

 TABLE 1.15. Performance and Power Consumption of RP - X

 Operating
Frequency Performance Power Power Effi ciency

 SH - X4 648 MHz 36.3 GFLOPS 0.74 W 49.1 GFLOPS/W
 MX - 2 324 MHz 36.9 GOPS 0.81 W 45.6 GOPS/W
 FE - GA 324 MHz 41.5 GOPS 1.12 W 37.1 GOPS/W
 Others 324/162/81 MHz – 0.40 W –
 Total – 114.7 GOPS 3.07 W 37.3 GOPS/W

58 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 [5] T. Hattori et al., “ A power management scheme controlling 20 power domains for
a sin - gle - chip mobile processor , ” in ISSCC Dig. Tech. Papers , Session 29.5, Feb.,
 2006 .

 [6] M. Ito et al., “ A 390 MHz single - chip application and dual - mode baseband pro-
cessor in 90 nm triple - Vt CMOS , ” in ISSCC Dig. Tech. Papers , Session 15.3, Feb.
 2007 .

 [7] M. Naruse et al., “ A 65 nm single - chip application and dual - mode baseband pro-
cessor with partial clock activation and IP - MMU , ” in ISSCC Dig. Tech. Papers ,
Session 13.3, Feb. 2008 .

 [8] M. Ito et al., “ A 65 nm single - chip application and dual - mode baseband processor
with par - tial clock activation and IP - MMU , ” IEEE Journal of Solid - State Circuits ,
 44 (1), Jan. 2009 , pp. 83 – 89 .

 [9] K. Hagiwara et al., “ High performance and low power SH2A - DUAL core for
embedded microcontrollers , ” in COOL Chips XI Proceedings , Session XI, no. 2,
April 2008 . 1.

 [10] H. Kido et al., “ SoC for car navigation systems with a 53.3 GOPS image recogni-
tion engine , ” in HOT CHIPS 21 , Session 6, no 3, Aug. 2009 .

 [11] R.G. Daniels , “ A participant ’ s perspective , ” IEEE Micro , 16 (2), Apr. 1996 ,
pp. 8 – 15 .

 [12] L. Gwennap , “ CPU technology has deep roots , ” Microprocessor Report , 10 (10),
Aug. 1996 , pp. 9 – 13 .

 [13] H. Nakamura et al., “ A circuit methodology for CMOS microcomputer LSIs , ” in
 ISSCC Dig. Tech. Papers , Feb. 1983 , pp. 134 – 135 .

 [14] S. Kawasaki , “ SH - II A low power RISC microprocessor for consumer applica-
tions , ” in HOT Chips VI , Aug. 1994 , pp. 79 – 103 .

 [15] A. Hasegawa et al., “ SH - 3: high code density, low power , ” IEEE Micro , 15 (6), Dec.
 1995 , pp. 11 – 19 .

 [16] F. Arakawa et al., “ SH4 RISC multimedia microprocessor , ” in HOT Chips IX
Symposium Record , pp. 165 – 176 , Aug. 1997 .

 [17] O. Nishii et al., “ A 200 MHz 1.2 W 1.4GFLOPS microprocessor with graphic
operation unit , ” in ISSCC Dig. Tech. Papers , Feb. 1998 , pp. 288 – 289 , 447.

 [18] F. Arakawa et al., “ SH4 RISC multimedia microprocessor , ” IEEE Micro , 18 (2),
March/April 1998 , pp. 26 – 34 .

 [19] P. Biswas et al., “ SH - 5: the 64 bit SuperH architecture , ” IEEE Micro , 20 (4), July/
Aug. 2000 , pp. 28 – 39 .

 [20] K. Uchiyama et al., “ Embedded processor core with 64 - bit architechture and its
system - on - chip integration for digital consumer products , ” IEICE Transactions on
Electronics , E84 - C (2), Feb. 2001 , pp. 139 – 149 .

 [21] F. Arakawa , “ SH - 5: a fi rst 64 - bit SuperH core with multimedia extension , ” in HOT
Chips 13 Conference Record , Aug. 2001 .

 [22] F. Arakawa et al., “ An embedded processor core for consumer appliances with
2.8GFLOPS and 36M polygons/s FPU , ” in ISSCC Digest of Technical Papers , vol.
1, Feb. 2004 , pp. 334 – 335 , 531.

 [23] M. Ozawa et al., “ Pipeline structure of SH - X core for achieving high perfor-
mance and low power , ” in COOL Chips VII Proceedings , vol. I, pp. 239 – 254 , April
 2004 .

REFERENCES 59

 [24] F. Arakawa et al., “ An embedded processor core for consumer appliances with
2.8GFLOPS and 36M polygons/s FPU , ” IEICE Transactions on Fundamentals ,
 E87 - A (12), Dec. 2004 , pp. 3068 – 3074 .

 [25] F. Arakawa et al., “ An exact leading non - zero detector for a fl oating - point unit , ”
 IEICE Transactions on Electronics , E88 - C (4), April 2005 , pp. 570 – 575 .

 [26] F. Arakawa et al., “ SH - X: an embedded processor core for consumer appliances , ”
 ACM SIGARCH Computer Architecture News , 33 (3), June 2005 , pp. 33 – 40 .

 [27] T. Kamei et al., “ A resume - standby application processor for 3G cellular phones , ”
in ISSCC Dig. Tech. Papers , Feb. 2004 , pp. 336 – 337 , 531.

 [28] M. Ishikawa et al., “ A resume - standby application processor for 3G cellular
phones with low power clock distribution and on - chip memory activation control , ”
in COOL Chips VII Proceedings , Vol. I, April 2004 , pp. 329 – 351 .

 [29] M. Ishikawa et al., “ A 4500 MIPS/W, 86 μ A resume - standby, 11 μ A ultra - standby
application processor for 3G cellular phones , ” IEICE Transactions on Electronics ,
 E88 - C (4), April 2005 , pp. 528 – 535 .

 [30] T. Yamada et al., “ Low_power design of 90 - nm SuperHTM processor core , ” in
 Proceedings of 2005 IEEE International Conference on Computer Design
(ICCD) , Oct. 2005 , pp. 258 – 263 .

 [31] F. Arakawa et al., “ SH - X2: an embedded processor core with 5.6 GFLOPS and
73M polygons/s FPU , ” in 7th Workshop on Media and Streaming Processors
(MSP - 7) , Nov. 2005 , pp. 22 – 28 .

 [32] T. Yamada et al., “ Reducing consuming clock power optimization of a 90 nm
embedded processor core , ” IEICE Transactions on Electronics , E89 – C (3), March
 2006 , pp. 287 – 294 .

 [33] T. Kamei , “ SH - X3: enhanced SuperH core for low - Power multi - processor systems , ”
in Fall Microprocessor Forum 2006 , Oct. 2006 .

 [34] F. Arakawa , “ An embedded processor: is it ready for high - performance comput-
ing? ” in IWIA 2007 Jan. 2007 , pp. 101 – 109 .

 [35] Y. Yoshida et al., “ A 4320 MIPS four - prcessor core SMP/AMP with individually
managed clock frequency for low power consumption , ” in ISSCC Dig. Tech.
Papers , Session 5.3, Feb. 2007 .

 [36] S. Shibahara et al., “ SH - X3: fl exible SuperH multi - core for high - performance and
low - power embedded systems , ” in HOT CHIPS 19 , Session 4, no 1, Aug. 2007 .

 [37] O. Nishii et al., “ Design of a 90 nm 4 - CPU 4320 MIPS SoC with individually
managed frequency and 2.4 GB/s multi - master on - chip interconnect , ” in Proc.
2007 A - SSCC , Nov. 2007 , pp. 18 – 21 .

 [38] M. Takada et al., “ Performance and power evaluation of SH - X3 multi - core
system , ” in Proc. 2007 A - SSCC , Nov. 2007 , pp. 43 – 46 .

 [39] M. Ito et al., “ An 8640 MIPS SoC with independent power - off control of 8 CPUs
and 8 RAMs by an automatic parallelizing compiler , ” in ISSCC Dig. Tech. Papers ,
Session 4.5, Feb. 2008 .

 [40] Y. Yoshida et al., “ An 8 CPU SoC with independent power - off control of CPUs
and multicore software debug function , ” in COOL Chips XI Proceedings , Session
IX, no. 1, April 2008 .

 [41] H.T. Hoang et al., “ Design and performance evaluation of an 8 - processor 8640
MIPS SoC with overhead reduction of interrupt handling in a multi - core system , ”
in Proc. 2008 A - SSCC , Nov. 2008 , pp. 193 – 196 .

60 LOW POWER MULTICORE PROCESSORS FOR EMBEDDED SYSTEMS

 [42] Y. Yuyama et al., “ A 45 nm 37.3GOPS/W heterogeneous multi - core SoC , ” in
 ISSCC Dig. , Feb. 2010 , pp. 100 – 101 .

 [43] T. Nito et al., “ A 45 nm heterogeneous multi - core SoC supporting an over 32 - bits
physical address space for digital appliance , ” in COOL Chips XIII Proceedings ,
Session XI, no. 1, April 2010 .

 [44] F. Arakawa , “ Low power multicore for embedded systems , ” in COMS Emerging
Technology 2011 , Session 5B, no. 1, June 2011 .

 [45] G. Hinton et al., “ A 0.18 - μ m CMOS IA - 32 processor with a 4 - GHz integer execu-
tion unit , ” IEEE Journal of Solid - State Circuits , 36 (11), Nov. 2001 , pp. 1617 –
1627 .

 [46] S.C. Woo et al., “ The SPLASH - 2 programs: characterization and methodological
considerations , ” in Proc. ISCA , 1995 .

 [47] M. Ito et al., “ “ Heterogeneous multiprocessor on a chip which enables 54x
AAC - LC stereo encoding , ” in IEEE 2007 Symp. VLSI , June 2007 , pp. 18 – 19 .

 [48] H. Shikano et al., “ Heterogeneous multi - core architecture that enables 54x
AAC - LC stereo encoding , ” IEEE Journal of Solid - State Circuits , 43 (4), April
 2008 , pp. 902 – 910 .

 [49] T. Kurafuji et al., “ A scalable massively parallel processor for real - time image
processing , ” in IEEE Int. Solid - State Circuits Conf. Dig. Tech. Papers , Feb. 2010 ,
pp. 334 – 335 .

 [50] K. Iwata et al., “ 256 mW 40 Mbps Full - HD H.264 high - Profi le codec featuring a
dual - macroblock pipeline architecture in 65 nm CMOS , ” IEEE Journal of Solid -
 State Circuits , 44 (4), Apr. 2009 , pp. 1184 – 1191 .

 [51] K. Iwata et al., “ A 342 mW mobile application processor with full - HD multi -
 standard video codec and tile - based address - translation circuits , ” IEEE Journal
of Solid - State Circuits , 45 (1), Jan. 2010 , pp. 59 – 68 .

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

