
JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

1

Random number generation

The topic of this book is the study of statistical models using computer simulations.
Here we use the term ‘statistical models’ to mean any mathematical models which
include a random component. Our interest in this chapter and the next is in simu-
lation of the random component of these models. The basic building block of such
simulations is the ability to generate random numbers on a computer, and this is the
topic of the present chapter. Later, in Chapter 2, we will see how the methods from
Chapter 1 can be combined to simulate more complicated models.

Generation of random numbers, or more general random objects, on a computer
is complicated by the fact that computer programs are inherently deterministic: while
the output of computer program may look random, it is obtained by executing the
steps of some algorithm and thus is totally predictable. For example the output of a
program computing the decimal digits of the number

π = 3.14159265358979323846264338327950288419716939937510 · · ·

(the ratio between the perimeter and diameter of a circle) looks random at first sight,
but of course π is not random at all! The output can only start with the string of digits
given above and running the program twice will give the same output twice.

We will split the problem of generating random numbers into two distinct sub-
problems: first we will study the problem of generating any randomness at all, con-
centrating on the simple case of generating independent random numbers, uniformly
distributed on the interval [0, 1]. This problem and related concerns will be discussed
in Section 1.1. In the following sections, starting with Section 1.2, we will study the
generation of random numbers from different distributions, using the independent,
uniformly distributed random numbers obtained in the previous step as a basis.

An Introduction to Statistical Computing: A Simulation-based Approach, First Edition. Jochen Voss.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

CO
PYRIG

HTED
 M

ATERIA
L

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

2 AN INTRODUCTION TO STATISTICAL COMPUTING

1.1 Pseudo random number generators

There are two fundamentally different classes of methods to generate random
numbers:

(a) True random numbers are generated using some physical phenomenon which
is random. Generating such numbers requires specialised hardware and can
be expensive and slow. Classical examples of this include tossing a coin or
throwing dice. Modern methods utilise quantum effects, thermal noise in
electric circuits, the timing of radioactive decay, etc.

(b) Pseudo random numbers are generated by computer programs. While these
methods are normally fast and resource effective, a challenge with this
approach is that computer programs are inherently deterministic and therefore
cannot produce ‘truly random’ output.

In this text we will only consider pseudo random number generators.

Definition 1.1 A pseudo random number generator (PRNG) is an algorithm which
outputs a sequence of numbers that can be used as a replacement for an independent
and identically distributed (i.i.d.) sequence of ‘true random numbers’.

1.1.1 The linear congruential generator

This section introduces the linear congruential generator (LCG), a simple example of
a PRNG. While this random number generator is no longer of practical importance,
it shares important characteristics with the more complicated generators used in
practice today and we study it here as an accessible example. The LCG is given by
the following algorithm.

Algorithm 1.2 (linear congruential generator)
input:

m > 1 (the modulus)
a ∈ {1, 2, . . . , m − 1} (the multiplier)
c ∈ {0, 1, . . . , m − 1} (the increment)
X0 ∈ {0, 1, . . . , m − 1} (the seed)

output:
a sequence X1, X2, X3, . . . of pseud random numbers

1: for n = 1, 2, 3, . . . do
2: Xn ← (aXn−1 + c) mod m
3: output Xn

4: end for

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 3

In the algorithm, ‘mod’ denotes the modulus for integer division, that is the value
n mod m is the remainder of the division of n by m, in the range 0, 1, . . . , m −
1. Thus the sequence generated by algorithm 1.2 consists of integers Xn from the
range {0, 1, 2, . . . , m − 1}. The output depends on the parameters m, a, c and on the
seed X0. We will see that, if m, a and c are carefully chosen, the resulting sequence
behaves ‘similar’ to a sequence of independent, uniformly distributed random vari-
ables. By choosing different values for the seed X0, different sequences of pseudo
random numbers can be obtained.

Example 1.3 For parameters m = 8, a = 5, c = 1 and seed X0 = 0, algorithm 1.2
gives the following output:

n 5Xn−1 + 1 Xn

1 1 1
2 6 6
3 31 7
4 36 4
5 21 5
6 26 2
7 11 3
8 16 0
9 1 1

10 6 6

The output 1, 6, 7, 4, 5, 2, 3, 0, 1, 6, . . . shows no obvious pattern and could be con-
sidered to be a sample of a random sequence.

While the output of the LCG looks random, from the way it is generated it is
clear that the output has several properties which make it different from truly random
sequences. For example, since each new value of Xn is computed from Xn−1, once the
generated series reaches a value Xn which has been generated before, the output starts
to repeat. In example 1.3 this happens for X8 = X0 and we get X9 = X1, X10 = X2

and so on. Since Xn can take only m different values, the output of a LCG starts
repeating itself after at most m steps; the generated sequence is eventually periodic.

Sometimes the periodicity of a sequence of pseudo random numbers can cause
problems, but on the other hand, if the period length is longer than the amount of
random numbers we use, periodicity cannot affect our result. For this reason, one
needs to carefully choose the parameters m, a and c in order to achieve a long enough
period. In particular m, since it is an upper bound for the period length, needs to be
chosen large. In practice, typical values of m are on the order of m = 232 ≈ 4 · 109

and a and c are then chosen such that the generator actually achieves the maximally
possible period length of m. A criterion for the choice of m, a and c is given in the
following theorem (Knuth, 1981, Section 3.2.1.2).

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

4 AN INTRODUCTION TO STATISTICAL COMPUTING

Theorem 1.4 The LCG has period m if and only if the following three conditions
are satisfied:

(a) m and c are relatively prime;

(b) a − 1 is divisible by every prime factor of m;

(c) if m is a multiple of 4, then a − 1 is a multiple of 4.

In the situation of the theorem, the period length does not depend on the seed X0

and usually this parameter is left to be chosen by the user of the PRNG.

Example 1.5 Let m = 232, a = 1 103 515 245 and c = 12 345. Since the only
prime factor of m is 2 and c is odd, the values m and c are relatively prime and condition
(a) of the theorem is satisfied. Similarly, condition (b) is satisfied, since a − 1 is
even and thus divisible by 2. Finally, since m is a multiple of 4, we have to check
condition (c) but, since a − 1 = 1 103 515 244 = 275 878 811 · 4, this condition also
holds. Therefore the LCG with these parameters m, a and c has period 232 for every
seed X0.

1.1.2 Quality of pseudo random number generators

PRNGs used in modern software packages such as R or Matlab are more sophisticated
(and more complicated) than the LCG presented in Section 1.1.1, but they still share
many characteristics of the LCG. We will see that no PRNG can produce a perfect
result, but the random number generators used in practice, for example the Mersenne
Twister algorithm (Matsumoto and Nishimura, 1998), are good enough for most
purposes. In this section we will discuss criteria for the quality of the output of
general PRNGs, and will illustrate these criteria using the LCG as an example.

1.1.2.1 Period length of the output

We have seen that the output of the LCG is eventually periodic, with a period length
of at most m. This property that the output is eventually periodic is shared by all
PRNGs implemented in software. Most PRNGs used in practice have a period length
which is much larger than the amount of random numbers a computer program could
ever use in a reasonable time. For this reason, periodicity of the output is not a big
problem in practical applications of PRNGs. The period length is a measure for the
quality of a PRNG.

1.1.2.2 Distribution of samples

The output of almost all PRNGs is constructed so that it can be used as a replacement
for an i.i.d. sample of uniformly distributed random numbers. Since the output takes

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 5

values in a finite set S = {0, 1, . . . , m − 1}, in the long run, for every set A ⊆ S we
should have

#
{
i
∣∣ 1 ≤ i ≤ N , Xi ∈ A

}

N
≈ #A

#S
, (1.1)

where #A stands for the number of elements in a finite set A.
Uniformity of the output can be tested using statistical tests like the chi-

squared test or the Kolmogorov–Smirnov test (see e.g. Lehmann and Romano, 2005,
Chapter 14).

One peculiarity when applying statistical tests for the distribution of samples to the
output of a PRNG is that the test may fail in two different ways: The output could either
have the wrong distribution (i.e. not every value appears with the same probability),
or the output could be too regular. For example, the sequence Xn = n mod m hits
every value equally often in the long run, but it shows none of the fluctuations which
are typical for a sequence of real random numbers. For this reason, statistical tests
should be performed as two-sided tests when the distribution of the output of a PRNG
is being tested.

Example 1.6 Assume that we have a PRNG with m = 1024 possible output values
and that we perform a chi-squared test for the hypothesis

P (Xi ∈ {64 j, 64 j + 1, . . . , 64 j + 63}) = 1/16

for j = 0, 1, . . . , 15.
If we consider a sample X1, X2, . . . , X N , the test statistic of the chi-squared test

is computed from the observed numbers of samples in each block, given by

O j = #
{
i
∣∣ 64 j ≤ Xi < 64(j + 1)

}
.

The expected count for block j , assuming that (1.1) holds, is

E j = N · 64/1024 = N/16

for j = 0, 1, . . . , 15 and the test statistic of the corresponding chi-squared test is

Q =
15∑

j=0

(O j − E j)2

E j
.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

6 AN INTRODUCTION TO STATISTICAL COMPUTING

For large sample size N , and under the hypothesis (1.1), the value Q follows a
χ2-distribution with 15 degrees of freedom. Some quantiles of this distribution are:

q 6.262 7.261 · · · 24.996 27.488

P(Q ≤ q) 0.025 0.05 · · · 0.95 0.975

Thus, for a one-sided test with significance level 1 − α = 95% we would reject the
hypothesis if Q > 24.996. In contrast, for a two-sided test with significance level
1 − α = 95%, we would reject the hypothesis if either Q < 6.262 or Q > 27.488.

We consider two different test cases: first, if Xn = n mod 1024 for n =
1, 2, . . . , N = 106, we find Q = 0.244368. Since the series is very regular, the value
of Q is very low. The one-sided test would accept this sequence as being uniformly
distributed, whereas the two-sided test would reject the sequence.

Secondly, we consider Xn = n mod 1020 for n = 1, 2, . . . , N = 106. Since this
series never takes the values 1021 to 1023, the distribution is wrong and we expect a
large value of Q. Indeed, for this case we get Q = 232.5864 and thus both versions
of the test reject this sequence.

Random number generators used in practice, and even the LCG for large enough
values of m, pass statistical tests for the distribution of the output samples without
problems.

1.1.2.3 Independence of samples

Another aspect of the quality of PRNGs is the possibility of statistical dependence
between consecutive samples. For example, in the LCG each output sample is a
deterministic function of the previous sample and thus consecutive samples are clearly
dependent. To some extent this problem is shared by all PRNGs.

An easy way to visualise the dependence between pairs of consecutive samples
is a scatter plot of the points (Xi , Xi+1) for i = 1, 2, . . . , N − 1. A selection of such
plots is shown in Figure 1.1. Figure 1.1(a) illustrates what kind of plot one would
expect if Xi ∼ U[0, 1] was a true i.i.d. sequence. The remaining panels correspond
to different variants of the LCG. Figure 1.1(b) (using m = 81) clearly illustrates that
each Xi can only be followed by exactly one value Xi+1. While the same is true for
Figure 1.1(c) and (d) (using m = 1024 and m = 232, respectively), the dependence
is much convoluted there and in particular the structure of Figure 1.1(d) is visually
indistinguishable from the structure of Figure 1.1(a).

One method for constructing PRNGs where Xi+1 is not a function of Xi is to
use a function f (Xi) of the state, instead of the state Xi itself, as the output of
the PRNG. Here, f : {0, 1, . . . , m − 1} → {0, 1, . . . , m̃ − 1} is a map where m̃ < m
and where the same number of pre-images is mapped to each output value. Then a
uniform distribution of Xi will be mapped to a uniform distribution for f (Xi) but
the output f (Xi+1) is not a function of the previous output f (Xi). This allows to
construct random number generators with some degree of independence between
consecutive values.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Xi

X i
+1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Xi

X i
+1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Xi

X i
+1

X i
+1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Xi

(a) (b)

(c) (d)

Figure 1.1 Scatter plots to illustrate the correlation between consecutive outputs
Xi and Xi+1 of different pseudo random number generators. The random number
generators used are the runif function in R (a), the LCG with m = 81, a = 1 and
c = 8 (b), the LCG with m = 1024, a = 401, c = 101 (c) and finally the LCG with
parameters m = 232, a = 1 664 525, c = 1 013 904 223 (d). Clearly the output in the
second and third example does not behave like a sequence of independent random
variables.

One way to quantify the independence of the output samples of a PRNG is the
following criterion.

Definition 1.7 A periodic sequence (Xn)n∈N with values in a finite set S and
period length P is k-dimensionally equidistributed, if every possible subsequence
x = (x1, . . . , xk) ∈ Sk of length k occurs equally often in the sequence X , that is if

Nx = #
{
i
∣∣ 0 ≤ i < P, Xi+1 = xi , . . . , Xi+k = xk

}

does not depend on x .

A random number generator is good, if the output is k-dimensionally equidis-
tributed for large values of k.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

8 AN INTRODUCTION TO STATISTICAL COMPUTING

1.1.3 Pseudo random number generators in practice

This section contains advice on using PRNGs in practice.
First, it is normally a bad idea to implement your own PRNG: finding a good

algorithm for pseudo random number generation is a difficult problem, and even
when an algorithm is available, given the nature of the generated output, it can be
a challenge to spot and remove all mistakes in the implementation. Therefore, it is
advisable to use a well-established method for random number generation, typically
the random number generator built into a well-known software package or provided
by a well-established library.

A second consideration concerns the rôle of the seed. While different PRNGs
differ greatly in implementation details, they all use a seed (like the value X0 in
algorithm 1.2) to initialise the state of the random number generator. Often, when
non-predictability is required, it is useful to set the seed to some volatile quantity
(like the current time) to get a different sequence of random numbers for different
runs of the program. At other times it can be more useful to get reproducible results,
for example to aid debugging or to ensure repeatability of published results. In these
cases, the seed should be set to a known, fixed value.

Finally, PRNGs like the LCG described above often generate a sequence which
behaves like a sequence of independent random numbers, uniformly distributed on a
finite set {0, 1, . . . , m − 1} for a big value of m. In contrast, most applications require
a sequence of independent, U[0, 1]-distributed random variables, that is a sequence
of i.i.d. values which are uniformly distributed on the real interval [0, 1]. We can
obtain a sequence (Un)n∈N of pseudo random numbers to replace an i.i.d. sequence
of U[0, 1] random variables by setting

Un = Xn + 1

m + 1
,

where (Xn)n∈N is the output of the PRNG. The output Un can only take the m different
values

1

m + 1
,

2

m + 1
, . . . ,

m

m + 1

and thus Un is not exactly uniformly distributed on the continuous interval [0, 1].
But, since the possible values are evenly spaced inside the interval [0, 1] and since
each of these values has the same probability, the distribution of Un is a reasonable
approximation to a uniform distribution on [0, 1]. This is particularly true since
computers can only represent finitely many real numbers exactly.

This concludes our discussion of how a replacement for an i.i.d. sequence of
U[0, 1]-distributed random numbers can be generated on a computer.

1.2 Discrete distributions

Building on the methods from Section 1.1, in this and the following sections we will
study methods to transform an i.i.d. sequence of U[0, 1]-distributed random variables

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 9

into an i.i.d. sequence from a prescribed target distribution. The methods from the
previous section were inexact, since the output of a PRNG is not ‘truly random’.
In contrast, the transformations described in this and the following sections can be
carried out with complete mathematical rigour. We will discuss different methods for
generating samples from a given distribution, applicable to different classes of target
distributions. In this section we concentrate on the simplest case where the target
distribution only takes finitely or countably infinitely many values.

As a first example, we consider the uniform distribution on the set A =
{0, 1, . . . , n − 1}, denoted by U{0, 1, . . . , n − 1}. Since the set A has n elements,
a random variable X with X ∼ U{0, 1, . . . , n − 1} satisfies

P(X = k) = 1

n

for all k ∈ A. To generate samples from such a random variable X , at first it may
seem like a good idea to just use a PRNG with state space A, for example the LCG
with modulus m = n. But considering the fact that the maximal period length of a
PRNG is restricted to the size of the state space, it becomes clear that this is not a
good idea. Instead we will follow the approach to first generate a continuous sample
U ∼ U[0, 1] and then to transform this sample into the required discrete uniform
distribution. A method to implement this idea is described in the following lemma.

Lemma 1.8 Let U ∼ U[0, 1] and n ∈ N. Define a random variable X by X = 	nU
,
where 	·
 denotes rounding down. Then X ∼ U{0, 1, . . . , n − 1}.

Proof By the definition of X we have

P (X = k) = P (nU
 = k) = P (nU ∈ [k, k + 1)) = P

(
U ∈

[
k

n
,

k + 1

n

))

for all k = 0, 1, . . . , n − 1.
The uniform distribution U[0, 1] is characterised by the fact that U ∼ U[0, 1]

satisfies

P (U ∈ [a, b]) = b − a

for all 0 ≤ a ≤ b ≤ 1. Also, since U is a continuous distribution, we have P(U =
x) = 0 for all x ∈ [0, 1] and thus the boundary points of the interval [a, b] can be
included or excluded without changing the probability. Using these results, we find

P (X = k) = P

(
U ∈

[
k

n
,

k + 1

n

))
= k + 1

n
− k

n
= 1

n

for all k = 0, 1, . . . , n − 1. This completes the proof.

Another common problem related to discrete distributions is the problem of
constructing random events which occur with a given probability p. Such events will,

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

10 AN INTRODUCTION TO STATISTICAL COMPUTING

for example, be needed in the rejection algorithms considered in Section 1.4. There
are many fascinating aspects to this problem, but here we will restrict ourselves to the
simplest case where the probability p is known explicitly and where we have access to
U[0, 1]-distributed random variables. This case is considered in the following lemma.

Lemma 1.9 Let p ∈ [0, 1] and U ∼ U[0, 1] and define the event E as E = {U ≤ p}.
Then P(E) = p.

Proof We have

P(E) = P(U ≤ p) = P (U ∈ [0, p]) = p − 0 = p.

This completes the proof.

The idea underlying lemmas 1.8 and 1.9 can be generalised to sample from
arbitrary distributions on a finite set A. Let A = {a1, . . . , an} where ai �= a j for
i �= j and let p1, . . . , pn ≥ 0 be given with

∑n
i=1 pi = 1. Assume that we want to

generate random values X ∈ A with P(X = ai) = pi for i = 1, 2, . . . , n. Since the
pi sum up to 1, we can split the unit interval [0, 1] into disjoint sub-intervals lengths
p1, . . . , pn .

0

p1 p2 p3 · · · pn

1
U

With this arrangement, if we choose U ∈ [0, 1] uniformly, the value of U lies in the
i th subinterval with probability pi . Thus, we can choose X to be the ai corresponding
to the subinterval which contains U . This idea is formalised in the following lemma.

Lemma 1.10 Assume A = {ai | i ∈ I } where either I = {1, 2, . . . , n} for some
n ∈ N or I = N, and where ai �= a j whenever i �= j . Let pi ≥ 0 be given for i ∈ I
with

∑
i∈I pi = 1. Finally let U ∼ U[0, 1] and define

K = min

{

k ∈ I

∣∣∣∣∣

k∑

i=1

pi ≥ U

}

. (1.2)

Then X = aK ∈ A satisfies P(X = ak) = pk for all k ∈ I .

Proof We have

P(X = ak) = P(K = k) = P

(
k−1∑

i=1

pi < U,

k∑

i=1

pi ≥ U

)

= P

(

U ∈
(

k−1∑

i=1

pi ,

k∑

i=1

pi

])

=
k∑

i=1

pi −
k−1∑

i=1

pi = pk

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 11

for all k ∈ I , where we interpret the sum
∑0

i=1 pi for k = 1 as 0. This completes the
proof.

The numerical method described by lemma 1.10 requires that we find the index K
of the subinterval which contains U . The most efficient way to do this is to find a
function ϕ which maps the boundaries of the subintervals to consecutive integers and
then to consider the rounded value 	ϕ(I)
. This approach is taken in lemma 1.8 and
also in the following example.

Example 1.11 The geometric distribution, describing the number X of individual
trials with probability p until the first success, has probability weights P(X = i) =
pi−1(1 − p) = pi for i ∈ N. We can use lemma 1.10 with ai = i for all i ∈ N to
generate samples from this distribution.

For the weights pi , the value sum in equation (1.2) can be determined explicitly:
using the formula for geometric sums we find

k∑

i=1

pi = (1 − p)
k∑

i=1

pi−1 = (1 − p)
1 − pk

1 − p
= 1 − pk .

Thus, we can rewrite the event
∑k

i=1 pi ≥ U as follows:

{

U ≤
k∑

i=1

pi

}

= {U ≤ 1 − pk
}

= {pk ≤ 1 − U
}

= {k log(p) ≤ log(1 − U)}
=
{

k ≥ log(1 − U)

log(p)

}
.

In the last expression, we had to change the ≤ sign into a ≥ sign, since we divided by
the negative number log(p). By definition, the K from equation (1.2) is the smallest
integer such that

∑k
i=1 pi ≥ U is satisfied and thus the smallest integer greater than

or equal to log(1 − U)/ log(p). Thus, the value

X = aK = K =
⌈

log(1 − U)

log(p)

⌉
,

where ·� denotes the operation of rounding up a number to the nearest integer, is
geometrically distributed with parameter p.

1.3 The inverse transform method

The inverse transform method is a method which can be applied when the target
distribution is one-dimensional, that is to generate samples from a prescribed target

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

12 AN INTRODUCTION TO STATISTICAL COMPUTING

x

F (x)

u

F−1(u)

v

F−1(v)

w

F−1(w) a

Figure 1.2 Illustration of the inverse F−1 of a CDF F. At level u the function F
is continuous and injective; here F−1 coincides with the usual inverse of a function.
The value v falls in the middle of a jump of F and thus has no preimage; F−1(v) is
the preimage of the right-hand limit of F and F(F−1(v)) �= v. At level w the function
F is not injective, several points map to w; the preimage F−1(w) is the left-most of
these points and we have, for example, F−1(F(a)) �= a.

distribution on the real numbers R. The method uses the cumulative distribution
function (CDF) (see Section A.1) to specify the target distribution and can be applied
for distributions which have no density.

Definition 1.12 Let F be a distribution function. Then the inverse of F is
defined by

F−1(u) = inf
{

x ∈ R
∣∣ F(x) ≥ u

}

for all u ∈ (0, 1).

The definition of the inverse of a distribution function is illustrated in Figure 1.2.
In the case where F is bijective, that is when F is strictly monotonically increasing
and has no jumps, F−1 is just the usual inverse of a function. In this case we can
find F−1(u) by solving the equation F(x) = u for x . The following algorithm can be
used to generate samples from a given distribution, whenever the inverse F−1 of the
distribution function can be determined.

Algorithm 1.13 (inverse transform method)
input:

the inverse F−1 of a CDF F
randomness used:

U ∼ U[0, 1]

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 13

output:
X ∼ F

1: generate U ∼ U[0, 1]
2: return X = F−1(U)

This algorithm is very simple and it directly transforms U[0, 1]-distributed sam-
ples into samples with distribution function F . The following proposition shows that
the samples X generated by algorithm 1.13 have the correct distribution.

Proposition 1.14 Let F :R → [0, 1] be a distribution function and U ∼ U[0, 1].
Define X = F−1(U). Then X has distribution function F .

Proof Using the definitions of X and F−1 we find

P(X ≤ a) = P
(
F−1(U) ≤ a

) = P (inf{ x | F(x) ≥ U } ≤ a) .

Since inf{ x | F(x) ≥ U } ≤ a holds if and only if F(a) ≥ U , we can conclude

P(X ≤ a) = P (F(a) ≥ U) = F(a)

where the final equality comes from the definition of the uniform distribution on the
interval [0, 1].

Example 1.15 The exponential distribution Exp(λ) has density

f (x) =
{
λe−λx if x ≥ 0 and
0 otherwise.

Using integration, we find the corresponding CDF as

F(a) =
∫ a

−∞
f (x) dx =

∫ a

0
λe−λx dx = −e−λx

∣∣a
x=0 = 1 − e−λa

for all a ≥ 0. Since this function is strictly monotonically increasing and continuous,
F−1 is the usual inverse of F . We have

1 − e−λx = u ⇐⇒ −λx = log(1 − u) ⇐⇒ x = − log(1 − u)

λ

and thus F−1(u) = − log(1 − u)/λ for all u ∈ (0, 1). Now assume U ∼ U[0, 1]. Then
proposition 1.14 gives that X = − log(1 − U)/λ is Exp(λ)-distributed. Thus we have
found a method to transformU[0, 1] random variables into Exp(λ)-distributed random
variables. The method can be further simplified by using the observation that U and
1 − U have the same distribution: if U ∼ U[0, 1], then − log(U)/λ ∼ Exp(λ).

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

14 AN INTRODUCTION TO STATISTICAL COMPUTING

Example 1.16 The Rayleigh distribution with parameter σ > 0 has density

f (x) =
⎧
⎨

⎩

x

σ 2
e−x2/2σ 2

if x ≥ 0 and

0 otherwise.

For this distribution we find

F(a) =
∫ a

0

x

σ 2
e−x2/2σ 2

dx = −e−x2/2σ 2
∣∣∣
a

x=0
= 1 − e−a2/2σ 2

for all a ≥ 0. Solving the equation u = F(x) = 1 − e−a2/2σ 2
for x we find the

inverse F−1(u) = x =
√

−2σ 2 log(1 − u). By proposition 1.14 we know that X =√
−2σ 2 log(1 − U) has density f if we choose U ∼ U[0, 1]. As in the previous

example, we can also write U instead of 1 − U .

Example 1.17 Let X have density

f (x) =
{

3x2 for x ∈ [0, 1] and
0 otherwise.

Then

F(a) =
∫ a

−∞
f (x) dx =

⎧
⎨

⎩

0 if a < 0
a3 if 0 ≤ a < 1 and
1 for 1 ≤ a.

Since F maps (0, 1) into (0, 1) bijectively, F−1 is given by the usual inverse function
and consequently F−1(u) = u1/3 for all u ∈ (0, 1). Thus, by proposition 1.14, if
U ∼ U[0, 1], the cubic root U 1/3 has the same distribution as X .

Example 1.18 Let X be discrete with P(X = 0) = 0.6 and P(X = 1) = 0.4. Then

F(a) =
⎧
⎨

⎩

0 if a < 0
0.6 if 0 ≤ a < 1 and
1 if 1 ≤ a.

Using the definition of F−1 we find

F−1(u) =
{

0 if 0 < u ≤ 0.6 and
1 if 0.6 < u < 1.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 15

By proposition 1.14 we can construct a random variable X with the correct distribution
from U ∼ U[0, 1], by setting

X =
{

0 if U ≤ 0.6 and
1 if U > 0.6.

The inverse transform method can always be applied when the inverse F−1 is
easy to evaluate. For some distributions like the normal distribution this is not the
case, and the inverse transform method cannot be applied directly. The method can be
applied (but may not be very useful) for discrete distributions such as in example 1.18.
The main restriction of the inverse transform method is that distribution functions
only exist in the one-dimensional case. For distributions on Rd where d > 1, more
sophisticated methods are required.

1.4 Rejection sampling

The rejection sampling method is a more advanced, and very popular, method for
random number generation. Several aspects make this method different from basic
methods such as inverse transform method discussed in the previous section. First,
rejection sampling is not restricted to U[0, 1]-distributed input samples. The method
is often used in multi-stage approaches where different methods are used to generate
samples of approximately the correct distribution and then rejection sampling is used
to convert these samples to follow the target distribution exactly. Secondly, while we
state the method here only for distributions on the Euclidean space Rd , the rejection
sampling method can be generalised to work on very general spaces. Finally, a
random and potentially large number of input samples is required to generate one
output sample in the rejection method. As a consequence, the efficiency of the method
becomes a concern.

1.4.1 Basic rejection sampling

In this section we introduce the fundamental idea that all rejection algorithms are
based on. We start by presenting the basic algorithm which forms the prototype of
the methods presented later.

Algorithm 1.19 (basic rejection sampling)
input:

a probability density g (the proposal density),
a function p with values in [0,1] (the acceptance probability)

randomness used:
Xn i.i.d. with density g (the proposals),
Un ∼ U[0, 1] i.i.d.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

16 AN INTRODUCTION TO STATISTICAL COMPUTING

output:
a sequence of i.i.d. random variables with density

f (x) = 1

Z
p(x)g(x) where Z =

∫
p(x)g(x) dx . (1.3)

1: for n = 1, 2, 3, . . . do
2: generate Xn with density g
3: generate Un ∼ U[0, 1]
4: if Un ≤ p(Xn) then
5: output Xn

6: end if
7: end for

The effect of the random variables Un in the algorithm is to randomly decide
whether to output or to ignore the value Xn: the value Xn is output with probability
p(Xn), and using the trick from lemma 1.9 we use the event {U ≤ p(Xn)} to decide
whether or not to output the value. In the context of rejection sampling, the random
variables Xn are called proposals. If the proposal Xn is chosen for output, that is if
Un ≤ p(Xn), we say that Xn is accepted, otherwise we say that Xn is rejected.

Proposition 1.20 For k ∈ N, let X Nk denote the kth output of algorithm 1.19. Then
the following statements hold:

(a) The elements of the sequence (X Nk)k∈N are i.i.d. with density f given by
(1.3).

(b) Each proposal is accepted with probability Z ; the number of proposals
required to generate each X Nk is geometrically distributed with mean 1/Z .

Proof For fixed n, the probability of accepting Xn is

P (Un ≤ p(Xn)) =
∫

p(x)g(x) dx = Z , (1.4)

where Z is the constant defined in equation (1.3). Since the decisions whether to accept
Xn for different n are independent, the time until the first success is geometrically
distributed with mean 1/Z as required. This completes the proof of the second
statement.

For the proof of the first statement, first note that the indices N1, N2, N3, . . . of
the accepted Xn are random. If we let N0 = 0, we can write

Nk = min
{
n ∈ N

∣∣ n > Nk-1, Un ≤ p(Xn)
}

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 17

for all k ∈ N. If we consider the distribution of X Nk conditional on the value of Nk−1,
we find

P
(
X Nk ∈ A

∣∣Nk−1 = n
)

=
∞∑

m=1

P
(
Nk = n + m, Xn+m ∈ A

∣∣Nk−1 = n
)

=
∞∑

m=1

P (Un+1 > p(Xn+1), . . . , Un+m−1 > p(Xn+m−1),

Un+m ≤ p(Xn+m), Xn+m ∈ A
∣∣∣ Nk−1 = n

)

=
∞∑

m=1

P (Un+1 > p(Xn+1)) · · · P (Un+m-1 > p(Xn+m-1)) ·

P (Un+m ≤ p(Xn+m), Xn+m ∈ A) .

Here we used the fact that all the probabilities considered in the last expression are
independent of the value of Nk−1. Similar to (1.4) we find

P (Un ≤ p(Xn), Xn ∈ A) =
∫

A
p(x)g(x) dx

and consequently we have

P
(
X Nk ∈ A

∣∣Nk−1 = n
)

=
∞∑

m=1

(1 − Z)m−1
∫

A
p(x)g(x) dx

= 1

Z

∫

A
p(x)g(x) dx

by the geometric series formula. Since the right-hand side does not depend on n, we
can conclude

P
(
X Nk ∈ A

) = 1

Z

∫

A
p(x)g(x) dx

and thus we find that X Nk has density pg/Z .
To see that the X Nk are independent we need to show that

P
(
X N1 ∈ A1, . . . , X Nk ∈ Ak

) =
k∏

i=1

P
(
X Ni ∈ Ai

)

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

18 AN INTRODUCTION TO STATISTICAL COMPUTING

for all sets A1, . . . , Ak and for all k ∈ N. This can be done by summing up the
probabilities for the cases N1 = n1, . . . , Nk = nk , similar to the first part of the
proof, but we omit this tedious calculation here.

Example 1.21 Let X ∼ U[−1,+1] and accept X with probability

p(X) =
√

1 − X2.

Then, by proposition 1.20, the accepted samples have density

f (x) = 1

Z
p(x)g(x) = 1

Z
·
√

1 − x2 · 1

2
1[−1,+1](x),

where we use the indicator function notation from equation (A.7) to get the
abbreviation

1[−1,+1](x) =
{

1 if x ∈ [−1,+1] and
0 otherwise

and

Z =
∫

R

√
1 − x2 · 1

2
1[−1,+1](x) dx = 1

2

∫ 1

−1

√
1 − x2 dx = 1

2
· π

2
= π

4
.

Combining these results, we find that the density f of accepted samples is given by

f (x) = 2

π

√
1 − x2 1[−1,+1](x).

The graph of the density f forms a semicircle and the resulting distribution is known
as Wigner’s semicircle distribution.

One important property of the rejection algorithm 1.19 is that none of the steps in
the algorithm makes any reference to the normalisation constant Z . Thus, we do not
need to compute the value of Z in order to apply this algorithm. We will see that this
fact, while looking like a small detail at first glance, is extremely useful in practical
applications.

1.4.2 Envelope rejection sampling

The basic rejection sampling algorithm 1.19 from the previous section is usually
applied by choosing the acceptance probabilities p so that the density f of the
output values, given by (1.3), coincides with a given target distribution. The resulting
algorithm can be written as in the following.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 19

Algorithm 1.22 (envelope rejection sampling)
input:

a function f with values in [0,∞) (the non-normalised target density),
a probability density g (the proposal density),
a constant c > 0 such that f (x) ≤ c g(x) for all x

randomness used:
Xn i.i.d. with density g (the proposals),
Un ∼ U[0, 1] i.i.d.

output:
a sequence of i.i.d. random variables with density

f̃ (x) = 1

Z f
f (x) where Z f =

∫
f (x) dx

1: for n = 1, 2, 3, . . . do
2: generate Xn with density g
3: generate Un ∼ U[0, 1]
4: if cg(Xn)Un ≤ f (Xn) then
5: output Xn

6: end if
7: end for

The assumption in the algorithm is that we can already sample from the distri-
bution with probability density g, but we would like to generate samples from the
distribution with density f̃ instead. Normally, f will be chosen to be a probability
density and in this case we have f̃ = f , but in some situations the normalising con-
stant Z f is difficult to obtain and due to the distinction between f and f̃ , in these
situations the algorithm can still be applied. The rejection mechanism employed in
algorithm 1.22 is illustrated in Figure 1.3. The function cg is sometimes called an
‘envelope’ for f .

Proposition 1.23 Let X Nk for k ∈ N denote the kth output value of algorithm 1.22
with (non-normalised) target density f . Then the following statements hold:

(a) The elements of the sequence (X Nk)k∈N are i.i.d. with density f̃ .

(b) Each proposal is accepted with probability Z f /c; the number Mk = Nk −
Nk−1 of proposals required to generate each X Nk is geometrically distributed
with mean E(Mk) = c/Z f .

Proof Algorithm 1.22 coincides with algorithm 1.19 where the acceptance proba-
bility p is chosen as

p(x) =
{ f (x)

cg(x) if g(x) > 0 and
1 otherwise.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

20 AN INTRODUCTION TO STATISTICAL COMPUTING

x
Xk

c · g(Xk)

cg(Xk)Uk

f

cg

Figure 1.3 Illustration of the envelope rejection sampling method from algorithm
1.22. The proposal (Xk, cg(Xk) Uk) is accepted, if it falls into the area underneath the
graph of f . In Section 1.4.4 we will see that the proposal is distributed uniformly on
the area under the graph of cg.

In this situation, the normalisation constant Z from (1.3) is given by:

Z =
∫

p(x)g(x) dx =
∫

f (x)

cg(x)
g(x) dx = 1

c

∫
f (x) dx = Z f /c.

From proposition 1.20 we then know that the output of algorithm 1.19 is an i.i.d.
sequence with density

1

Z
pg = c

Z f

f

cg
g = 1

Z f
f

and that the required number of proposals to generate one output sample is geomet-
rically distributed with mean 1/Z = c/Z f .

Example 1.24 We can use rejection sampling to generate samples from the half-
normal distribution with density

f (x) =
{

2√
2π

exp
(
− x2

2

)
if x ≥ 0 and

0 otherwise.
(1.5)

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 21

If we assume that the proposals are Exp(λ)-distributed, then the density of the pro-
posals is

g(x) =
{
λ exp(−λx) if x ≥ 0 and
0 otherwise.

In order to apply algorithm 1.22 we need to determine a constant c > 0 such
that f (x) ≤ cg(x) for all x ∈ R. For x < 0 we have f (x) = g(x) = 0. For x ≥ 0 we
have

f (x)

g(x)
= 2√

2πλ
exp

(
− x2

2
+ λx

)
.

It is easy to check that the quadratic function −x2/2 + λx attains its maximum at
x = λ. Thus we have

f (x)

g(x)
≤ c∗

for all x ≥ 0, where

c∗ = 2√
2πλ

exp

(
−λ2

2
+ λ · λ

)
=
√

2

πλ2
exp
(
λ2/2

)
.

Consequently, any c ≥ c∗ satisfies the condition f ≤ cg. From proposition 1.23 we
know that the average number of proposals required for generating one sample, and
thus the computational cost, is proportional to c. Thus we should choose c as small
as possible and c = c∗ is the optimal choice.

Given our choice of g and c, the acceptance criterion from algorithm 1.22 can be
simplified as follows:

cg(x) U ≤ f (x)

⇐⇒
√

2

πλ2
exp

(
λ2

2

)
λ exp(−λx) U ≤ 2√

2π
exp

(
− x2

2

)

⇐⇒ U ≤ exp

(
− x2

2
+ λx − λ2

2

)

⇐⇒ U ≤ exp

(
−1

2
(x − λ)2

)
.

This leads to the following algorithm for generating samples from the half-normal
distribution:

1: for n = 1, 2, 3, . . . do
2: generate Xn ∼ Exp(λ)
3: generate Un ∼ U[0, 1]

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

22 AN INTRODUCTION TO STATISTICAL COMPUTING

4: if Un ≤ exp(− 1
2 (Xn − λ)2) then

5: output Xn

6: end if
7: end for

Finally, since the density f is the density of a standard-normal distribution con-
ditioned on being positive, and since the normal distribution is symmetric, we can
generate standard normal distributed values by randomly choosing Xn or −Xn , both
with probability 1/2, for each accepted sample.

In algorithm 1.22, we can choose the density g of the proposal distribution in
order to maximise efficiency of the method. The only constraint is that we need to
be able to find the constant c. This condition implies, for example, that the support
of g cannot be smaller than the support of f , that is we need g(x) > 0 whenever
f (x) > 0. The average cost of generating one sample is given by the average number
of proposals required times the cost for generating each proposal. Therefore the
algorithm is efficient, if the following two conditions are satisfied:

(a) There is an efficient method to generate the proposals Xi . This affects the
choice of the proposal density g.

(b) The average number c/Z f of proposals required to generate one sample is
small. This number is influenced by the value of c and, since the possible
choices of c depend on g, also by the proposal density g.

1.4.3 Conditional distributions

The conditional distribution PX |X∈A corresponds to the remaining randomness in X
when we already know that X ∈ A occurred (see equation (A.4) for details). Sampling
from a conditional distribution can be easily done by rejection sampling. The basic
result is the following.

Algorithm 1.25 (rejection sampling for conditional distributions)
input:

a set A with P(X ∈ A) > 0
randomness used:

a sequence Xn of i.i.d. copies of X (the proposals)
output:

a sequence of i.i.d. random variables with distribution PX |X∈A

1: for n = 1, 2, 3, . . . do
2: generate Xn

3: if Xn ∈ A then
4: output Xn

5: end if
6: end for

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 23

Proposition 1.26 Let X be a random variable and let A be a set. Furthermore, let
X Nk for k ∈ N denote the kth output value of algorithm 1.25. Then the following
statements hold:

(a) The elements of the sequence (X Nk)k∈N are i.i.d. and satisfy

P(X Nk ∈ B) = P(X ∈ B |X ∈ A)

for all k ∈ N and all sets B.

(b) The number Mk = Nk − Nk−1 of proposals required to generate each X Nk is
geometrically distributed with mean E(Mk) = 1/P(X ∈ A).

Proof Algorithm 1.25 is a special case of algorithm 1.19 where the acceptance
probability is chosen as p(x) = 1A(x). For this choice of p, the decision whether or
not to accept the proposal given the value of Xn is deterministic and thus we can omit
generation of the auxiliary random variables Un in the algorithm.

Now assume that the distribution of X has a density g. Using equation (1.3) we
then find

Z =
∫

1A(x)g(x) dx = P(X ∈ A)

and by proposition 1.20 we have

P(X Nk ∈ B) =
∫

B 1A(x)g(x) dx

Z
= P(X ∈ B ∩ A)

P(X ∈ A)
= P(X ∈ B |X ∈ A).

A similar proof gives the result in the case where X does not have a density. This
completes the proof of the first statement of the proposition. The second statement is
a direct consequence of proposition 1.20.

The method presented in algorithm 1.25 works well if p = P(X ∈ A) is not too
small; the time required for producing a single output sample is proportional to 1/p.

Example 1.27 We can use algorithm 1.25 to generate samples X ∼ N (0, 1), con-
ditioned on X ≥ a. We simply have to repeat the following two steps until enough
samples are output:

(a) generate X ∼ N (0, 1);

(b) if X ≥ a, output X .

The efficiency of this method depends on the value of a. The following table
shows the average number E(Na) of samples required to generate one output sample
for different values of a, rounded to the nearest integer:

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

24 AN INTRODUCTION TO STATISTICAL COMPUTING

a 1 2 3 4 5 6

E(Na) 6 44 741 31 574 3 488 556 1 013 594 692

The table shows that the method will be slow even for moderate values of a. For
a ≥ 5 the required number of samples is so large that the method will likely be no
longer practical.

For conditions with very small probabilities, rejection sampling can still be used
to generate samples from the conditional distribution, but we have to use the full
rejection sampling algorithm 1.22 instead of the simplified version from algorithm
1.25. This is illustrated in the following example.

Example 1.28 We can use algorithm 1.22 to generate samples from the condi-
tional distribution of X ∼ N (0, 1), conditioned on X ≥ a > 0. The density of the
conditional distribution is

f̃ (x) = 1

Z
exp(−x2/2)1[a,∞](x) = 1

Z
f (x),

where Z is the normalising constant (we have included the pre-factor 1/
√

2π into Z
to simplify notation).

We can sample from this distribution using proposals of the form X = X̃ + a
where X̃ ∼ Exp(λ). This proposal distribution has density

g(x) = λ exp (−λ(x − a)) 1[a,∞](x)

and we need to find a constant c > 0 such that f (x) ≤ cg(x) for all x ≥ a. Also, we
can still choose the parameter λ and, in order to maximise efficiency of the method,
we should choose a value of λ such that the shape of g is as similar to the shape of f
as possible. In order to achieve this, we choose c and λ so that at x = a both the values
and the derivatives of f and cg coincide (see Figure 1.4 for illustration). This leads to
the conditions e−a2/2 = f (a) = cg(a) = cλ and −ae−a2/2 = f ′(a) = cg′(a) = −cλ2

and solving these two equations for the two unknowns c and λ gives λ = a and
c = e−a2/2/a.

Figure 1.4 indicates that for this choice of λ and c, condition f ≤ cg will be
satisfied. Indeed we find

f (x)

cg(x)
= exp(−x2/2)

1/a exp(−a2/2) · a exp (−a(x − a))

= exp
(−x2/2 + ax − a2/2

) = exp

(
− (x − a)2

2

)

≤ 1

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 25

xa

f(a) = cg(a), f (a) = cg (a)

f(x)

cg(x)

Figure 1.4 Illustration of the rejection mechanism from example 1.28. The graph
shows the (scaled) proposal density cg, enveloping the (non-normalised) target den-
sity f .

and thus f (x) ≤ cg(x) for all x ≥ a. Thus, we can apply algorithm 1.22 with proposal
density g to generate samples from the distribution with density f̃ . The resulting
method consists of the following steps:

(a) generate X̃ ∼ Exp(a) and U ∼ U[0, 1];

(b) let X = X̃ + a;

(c) if U ≤ exp(−(X − a)2/2), output X .

From proposition 1.23 we know that the average number Ma of proposals required
to generate one sample is

E(Ma) = c
∫
R f (x) dx

= exp(−a2/2)/a
∫∞

a exp(−x2/2) dx
= exp(−a2/2)

a
√

2π (1 − �(a))
,

where

�(a) = 1√
2π

∫ a

−∞
exp(−x2/2) dx

is the CDF of the standard normal distribution. The following table lists the value of
E(Ma), rounded to three significant digits, for different values of a:

a 1 2 3 4 5 6

E(Ma) 1.53 1.19 1.09 1.06 1.04 1.03

The table clearly shows that the resulting algorithm works well for large values of a:
the steps required to generate one proposal are more complicated than for the method
from example 1.27, but significantly fewer proposals are required.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

26 AN INTRODUCTION TO STATISTICAL COMPUTING

1.4.4 Geometric interpretation

The rejection sampling method can be applied not only to the generation of random
numbers, but also to the generation of random objects in arbitrary spaces. To illustrate
this, in this section we consider the problem of sampling from the uniform distribution
on subsets of the Euclidean space Rd . We then use the resulting techniques to give
an alternative proof of proposition 1.23, based on geometric arguments.

We write |A| for the d-dimensional volume of a set A ⊆ Rd . Then the cube Q =
[a, b]3 ⊆ R3 has volume |Q| = (b − a)3, the unit circle C = {x ∈ R2

∣∣ x2
1 + x2

2 ≤ 1}
has two-dimensional ‘volume’ π (area) and the line segment [a, b] ⊆ R has one-
dimensional ‘volume’ b − a (length). For more general sets A, the volume can be
found by integration: we have

|A| =
∫

Rd

1A(x) dx =
∫

· · ·
∫

1A(x1, . . . , xd) dxd · · · dx1.

Definition 1.29 A random variable X with values in Rd is uniformly distributed on
a set A ⊆ Rd with 0 < |A| < ∞, if

P(X ∈ B) = |A ∩ B|
|A|

for all B ⊆ Rd . As for real intervals, we use the notation X ∼ U(A) to indicate that
X is uniformly distributed on A.

The intuitive meaning of X being uniformly distributed on a set A is that X is
a random element of A, and that all regions of A are hit by X equally likely. The
probability of X falling into a subset of A only depends on the volume of this subset,
but not on the location inside A.

Let X ∼ U(A). From the definition we can derive simple properties of the uniform
distribution: first we have

P(X ∈ A) = |A ∩ A|
|A| = 1

and if A and B are disjoint we find

P(X ∈ B) = |A ∩ B|
|A| = |∅|

|A| = 0.

For general B ⊆ Rd we get

P(X /∈ B) = P(X ∈ Rd \ B)

= |A ∩ (Rd \ B)|
|A| = |A \ B|

|A| = |A| − |A ∩ B|
|A| = 1 − |A ∩ B|

|A| .

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 27

Lemma 1.30 Let A ⊆ Rd be a set with volume 0 < |A| < ∞. Then the uniform
distribution U(A) has probability density f = 1A/|A| on Rd .

Proof Let X ∼ U(A). For B ⊆ Rd we have

P(X ∈ B) = |A ∩ B|
|A| = 1

|A|
∫

Rd

1A∩B(x) dx =
∫

Rd

1B(x)
1A(X)

|A| dx

and thus X has the given density f .

Lemma 1.31 Let X be uniformly distributed on a set A, and let B be a set with
|A ∩ B| > 0. Then the conditional distribution PX |X∈B of X conditioned on the event
X ∈ B coincides with the uniform distribution on A ∩ B.

Proof From the definition of the uniform distribution we get

P(X ∈ C |X ∈ B) = P(X ∈ B ∩ C)

P(X ∈ B)

= |A ∩ B ∩ C |/|A|
|A ∩ B|/|A| = |(A ∩ B) ∩ C |

|A ∩ B| .

Since this is the probability of a U(A ∩ B)-distributed random variable to hit the
set C , the statement is proved.

By combining the result of lemma 1.31 with the method given in algorithm 1.25,
we can sample from the uniform distribution of every set which can be covered by a
(union of) rectangles. This is illustrated in the following example.

Example 1.32 (uniform distribution on the circle) Let Xn, Yn ∼ U[−1,+1] be i.i.d.
By exercise E1.10 the pairs (Xn, Yn) are then uniformly distributed on the square
A = [0, 1] × [0, 1]. Now let (Zk)k∈N be the subsequence of all pairs (Xnk , Ynk) which
satisfy the condition

X2
n + Y 2

n ≤ 1.

Then (Zk)k∈N is an i.i.d. sequence, uniformly distributed on the unit circle
B = {x ∈ R2

∣∣ |x | ≤ 1
}
. The probability p to accept each sample is given by

p = P((Xn, Vn) ∈ B) = |B|
|A| = π12

22
= π

4
≈ 78.5%

and the number of proposals required to generate one sample is, on average,
1/p ≈ 1.27.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

28 AN INTRODUCTION TO STATISTICAL COMPUTING

To conclude this section, we give an alternative proof of proposition 1.23. This
proof is based on the geometric approach taken in this section and uses a connection
between distributions with general densities onRd and uniform distributions onRd+1,
given in the following result.

Lemma 1.33 Let f : Rd → [0,∞) be a probability density and let

A = {(x, y) ∈ Rd × [0,∞)
∣∣ 0 ≤ y < f (x)

} ⊆ Rd+1.

Then |A| = 1 and the following two statements are equivalent:

(a) (X, Y) is uniformly distributed on A.

(b) X is distributed with density f on Rd and Y = f (X)U where U ∼ U[0, 1],
independently of X .

Proof The volume of the set A can be found by integrating the ‘height’ f (x) over
all of Rd . Since f is a probability density, we get

|A| =
∫

Rd

f (x) dx = 1.

Assume first that (X, Y) is uniformly distributed on A and define U = Y/ f (X).
Since (X, Y) ∈ A, we have f (X) > 0 with probability 1 and thus there is no problem
in dividing by f (X). Given sets C ⊆ Rd and D ⊆ R we find

P (X ∈ C, U ∈ D) = P
(
(X, Y) ∈ {(x, y)

∣∣ x ∈ C, y/ f (x) ∈ D
})

= ∣∣A ∩ {(x, y)
∣∣ x ∈ C, y/ f (x) ∈ D

}∣∣

=
∫

Rd

∫ f (x)

0
1C (x)1D (y/ f (x)) dy dx .

Using the substitution u = y/ f (x) in the inner integral we get

P (X ∈ C, U ∈ D) =
∫

Rd

∫ 1

0
1C (x)1D(u) f (x) du dx

=
∫

C
f (x) dx ·

∫

D
1[0,1](u) du.

Therefore X and U are independent with densities f and 1[0,1], respectively.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 29

For the converse statement assume now that the random variables X with density
f and U ∼ U[0, 1] are independent, and let Y = f (X)U . Furthermore let C ⊆ Rd ,
D ⊆ [0,∞) and B = C × D. Then we get

P ((X, Y) ∈ B) = P (X ∈ C, Y ∈ D)

=
∫

C
P(Y ∈ D |X = x) f (x) dx

=
∫

C
P (f (x)U ∈ D) f (x) dx

=
∫

C

|D ∩ [0, f (x)]|
f (x)

f (x) dx

=
∫

C
|D ∩ [0, f (x)]| dx .

On the other hand we have

|A ∩ B| =
∫

Rd

∫ f (x)

0
1B(x, y) dy dx

=
∫

Rd

1C (x)
∫ f (x)

0
1D(y) dy dx

=
∫

C
|D ∩ [0, f (x)]| dx

and thus P((X, Y) ∈ B) = |A ∩ B|. This shows that (X, Y) is uniformly distributed
on A.

An easy application of lemma 1.33 is to convert a uniform distribution of a subset
of R2 to a distribution on R with a given density f : [a, b] → R. For simplicity, we
assume first that f lives on a bounded interval [a, b] and satisfies f (x) ≤ M for all
x ∈ [a, b]. We can generate samples from the distribution with density f as follows:

(a) Let (Xk, Yk) are be i.i.d., uniformly distributed on the rectangle R = [a, b] ×
[0, M].

(b) Consider the set A = {(x, y) ∈ R
∣∣ y ≤ f (x)} and let N = min{ k ∈ N |

Xk ∈ B }. By lemma 1.31, (X N , YN) is uniformly distributed on A.

(c) By lemma 1.33, the value X N is distributed with density f .

This procedure is illustrated in Figure 1.5.
In the situation of algorithm 1.22, that is when f is defined on an unbounded

set, we cannot use proposals which are uniformly distributed on a rectangle any-
more. A solution to this problem is to use lemma 1.33 a second time to obtain a
suitable proposal distribution. This approach provides an alternative way of under-
standing algorithm 1.22: in the situation of algorithm 1.22, Xk has density g and
Uk is uniformly distributed on [0, 1]. Then we know from lemma 1.33 that the

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

30 AN INTRODUCTION TO STATISTICAL COMPUTING

a b
0

M

R

f

A

f

Yk

Xk

Figure 1.5 Illustration of the rejection sampling method where the graph of the target
density is contained in a rectangle R = [a, b] × [0, M]. In this case the proposals
are uniformly distributed on the rectangle R and a proposal is accepted if it falls into
the shaded region.

pair (Xk, g(Xk)Uk) is uniformly distributed on the set {(x, v)
∣∣ 0 ≤ v < g(x)}. Con-

sequently, Zk = (Xk, cg(Xk)Uk) is uniformly distributed on A = {(x, y)
∣∣ 0 ≤ y <

cg(x)}. By lemma 1.31 and proposition 1.26, the accepted values are uniformly
distributed on the set B = {(x, y)

∣∣ 0 ≤ y < f (x)} ⊆ A and, applying lemma 1.33
again, we find that the Xk , conditional on being accepted, have density f . This
argument can be made into an alternative proof of proposition 1.23.

1.5 Transformation of random variables

Samples from a wide variety of distributions can be generated by considering
deterministic transformations of random variables. The inverse transform method,
introduced in Section 1.3, is a special case of this technique where we transform a
uniformly distributed random variable using the inverse of a CDF. In this section, we
consider more general transformations.

The fundamental question we have to answer in order to generate samples by
transforming a random variable is the following: if X is a random variable with
values in Rd and a given distribution, and if ϕ : Rd → Rd is a function, what is the
distribution of ϕ(X)? This question is answered in the following theorem.

Theorem 1.34 (transformation of random variables) Let A, B ⊆ Rd be open sets,
ϕ : A → B be bijective and differentiable with continuous partial derivatives, and

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 31

let X be a random variable with values in A. Furthermore let g : B → [0,∞) be a
probability density and define f : Rd → R by

f (x) =
{

g(ϕ(x)) · |det Dϕ(x)| if x ∈ A and
0 otherwise.

(1.6)

Then f is a probability density and the random variable X has density f if and only
if ϕ(X) has density g.

The matrix Dϕ used in the theorem is the Jacobian of ϕ, as given in the following
definition.

Definition 1.35 Let ϕ : Rd → Rd be differentiable. Then the Jacobian matrix Dϕ

is the d × d matrix consisting of the partial derivatives of ϕ: for i, j = 1, 2, . . . , d
we have Dϕ(x)i j = ∂ϕi

∂x j
(x).

Theorem 1.34 is a consequence of the substitution rule for integrals. Before we
give the proof of theorem 1.34, we first state the substitution rule in the required form.

Lemma 1.36 (substitution rule for integrals) Let A, B ⊆ Rd be open sets, f : B →
R integrable, and ϕ: A → B be bijective and differentiable with continuous partial
derivatives. Then

∫

B
f (y) dy =

∫

A
f (ϕ(x)) |det Dϕ(x)| dx

where Dϕ denotes the Jacobian matrix of ϕ.

A proof of lemma 1.36 can, for example, be found in the book by Rudin (1987,
theorem 7.26). Using lemma 1.36 we can now give the proof of the transformation
rule for random variables.

Proof (of theorem 1.34). By definition, the function f is positive and using lemma
1.36, we get

∫

Rd

f (x) dx =
∫

A
g (ϕ(x)) · |det Dϕ(x)| dx =

∫

B
g(y) dy = 1.

Thus f is a probability density.
Now assume that X is distributed with density f and let C ⊆ B. Then, by equation

(A.8):

P (ϕ(X) ∈ C) =
∫

A
1C (ϕ(x)) f (x) dx

=
∫

A
1C (ϕ(x)) g (ϕ(x)) · |det Dϕ(x)| dx .

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

32 AN INTRODUCTION TO STATISTICAL COMPUTING

Now we can apply lemma 1.36, again, to transform the integral over A into an integral
over the set B: we find

P (ϕ(X) ∈ C) =
∫

B
1C (y)g(y) dy.

Since this equality holds for all sets C , the random variable ϕ(X) has density g. The
converse statement follows by reversing the steps in this argument.

While theorem 1.34 is most powerful in the multidimensional case, it can be
applied in the one-dimensional case, too. In this case the Jacobian matrix is a 1 × 1
matrix, that is a number, and we have |det Dϕ(x)| = |ϕ′(x)|.

Example 1.37 (two-dimensional normal distribution) Assume that we want to
sample from the two-dimensional standard normal distribution, that is from the
distribution with density

g(x, y) = 1

2π
exp

(
− x2 + y2

2

)
.

Since g depends on (x, y) only via the squared length x2 + y2 of this vector, we
try to simplify g using polar coordinates. The corresponding transformation ϕ is
given by

ϕ(r, θ) = (r cos(θ), r sin(θ))

for all r > 0, ϕ ∈ (0, 2π). Note that we define ϕ only on the open set A = (0,∞) ×
(0, 2π) in order to satisfy the requirement from theorem 1.34 that ϕ must be bijective.
The resulting image set is B = ϕ(A) = R2 \ {(x, y)

∣∣ x ≥ 0, y = 0}, that is B is
strictly smaller than R2 since it does not include the positive x-axis. This is not a
problem, since the two-dimensional standard normal distribution hits the positive
x-axis only with probability 0 and thus takes values in the set B with probability 1.

The Jacobian matrix of ϕ is given by

Dϕ(r, θ) =
(

∂

∂r
ϕ1

∂
∂θ

ϕ1

∂
∂r ϕ2

∂
∂θ

ϕ2

)

=
(

cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)

and thus we get |det Dϕ(r, θ)| = ∣∣r cos(θ)2 + r sin(θ)2
∣∣ = r . Using theorem 1.34 we

have reduced the problem of sampling from a two-dimensional normal distribution
to the problem of sampling from the density

f (r, θ) = g (ϕ(r, θ)) · |det Dϕ(r, θ)| = 1

2π
exp(−r2/2) · r

on (0,∞) × (0, 2π).

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 33

The density f (r, θ) does not depend on θ and we can rewrite it as the product
f (r, θ) = f1(θ) f2(r) where f1(θ) = 1/2π is the density of U[0, 2π] and f2(r) =
r exp(−r2/2). From example 1.16 we know how to sample from the density f2: if
U ∼ U[0, 1], then R = √−2 log(U) has density f2. Consequently, we can use the
following steps to sample from the density g:

(a) Generate � ∼ U[0, 2π] and U ∼ U[0, 1] independently.

(b) Let R = √−2 log(U).

(c) Let (X, Y) = ϕ(R,�) = (R cos(�), R sin(�)).

Then (R,�) has density f and, by theorem 1.34, the vector (X, Y) is standard
normally distributed in R2. This method for converting pairs of uniformly distributed
samples into pairs of normally distributed samples is called the Box–Muller transform
(Box and Muller, 1958).

When the lemma is used to find sampling methods, usually g will be the given
density of the distribution we want to sample from. Our task is then to find a trans-
formation ϕ so that the density f described by (1.6) corresponds to a distribution we
can already sample from. In this situation, ϕ should be chosen so that it ‘simplifies’
the given density g. In practice, finding a useful transformation ϕ often needs some
experimentation.

Example 1.38 Assume we want to sample from the distribution with density
g(y) = 3

2

√
y · 1[0,1](y). We can cancel the square root from the definition of g by

choosing ϕ(x) = x2. Then we can apply theorem 1.34 with A = B = [0, 1] and,
since |det Dϕ(x)| = ∣∣ϕ′(x)

∣∣ = 2x , we get

f (x) = g (ϕ(x)) · |det Dϕ(x)| = 3

2
x · 2x = 3x2

for all x ∈ [0, 1]. From example 1.17 we already know how to generate samples from
this density: If U ∼ U[0, 1], then X = U 1/3 has density f and, by theorem 1.34,
Y = ϕ(X) = X2 = U 2/3 has density g.

An important application of the transformation rule from theorem 1.34 is the case
where X and ϕ(X) are both uniformly distributed. From the relation (1.6) we see that
if X is uniformly distributed and if |det Dϕ| is constant, then ϕ(X) is also uniformly
distributed. For example, using this idea we can sometimes transform the problem of
sampling from the uniform distribution on an unbounded set to the easier problem
of sampling from the uniform distribution on a bounded set. This idea is illustrated
in Figure 1.6. Combining this approach with lemma 1.33 results in the following
general sampling method.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

34 AN INTRODUCTION TO STATISTICAL COMPUTING

y0

y1

B

ϕ

x0

x1

A

(a)

(b)

Figure 1.6 Illustration of the transformation used in the ratio-of-uniforms method.
The map ϕ from equation (1.7) maps the bounded set shown in (b) into the unbounded
set in (a). The areas shown in grey in (b) map into the tails in (a) (not displayed).
Since ϕ preserves area (up to a constant), the uniform distribution on the set in (b) is
mapped into the uniform distribution on the set in (a).

Theorem 1.39 (ratio-of-uniforms method) Let f : Rd → R+ be such that Z =∫
Rd f (x) dx < ∞ and let X be uniformly distributed on the set

A =
{

(x0, x1, . . . , xd)

∣∣∣∣∣
x0 > 0,

xd+1
0

d + 1
< f

(
x1

x0
, . . . ,

xd

x0

)}

⊆ R+ × Rd .

Then the vector

Y =
(

X1

X0
, . . . ,

Xd

X0

)

has density 1
Z f on Rd .

Proof The proof is an application of the transformation rule for random variables.
To see this, consider the set

B = {(y0, y1, . . . , yd)
∣∣ 0 < y0 < f (y1, . . . , yd) /Z

} ⊆ R+ × Rd

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 35

and define a transformation ϕ : R+ × Rd → R+ × Rd by

ϕ(x0, x1, . . . , xd) =
(

Z xd+1
0

d + 1
,

x1

x0
, . . . ,

xd

x0

)

. (1.7)

We have x ∈ A if and only if ϕ(x) ∈ B and thus ϕ maps A onto B bijectively. Since
the determinant of a triagonal matrix is the product of the diagonal elements, the
Jacobian determinant of ϕ is given by

det Dϕ(x) = det

⎛

⎜⎜⎜⎜
⎝

Z xd
0

− x1

x2
0

1
x0

...
. . .

− xd

x2
0

1
x0

⎞

⎟⎟⎟⎟
⎠

= Z xd
0

1

x0
· · · 1

x0
= Z

for all x ∈ A.
Since X is uniformly distributed on A, the density h of X satisfies

h(x) = 1

|A|1A(x) = 1

Z |A|1B (ϕ(x)) · |det Dϕ(x)|

and by theorem 1.34 the random variable ϕ(X) then has density

g(y) = 1

Z |A|1B(y)

for all y ∈ R+ × Rd . This density is constant on B and thus the random variable
ϕ(X) is uniformly distributed on B.

To complete the proof we note that the vector Y given in the statement of the
theorem consists of the last d components of ϕ(X). Using this observation, the claim
now follows from lemma 1.33.

Example 1.40 The Cauchy distribution has density

f (x) = 1

π (1 + x2)
.

For this case, the set A from theorem 1.39 is

A =
⎧
⎨

⎩
(x0, x1)

∣∣∣ x0 > 0,
x2

0

2
≤ 1

π
(

1 + (x1
x0

)2
)

⎫
⎬

⎭

=
{

(x0, x1)
∣∣∣ x0 > 0,

π

2
x2

0 ≤ x2
0

x2
0 + x2

1

}

=
{

(x0, x1)
∣∣∣ x0 > 0, x2

0 + x2
1 ≤ 2

π

}
,

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

36 AN INTRODUCTION TO STATISTICAL COMPUTING

that is A is a semicircle in the x0/x1-plane. Since we can sample from the uniform
distribution on the semicircle (see exercises E1.13 and E1.14), we can use the ratio-
of-uniforms method from theorem 1.39 to sample from the Cauchy distribution. The
following steps are required:

(a) Generate (X0, X1) uniformly on the semicircle A.

(b) Return Y = X1/X0.

Note that, since only the ratio between X1 and X0 is returned, A can be replaced by
a semicircle with arbitrary radius instead of the radius

√
2/π found above.

1.6 Special-purpose methods

There are many specialised methods to generate samples from specific distributions.
These are often faster than the generic methods described in the previous sections,
but can typically only be used for a single distribution. These specialised methods
(optimised for speed and often quite complex) form the basis of the random number
generators built into software packages. In contrast, the methods discussed in the
previous sections are general purpose methods which can be used for a wide range
of distributions when no pre-existing method is available.

1.7 Summary and further reading

In this chapter we have learned about various aspects of random number generation
on a computer. The chapter started by considering the differences between ‘pseudo
random number generators’ (the ones considered in this book) and ‘real random
number generators’ (which we will not consider further). Using the LCG as an
example, we have learned about properties of pseudo number generators. In particular
we considered the rôle of the ‘seed’ to control reproducability of the generated
numbers. Going beyond the scope of this book, a lot of information about LCGs
and about testing of random number generators can be found in Knuth (1981).
The Mersenne Twister, a popular modern PRNG, is described in Matsumoto and
Nishimura (1998).

Building on the output of pseudo number generators, the following sections
considered various general purpose methods for generating samples from different
distributions. The methods we discussed here are the inverse transform method,
the rejection sampling method, and the ratio-of-uniforms method (a special case
of the transformation method). More information about rejection sampling and its
extensions can be found in Robert and Casella (2004, Section 2.3). A specialised
method for generating normally distributed random variables can, for example, be
found in Marsaglia and Tsang (2000). Specialised methods for generating random
numbers from various distributions are, for example, covered in Dagpunar (2007,
Chapter 4) and Kennedy and Gentle (1980, Section 6.5).

An expository presentation of random number generation and many more refer-
ences can be found in Gentle et al. (2004, Chapter II.2).

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 37

Exercises

E1.1 Write a function to implement the LCG. The function should take a length n,
the parameters m, a and c as well as the seed X0 as input and should return
a vector X = (X1, X2, . . . , Xn). Test your function by calling it with the
parameters m = 8, a = 5 and c = 1 and by comparing the output with the
result from example 1.3.

E1.2 Given a sequence X1, X2, . . . of U[0, 1]-distributed pseudo random
numbers, we can use a scatter plot of (Xi , Xi+1) for i = 1, . . . , n − 1 in
order to try to assess whether the Xi are independent.

(a) Create such a plot using the built-in random number generator of R:

X <- runif(1000)

plot(X[1:999], X[2:1000], asp=1)

Can you explain the resulting plot?

(b) Create a similar plot, using your function LCG from exercise E1.1:

m <- 81

a <- 1

c <- 8

seed <- 0

X <- LCG(1000, m, a, c, seed)/m

plot(X[1:999], X[2:1000], asp=1)

Discuss the resulting plot.

(c) Repeat the experiment from (b) using the parameters m = 1024, a =
401, c = 101 and m = 232, a = 1 664 525, c = 1 013 904 223. Discuss
the results.

E1.3 One (very early) method for pseudo random number generation is von Neu-
mann’s middle square method (von Neumann, 1951). The method works as
follows: starting with X0 ∈ {0, 1, . . . , 99}, define Xn for n ∈ N to be the
middle two digits of the four-digit number X2

n−1. If X2
n−1 does not have four

digits, it is padded with leading zeros. For example, if X0 = 64, we have
X2

0 = 4096 and thus X1 = 09 = 9. In the next step, we find X2
1 = 81 = 0081

and thus X2 = 08 = 8.

(a) Write a function which computes Xn from Xn−1.

(b) The output of the middle square method has loops. For example, once
we have X N = 0, we will have Xn = 0 for all n ≥ N . Write a program
to find all cycles of the middle square method.

(c) Comment on the quality of the middle square method as
a PRNG.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

38 AN INTRODUCTION TO STATISTICAL COMPUTING

E1.4 Write a program which uses the inverse transform method to generate random
numbers with the following density:

f (x) =
{

1/x2 if x ≥ 1 and
0 otherwise.

To test your program, plot a histogram of 10 000 random numbers together
with the density f .

E1.5 For n ∈ N, let Kn denote the (random) number of accepted proposals
among the first n generated proposals in algorithm 1.19. Show that, with
probability 1, we have

lim
n→∞

1

n
Kn = Z .

E1.6 Implement the rejection method from example 1.24 to generate samples
from a half-normal distribution from Exp(1)-distributed proposals. Test your
program by generating a histogram of the output and by comparing the
histogram with the theoretical density of the half-normal distribution.

E1.7 In example 1.24 we have learned how rejection sampling can be used to con-
vert Exp(λ)-distributed proposals into standard normally distributed samples.

(a) Extend the method to convert Exp(λ)-distributed proposals into
N (0, σ 2)-distributed samples.

(b) For given σ 2, determine the optimal value of the parameter λ.

E1.8 Consider algorithm 1.22 where the target distribution has density f/Z f with

f (x) = 1√
x

exp
(−y2/2x − x

)

and Z f = ∫∞
0 f (x̃) dx̃ , and where the proposals are Exp(1)-distributed. Find

the optimal value for the constant c from algorithm 1.22 for this example.
E1.9 Let f and g be two probability densities and c ∈ R with f (x) ≤ cg(x) for

all x . Show that c ≥ 1 and that c = 1 is only possible for f = g (except
possibly on sets with volume 0).

E1.10 Let X ∼ U[a, b] and Y ∼ U[c, d] be independent. Using the definition of
the uniform distribution on a set, show that (X, Y) is uniformly distributed
on the rectangle R = [a, b] × [c, d].

E1.11 Without using rejection sampling, propose a method to sample from the
uniform distribution on the set

A = ([0, 1] × [0, 1]) ∪ ([2, 4] × [0, 1]) .

Write a program implementing your method.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

RANDOM NUMBER GENERATION 39

E1.12 Without using rejection sampling, propose a method to sample from the
uniform distribution on the set

B = ([0, 2] × [0, 2]) ∪ ([1, 3] × [1, 3]) .

Write a program implementing your method.
E1.13 Consider the uniform distribution on a semicircle.

(a) Explain how rejection sampling can be used to convert i.i.d. proposals
Un ∼ U([−1, 1] × [0, 1]) into an i.i.d. sequence (Vk)k∈N which is uni-
formly distributed on the semicircle {(x, y) ∈ R2

∣∣ x2 + y2 ≤ 1, y ≥
0}. Compute the acceptance probability of the method.

(b) Write a computer program which generates 1000 samples from the
uniform distribution on the semicircle, using the method from (a).
Create a scatter plot showing the random points. How many proposals
were needed to generate 1000 samples?

E1.14 Propose a rejection method to sample from the uniform distribution on the
semicircle

{
(x, y) ∈ R2

∣∣ x2 + y2 ≤ 1, y ≥ 0
}

which has an acceptance probability of greater than 80%. Implement your
method.

E1.15 Let (X, Y) be uniformly distributed on the semicircle

{
(x, y) ∈ R2

∣∣ x2 + y2 ≤ 1, y ≥ 0
}
.

Find the densities of X and Y , respectively.
E1.16 Let X be a random variable on Rd with density f : Rd → [0,∞) and let

c �= 0 be a constant. Determine the density of cX .
E1.17 Let X ∼ N (0, 1). Determine the density of Y = (X2 − 1)/2.
E1.18 Write a program to implement the ratio-of-uniforms method to sample from

the Cauchy distribution with density

f (x) = 1

π (1 + x2)
.

JWST355-c01 JWST355-Voss Printer: Yet to Come July 27, 2013 13:27 Trim: 229mm × 152mm

40

