
The art of war teaches us to rely not on the likelihood of the enemy’s
not coming, but on our own readiness to receive him; not on the

chance of his not attacking, but rather on the fact that we have made
our position unassailable.

—Sun Tzu in The Art of War

“Is our web site secure?” If your company’s chief executive officer asked you this question,
what would you say? If you respond in the affirmative, the CEO might say, “Prove it.” How

do you provide tangible proof that your web applications are adequately protected? This section
lists some sample responses and highlights the deficiencies of each. Here’s the first one:

Our web applications are secure because we are compliant with the Payment Card Industry Data Security
Standard (PCI DSS).

PCI DSS, like most other regulations, is a minimum standard of due care. This means that achieving
compliance does not make your site unhackable. PCI DSS is really all about risk transference (from
the credit card companies to the merchants) rather than risk mitigation. If organizations do not truly
embrace the concept of reducing risk by securing their environments above and beyond what PCI
DSS specifies, the compliance process becomes nothing more than a checkbox paperwork exercise.
Although PCI has some admirable aspects, keep this mantra in mind:

It is much easier to pass a PCI audit if you are secure than to be secure because you pass a PCI audit.

In a more general sense, regulations tend to suffer from the control-compliant philosophy. They
are input-centric and do not actually analyze or monitor their effectiveness in operations. Richard

Preparing
the Battle
SpaceI

362181c01.indd 1 11/1/12 10:56 AM

CO
PYRIG

HTED
 M

ATERIA
L

2

﻿

Preparing the Battle Space

Bejtlich,1 a respected security thought leader, brilliantly presented this interesting anal-
ogy on this topic:

Imagine a football (American-style) team that wants to measure their success during a par-
ticular season. Team management decides to measure the height and weight of each player.
They time how fast the player runs the 40 yard dash. They note the college from which each
player graduated. They collect many other statistics as well, then spend time debating which
ones best indicate how successful the football team is. Should the center weigh over 300
pounds? Should the wide receivers have a shoe size of 11 or greater? Should players from
the northwest be on the starting lineup? All of this seems perfectly rational to this team. An
outsider looks at the situation and says: “Check the scoreboard! You’re down 42–7 and you
have a 1–6 record. You guys are losers!”

This is the essence of input-centric versus output-aware security. Regardless of all the
preparations, it is on the live production network where all your web security prepara-
tions will either pay off or crash and burn. Because development and staging areas rarely
adequately mimic production environments, you do not truly know how your web appli-
cation security will fare until it is accessible by untrusted clients.

Our web applications are secure because we have deployed commercial web security
product(s).

This response is an unfortunate result of transitive belief in security. Just because a
security vendor’s web site or product collateral says that the product will make your
web application more secure does not in fact make it so. Security products, just like the
applications they are protecting, have flaws if used incorrectly. There are also potential
issues with mistakes in configuration and deployment, which may allow attackers to
manipulate or evade detection.

Our web applications are secure because we use SSL.

Many e-commerce web sites prominently display an image seal. This indicates that
the web site is secure because it uses a Secure Socket Layer (SSL) certificate purchased
from a reputable certificate authority (CA). Use of an SSL signed certificate helps prevent
the following attacks:

•	 Network sniffing. Without SSL, your data is sent across the network using an
unencrypted channel. This means that anyone along the path can potentially sniff
the traffic off the wire in clear text.

•	 Web site spoofing. Without a valid SSL site certificate, it is more difficult for attack-
ers to attempt to use phishing sites that mimic the legitimate site.

362181c01.indd 2 11/1/12 10:56 AM

3Preparing the Battle Space ﻿

The use of SSL does help mitigate these two issues, but it has one glaring weakness:
The use of SSL does absolutely nothing to prevent a malicious user from directly attacking the
web application itself. As a matter of fact, many attackers prefer to target SSL-enabled web
applications because using this encrypted channel may hide their activities from other
network-monitoring devices.

Our web applications are secure because we have alerts demonstrating that we blocked web
attacks.

Evidence of blocked attack attempts is good but is not enough. When management asks
if the web site is secure, it is really asking what the score of the game is. The CEO wants
to know whether you are winning or losing the game of defending your web applica-
tions from compromise. In this sense, your response doesn’t answer the question. Again
referencing Richard Bejtlich’s American football analogy, this is like someone asking you
who won the Super Bowl, and you respond by citing game statistics such as number of
plays, time of possession, and yards gained without telling him or her the final score!
Not really answering the question is it? Although providing evidence of blocked attacks
is a useful metric, management really wants to know if any successful attacks occurred.

With this concept as a backdrop, here are the web security metrics that I feel are most
important for the production network and gauging how the web application’s security
mechanisms are performing:

•	 Web transactions per day should be represented as a number (#). It establishes a
baseline of web traffic and provides some perspective for the other metrics.

•	 Attacks detected (true positive) should be represented as both a number (#) and a
percentage (%) of the total web transactions per day. This data is a general indicator
of both malicious web traffic and security detection accuracy.

•	 Missed attacks (false negative) should be represented as both a number (#)and a
percentage (%) of the total web transactions per day. This data is a general indica-
tor of the effectiveness of security detection accuracy. This is the key metric that is
missing when you attempt to provide the final score of the game.

•	 Blocked traffic (false positive) should be represented as both a number (#) and
a percentage (%) of the total web transactions per day. This data is also a general
indicator of the effectiveness of security detection accuracy. This is very important
data for many organizations because blocking legitimate customer traffic may mean
missed revenue. Organizations should have a method of accurately tracking false
positive alerts that took disruptive actions on web transactions.

•	 Attack detection failure rate should be represented as a percentage (%). It is
derived by adding false negatives and false positives and then dividing by true

362181c01.indd 3 11/1/12 10:56 AM

Preparing the Battle Space4

﻿

positives. This percentage gives the overall effectiveness of your web application security
detection accuracy.

The attack detection failure rate provides data to better figure out the score of the
game. Unfortunately, most organizations do not gather enough information to conduct
this type of security metric analysis.

Our web applications are secure because we have not identified any abnormal behavior.

From a compromise perspective, identifying abnormal application behavior seems
appropriate. The main deficiency with this response has to do with the data used to identify
anomalies. Most organizations have failed to properly instrument their web applications
to produce sufficient logging detail. Most web sites default to using the web server’s log-
ging mechanisms, such as the Common Log Format (CLF). Here are two sample CLF log
entries taken from the Apache web server:

109.70.36.102 - - [15/Feb/2012:09:08:16 -0500] "POST /wordpress//xmlrpc.php

 HTTP/1.1"

500 163 "-" "Wordpress Hash Grabber v2.0libwww-perl/6.02"

109.70.36.102 - - [15/Feb/2012:09:08:17 -0500] "POST /wordpress//xmlrpc.php

 HTTP/1.1"

200 613 "-" "Wordpress Hash Grabber v2.0libwww-perl/6.02"

Looking at this data, we can see a few indications of potential suspicious or abnormal
behavior. The first is that the User-Agent field data shows a value for a known WordPress
exploit program, WordPress Hash Grabber. The second indication is the returned HTTP
status code tokens. The first entry results in a 500 Internal Server Error status code, and
the second entry results in a 200 OK status code. What data in the first entry caused the
web application to generate an error condition? We don’t know what parameter data was
sent to the application because POST requests pass data in the request body rather than
in a QUERY_STRING value that is logged by web servers in the CLF log. What data was
returned within the response bodies of these transactions? These are important questions
to answer, but CLF logs include only a small subset of the full transactional data. They
do not, for instance, include other request headers such as cookies, POST request bodies,
or any logging of outbound data. Failure to properly log outbound HTTP response data
prevents organizations from answering this critical incident response question: “What
data did the attackers steal?” The lack of robust HTTP audit logs is one of the main reasons
why organizations cannot conduct proper incident response for web-related incidents.

Our web applications are secure because we have not identified any abnormal behavior, and
we collect and analyze full HTTP audit logs for signs of malicious behavior.

362181c01.indd 4 11/1/12 10:56 AM

5Preparing the Battle Space ﻿

A key mistake that many organizations make is to use only alert-centric events as indi-
cators of potential incidents. If you log only details about known malicious behaviors, how
will you know if your defenses are ever circumvented? New or stealthy attack methods
emerge constantly. Thus, it is insufficient to analyze alerts for issues you already know
about. You must have full HTTP transactional audit logging at your disposal so that you
may analyze them for other signs of malicious activity.

During incident response, management often asks, “What else did this person do?” To
accurately answer this question, you must have audit logs of the user’s entire web session,
not just a single transaction that was flagged as suspicious.

Our web applications are secure because we have not identified any abnormal behavior, and
we collect and analyze full HTTP audit logs for signs of malicious behavior. We also regularly
test our applications for the existence of vulnerabilities.

Identifying and blocking web application attack attempts is important, but correlat-
ing the target of these attacks with the existence of known vulnerabilities within your
applications is paramount. Suppose you are an operational security analyst for your
organization who manages events that are centralized within a Security Information
Event Management (SIEM) system. Although a spike in activity for attacks targeting
a vulnerability within a Microsoft Internet Information Services (IIS) web server indi-
cates malicious behavior, the severity of these alerts may be substantially less if your
organization does not use the IIS platform. On the other hand, if you see attack alerts
for a known vulnerability within the osCommerce application, and you are running
that application on the system that is the target of the alert, the threat level should
be increased, because a successful compromise is now a possibility. Knowing which
applications are deployed in your environment and if they have specific vulnerabili-
ties is critical for proper security event prioritization. Even if you have conducted full
application assessments to identify vulnerabilities, this response is still incomplete, and
this final response highlights why:

Our web applications are secure because we have not identified any abnormal behavior, and
we collect and analyze full HTTP audit logs for signs of malicious behavior. We also regularly
test our applications for the existence of vulnerabilities and our detection and incident response
capabilities.

With this final response, you see why the preceding answer is incomplete. Even if you
know where your web application vulnerabilities are, you still must actively test your
operational security defenses with live simulations of attacks to ensure their effectiveness.

362181c01.indd 5 11/1/12 10:56 AM

Preparing the Battle Space6

﻿

1
Does operational security staff identify the attacks? Are proper incident response coun-
termeasures implemented? How long does it take to implement them? Are the counter-
measures effective? Unless you can answer these questions, you will never truly know
if your defensive mechanisms are working.

1http://taosecurity.blogspot.com/

362181c01.indd 6 11/1/12 10:56 AM

Whoever is first in the field and awaits the coming of the enemy will be fresh for the fight;
whoever is second in the field and has to hasten to battle will arrive exhausted.

—Sun Tzu in The Art of War

The recipes in this section walk you through the process of preparing your web appli-
cation for the production network battlefront.

The first step is application fortification, in which you analyze the current web applica-
tion that you must protect and enhance its defensive capabilities.

Recipe 1-1: Real-time Application Profiling

This recipe shows you how to use ModSecurity’s Lua API to analyze HTTP transactions
to develop a learned profile of expected request characteristics.

Ingredients

•	 ModSecurity Reference Manual1

•	 Lua API support

•	 SecRuleScript directive

•	 initcol action

•	 RESOURCE persistent storage

•	 OWASP ModSecurity Core Rule Set2

•	 modsecurity_crs_40_appsensor_detection_point_2.0_setup.conf

•	 modsecurity_crs_40_appsensor_detection_point_2.1_request_exception.conf

•	 modsecurity_crs_40_appsensor_detection_point_3.0_end.conf

•	 appsensor_request_exception_profile.lua

R
ecip

e 1-1

1 Application
Fortification

362181c01.indd 7 11/1/12 10:56 AM

Preparing the Battle Space8

R
ecip

e 1-1

Learning about Expected Request Attributes

The concepts in this section demonstrate how to dynamically create a positive security
model or whitelisting input validation envelope around your application. After it is cre-
ated, this external security layer will enforce rules for the critical elements of an application
and allow you to identify abnormal requests that violate this policy. This recipe shows
how to profile real web user transactions to identify the following request attributes for
each application resource:

•	 Request method(s)

•	 Number of parameters (minimum/maximum range)

•	 Parameter names

•	 Parameter lengths (minimum/maximum range)

•	 Parameter types

•	 Flag (such as /path/to/foo.php?param)

•	 Digits (such as /path/to/foo.php?param=1234)

•	 Alpha (such as /path/to/foo.php?param=abcd)

•	 Alphanumeric (such as /path/to/foo.php?param=abcd1234)

•	 E‑mail (such as /path/to/foo.php?param=foo@bar.com)

•	 Path (such as /path/to/foo.php?param=/dir/somefile.txt)

•	 URL (such as /path/to/foo.php?param=http://somehost/dir/file.txt)

•	 SafeText (such as /path/to/foo.php?param=some_data-12)

note

Why is an external input validation layer needed? One key paradigm with web applica-
tion development is at the core of the majority of vulnerabilities we face: Web developers
do not have control of the web client software. Think about this for a moment, because it is
the lynchpin theory on which most of our problems rest. Web developers frequently
assume that data that is sent to the client is immune to manipulation. They believe this
is true either because of web browser user interface restrictions (such as data being
stored hidden in fields or drop-down lists) or because of the implementation of secu-
rity controls using browser-executed code such as JavaScript. With this false belief in
place, web developers incorrectly assume that certain data within web requests has
not been modified, and they simply accept the input for execution within server-side
processing. In reality, it is easy for attackers to bypass web browser security controls
either by using custom browser plug-ins or by using a client-side intercepting proxy.
With these tools in place, attackers may easily bypass any client-side security code and
manipulate any HTTP data that is being sent to or from their browsers.

362181c01.indd 8 11/1/12 10:56 AM

Application Fortification 9

Creating Persistent Storage

With ModSecurity, we can leverage per-resource persistent storage so that we can cor-
relate data across multiple requests and clients. We do this by initializing the RESOURCE
persistent storage mechanism early in the request phase (phase:1 in ModSecurity’s trans-
actional hooks):

#

--[Step 1: Initiate the Resource Collection]--

#

We are using the REQUEST_FILENAME as the key and then set 2

variables -

#

[resource.pattern_threshold]

Set the resource.pattern_threshold as the minimum number of times

that a match should occur in order to include it into the profile

#

[resource.confidence_counter_threshold]

Set the resource.confidence_counter_threshold as the minimum number

of “clean” transactions to profile/inspect before enforcement of

the profile begins.

#

SecAction \

“phase:1,id:’981082’,t:none,nolog,pass,\

initcol:resource=%{request_headers.host}_%{request_filename},\

setvar:resource.min_pattern_threshold=9, \

setvar:resource.min_traffic_threshold=100”

The initcol:resource action uses the macro expanded REQUEST_HEADERS:Host and
REQUEST_FILENAME variables as the collection key to avoid any potential collisions with
similarly named resources. The two setvar actions are used to determine the number of
transactions we want to profile and how many times our individual checks must match
before we add them to the enforcement list.

Post-Process Profiling

We want to minimize the potential latency impact of this profiling analysis so it is con-
ducted within the post-processing phase after the HTTP response has already gone out
to the client (phase:5 in ModSecurity). Before we decide whether to profile the transac-
tion, we want to do a few security checks to ensure that we are looking at only “clean”
transactions that are free from malicious input. This is important because we don’t want
to include attack data within our learned profile.

#

--[Begin Profiling Phase]--

#

362181c01.indd 9 11/1/12 10:56 AM

Preparing the Battle Space10

R
ecip

e 1-1

SecMarker BEGIN_RE_PROFILE_ANALYSIS

SecRule RESPONSE_STATUS “^404$” \

“phase:5,id:’981099’,t:none,nolog,pass,setvar:!resource.KEY,\

skipAfter:END_RE_PROFILE_ANALYSIS”

SecRule RESPONSE_STATUS “^(5|4)” \

 “phase:5,id:’981100’,t:none,nolog,pass, \

skipAfter:END_RE_PROFILE_ANALYSIS”

SecRule TX:ANOMALY_SCORE “!@eq 0” \

 “phase:5,id:’981101’,t:none,nolog,pass, \

skipAfter:END_RE_PROFILE_ANALYSIS”

SecRule &RESOURCE:ENFORCE_RE_PROFILE “@eq 1” \

“phase:2,id:’981102’,t:none,nolog,pass, \

skipAfter:END_RE_PROFILE_ANALYSIS”

SecRuleScript crs/lua/appsensor_request_exception_profile.lua \

“phase:5,nolog,pass”

SecMarker END_RE_PROFILE_ANALYSIS

There are four different transactional scenarios in which we don’t want to profile
the data:

•	 If the HTTP response code is 404, the resource doesn’t exist. In this case, not only
do we skip the profiling, but we also remove the resource key, so we delete the
persistent storage. This is achieved by using the setvar:!resource.KEY action.

•	 If the HTTP response code is either level 4xx or level 5xx, the application says
something is wrong with the transaction, so we won’t profile it in this case either.

•	 The OWASP ModSecurity Core Rule Set (CRS), which we will discuss in Recipe
1-3, can use anomaly scoring. We can check this transactional anomaly score. If it
is anything other than 0, we should skip profiling.

•	 Finally, we have already seen enough traffic for our profiling model and are cur-
rently in enforcement mode, so we skip profiling.

If all these prequalifier checks pass, we then move to the actual profiling of the request
attributes by using the appsensor_request_exception_profile.lua script, which is called
by the SecRuleScript directive.

Sample Testing

To test this profiling concept, let’s look at a sample resource from the WordPress applica-
tion in which a client can submit a comment to the blog. Figure 1-1 shows a typical form
in which a user can leave a reply.

362181c01.indd 10 11/1/12 10:56 AM

Application Fortification 11

Figure 1-1: WordPress Leave a Reply form

When the client clicks the Submit Comment button, this is how the HTTP request looks
when the web application receives it:

POST /wordpress/wp-comments-post.php HTTP/1.1

Host: 192.168.1.104

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:10.0.1)

Gecko/20100101 Firefox/10.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;

q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Connection: keep-alive

Referer: http://192.168.1.104/wordpress/?p=4

Content-Type: application/x-www-form-urlencoded

Content-Length: 161

author=Joe+Smith&email=joe%40email.com&url=http%3A%2F%2Fwww.mywebsite

.com%2F&comment=I+do+not+like+the+MyGallery+plug-in.

&submit=Submit+Comment&comment_post_ID=4

362181c01.indd 11 11/1/12 10:56 AM

Preparing the Battle Space12

R
ecip

e 1-1

We can see that the REQUEST_METHOD is POST and that six parameters are sent within the
REQUEST_BODY payload:

•	 author is the name of the person submitting the comment. This value should be
different for each user.

•	 email is the e‑mail address of the person submitting the comment. This value
should be different for each user.

•	 url is the web site associated with the user submitting the comment. This value
should be different for each user.

•	 comment is a block of text holding the actual comment submitted by the user. This
value should be different for each user.

•	 submit is a static payload and should be the same for all users.

•	 comment_post_ID is a numeric field holding a value that is unique for each com-
ment post.

I sent the following two requests to the WordPress application using the curl HTTP
client tool to simulate user traffic with different sizes of payloads:

$ for f in {1..50} ; do curl -H “User-Agent: Mozilla/5.0 (Macintosh;

Intel Mac OS X 10.6; rv:10.0.1) Gecko/20100101 Firefox/10.0.1” -d

“author=Joe+Smith$f&email=joe%40email$f.com&url=http%3A%2F%2Fwww.

mywebsite$f.com%2F&comment=I+do+not+like+the+MyGallery+plug-

in.$f&submit=Submit+Comment&comment_post_ID=$f” “http://localhost/

wordpress/wp-comments-post.php” ; done

$ for f in {100..151} ; do curl -H “User-Agent: Mozilla/5.0 (Macintosh

; Intel Mac OS X 10.6; rv:10.0.1) Gecko/20100101 Firefox/10.0.1” –d

 “author=Jane+Johnson$f&email=jane.johnson%40cool-email$f.com

&url=http%3A%2F%2Fwww.someotherwebsite$f.com%2F&comment=I+do+LOVE+the

+MyGallery+plug-in.+It+shows+cool+pix.$f&submit=Submit+Comment&

comment_post_ID=$f” http://localhost/wordpress/wp-comments-post.php

 ; done

These requests cause the Lua script to profile the request characteristics and save this
data in the resource persistent collection file. When the number of transactions profiled
reaches the confidence counter threshold (in this case, 100 transactions), the script adds
the enforcement variable. This causes the Lua script to stop profiling traffic for this particu-
lar resource and activates the various enforcement checks for any subsequent inbound
requests. When the profiling phase is complete, we can view the saved data in resource
persistent storage by using a Java tool called jwall-tools written by Christian Bockermann.

Here is a sample command that is piped to the sed command for easier output for
this book:

$ sudo java -jar jwall-tools-0.5.3-5.jar collections -a -s -l /tmp |

sed -e ‘s/^.*]\.//g’

Reading collections from /tmp

362181c01.indd 12 11/1/12 10:56 AM

Application Fortification 13

Collection resource, last read @ Thu Feb 16 20:04:54 EST 2012

 Created at Thu Feb 16 16:59:54 EST 2012

ARGS:author_length_10_counter = 9

ARGS:author_length_11_counter = 41

ARGS:author_length_15_counter = 2

ARGS:comment_length_37_counter = 9

ARGS:comment_length_38_counter = 41

ARGS:comment_length_54_counter = 2

ARGS:comment_post_ID_length_1_counter = 9

ARGS:comment_post_ID_length_2_counter = 41

ARGS:comment_post_ID_length_3_counter = 2

ARGS:email_length_14_counter = 9

ARGS:email_length_15_counter = 41

ARGS:email_length_30_counter = 2

ARGS:submit_length_14_counter = 2

ARGS:url_length_26_counter = 9

ARGS:url_length_27_counter = 41

ARGS:url_length_35_counter = 2

MaxNumOfArgs = 6

MinNumOfArgs = 6

NumOfArgs_counter_6 = 2

TIMEOUT = 3600

enforce_ARGS:author_length_max = 15

enforce_ARGS:author_length_min = 10

enforce_ARGS:comment_length_max = 54

enforce_ARGS:comment_length_min = 37

enforce_ARGS:comment_post_ID_length_max = 3

enforce_ARGS:comment_post_ID_length_min = 1

enforce_ARGS:email_length_max = 30

enforce_ARGS:email_length_min = 14

enforce_ARGS:submit_length_max = 14

enforce_ARGS:submit_length_min = 14

enforce_ARGS:url_length_max = 35

enforce_ARGS:url_length_min = 26

enforce_args_names = author, email, url, comment, submit,

comment_post_ID

enforce_charclass_digits = ARGS:comment_post_ID

enforce_charclass_email = ARGS:email

enforce_charclass_safetext = ARGS:author, ARGS:comment, ARGS:submit

enforce_charclass_url = ARGS:url

enforce_num_of_args = 6

enforce_re_profile = 1

enforce_request_methods = POST

min_pattern_threshold = 9

min_traffic_threshold = 100

request_method_counter_POST = 2

traffic_counter = 102

This collection expired 2h 2m 56.485s seconds ago.

As you can see, we can now validate a number of request attributes on future requests.
Chapter 5 includes examples of using this profile to identify anomalies and attacks.

362181c01.indd 13 11/1/12 10:56 AM

Preparing the Battle Space14

R
ecip

e 1-1

CAUTION

This recipe is a great first step in providing input validation through profiling of real
traffic, but it is not perfect. It has three main limitations.

No Auto-Relearning

The main limitation of this specific implementation is that it offers no auto-relearning.
As soon as the rules have moved from the profiling phase into the enforcement phase,
the implementation stays in that mode. This means that if you have a legitimate code
push that updates functionality to an existing resource, you will probably have to
remove the resource collection and then begin learning again.

Persistent Storage Size Limitations

Depending on the number of profile characteristics you need to profile per resource,
you may run into SDBM persistent storage size limits. By default, approximately 800
bytes of usable storage is available in the ModSecurity persistent storage files. If you
run into this issue, you see this error message:

[1] Failed to write to DBM file “/tmp/RESOURCE”: Invalid argument

In this case, you need to update the default storage limit available to you in the
Apache Portable Runtime (APR) package. If you need more than that, you should
download the separate APR and APR-Util packages and then edit the #define
PAIRMAX setting in the /dbm/sdbm/sdbm_private.h file:

/* if the block/page size is increased, it breaks perl apr_sdbm_t

* compatibility */

#define DBLKSIZ 16384

#define PBLKSIZ 8192

#define PAIRMAX 8008 /* arbitrary on PBLKSIZ-N */

#else

#define DBLKSIZ 16384

#define PBLKSIZ 8192

#define PAIRMAX 10080 /* arbitrary on PBLKSIZ-N */

#endif

#define SPLTMAX 10

You should then recompile both Apache and ModSecurity, referencing the updated
APR/APR-Util packages.

Excluding Resources

If you want to exclude certain URLs from profiling, you can activate some commented-
out rules. They do an @pmFromFile check against an external file. This allows you to
add URLs to be excluded to this list file.

362181c01.indd 14 11/1/12 10:56 AM

Application Fortification 15

1	http://sourceforge.net/apps/mediawiki/mod-security/index
.php?title=Reference_Manual

2	https://www.owasp.org/index.php
Category:OWASP_ModSecurity_Core_Rule_Set_Project

Recipe 1-2: Preventing Data Manipulation with
Cryptographic Hash Tokens

This recipe shows you how to use ModSecurity to implement additional hash tokens to
outbound HTML data to prevent data manipulation attacks. When this book was written,
the capabilities outlined in this recipe were available in ModSecurity version 2.7. Future
versions may have different or extended functionality.

Ingredients

•	 ModSecurity Reference Manual3

•	 Version 2.7 or higher

•	 SecDisableBackendCompression directive

•	 SecContentInjection directive

•	 SecStreamOutBodyInspection directive

•	 SecEncryptionEngine directive

•	 SecEncryptionKey directive

•	 SecEncryptionParam directive

•	 SecEncryptionMethodRx directive

As mentioned earlier, web developers cannot rely on web browser security mechanisms
to prevent data manipulation. With this being the case, how can we implement an external
method of verifying that outbound data has not been manipulated when returned in a
follow-up request? One technique is to parse the outbound HTML response body data
and inject additional token data into select locations. The data we are injecting is called
request parameter validation tokens. These are essentially cryptographic hashes of select
HTML page elements. The hashes enable us to detect if the client attempts to tamper with
the data. Here are some sample ModSecurity directives and rules that implement basic
hashing protections:

SecDisableBackendCompression On

SecContentInjection On

SecStreamOutBodyInspection On

SecEncryptionEngine On

SecEncryptionKey rand keyOnly

SecEncryptionParam rv_token

R
ecip

e 1-2

362181c01.indd 15 11/1/12 10:56 AM

Preparing the Battle Space16

R
ecip

e 1-2

SecEncryptionMethodrx “HashUrl” “[a-zA-Z0-9]”

SecRule REQUEST_URI “@validateEncryption [a-zA-Z0-9]” “phase:2,

id:1000,t:none,block,msg:’Request Validation Violation.’,

ctl:encryptionEnforcement=On”

The first directive, SecDisableBackendCompression, is needed only in a reverse proxy
setup. It is used if the web application is compressing response data in the gzip format.
This is needed so that we can parse the response HTML data and modify it. ModSecurity’s
default configuration is to make copies of transactional data in memory and inspect them
while buffering the real connection. The next two directives are used together, however,
so that the original buffered response body can be modified and replaced with the new
one. The next four SecEncryption directives configure the basic settings. In this configura-
tion, ModSecurity uses a random encryption key as the hash salt value and hashes HTML
href components that match the defined regular expression. The final SecRule is used to
validate and enforce the hash tokens.

Let’s look at a practical example. Figure 1-2 shows a section of HTML from a WordPress
page that includes an href hyperlink. This link includes both a universal resource identifier
(URI) and a query string value with a parameter named p with a numeric character value of 4.

Figure 1-2: WordPress HTML source showing an href link with a parameter

362181c01.indd 16 11/1/12 10:56 AM

Application Fortification 17

After the encryption rules are put in place, ModSecurity parses the outbound HTML
data and searches for elements to which the hash tokens can be added based on the pro-
tection configuration. Here is an example from the debug log file showing the hashing
process internals:

Output filter: Completed receiving response body (buffered full-

 8202 bytes).

init_response_body_html_parser: Charset[UTF-8]

init_response_body_html_parser: Successfully html parser

generated.

Signing data [feed://http:/192.168.1.104/wordpress/?feed=comments

-rss2]

Signing data [feed://http:/192.168.1.104/wordpress/?feed=rss2]

Signing data [xfn/]

Signing data [check/referer]

Signing data [wordpress/wp-login.php]

Signing data [wordpress/wp-register.php]

Signing data [weblog/]

Signing data [journalized/]

Signing data [xeer/]

Signing data [wordpress/?cat=1]

Signing data [wordpress/?m=200909]

Signing data [wordpress/?m=201104]

Signing data [wordpress/?page_id=2]

Signing data [wordpress/?p=1#comments]

Signing data [wordpress/?cat=1]

Signing data [wordpress/?p=1]

Signing data [wordpress/?p=3#comments]

Signing data [wordpress/?cat=1]

Signing data [wordpress/?p=3]

Signing data [wordpress/?p=4#respond]

Signing data [wordpress/?cat=1]

Signing data [wordpress/?p=4]

Signing data [wordpress/]

Signing data [wordpress/xmlrpc.php?rsd]

Signing data [wordpress/xmlrpc.php]

Signing data [wordpress/?feed=rss2]

Signing data [wordpress/wp-content/themes/default/style.css]

encrypt_response_body_links: Processed [0] iframe src, [0]

encrypted.

encrypt_response_body_links: Processed [0] frame src, [0]

encrypted.

encrypt_response_body_links: Processed [0] form actions, [0]

encrypted.

encrypt_response_body_links: Processed [33] links, [27]

encrypted.

inject_encrypted_response_body: Detected encoding type [UTF-8].

inject_encrypted_response_body: Using content-type [UTF-8].

inject_encrypted_response_body: Copying XML tree from CONV to

stream buffer [8085] bytes.

362181c01.indd 17 11/1/12 10:56 AM

Preparing the Battle Space18

R
ecip

e 1-2

inject_encrypted_response_body: Stream buffer [8750]. Done

Encryption completed in 2829 usec.

Upon completion, all href link data is updated to include a new rv_token that contains
a hash of the full URI (including any query string parameter data), as shown in Figure 1-3.

With this protection in place, any modifications to either the URI or the parameter
payload result in ModSecurity alerts (and blocking depending on your policy settings).
The following sections describe the two sample attack scenarios you will face.

Figure 1-3: WordPress HTML source showing an updated href link with rv_token data

Hash Token Mismatches

If an attacker attempts to modify the parameter data, ModSecurity generates an alert. For
example, if the attacker inserts a single quote character (which is a common way to test
for SQL Injection attacks), the following alert is generated:

Rule 100909d20: SecRule “REQUEST_URI” “@validateEncryption

[a-zA-Z0-9]” “phase:2,log,id:1000,t:none,block,msg:’Request

Validation Violation.’,ctl:encryptionEnforcement=On”

362181c01.indd 18 11/1/12 10:56 AM

Application Fortification 19

Transformation completed in 1 usec.

Executing operator “validateEncryption” with param “[a-zA-Z0-9]”

against REQUEST_URI.

Target value: “/wordpress/?p=4%27&rv_token=

aafb509403bbf7d78c3c8fe1735d49f01b90eb64”

Signing data [wordpress/?p=4%27]Operator completed in 26 usec.

Ctl: Set EncryptionEnforcement to On.

Warning. Request URI matched “[a-zA-Z0-9]” at REQUEST_URI.

Encryption parameter = [aafb509403bbf7d78c3c8fe1735d49f01b90eb64]

 , uri = [13111af1153095e85c70f8877b9126124908a771] [file

“/usr/local/apache/conf/crs/base_rules/modsecurity_crs_15_custom.

conf”] [line “31”] [id “1000”] [msg “Request Validation

Violation.”]

Missing Hash Token

If the attacker simply removes the rv_token, the rules warn on that attempt as well:

Rule 100909d20: SecRule “REQUEST_URI” “@validateEncryption

[a-zA-Z0-9]”

 “phase:2,log,id:1000,t:none,block,msg:’Request

Validation Violation.’,ctl:encryptionEnforcement=On”

Transformation completed in 0 usec.

Executing operator “validateEncryption” with param “[a-zA-Z0-9]”

against REQUEST_URI.

Target value: “/wordpress/?p=4%27”

Request URI without encryption parameter [/wordpress/?p=4%27]

Operator completed in 13 usec.

Ctl: Set EncryptionEnforcement to On.

Warning. Request URI matched “[a-zA-Z0-9]” at REQUEST_URI. No

Encryption parameter [file “/usr/local/apache/conf/

crs/base_rules/modsecurity_crs_15_custom.conf”]

[line “31”] [id “1000”] [msg “Request Validation Violation.”]

Recipes in Part II of this book show how this request validation token injection tech-
nique protects against other attack categories.

3	http://sourceforge.net/apps/mediawiki/mod-security/index
.php?title=Reference_Manual

Recipe 1-3: Installing the OWASP ModSecurity Core Rule Set (CRS)

This recipe shows you how to install and quickly configure the web application attack
detection rules from the OWASP ModSecurity CRS. When this book was written, the CRS
version was 2.2.5. Note that the rule logic described in this recipe may change in future
versions of the CRS.

R
ecip

e 1-3

362181c01.indd 19 11/1/12 10:56 AM

Preparing the Battle Space20

Ingredients

•	 OWASP ModSecurity CRS version 2.2.54

•	 modsecurity_crs_10_setup.conf

•	 modsecurity_crs_20_protocol_violations.conf

•	 modsecurity_crs_21_protocol_anomalies.conf

•	 modsecurity_crs_23_request_limits.conf

•	 modsecurity_crs_30_http_policy.conf

•	 modsecurity_crs_35_bad_robots.conf

•	 modsecurity_crs_40_generic_attacks.conf

•	 modsecurity_crs_41_sql_injection_attacks.conf

•	 modsecurity_crs_41_xss_attacks.conf

•	 modsecurity_crs_45_trojans.conf

•	 modsecurity_crs_47_common_exceptions.conf

•	 modsecurity_crs_49_inbound_blocking.conf

•	 modsecurity_crs_50_outbound.conf

•	 modsecurity_crs_59_outbound_blocking.conf

•	 modsecurity_crs_60_correlation.conf

OWASP ModSecurity CRS Overview

ModSecurity, on its own, has no built-in protections. To become useful, it must be con-
figured with rules. End users certainly can create rules for their own use. However, most
users have neither the time nor the expertise to properly develop rules to protect them-
selves from emerging web application attack techniques. To help solve this problem, the
Trustwave SpiderLabs Research Team developed the OWASP ModSecurity CRS. Unlike
intrusion detection and prevention systems, which rely on signatures specific to known
vulnerabilities, the CRS provides generic attack payload detection for unknown vulnerabili-
ties often found in web applications. The advantage of this generic approach is that the
CRS can protect both public software and custom-coded web applications.

Core Rules Content

To protect generic web applications, the Core Rules use the following techniques:

•	 HTTP protection detects violations of the HTTP protocol and a locally defined
usage policy.

•	 Real-time blacklist lookups use third-party IP reputation.

•	 Web-based malware detection identifies malicious web content by checking
against the Google Safe Browsing API.

•	 HTTP denial-of-service protection defends against HTTP flooding and slow HTTP
DoS attacks.

•	 Common web attack protection detects common web application security attacks.

R
ecip

e 1-3

362181c01.indd 20 11/1/12 10:56 AM

Application Fortification 21

•	 Automation detection detects bots, crawlers, scanners, and other surface mali-
cious activity.

•	 Integration with AV scanning for file uploads detects malicious files uploaded
through the web application.

•	 Tracking sensitive data tracks credit card usage and blocks leakages.

•	 Trojan protection detects access to Trojan horses.

•	 Identification of application defects alerts on application misconfigurations.

•	 Error detection and hiding disguises error messages sent by the server.

Configuration Options

After you have downloaded and unpacked the CRS archive, you should edit the Apache
httpd.conf file and add the following directives to activate the CRS files:

<IfModule security2_module>

 Include conf/crs/modsecurity_crs_10_setup.conf

 Include conf/crs/activated_rules/*.conf

</IfModule>

Before restarting Apache, you should review/update the new modsecurity_crs_10_
setup.conf.example file. This is the central configuration file, which allows you to control
how the CRS works. In this file, you can control the following related CRS topics:

•	 Mode of detection: Traditional versus Anomaly Scoring

•	 Anomaly scoring severity levels

•	 Anomaly scoring threshold levels (blocking)

•	 Enable/disable blocking

•	 Choose where to log events (Apache error_log and/or ModSecurity’s audit log)

To facilitate the operating mode change capability, we had to make some changes to
the rules. Specifically, most rules now use the generic block action instead of specifying an
action to take. This change makes it easy for the user to adjust settings in SecDefaultAction;
these are inherited by SecRules. This is a good approach for using a third-party set of rules,
because our goal is detecting issues, not telling the user how to react. We also removed the
logging actions from the rules so that the user can control exactly which files he or she
wants to send logs to.

Traditional Detection Mode (Self-Contained Rules Concept)

Traditional Detection mode (or IDS/IPS mode) is the new default operating mode. This
is the most basic operating mode, where all the rule logic is self-contained. Just like HTTP
itself, the individual rules are stateless. This means that no intelligence is shared between
rules, and no rule has insight into any previous rule matches. The rule uses only its current,
single-rule logic for detection. In this mode, if a rule triggers, it executes any disruptive/
logging actions specified on the current rule.

362181c01.indd 21 11/1/12 10:56 AM

Preparing the Battle Space22

R
ecip

e 1-3

If you want to run the CRS in Traditional mode, you can do so easily by verifying that
the SecDefaultAction line in the modsecurity_crs_10_setup.conf file uses a disruptive
action such as deny:

#

-=[Mode of Operation]=-

#

You can now choose how you want to run the modsecurity rules –

#

Anomaly Scoring vs. Traditional

#

Each detection rule uses the “block” action which will inherit

the SecDefaultAction specified below. Your settings here will

determine which mode of operation you use.

#

Traditional mode is the current default setting and it uses

“deny” (you can set any disruptive action you wish)

#

If you want to run the rules in Anomaly Scoring mode (where

blocking is delayed until the end of the request phase and rules

contribute to an anomaly score) then set the SecDefaultAction to

“pass”

#

You can also decide how you want to handle logging actions.

You have three options -

#

- To log to both the Apache error_log and ModSecurity

audit_log file use - log

- To log *only* to the ModSecurity audit_log file use -

nolog,auditlog

- To log *only* to the Apache error_log file use -

log,noauditlog

#

SecDefaultAction “phase:2,deny,log”

With this configuration, when a CRS rule matches, it is denied, and the alert data is
logged to both the Apache error_log file and the ModSecurity audit log file. Here is a
sample error_log message for a SQL Injection attack:

[Fri Feb 17 14:40:48 2012] [error] [client 192.168.1.103]

ModSecurity: Warning. Pattern match “(?i:\\\\bunion\\\\b.{1,100}?

\\\\bselect\\\\b)” at ARGS:h_id. [file “/usr/local/apache/conf/

crs/base_rules/modsecurity_crs_41_ sql_injection_attacks.conf”]

[line “318”] [id “959047”] [rev “2.2.3”] [msg “SQL Injection

Attack”] [data “uNiOn/**/sEleCt”] [severity “CRITICAL”] [tag

“WEB_ATTACK/SQL_INJECTION”] [tag “WASCTC/WASC-19”] [tag

“OWASP_TOP_10/A1”][tag “OWASP_AppSensor/CIE1”] [tag “PCI/6.5.2”]

 [hostname “192.168.1.103”][uri “/index.php”]

[unique_id “Tz6tQMCoAWcAAIykJgYAAAAA

362181c01.indd 22 11/1/12 10:56 AM

Application Fortification 23

Pros and Cons of Traditional Detection Mode

Pros

•	 It’s relatively easy for a new user to understand the detection logic.

•	 Better performance is possible (lower latency/resources), because the first disrup-
tive match stops further processing.

Cons

•	 It’s not optimal from a rules management perspective (handling false positives
and implementing exceptions):

•	 It’s difficult to edit a rule’s complex regular expressions. The typical method is
to copy and paste the existing rule into a local custom rules file, edit the logic,
and then disable the existing CRS rule. The end result is that heavily customized
rule sets are not updated when new CRS versions are released.

•	 It’s not optimal from a security perspective:

•	 Not every site has the same risk tolerance.

•	 Lower-severity alerts are largely ignored.

•	 Single low-severity alerts may not be deemed critical enough to block, but
several lower-severity alerts in aggregate could be.

Anomaly Scoring Detection Mode (Collaborative Rules Concept)

This advanced inspection mode implements the concepts of collaborative detection
and delayed blocking. In this mode, the inspection and detection logic is decoupled from
the blocking functionality within the rules. The individual rules can be run so that the
detection remains. However, instead of applying any disruptive action at that point, the
rules contribute to an overall transactional anomaly score collection. In addition, each rule
stores metadata about each rule match (such as the rule ID, attack category, matched
location, and matched data) within a unique temporary transactional (TX) variable.

If you want to run the CRS in Anomaly Scoring mode, you can do so easily by updating
the SecDefaultAction line in the modsecurity_crs_10_setup.conf file to use the pass action:

#

-=[Mode of Operation]=-

#

You can now choose how you want to run the modsecurity rules –

#

Anomaly Scoring vs. Traditional

#

Each detection rule uses the “block” action which will inherit

the SecDefaultAction specified below. Your settings here will

determine which mode of operation you use.

#

362181c01.indd 23 11/1/12 10:56 AM

Preparing the Battle Space24

R
ecip

e 1-3

Traditional mode is the current default setting and it uses

“deny” (you can set any disruptive action you wish)

#

If you want to run the rules in Anomaly Scoring mode (where

blocking is delayed until the end of the request phase and

rules contribute to an anomaly score) then set the

SecDefaultAction to “pass”

#

You can also decide how you want to handle logging actions. You

have three options -

#

- To log to both the Apache error_log and ModSecurity

audit_log file use - log

- To log *only* to the ModSecurity audit_log file use -

nolog,auditlog

- To log *only* to the Apache error_log file use -

log,noauditlog

SecDefaultAction “phase:2,pass,log”

In this new mode of operation, each matched rule does not block. Instead, it increments
anomaly scores using ModSecurity’s setvar action. Here is an example of the SQL Injection
CRS rule that generated the previous alert. As you can see, the rule uses setvar actions to
increase both the overall anomaly score and the SQL Injection subcategory score:

SecRule REQUEST_COOKIES|REQUEST_COOKIES_NAMES|REQUEST_FILENAME|

ARGS_NAMES|ARGS|XML:/* “(?i:\bunion\b.{1,100}?\bselect\b)” \

 “phase:2,rev:’2.2.3’,capture,multiMatch,t:none,t:urlDecodeUni,\

t:replaceComments,ctl:auditLogParts=+E,block,\

msg:’SQL Injection Attack’,id:’959047’,tag:’WEB_ATTACK/\

SQL_INJECTION’,tag:’WASCTC/WASC-19’,tag:’OWASP_TOP_10/A1’,\

tag:’OWASP_AppSensor/CIE1’,tag:’PCI/6.5.2’,logdata:’%{TX.0}’,\

severity:’2’,setvar:’tx.msg=%{rule.msg}’,\

setvar:tx.sql_injection_score=+%{tx.critical_anomaly_score},\

setvar:tx.anomaly_score=+%{tx.critical_anomaly_score},\

setvar:tx.%{rule.id}-WEB_ATTACK/SQL_INJECTION-\

%{matched_var_name}=%{tx.0}”

Anomaly Scoring Severity Levels

Each rule has a severity level specified. The updated rules action dynamically increments
the anomaly score value by using macro expansion. Here’s an example:

SecRule REQUEST_COOKIES|REQUEST_COOKIES_NAMES|REQUEST_FILENAME|

ARGS_NAMES|ARGS|XML:/* “(?i:\bunion\b.{1,100}?\bselect\b)” \

 “phase:2,rev:’2.2.3’,capture,multiMatch,t:none,t:urlDecodeUni,\

t:replaceComments,ctl:auditLogParts=+E,block,msg:’SQL Injection \

Attack’,id:’959047’,tag:’WEB_ATTACK/SQL_INJECTION’,\

tag:’WASCTC/WASC-19’,tag:’OWASP_TOP_10/A1’,\

tag:’OWASP_AppSensor/CIE1’,tag:’PCI/6.5.2’,logdata:’%{TX.0}’,\

362181c01.indd 24 11/1/12 10:56 AM

Application Fortification 25

severity:’2’,setvar:’tx.msg=%{rule.msg}’,\

setvar:tx.sql_injection_score=+%{tx.critical_anomaly_score},\

setvar:tx.anomaly_score=+%{tx.critical_anomaly_score},\

setvar:tx.%{rule.id}-WEB_ATTACK/SQL_INJECTION-\

%{matched_var_name}=%{tx.0}”

Using macro expansion allows the user to set his or her own anomaly score values
from within the modsecurity_crs_10_setup.conf file. These values are propagated for use
in the rules.

#

-=[Anomaly Scoring Severity Levels]=-

#

These are the default scoring points for each severity level.

You may adjust these to your liking. These settings will be

used in macro expansion in the rules to increment the anomaly

scores when rules match.

#

These are the default Severity ratings (with anomaly scores)

of the individual rules -

#

- 2: Critical - Anomaly Score of 5.

Is the highest severity level possible without

correlation. It is normally generated by the web

attack rules (40 level files).

- 3: Error - Anomaly Score of 4.

Is generated mostly from outbound leakage rules (50

level files).

- 4: Warning - Anomaly Score of 3.

Is generated by malicious client rules (35 level files)

- 5: Notice - Anomaly Score of 2.

Is generated by the Protocol policy and anomaly files.

#

SecAction “phase:1,id:’981207’,t:none,nolog,pass, \

setvar:tx.critical_anomaly_score=5, \

setvar:tx.error_anomaly_score=4, \

setvar:tx.warning_anomaly_score=3, \

setvar:tx.notice_anomaly_score=2”

This configuration means that every CRS rule that has a Severity rating of critical
(such as severity:’2’) would increase the transactional anomaly score by 5 points per
rule match. When we have a rule match, you can see how the anomaly scoring works
from within the modsec_debug.log file:

Executing operator “rx” with param “(?i:\\bunion\\b.{1,100}?\\

bselect\\b)” against ARGS:h_id.

Target value: “-50/**/uNiOn/**/sEleCt/**/1,2,3,4,5,6,7,8,9,10,1,2

,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3

,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,1,2,3,4

,5,6,7,8,9/**/fRoM/**/jos_users--”

362181c01.indd 25 11/1/12 10:56 AM

Preparing the Battle Space26

R
ecip

e 1-3

Added regex subexpression to TX.0: uNiOn/**/sEleCt

Operator completed in 33 usec.

Ctl: Set auditLogParts to ABIJDEFHE.

Setting variable: tx.msg=%{rule.msg}

Resolved macro %{rule.msg} to: SQL Injection Attack

Set variable “tx.msg” to “SQL Injection Attack”.

Setting variable: tx.sql_injection_score=

+%{tx.critical_anomaly_score}

Original collection variable: tx.sql_injection_score = “6”

Resolved macro %{tx.critical_anomaly_score} to: 5

Relative change: sql_injection_score=6+5

Set variable “tx.sql_injection_score” to “11”.

Setting variable: tx.anomaly_score=+%{tx.critical_anomaly_score}

Original collection variable: tx.anomaly_score = “8”

Resolved macro %{tx.critical_anomaly_score} to: 5

Relative change: anomaly_score=8+5

Set variable “tx.anomaly_score” to “13”.

Setting variable: tx.%{rule.id}-WEB_ATTACK/SQL_INJECTION-

%{matched_var_name}=%{tx.0}Resolved macro %{rule.id} to: 959047

Resolved macro %{matched_var_name} to: ARGS:h_id

Resolved macro %{tx.0} to: uNiOn/**/sEleCtSet variable

“tx.959047-WEB_ATTACK/SQL_INJECTION-ARGS:h_id” to “uNiOn/**/

sEleCt”.

Resolved macro %{TX.0} to: uNiOn/**/sEleCt

Warning. Pattern match “(?i:\\bunion\\b.{1,100}?\\bselect\\b)” at

 ARGS:h_id. [file “/usr/local/apache/conf/crs/base_rules/

modsecurity_crs_41_sql_injection_attacks.conf”]

[line “318”] [id “959047”] [rev “2.2.3”] [msg “SQL Injection

Attack”] [data “uNiOn/**/sEleCt”] [severity “CRITICAL”] [tag

“WEB_ATTACK/SQL_INJECTION”] [tag “WASCTC/WASC-19”]

[tag “OWASP_TOP_10/A1”] [tag “OWASP_AppSensor/CIE1”]

[tag “PCI/6.5.2”]

Anomaly Scoring Threshold Levels (Blocking)

Now that we can do anomaly scoring, the next step is to set our thresholds. If the cur-
rent transactional score is above this score value, it is denied. Two different anomaly
scoring thresholds must be set. One is set for the inbound request, which is evaluated
at the end of phase:2 in the modsecurity_crs_49_inbound_blocking.conf file. Another is
set for outbound information leakages, which are evaluated at the end of phase:4 in the
modsecurity_crs_50_outbound_blocking.conf file:

#

-=[Anomaly Scoring Threshold Levels]=-

#

These variables are used in macro expansion in the 49 inbound

blocking and 59 outbound blocking files.

362181c01.indd 26 11/1/12 10:56 AM

Application Fortification 27

#

MUST HAVE ModSecurity v2.5.12 or higher to use macro

expansion in numeric operators. If you have an earlier version,

edit the 49/59 files directly to set the appropriate anomaly

score levels.

#

You should set the score to the proper threshold you would

prefer. If set to “5” it will work similarly to previous Mod

CRS rules and will create an event in the error_log file if

there are any rules that match. If you would like to lessen

the number of events generated in the error_log file, you

should increase the anomaly score threshold to something like

“20”. This would only generate an event in the error_log file

if there are multiple lower severity rule matches or if any 1

higher severity item matches.

#

SecAction “phase:1,id:’981208’,t:none,nolog,pass,\

setvar:tx.inbound_anomaly_score_level=5”

SecAction “phase:1,id:’981209’,t:none,nolog,pass,\

setvar:tx.outbound_anomaly_score_level=4”

With these settings, Anomaly Scoring mode acts much like Traditional mode from a
blocking perspective. Because all critical-level rules increase the anomaly score by 5 points,
the end result is that even one critical-level rule match causes a block. If you want to adjust
the anomaly score so that you have a lesser chance of blocking nonmalicious clients (false
positives), you could raise the tx.inbound_anomaly_score_level settings to something
higher, like 10 or 15. This would mean that two or more critical-severity rules match
before you decide to block. Another advantage of this approach is that you can aggregate
multiple lower-severity rule matches and then decide to block. One lower-severity rule
match (such as missing a request header such as Accept) would not result in a block. But
if multiple anomalies are triggered, the request would be blocked.

Enable/Disable Blocking

The SecRuleEngine directive allows you to globally control blocking mode (On) versus
Detection mode (DetectionOnly). With the new Anomaly Scoring Detection mode, if you
want to allow blocking, you should set SecRuleEngine On and then set the following TX
variable in the modsecurity_crs_10_setup.conf file:

#

-=[Anomaly Scoring Block Mode]=-

#

This is a collaborative detection mode where each rule will

increment an overall anomaly score the transaction. The scores

are then evaluated in the following files:

#

Inbound anomaly score - checked in the modsecurity_crs_49_

362181c01.indd 27 11/1/12 10:56 AM

Preparing the Battle Space28

R
ecip

e 1-3

inbound_blocking.conf file

#

Outbound anomaly score - checked in the modsecurity_crs_59_

outbound_blocking.conf file

#

If you do not want to use anomaly scoring mode, then comment

out this line.

#

SecAction “phase:1,id:’981206’,t:none,nolog,pass,\

setvar:tx.anomaly_score_blocking=on”

Now that this variable is set, the rule within the modsecurity_crs_49_inbound_blocking
.conf file evaluates the anomaly scores at the end of the request phase and blocks the
request:

Alert and Block based on Anomaly Scores

#

SecRule TX:ANOMALY_SCORE “@gt 0” \

 “chain,phase:2,id:’981176’,t:none,deny,log,msg:’Inbound \

Anomaly Score Exceeded (Total Score: %{TX.ANOMALY_SCORE},\

SQLi=%{TX.SQL_INJECTION_SCORE}, XSS=%{TX.XSS_SCORE}): Last \

Matched Message: %{tx.msg}’,logdata:’Last Matched Data: \

%{matched_var}’,setvar:tx.inbound_tx_msg=%{tx.msg},\

setvar:tx.inbound_anomaly_score=%{tx.anomaly_score}”

 SecRule TX:ANOMALY_SCORE “@ge \

%{tx.inbound_anomaly_score_level}” chain \

 SecRule TX:ANOMALY_SCORE_BLOCKING “@streq on” \

chain

 SecRule TX:/^\d/ “(.*)”

Alert and Block on a specific attack category such as SQL

Injection

#

#SecRule TX:SQL_INJECTION_SCORE “@gt 0” \

“phase:2,t:none,log,block,msg:’SQL Injection Detected (score

 %{TX.SQL_INJECTION_SCORE}): %{tx.msg}’”

Notice that another rule is commented out by default. This sample rule shows how
you could alternatively choose to inspect/block based on a subcategory anomaly score
(in this example for SQL Injection).

Alert Management: Correlated Events

The CRS events that are logged in the Apache error_log file can become very chatty.
This is due to running the CRS in Traditional Detection mode, where each rule triggers
its own log entry. What would be more useful for the security analyst would be for only
one correlated event to be generated and logged that would give the user a higher level
determination of the transaction severity.

362181c01.indd 28 11/1/12 10:56 AM

Application Fortification 29

To achieve this capability, the CRS can be run in a correlated event mode. Each indi-
vidual rule generates a modsec_audit.log event Message entry but does not log to the
error_log on its own. These rules are considered basic or reference events that have con-
tributed to the overall anomaly score. They may be reviewed in the audit log if the user
wants to see what individual events contributed to the overall anomaly score and event
designation. To configure this capability, simply edit the SecDefaultAction line in the
modsecurity_crs_10_setup.conf file:

#

-=[Mode of Operation]=-

#

You can now choose how you want to run the modsecurity rules –

#

Anomaly Scoring vs. Traditional

#

Each detection rule uses the “block” action which will inherit

the SecDefaultAction specified below. Your settings here will

determine which mode of operation you use.

#

Traditional mode is the current default setting and it uses

“deny” (you can set any disruptive action you wish)

#

If you want to run the rules in Anomaly Scoring mode (where

blocking is delayed until the end of the request phase and

rules contribute to an anomaly score) then set the

SecDefaultAction to “pass”

#

You can also decide how you want to handle logging actions.

You have three options -

#

- To log to both the Apache error_log and ModSecurity

audit_log file use - log

- To log *only* to the ModSecurity audit_log file use –

nolog,auditlog

- To log *only* to the Apache error_log file use –

log,noauditlog

#

SecDefaultAction “phase:2,pass,nolog,auditlog“

With this setting, rule matches log the standard Message data to the modsec_audit
.log file. You receive only one correlated event logged to the normal Apache error_log file
from the rules within the modsecurity_crs_49_inbound_blocking.conf file. The resulting
Apache error_log entry looks like this:

[Fri Feb 17 15:55:16 2012] [error] [client 192.168.1.103]

ModSecurity: Warning. Pattern match “(.*)” at TX:0. [file

“/usr/local/apache/conf/crs/base_rules/

modsecurity_crs_49_inbound_blocking.conf”] [line “26”]

362181c01.indd 29 11/1/12 10:56 AM

Preparing the Battle Space30

R
ecip

e 1-3

[id “981176”] [msg “Inbound Anomaly Score Exceeded (Total Score:

 78, SQLi=28, XSS=): Last Matched Message: 981247-Detects concat

enated basic SQL injection and SQLLFI attempts”] [data “Last

Matched Data: -50 uNiOn”] [hostname “192.168.1.103”] [uri

“/index.php”] [unique_id “Tz6@tMCoqAEAAM5lMk0AAAAA”]

This entry tells us that a SQL Injection attack was identified on the inbound request.
We see that the total anomaly score is 78 and that the subcategory score of SQLi is 28. This
tells us that a number of SQL Injection rules were triggered. If you want to see the details
of all the reference events (individual rules that contributed to this correlated event), you
can review the modsec_audit.log data for this transaction.

Pros and Cons of Anomaly Scoring Detection Mode

Pros

•	 Increased confidence in blocking. Because more detection rules contribute to the
anomaly score, the higher the score, the more confidence you can have in blocking
malicious transactions.

•	 It allows users to set a threshold that is appropriate for their site. Different sites
may have different thresholds for blocking.

•	 It allows several low-severity events to trigger alerts while individual ones are
suppressed.

•	 One correlated event helps alert management.

•	 Exceptions may be handled easily by increasing the overall anomaly score threshold.

Cons

•	 It’s more complex for the average user.

•	 Log monitoring scripts may need to be updated for proper analysis.

Alert Management: Inbound/Outbound Correlation

One important alert management issue for security analysts to deal with is prioritization.
From an incident response perspective, many ModSecurity/CRS users have a difficult time
figuring out which alerts they need to fully review and follow up on. This is especially
true if you’re running ModSecurity in DetectionOnly mode, because you may get alerts,
but you are not actively blocking attacks or information leakages.

If you are running the OWASP ModSecurity CRS in Anomaly Scoring mode, you
have the added advantage of correlating rule matches to gather more intelligence about
transactional issues.

The highest severity rating that an identified inbound attack can have is 2 (critical). To
have a higher severity rating (1 or 0), you need to use correlation. At the end of both the
request and response phases, the CRS saves the final rule match message data.

362181c01.indd 30 11/1/12 10:56 AM

Application Fortification 31

After the transaction has completed (in phase:5 logging), the rules in the base_rules/
modsecurity_crs_60_correlation.conf file conduct further postprocessing by analyzing any
inbound events with any outbound events to provide a more intelligent, priority-based
correlated event. Consider the following questions that security analysts typically need
to answer when investigating web alerts:

•	 Did an inbound attack occur?

•	 Did an HTTP response status code error (4xx/5xx level) occur?

•	 Did an application information leakage event occur?

If an inbound attack was detected, and either an outbound application status code
error or information leakage event was detected, the overall event severity is raised to
one of the following:

•	 0, EMERGENCY, is generated from correlation of anomaly scoring data where an
inbound attack and an outbound leakage exist.

•	 1, ALERT, is generated from correlation where an inbound attack and an outbound
application-level error exist.

Sample Correlated Event

Let’s look at a sample SQL Injection attack scenario. If an attacker sends inbound SQL
Injection attack payloads and the application responds normally, you would see a normal
inbound event. Although this is certainly useful information, this indicates only that an
attacker has sent an attack. On the other hand, if the target application does not properly
handle this input and instead returns technical information leakage data such as that
shown in Figure 1-4, you would want to follow up on that issue and initiate blocking.

In this situation, the CRS correlates the inbound SQL Injection attack with the outbound
application error/code leakage event and thus generates a higher-level severity alert
message such as the following:

[Fri Feb 17 16:26:37 2012] [error] [client 192.168.1.103]

ModSecurity: Warning. Operator GE matched 1 at TX. [file “/usr/

local/apache/conf/crs/base_rules/modsecurity_crs_60_correlation.

conf”] [line “29”] [id “981202”] [msg “Correlated Attack Attempt

Identified: (Total Score: 21, SQLi=5, XSS=) Inbound Attack

(981242-Detects classic SQL injection probings 1/2 Inbound

Anomaly Score: 13) + Outbound Application Error (ASP/JSP source

code leakage - Outbound Anomaly Score: 8)”] [severity “ALERT”]

[hostname “192.168.1.103”] [uri “/zapwave/active/inject/inject-

sql-form-basic.jsp”] [unique_id “Tz7GDcCoAWcAAOsFI@cAAAAA”]

362181c01.indd 31 11/1/12 10:56 AM

Preparing the Battle Space32

R
ecip

e 1-3

Figure 1-4: Sample Java stack dump response page

This correlated event provides much more actionable data to security analysts. It also
allows them to implement more aggressive blocking mechanisms such as blocking all
categories of SQL Injection attacks or blocking for only this particular parameter on the
page. Correlated event analysis helps to expedite the incident response process and allows
security operations teams to focus their efforts on actionable situations instead of only
data from inbound attacks.

4https://www.owasp.org/index.php/
Category:OWASP_ModSecurity_Core_Rule_Set_Project

362181c01.indd 32 11/1/12 10:56 AM

Application Fortification 33

Recipe 1-4: Integrating Intrusion Detection System
Signatures

This recipe shows you how to integrate public Snort IDS web attack signatures within
ModSecurity.

Ingredients

•	 OWASP ModSecurity CRS5

•	 Emerging Threats (ET) Snort Rules (for Snort v2.8.4)6

•	 emerging-web_server.rules

•	 emerging-web_specific_apps.rules

Emerging Threats’ Snort Web Attack Rules

You may be familiar with the Emerging Threats project. It has a few Snort rules files related
to known web application vulnerabilities and attacks:

•	 emerging-web_server.rules

•	 emerging-web_specific_apps.rules

Here is a sample ET rule taken from the emerging-web_specific_apps.rules file that
describes a known SQL Injection vulnerability in the 20/20 Auto Gallery application:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:”ET

 WEB_SPECIFIC_APPS 20/20 Auto Gallery SQL Injection Attempt –

vehiclelistings.asp vehicleID SELECT”; flow:established,to_server

; uricontent:”/vehiclelistings.asp?”; nocase; uricontent:

“vehicleID=”; nocase; uricontent:”SELECT”; nocase; pcre:”/.

+SELECT.+FROM/Ui”; classtype:web-application-attack; reference:cve

,CVE-2006-6092; reference:url,www.securityfocus.com/bid/21154;

 reference:url,doc.emergingthreats.net/2007504;

 reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/

WEB_SPECIFIC_APPS/WEB_2020_Auto_gallery; sid:2007504; rev:5;)

When reviewing this web attack rule, we can conclude that there is a SQL Injection
vulnerability in the /vehiclelistings.asp page, presumably in the vehicle parameter pay-
load. This tells us where the injection point is located within the web request. A regular
expression check then looks for specific SQL values. This data tells us what data it is looking
for to detect an attack. Upon deeper analysis, however, we find a few accuracy concerns:

•	 The injection point accuracy is not ideal, because the rule uses the older Snort
uricontent keyword. What happens if the vehiclelistings.asp page also accepts
parameter data within POST payloads? This would mean that the vehicleID param-
eter might actually be passed in the request body and not in the QUERY_STRING. This
occurrence would result in a false negative, and the rule would not match.

R
ecip

e 1-4

362181c01.indd 33 11/1/12 10:56 AM

Preparing the Battle Space34

•	 The regular expression analysis is not constrained to only the vehicleID parameter
data. The rule triggers if these three pieces of data exist in the request stream and
not if the regular expression match is found only within the vehicleID parameter
payload.

•	 The regular expression is not comprehensive, because it looks for only a small
subset of possible SQL Injection attack data. Many other types of SQL Injection
attack payloads would bypass this basic check. The result is that the Snort rule
writers would have to create many copies of this rule, each with different regular
expression checks.

The Value of Attacks against Known Vulnerabilities

As opposed to the generic attack payload detection used by the OWASP ModSecurity
CRS, these ET Snort rules are developed based on vulnerability information for public
software. Identifying attacks against known vulnerabilities does have value in the fol-
lowing scenarios:

•	 If your organization is using the targeted application, it can raise the threat level,
lessen false positives, and ultimately provide increased confidence in blocking.

•	 Even if you are not running the targeted software in your enterprise, you still might
want to be made aware of attempts to exploit known vulnerabilities, regardless of
their chances of success.

To summarize, the value of these signatures lies in identifying a known attack vector location
(injection point). We can leverage this data in the CRS by converting the ET Snort rule into
a ModSecurity rule and correlating the information with anomaly scoring.

Using Anomaly Scoring Mode with the CRS

Recipe 1-3 outlined how to run the CRS in either Traditional or Anomaly Scoring mode.
The main benefit of anomaly scoring is increased intelligence. Not only can more rules
contribute to an anomaly score, but each rule also saves valuable metadata about rule
matches in temporary TX variables. Let’s look at CRS rule ID 959047 as an example:

SecRule REQUEST_COOKIES|REQUEST_COOKIES_NAMES|REQUEST_FILENAME|

ARGS_NAMES|ARGS|XML:/* “(?i:\bunion\b.{1,100}?\bselect\b)” \

 “phase:2,rev:’2.2.3’,capture,multiMatch,t:none,t:urlDecodeUni

,t:replaceComments,ctl:auditLogParts=+E,block,msg:’SQL

Injection Attack’,id:’959047’,tag:’WEB_ATTACK/SQL_INJECTION’,

tag:’WASCTC/WASC-19’,tag:’OWASP_TOP_10/A1’,

tag:’OWASP_AppSensor/CIE1’,tag:’PCI/6.5.2’,logdata:’%{TX.0}’,

severity:’2’,setvar:’tx.msg=%{rule.msg}’,

setvar:tx.sql_injection_score=+%{tx.critical_anomaly_score},

setvar:tx.anomaly_score=+%{tx.critical_anomaly_score},

setvar:tx.%{rule.id}-WEB_ATTACK/SQL_INJECTION-%{matched_var_name}

=%{tx.0}“

R
ecip

e 1-4

362181c01.indd 34 11/1/12 10:56 AM

Application Fortification 35

The bold setvar action is the key piece of data to understand. If a rule matches, we
initiate a TX variable that contains metadata about the match:

•	 tx.%{rule.id} uses macro expansion to capture the rule ID value data and saves
it in the TX variable name.

•	 WEB_ATTACK/SQL_INJECTION captures the attack category data and saves it in the
TX variable name.

•	 %{matched_var_name} captures the variable location of the rule match and saves it
in the TX variable name.

•	 %{tx.0} captures the variable payload data that matched the operator value and
saves it in the TX variable value.

If we look at the debug log data when this rule processes a sample request, we see the
following:

Executing operator “rx” with param “(?i:\\bunion\\b.{1,100}?\\b

select\\b)” against ARGS:vehicleID.

Target value: “9999999/**/union/**/select/**/0,0,0,0,0,0,0,0,0,

0,0,0,0,0x33633273366962,0,0,0,0,0,0,0/**/from/**/jos_users--”

Added regex subexpression to TX.0: union/**/select

Operator completed in 18 usec.

Ctl: Set auditLogParts to ABIJDEFHE.

Setting variable: tx.msg=%{rule.msg}

Resolved macro %{rule.msg} to: SQL Injection Attack

Set variable “tx.msg” to “SQL Injection Attack”.

Setting variable: tx.sql_injection_score=+%{tx.critical_anomaly_

score}

Original collection variable: tx.sql_injection_score = “10”

Resolved macro %{tx.critical_anomaly_score} to: 5

Relative change: sql_injection_score=10+5

Set variable “tx.sql_injection_score” to “15”.

Setting variable: tx.anomaly_score=+%{tx.critical_anomaly_score}

Original collection variable: tx.anomaly_score = “13”

Resolved macro %{tx.critical_anomaly_score} to: 5

Relative change: anomaly_score=13+5

Set variable “tx.anomaly_score” to “18”.

Setting variable: tx.%{rule.id}-WEB_ATTACK/SQL_INJECTION-

%{matched_var_name}=

%{tx.0}

Resolved macro %{rule.id} to: 959047

Resolved macro %{matched_var_name} to: ARGS:vehicleID

Resolved macro %{tx.0} to: union/**/select

Set variable “tx.959047-WEB_ATTACK/SQL_INJECTION-ARGS:vehicleID”

 to “union/**/select”.

The final, bold entry shows the TX variable data that is now at our disposal. This TX data
tells us that a SQL Injection attack payload was detected in a parameter called vehicleID.
We can now use this type of data to correlate with converted Snort attack signatures.

362181c01.indd 35 11/1/12 10:56 AM

Preparing the Battle Space36

R
ecip

e 1-4

Converting Snort Signatures in ModSecurity Rule Language

We can convert the Snort rule just discussed into a ModSecurity rule like this:

(2007545) SpiderLabs Research (SLR) Public Vulns:

ET WEB_SPECIFIC_APPS 20/20 Auto Gallery SQL Injection Attempt –

vehiclelistings.asp vehicleID UPDATE

SecRule REQUEST_LINE “@contains /vehiclelistings.asp” “chain,

phase:2,block,t:none,

t:urlDecodeUni,t:htmlEntityDecode,t:normalisePathWin,capture,

nolog,auditlog,logdata:’%{TX.0}’,severity:’2’,id:2007545,rev:6,

 msg:’SLR: ET WEB_SPECIFIC_APPS 20/20 Auto Gallery SQL

Injection Attempt -- vehiclelistings.asp vehicleID UPDATE’,

tag:’web-application-attack’,tag:’url,www.securityfocus.com/bid

/21154’”

 SecRule TX:’/WEB_ATTACK/SQL_INJECTION.*ARGS:vehicleID/’ “.*”

 “capture,ctl:auditLogParts=+E,setvar:’tx.msg=%{tx.msg} - ET WEB_

SPECIFIC_APPS 20/20 Auto Gallery SQL Injection Attempt – vehicle

listings.asp vehicleID UPDATE’,setvar:tx.anomaly_score=+20,

setvar:’tx.%{rule.id}-WEB_ATTACK-%{rule.severity}-

%{rule.msg}-%{matched_var_name}=%{matched_var}’”

As you can see, the first SecRule checks the request line data to make sure that it
matches the vulnerable resource. We then run a second chained rule that, instead of look-
ing separately for the existence of the parameter name and a regular expression check,
simply inspects previously matched TX variable metadata. In this case, if a previous CRS
rule identified a SQL Injection attack payload in the ARGS:vehicleID parameter location,
the rule matches. Here is how the final rule processing looks in the debug log. You can
see that we find a match of previously generated SQL Injection event data found within
the vulnerable parameter location from the Snort ET signature:

Recipe: Invoking rule 10217f828; [file “/usr/local/apache/conf/

crs/base_rules/modsecurity_crs_46_slr_et_sqli_attacks.conf”]

[line “52”].

Rule 10217f828: SecRule “TX:’/SQL_INJECTION.*ARGS:vehicleID/’”

“@rx .*” “capture,ctl:auditLogParts=+E,setvar:’tx.msg=ET WEB_

SPECIFIC_APPS 20/20 Auto Gallery SQL Injection Attempt –

vehiclelistings.asp vehicleID UPDATE’,

setvar:tx.anomaly_score=+%{tx.critical_anomaly_score},

setvar:tx.%{rule.id}-WEB_ATTACK/SQL_INJECTION-%{matched_var_

name}=%{matched_var}”

Expanded “TX:’/SQL_INJECTION.*ARGS:vehicleID/’” to “TX:981260-

WEB_ATTACK/SQL_INJECTION-ARGS:vehicleID|TX:981231-WEB_ATTACK/

SQL_INJECTION-ARGS:vehicleID|TX:959047-WEB_ATTACK/SQL_INJECTION

-ARGS:vehicleID|TX:959073-WEB_ATTACK/SQL_INJECTION-ARGS:

vehicleID”.

Transformation completed in 0 usec.

Executing operator “rx” with param “.*” against TX:981260-WEB_

ATTACK/SQL_INJECTION-ARGS:vehicleID.

362181c01.indd 36 11/1/12 10:56 AM

Application Fortification 37

Target value: “,0x33633273366962”

Added regex subexpression to TX.0: ,0x33633273366962

Operator completed in 19 usec.

Ctl: Set auditLogParts to ABIJDEFHEEEEE.

Setting variable: tx.msg=ET WEB_SPECIFIC_APPS 20/20 Auto

Gallery SQL Injection Attempt -- vehiclelistings.asp vehicleID

UPDATE

Set variable “tx.msg” to “ET WEB_SPECIFIC_APPS 20/20 Auto Gallery

 SQL Injection Attempt -- vehiclelistings.asp vehicleID UPDATE”.

Setting variable: tx.anomaly_score=+%{tx.critical_anomaly_score}

Original collection variable: tx.anomaly_score = “83”

Resolved macro %{tx.critical_anomaly_score} to: 5

Relative change: anomaly_score=83+5

Set variable “tx.anomaly_score” to “88”.

Setting variable: tx.%{rule.id}-WEB_ATTACK/SQL_INJECTION-

%{matched_var_name}=%{matched_var}

Resolved macro %{rule.id} to: 2007545

Resolved macro %{matched_var_name} to: TX:981260-WEB_ATTACK/

SQL_INJECTION-ARGS:vehicleID

Resolved macro %{matched_var} to: ,0x33633273366962

Set variable “tx.2007545-WEB_ATTACK/SQL_INJECTION-TX:981260-

WEB_ATTACK/SQL_INJECTION-ARGS:vehicleID” to “,0x33633273366962”.

Resolved macro %{TX.0} to: ,0x33633273366962

Resolved macro %{TX.0} to: ,0x33633273366962

Warning. Pattern match “.*” at TX:981260-WEB_ATTACK/SQL_INJECTION

-ARGS:vehicleID. [file “/usr/local/apache/conf/crs/base_rules/

modsecurity_crs_46_slr_et_sqli_attacks.conf”] [line “51”]

[id “2007545”] [rev “6”] [msg “SLR: ET WEB_SPECIFIC_APPS 20/20

Auto Gallery SQL Injection Attempt -- vehiclelistings.asp

vehicleID UPDATE”] [data “,0x33633273366962”]

[severity “CRITICAL”] [tag “web-application-attack”] [tag

 “url,www.securityfocus.com/bid/21154”]

By combining the generic attack payload detection of the OWASP ModSecurity CRS
with the specific known attack vectors from the Snort ET web signatures, we can more
accurately identify malicious requests and apply more aggressive response actions.

To make the conversion of the ET Snort web attack rules easier, the Trustwave
SpiderLabs Research Team has included a Perl script in the OWASP ModSecurity CRS dis-
tribution called snort2modsec2.pl that autoconverts the rules for you. Here is an example
of running the script and viewing a sample of the output:

$./snort2modsec2.pl emerging-web_specific_apps.rules >

modsecurity_crs_46_snort_attacks.conf

$ head -6 modsecurity_crs_46_snort_attacks.conf

SecRule REQUEST_FILENAME “!@pmFromFile snort2modsec2_static.data”

 “phase:2,

nolog,pass,t:none,t:urlDecodeUni,t:htmlEntityDecode,t:normalise

PathWin,skipAfter:END_SNORT_RULES”

362181c01.indd 37 11/1/12 10:56 AM

Preparing the Battle Space38

R
ecip

e 1-4

(sid 2011214) ET WEB_SPECIFIC_APPS ArdeaCore pathForArdeaCore

Parameter Remote File Inclusion Attempt

SecRule REQUEST_URI_RAW “(?i:\/ardeaCore\/lib\/core\/ardeaInit\.

php)” “chain,

phase:2,block,t:none,t:urlDecodeUni,t:htmlEntityDecode,t:normalise

PathWin,capture,

nolog,auditlog,logdata:’%{TX.0}’,id:sid2011214,rev:2,msg:’ET WEB_

SPECIFIC_APPS

 ArdeaCore pathForArdeaCore Parameter Remote File Inclusion

Attempt’,

tag:’web-application-attack’,tag:’url,doc.emergingthreats.net/

2011214’”

SecRule REQUEST_URI_RAW “@contains GET “ “chain”

SecRule ARGS:pathForArdeaCore “(?i:\s*(ftps?|https?|php)\:\/)”

 “ctl:auditLogParts=+E,setvar:’tx.msg=ET WEB_SPECIFIC_APPS

ArdeaCore

 pathForArdeaCore Parameter Remote File Inclusion Attempt’,

setvar:tx.anomaly_score=+20,setvar:’tx.%{rule.id}-WEB_ATTACK-

%{matched_var_name}=%{matched_var}’”

5	https://www.owasp.org/index.php/
Category:OWASP_ModSecurity_Core_Rule_Set_Project

6http://rules.emergingthreats.net/open/snort-2.8.4/rules/

Recipe 1-5: Using Bayesian Attack Payload Detection

This recipe shows you how to integrate Bayesian analysis of HTTP parameter payloads
to identify malicious data.

Ingredients

•	 ModSecurity Reference Manual7

•	 Lua API

•	 OWASP ModSecurity CRS Lua scripts8

•	 modsecurity_crs_48_bayes_analysis.conf

•	 bayes_train_spam.lua

•	 bayes_train_ham.lua

•	 bayes_check_spam.lua

•	 OSBF-Lua: Bayesian text classifier9

•	 Moonfilter: Lua wrapper for OSBF-Lua10

•	 Moonrunner: Command-line interface to Moonfilter11

R
ecip

e 1-5

362181c01.indd 38 11/1/12 10:56 AM

Application Fortification 39

Using Bayesian Analysis to Detect Web Attacks

Bayesian text classifiers have long been used to detect spam e‑mails. Why not use the
same type of analysis for web traffic to identify malicious requests? The general concept
is directly applicable, from e‑mail analysis to HTTP request parameter inspection. But
there are a few nuances to be aware of:

•	 Ham versus spam. In our implementation, ham is considered nonmalicious traffic,
and spam is considered an attack payload.

•	 Input source. Bayesian classifiers normally inspect operating system (OS) text files
(e‑mail messages) with many different lines of text. With this proof-of-concept
implementation in ModSecurity, we must bypass feeding the Bayesian classifier
data from OS text files, because this would incur too much latency. We instead
must pass the data directly from the request to the Bayesian classifier using the
Lua API and store the text in temporary variables.

•	 Data format. E‑mail messages have a certain format and construction, with MIME
headers at the top and then the body of the message. This format can impact the
overall scores of the classifiers. In our current implementation with ModSecurity,
however, we pass only text payloads from individual parameters. This smaller
dataset may impact the final classifications.

The information presented within this recipe is not meant to be a primer on the inner
workings of Bayesian classifier theory. Instead, it is a practical proof-of-concept imple-
mentation using ModSecurity’s Lua API. If you would like more technical information on
the algorithms used with the Bayesian classification, I suggest you read Paul Graham’s
seminal paper, titled “A Plan for Spam,”12 and his follow-up, “Better Bayesian Filtering.”13

OSBF-Lua Installation

Bayesian classification is implemented into ModSecurity through its Lua API. The first
component to install is a Lua module created by Fidelis Assis called OSBF-Lua. OSBF-
Lua requires Lua 5.1 to be installed, with dynamic loading enabled. Follow these basic
installation steps:

$ tar xvzf osbf-lua-x.y.z.tar.gz

$ cd osbf-lua-x.y.z

Before you compile, you should add the following patch to the osbf_bayes.c file. It fixes
an overflow bug that may be encountered after extended training:

+++ osbf_bayes.c 2008-12-17 10:36:18.000000000 -0200

@@ -854,9 +854,9 @@

 if (cfx > 1)

 cfx = 1;

 confidence_factor = cfx *

362181c01.indd 39 11/1/12 10:56 AM

Preparing the Battle Space40

R
ecip

e 1-5

- pow ((diff_hits * diff_hits - K1 /

+ pow (((double)diff_hits * diff_hits - K1 /

 (class[i_max_p].hits + class[i_min_p].hits)) /

- (sum_hits * sum_hits), 2) /

+ ((double)sum_hits * sum_hits), 2) /

 (1.0 +

 K3 / ((class[i_max_p].hits + class[i_min_p].hits) *

 feature_weight[window_idx]));

Then complete the compilation and installation with this:

$ make

$ make install

After OSBF-Lua is installed, the next step is to install Moonfilter.

Moonfilter Installation

Moonfilter, written by Christian Siefkes, is a wrapper script for OSBF-Lua that provides
an easy interface for training and classification. After downloading the moonfilter.lua
script, you should edit the file and update the final (bold) line of the Configuration sec-
tion to look like this:

----- Exported configuration variables ---------------------------

-- Minimum absolute pR a correct classification must get not to

-- trigger a reinforcement.

threshold = 20

-- Number of buckets in the database. The minimum value

-- recommended for production is 94321.

buckets = 94321

-- Maximum text size, 0 means full document (default). A

-- reasonable value might be 500000 (half a megabyte).

max_text_size = 0

-- Minimum probability ratio over the classes a feature must have

-- not to be ignored. 1 means ignore nothing (default).

min_p_ratio = 1

-- Token delimiters, in addition to whitespace. None by default,

-- could be set e.g. to “.@:/”.

delimiters = “”

-- Whether text should be wrapped around (by re-appending the

-- first 4 tokens after the last).

wrap_around = true

-- The directory where class database files are stored. Defaults

-- to the current working directory (empty string). Note that the

-- directory name MUST end in a path separator (typically ‘/’ or

-- ‘\’, depending on your OS) in all other cases. Changing this

-- value will only affect future calls to the |classes| command;

-- it won’t change the location of currently active classes.

classdir = “”

362181c01.indd 40 11/1/12 10:56 AM

Application Fortification 41

-- The text to classify/train as a string -- can be set explictly

-- if desired

text = nil

The original setting is local text = nil. We must remove the word local so that
Moonfilter allows us to set the classification text from within our own Lua scripts that
will pass data dynamically directly from inbound HTTP requests.

Moonrunner Installation and Usage

Moonrunner, also by Christian Siefkes, is a command-line Lua script that you can use
to manage the spam and ham database files and also conduct individual classification
actions. After downloading Moonrunner, you should execute the following commands:

./moonrunner.lua

classes /var/log/httpd/spam /var/log/httpd/ham

classes ok

create

create ok

stats /var/log/httpd/spam

stats ok: “-- Statistics for /var/log/httpd/spam.cfc\

Database version: OSBF-Bayes\

Total buckets in database: 94321\

Buckets used (%): 0.0\

Trainings: 0\

Bucket size (bytes): 12\

Header size (bytes): 4092\

Number of chains: 0\

Max chain len (buckets): 0\

Average chain length (buckets): 0\

\

“

readuntil <EOF>

12’UNION/*!00909SELECT 1,2,3,4,5,6,7,8,9 --

<EOF>

readuntil ok

train /var/log/httpd/spam

Invoking classify for ‘’

train ok: misclassified=false reinforced=true

stats /var/log/httpd/spam

stats ok: “-- Statistics for /var/log/httpd/spam.cfc\

Database version: OSBF-Bayes\

Total buckets in database: 94321\

Buckets used (%): 0.0\

Trainings: 1\

Bucket size (bytes): 12\

Header size (bytes): 4092\

Number of chains: 32\

Max chain len (buckets): 1\

362181c01.indd 41 11/1/12 10:56 AM

Preparing the Battle Space42

R
ecip

e 1-5

Average chain length (buckets): 1\

In this section of commands, we perform the following tasks:

	 1.	 Specify our two classification files (spam/ham).
	 2.	 Create the database for each classification.
	 3.	 Execute the stats command to see general statistics about the newly created spam

database.
	 4.	 Specify a sample SQL Injection text string for training.
	 5.	 Train the classifier that the sample text was to be classified as spam.
	 6.	 Re-execute the stats command to see the updated information in the spam

database.

This same approach also can, and should, be used to classify nonmalicious (ham)
payloads:

readuntil <EOF>

this is just normal text.

<EOF>

readuntil ok

train /var/log/httpd/ham

Reusing stored result for ‘’

train ok: misclassified=true reinforced=false

stats /var/log/httpd/ham

stats ok: “-- Statistics for /var/log/httpd/ham.cfc\

Database version: OSBF-Bayes\

Total buckets in database: 94321\

Buckets used (%): 0.0\

Trainings: 1\

Bucket size (bytes): 12\

Header size (bytes): 4092\

Number of chains: 43\

Max chain len (buckets): 1\

Average chain length (buckets): 1\

The next logical step is to submit a new string of text. Instead of training the classifier
on it, we try to classify it as either spam or ham:

readuntil <EOF>

1’UNION/*!0SELECT user,2,3,4,5,6,7,8,9/*!0from/*!0mysql.user/*-

<EOF>

readuntil ok

classify

classify ok: prob=0.5 probs=[0.5 0.5] class=/var/log/httpd/spam

 pR=0 reinforce=true

train /var/log/httpd/spam

362181c01.indd 42 11/1/12 10:56 AM

Application Fortification 43

Reusing stored result for ‘’

train ok: misclassified=true reinforced=false

classify

classify ok: prob=0.73998695843754 probs=[0.73998695843754

0.26001304156246] class=/var/log/httpd/spam pR=0.26799507117831

 reinforce=true

This SQL Injection payload was correctly classified as spam, but the probability was
only 0.5. The closer the score comes to 1.0, the more confident the classifier is of the clas-
sification. We then train the classifier as spam, and the new classification score probability
is 0.73998695843754.

Ongoing Moonrunner Usage

Moonrunner is a useful tool after you have deployed the ModSecurity component in pro-
duction. Moonrunner allows you to periodically run stats checks to verify the trainings of
the two classifier databases. You can also use Moonrunner to manually retrain payloads
taken from audit log data if ModSecurity improperly flagged them.

The Advantage of Bayesian Analysis

The ModSecurity OWASP CRS, like most security systems, relies heavily on the use of
blacklist regular expression filters to identify malicious payloads. Although this approach
provides a base level of protection, it offers insufficient protection against a determined
attacker. The main shortcoming of using regular expressions for attack detection is that
the operator check’s result is binary: It either matches, or it doesn’t. There is no middle
ground. This means that an attacker may run through an iterative process of trial and
error, submitting attack payloads until he or she finds a permutation that bypasses the
regular expression logic. Let’s take a quick look at a sample evasion for one of the SQL
Injection rules presented earlier:

SecRule REQUEST_COOKIES|REQUEST_COOKIES_NAMES|REQUEST_FILENAME|

ARGS_NAMES|ARGS|

XML:/* “(?i:\bunion\b.{1,100}?\bselect\b)“ \

 “phase:2,rev:’2.2.3’,capture,multiMatch,t:none,

t:urlDecodeUni,t:replaceComments,ctl:auditLogParts=+E,block,

msg:’SQL Injection Attack’,id:’959047’,

tag:’WEB_ATTACK/SQL_INJECTION’,tag:’WASCTC/WASC-19’,

tag:’OWASP_TOP_10/A1’,tag:’OWASP_AppSensor/CIE1’,

tag:’PCI/6.5.2’,logdata:’%{TX.0}’,severity:’2’,

setvar:’tx.msg=%{rule.msg}’,setvar:tx.sql_injection_score=

+%{tx.critical_anomaly_score},setvar:tx.anomaly_score=

+%{tx.critical_anomaly_score},setvar:tx.%{rule.id}-

WEB_ATTACK/SQL_INJECTION-%{matched_var_name}=%{tx.0}”

362181c01.indd 43 11/1/12 10:56 AM

Preparing the Battle Space44

R
ecip

e 1-5

The bold regular expression basically means that we are doing a case-insensitive search
for the words “union” and “select” within 100 characters of each other. When an attacker
sends in his or her initial attack probes, such as the following examples taken from the
ModSecurity SQL Injection Challenge, they are all caught until the final evasion payload,
shown in bold:

div 1 union%23%0Aselect 1,2,current_user

div 1 union%23foo*/*bar%0Aselect 1,2,current_user

div 1 union%23foofoofoofoo*/*bar%0Aselect 1,2,current_user

div 1 union%23foofoofoofoofoofoofoofoofoofoo*/*bar%0Aselect 1,2,

current_user

...

div 1 union%23foofoofoofoofoofoofoofoofoofoofoofoofoofoofoofoofoo

foofoofoofoo

foofoofoofoofoofoofoofoofoofoofoofoo*/*bar%0Aselect 1,2,current_

user

The final payload evades the regular expression logic by padding the space between the
union and select keywords with SQL comment text that the SQL database ignores. The
final payload is also functionally equivalent to all the ones before it while bypassing the
regular expression logic. Keep in mind, however, that the blacklist signatures do in fact
work, for a period of time, and provide some level of hacking resistance. Using Bayesian
analysis combined with blacklist regular expression inspection has two advantages:

•	 We can use the blacklist filters to identify the initial attack attempts and use the
payloads that they identify to actually train the Bayesian classifiers that the pay-
load is spam. So, in effect, the attackers train our detection logic. Remember that
the final attack payload that can bypass a regular expression check is actually very
similar to the previous versions that were detected. Usually, it comes down to a
difference of only one character.

•	 Rather than a binary result, Bayesian analysis gives us a probability that a payload
is malicious. With this approach, we now have a wider scale with which to identify
the likelihood that a payload is bad.

With the Bayesian analysis in place, the final SQL Injection payload that evaded the
ModSecurity SecRule filter is detected:

readuntil <EOF>

div 1 union%23foofoofoofoofoofoofoofoofoofoofoofoofoofoofoofoofoo

foofoofoofoofoofoofoofoofoofoofoofoofoofoofoofoo*/*bar%0Aselect 1

,2,current_user

<EOF>

readuntil ok

classify

classify ok: prob=0.99999999973866 probs=[0.99999999973866 2.613

362181c01.indd 44 11/1/12 10:56 AM

Application Fortification 45

4432207688e-10] class=/var/log/httpd/spam pR=5.6538442891482

reinforce=true

Integrating Bayesian Analysis with ModSecurity

With these components in place, the next step is to hook the Bayesian analysis compo-
nents into ModSecurity so that the training and classification data comes directly from
live application users. The first step in this process is to ensure that the ham and spam
database files have read/write permission for the Apache user. Execute the following
commands to change the ownership to the Apache user:

ls -l *.cfc

-rw------- 1 root root 1135948 Feb 18 14:42 ham.cfc

-rw------- 1 root root 1135948 Feb 18 14:43 spam.cfc

chown apache:apache *.cfc

ls -l *.cfc

-rw------- 1 apache apache 1135948 Feb 18 14:42 ham.cfc

-rw------- 1 apache apache 1135948 Feb 18 14:43 spam.cfc

The next step is to activate the modsecurity_crs_48_bayes_analysis.conf file by adding
it to your activated rules. Here are the contents of the rules file:

SecRule TX:’/^\\\d.*WEB_ATTACK/’ “.*” “phase:2,t:none,log,pass,

logdata:’%{tx.bayes_msg}’,exec:/etc/httpd/modsecurity.d/bayes_

train_spam.lua”

#SecRuleScript /etc/httpd/modsecurity.d/bayes_check_spam.lua

“phase:2,t:none,block,msg:’Bayesian Analysis Detects Probable

Attack.’,logdata:’Score: %{tx.bayes_score}’,severity:’2’,

tag:’WEB_ATTACK/SQL_INJECTION’,tag:’WASCTC/WASC-19’,

tag:’OWASP_TOP_10/A1’,tag:’OWASP_AppSensor/CIE1’,

tag:’PCI/6.5.2’,setvar:’tx.msg=%{rule.msg}’,

setvar:tx.anomaly_score=+%{tx.critical_anomaly_score},

setvar:tx.%{rule.id}-WEB_ATTACK/BAYESIAN-%{matched_var_name}=

%{tx.0}”

SecRule &TX:ANOMALY_SCORE “@eq 0” “phase:5,t:none,log,pass,

logdata:’%{tx.bayes_msg}’,exec:/etc/httpd/modsecurity.d/

bayes_train_ham.lua”

When we first deploy the rules, we run only the two training rules so that we may popu-
late our corpus with real data from clients interactive with our unique web application.
The rule listed last executes the bayes_train_ham.lua script when no malicious anomaly
score is detected. Figure 1-5 shows a sample web application form for a loan application.

362181c01.indd 45 11/1/12 10:56 AM

Preparing the Battle Space46

R
ecip

e 1-5

Figure 1-5: Sample loan application

When the client submits this form, the OWASP ModSecurity CRS attack signatures
inspect each parameter value. If no malicious data is found, the bayes_train_ham.lua
script trains the Bayesian ham classifier on each value:

Lua: Executing script: /etc/httpd/modsecurity.d/

bayes_train_ham.lua

 Arg Name: ARGS:txtFirstName and Arg Value: Bob.

 Arg Name: ARGS:txtLastName and Arg Value: Smith.

 Arg Name: ARGS:txtSocialScurityNo and Arg Value: 123-12-9045.

 Arg Name: ARGS:txtDOB and Arg Value: 1958-12-12.

 Arg Name: ARGS:txtAddress and Arg Value: 123 Someplace Dr..

 Arg Name: ARGS:txtCity and Arg Value: Fairfax.

 Arg Name: ARGS:drpState and Arg Value: VA.

 Arg Name: ARGS:txtTelephoneNo and Arg Value: 703-794-2222.

 Arg Name: ARGS:txtEmail and Arg Value: bob.smith@mail.com.

 Arg Name: ARGS:txtAnnualIncome and Arg Value: $90,000.

 Arg Name: ARGS:drpLoanType and Arg Value: Car.

 Arg Name: ARGS:sendbutton1 and Arg Value: Submit.

 Low Bayesian Score: . Training payloads as non-malicious.

362181c01.indd 46 11/1/12 10:57 AM

Application Fortification 47

 Setting variable: tx.bayes_msg=Training payload as ham: Submit.

 Set variable “tx.bayes_msg” to “Training payload as ham: Submit.”

Lua: Script completed in 5647 usec, returning: Training payloads

as non-malicious: Submit..

Resolved macro %{tx.bayes_msg} to: Training payload as ham: Submit

Warning. Operator EQ matched 0 at TX. [file “/etc/httpd/

modsecurity.d/crs/base_rules/modsecurity_crs_48_bayes_analysis.

conf”

However, if an attacker inserts some malicious code into the Social Security Number
field of that same form, the SQL Injection signatures of the ModSecurity CRS flag the
payload, and the bayes_train_spam.lua script trains the classifier that this is spam. Here
is a sample section from the modsec_debug.log file:

Lua: Executing script: /etc/httpd/modsecurity.d/

bayes_train_spam.lua

 Set variable “MATCHED_VARS:950901-WEB_ATTACK/SQL_INJECTION-ARGS:

txtSocialScurityNo” value “123-12-9045’ or ‘2’ < ‘5’ ;--” size 29

to collection.

 Arg Name: MATCHED_VARS:950901-WEB_ATTACK/SQL_INJECTION-ARGS:

txtSocialScurityNo and Arg Value: 123-12-9045’ or ‘2’ < ‘5’ ;--.

 Train Results: {misclassified=false,reinforced=true}.

 Setting variable: tx.bayes_msg=Completed Bayesian SPAM Training

on Payload: 123-12-9045’ or ‘2’ < ‘5’ ;--.

 Set variable “tx.bayes_msg” to “Completed Bayesian SPAM Training

on Payload: 123-12-9045’ or ‘2’ < ‘5’ ;--.”.

 Lua: Script completed in 2571 usec, returning: Completed Bayesian

 SPAM Training on Payload: 123-12-9045’ or ‘2’ < ‘5’ ;--..

 Resolved macro %{tx.bayes_msg} to: Completed Bayesian SPAM

Training on Payload: 123-12-9045’ or ‘2’ < ‘5’ ;--.

 Warning. Pattern match “.*” at TX:950901-WEB_ATTACK/SQL_INJECTION

-ARGS:

txtSocialScurityNo. [file “/etc/httpd/modsecurity.d/crs/base_rules

/modsecurity_crs_48_bayes_analysis.conf”

Once you have let the Bayesian classifier training rules train on normal user traffic
for a period of time, it is recommended that you run a web application scanning tool
to help train the spam classifier for attack data. When this is done, you can activate
the SecRuleScript rule that runs the bayes_check_spam.lua script. With this script acti-
vated, a request that did not trigger any previous rules has its payloads checked against
the Bayesian classifier. The following is an example of an alert message that would be
generated:

[Sun Feb 19 14:16:12 2012] [error] [client 72.192.214.223]

ModSecurity: Warning. Bayesian Analysis Alert for ARGS:

txtSocialScurityNo with payload: “345-22-0923’

 -10 union select 1,2,3,4,5,concat(user,char(58),password),7,8,9,

10 from mysql.user” [file “/etc/httpd/modsecurity.d/crs/base_rules

362181c01.indd 47 11/1/12 10:57 AM

Preparing the Battle Space48

R
ecip

e 1-5

/modsecurity_crs_48_bayes_analysis.conf”] [line “3”] [msg

“Bayesian Analysis Detects Probable Attack.”] [data “Score:

{prob=0.99968113864209,

probs={0.99968113864209,0.00031886135790698},class=\\x22/var/log/

httpd/spam

\\x22,pR=2.0627931680898,reinforce=true}”] [severity “CRITICAL”]

 [tag “WEB_ATTACK/SQL_INJECTION”] [tag “WASCTC/WASC-19”]

[tag “OWASP_TOP_10/A1”] [tag “OWASP_AppSensor/CIE1”]

[tag “PCI/6.5.2”] [hostname “www.modsecurity.org”]

 [uri “/Kelev/view/updateloanrequest.php”] [unique_id

“2V30csCo8AoAAHP5GBMAAAAB”]

7	http://sourceforge.net/apps/mediawiki/mod-security/index
.php?title=Reference_Manual

8	https://www.owasp.org/index.php/
Category:OWASP_ModSecurity_Core_Rule_Set_Project

9	http://osbf-lua.luaforge.net/

10	http://www.siefkes.net/software/moonfilter/

11http://www.siefkes.net/software/moonfilter/moonrunner.lua

12http://www.paulgraham.com/spam.html

13http://www.paulgraham.com/better.html

HTTP Audit Logging

Recipe 1-6: Enable Full HTTP Audit Logging

This recipe shows you how to capture full HTTP transaction data by using the ModSecurity
audit engine.

Ingredients

•	 ModSecurity Reference Manual14

•	 SecRuleEngine directive

•	 SecAuditEngine directive

•	 SecAuditLog directive

•	 SecAuditLogType directive

•	 SecAuditLogParts directive

•	 SecAuditLogStorageDir directive

•	 SecRequestBodyAccess directive

•	 SecResponseBodyAccess directive

•	 Audit log format documentation15

R
ecip

e 1-6

362181c01.indd 48 11/1/12 10:57 AM

Application Fortification 49

Enabling Full Audit Logging to One File

If you want to provide the greatest amount of data for incident response processes, you
should enable full audit logging of both HTTP request and response traffic. Add or update
the following ModSecurity directives in your Apache configuration files:

SecRuleEngine DetectionOnly

SecRequestBodyAccess On

SecResponseBodyAccess On

SecAuditEngine On

SecAuditLogParts ABCEFHZ

SecAuditLog /usr/local/apache/logs/audit.log

SecAuditLogType Serial

These directives create full audit logs of the HTTP transactions and store data from all
clients to one file called /usr/local/apache/logs/audit.log. SecAuditLogParts defines the
separate transactional elements that are captured:

•	 A: Audit log header

•	 B: Request headers

•	 C: Request body

•	 E: Intended response body

•	 F: Response headers

•	 H: Audit log trailer

•	 Z: Audit log footer

Let’s again look at one of the WordPress POST web requests from before, except this
time captured by ModSecurity’s audit engine:

--26b60826-A--

[15/Feb/2012:09:08:17 --0500] Tzu8UcCoqAEAAR4rI1cAAAAA

109.70.36.102 58538 192.168.1.111 80

--357b3215-B--

POST /wordpress//xmlrpc.php HTTP/1.1

TE: deflate,gzip;q=0.3

Connection: TE, close

Host: localhost

User-Agent: Wordpress Hash Grabber v2.0libwww-perl/6.02

Content-Length: 738

--357b3215-C--

<?xml version=”1.0”?><methodCall><methodName>mt.setPostCategories

</methodName> <params> <param><value><string>3 union all

select user_pass from wp_users where id=3</string></value>

</param> <param><value><string>admin</string></value>

</param> <param><value><string>admin</string></value>

</param> <param><value> <array> <data><value> <struct>

<member> <name>categoryId</name> <value><string>1

362181c01.indd 49 11/1/12 10:57 AM

Preparing the Battle Space50

R
ecip

e 1-6

</string></value> </member> <member>

<name>categoryName</name> <value><string>Uncategorized

</string></value> </member> <member> <name>isPrimary

</name> <value><boolean>0</boolean></value> </member>

</struct></value> </data></array></value> </param> </params>

</methodCall>

--357b3215-F--

HTTP/1.1 200 OK

X-Powered-By: PHP/5.3.2-1ubuntu4.5

Content-Length: 649

Vary: Accept-Encoding

Content-Type: text/xml

Connection: close

--357b3215-E--

<div id=’error’>

 <p class=’wpdberror’>WordPress database error

: [You have an error in your SQL syntax; check the manual

 that corresponds to your MySQL server version for the right

syntax to use near ‘union all select user_pass from wp_users where

 id=3’ at line 3]

 <code>

 DELETE FROM wp_post2cat

 WHERE category_id = 349508cb0ff9325066aa6c490c

33d98b

 AND post_id = 3 union all select user_

pass from wp_users where id=3

 </code></p>

 </div><?xml version=”1.0”?>

<methodResponse>

 <params>

 <param>

 <value>

 <boolean>1</boolean>

 </value>

 </param>

 </params>

</methodResponse>

--357b3215-H--

Apache-Handler: proxy-server

Stopwatch: 1329314896780667 97446 (- - -)

Stopwatch2: 1329314896780667 97446; combined=278, p1=9, p2=229,

p3=10, p4=11, p5=18, sr=0, sw=1, l=0, gc=0

Response-Body-Transformed: Dechunked

Producer: ModSecurity for Apache/2.7.0-dev1 (http://www.

modsecurity.org/).

Server: Apache/2.2.17 (Unix) mod_ssl/2.2.12 OpenSSL/0.9.8r DAV/2

--357b3215-Z--

362181c01.indd 50 11/1/12 10:57 AM

Application Fortification 51

As you can see, the ModSecurity audit log file captures the entire HTTP transaction.
If you look at the bold section in Section C, Request Body, you can see that it looks like
a SQL Injection attack. This code is attempting to manipulate the input in the hopes of
altering the back-end SQL query logic to identify the local OS user whom the database is
running as. In Section E, Response Body, we can see that the bold text shows that the data-
base generated some error messages. We also see that the SQL Injection query executed
and that the attacker could extract the password hash for the user. The attacker can now
run various password-cracking sessions to try to enumerate the user’s password. With
this full transactional data captured, we are better equipped to figure out what data the
attackers stole.

Enabling Full Audit Logging to Separate Files

Although it is convenient to have all transactional data logged to only one file with the
SecAuditLogType Serial directive setting, there are two drawbacks. First, the file’s size will
grow extremely fast, depending on the amount of traffic your web application receives.
You need to keep a close eye on this file size so that no problems with disk space or
individual file size limits will occur. If the audit.log file exceeds this size limitation, new
data is not appended to the log. The second potential issue is performance. As the name
implies, with the Serial setting, each Apache child thread waits its turn to log to this file.
For better performance, we should use the Concurrent setting:

SecRuleEngine DetectionOnly

SecRequestBodyAccess On

SecResponseBodyAccess On

SecAuditEngine On

SecAuditLogParts ABCIFEHZ

SecAuditLog /usr/local/apache/logs/audit.log

SecAuditLogType Concurrent

SecAuditLogStorageDir /usr/local/apache/audit/logs/audit

When running in Concurrent mode, each HTTP transaction is assigned its own audit
log file. This approach provides better performance under heavy load and also facilitates
central logging of data, which is described in Recipe 1-10. When running in Concurrent
mode, the audit.log file’s contents change from holding transactional data to instead
working as an index file that points to the location of the individual files under the
SecAuditLogStorageDir location:

localhost 127.0.0.1 - - [15/Feb/2012:14:35:41 --0500] “GET /wordpr

ess//xmlrpc.php HTTP/1.1” 200 %ld “-” “-” TzwJDcCoqAEAACQmHRAAAAAD

 “-” /20120215/20120215-1435/20120215-143541-TzwJDcCoqAEAACQmHRAAA

AAD 0 863 md5:ea8618293f59d2854d868685445cd4c8

localhost 127.0.0.1 - - [15/Feb/2012:14:35:42 --0500] “POST /wordp

ress//xmlrpc.php HTTP/1.1” 200 %ld “-” “-” TzwJDsCoqAEAACQjHTIAAAA

A “-” /20120215/20120215-1435/20120215-143542-TzwJDsCoqAEAACQjHTIA

AAAA 0 2220 md5:ed4231c6d2f1af4a1bf4cef11481f28f

362181c01.indd 51 11/1/12 10:57 AM

Preparing the Battle Space52

R
ecip

e 1-6

Each transaction uses the Apache mod_uniqueid hash in its filename to allow for iden-
tification. Each file still holds the exact same data as in Serial mode, except that it holds
data from only one transaction.

14http://sourceforge.net/apps/mediawiki/mod-security/index
.php?title=Reference_Manual

15https://sourceforge.net/apps/mediawiki/mod-security/index
.php?title=Data_Format

Recipe 1-7: Logging Only Relevant Transactions

This recipe shows you how to configure ModSecurity to log only transactions that are
deemed relevant from a security perspective.

Ingredients

•	 ModSecurity Reference Manual16

•	 SecRuleEngine directive

•	 SecAuditEngine directive

•	 SecAuditLog directive

•	 SecAuditLogType directive

•	 SecAuditLogParts directive

•	 SecAuditLogStorageDir directive

•	 SecRequestBodyAccess directive

•	 SecResponseBodyAccess directive

•	 SecAuditLogRelevantStatus directive

I strongly recommend that organizations use full HTTP audit logging, as described in
Recipe 1-6. That being said, I understand that logging full HTTP transactional data may
be infeasible for your web application. If you decide not to log all data, you can configure
ModSecurity to log only what it determines to be relevant transactions. If you change the
SecAuditEngine directive from On to RelevantOnly, ModSecurity creates an audit log entry
under only two distinct scenarios:

•	 If there is a positive match from one of the SecRule directives

•	 If the web server responds with an HTTP status code as defined by a regular
expression in the SecAuditLogRelevantStatus directive

Here is an updated audit logging configuration that uses only relevant logging:

SecRuleEngine DetectionOnly

SecRequestBodyAccess On

SecResponseBodyAccess On

SecAuditEngine RelevantOnly

R
ecip

e 1-7

362181c01.indd 52 11/1/12 10:57 AM

Application Fortification 53

SecAuditLogRelevantStatus “^(?:5|4(?!04))”

SecAuditLogParts ABCIFEHZ

SecAuditLog /usr/local/apache/logs/audit.log

SecAuditLogType Serial

With these configurations, in addition to normal ModSecurity SecRule matches, audit
logs are created for any transaction in which the HTTP response status code is a 500 level
(server errors) or 400 level (user errors), excluding 404 Not Found events.

16http://sourceforge.net/apps/mediawiki/mod-security/
index.php?title=Reference_Manual

Recipe 1-8: Ignoring Requests for Static Content

This recipe shows you how to configure ModSecurity to exclude audit logging of HTTP
requests for static resources.

Ingredients

•	 ModSecurity Reference Manual17

•	 ctl:ruleEngine action

•	 ctl:auditEngine action

Logging all HTTP transactions is ideal from an incident response perspective. However,
some organizations may decide that they want to exclude inspection and logging of
requests for static resources to improve performance and latency and reduce the amount
of logging required. The theory is that if a request for some type of static resource (such
as image files) occurs, the potential attack surface is greatly reduced, because there are
no parameters. Parameter payloads are used as the primary injection points for passing
attack data to dynamic resources that accept user input for internal processing. If we want
to disable inspection and logging for these static resource requests, we must first analyze
the request components to ensure that they are not attempting to pass any parameter data.
Take a look at the following sample rules:

SecRule REQUEST_METHOD “@pm GET HEAD” “id:’999001’,chain,phase:1,

t:none,nolog,pass”

 SecRule REQUEST_URI “!@contains ?” “chain”

 SecRule &ARGS “@eq 0” “chain”

 SecRule &REQUEST_HEADERS:Content-Length|

&REQUEST_HEADERS:Content-Type “@eq 0” “ctl:ruleEngine=Off,

ctl:auditEngine=Off“

R
ecip

e 1-8

362181c01.indd 53 11/1/12 10:57 AM

Preparing the Battle Space54

R
ecip

e 1-8

This chained rule set verifies the request details by doing the following:

•	 It verifies that the request method is either a GET or a HEAD. If it is anything else,
the request should probably be logged, because it is a dynamic request method
looking to alter data.

•	 It verifies that no query string is present in the URI by checking for the question
mark character.

•	 It verifies that no parameters are present in the query string or request body by
checking for the presence of the ARGS collection.

•	 It verifies that no request body is present by checking for the existence of the
Content-Length and Content-Type request headers.

If all these rules match, the final SecRule executes the two bold ctl actions to dynami-
cally disable the rule and audit engines.

caution

The rationale for disabling inspection and logging of static resource requests is valid,
but you should approach this choice with caution. Although these rules help profile the
potential attack surface, they are not foolproof. The main attack vector location, which
is still open, is cookies. If your application uses cookies, this leaves open a potential vec-
tor for attacks. However, if you update the sample exclusion rules to include checking
for the existence of the Cookie: request header, you lose the performance gain you are
going for, because cookies are sent for static image requests.

17http://sourceforge.net/apps/mediawiki/mod-security/
index.php?title=Reference_Manual

Recipe 1-9: Obscuring Sensitive Data in Logs

This recipe shows you how to use ModSecurity to obscure sensitive data that is captured
within the audit logs.

Ingredients

•	 ModSecurity Reference Manual18

•	 sanitiseArg action

•	 sanitiseMatchedBytes action

R
ecip

e 1-9

362181c01.indd 54 11/1/12 10:57 AM

Application Fortification 55

HTTP audit logging comes with a catch-22: Some sensitive user data probably is cap-
tured within the logs, such as passwords or credit card data. We want to log these transac-
tions, but we do not want to expose this sensitive data to anyone who may access these
logs. ModSecurity has a few different rule actions that can be used to obscure selected
data within the audit logs. Let’s look at a few sample use cases.

Login Passwords

Let’s use the WordPress login form shown in Figure 1-6 as an example.

Figure 1-6: Sample WordPress login form

In Figure 1-6, we see from the HTML source code that the password being submitted
is passed in a parameter called pwd. If we want to obscure the password payload in the
logs, we can add the following sample rule that uses the ModSecurity sanitiseArg action:

SecRule &ARGS:pwd “@eq 1” “phase:5,t:none,id:’111’,nolog,pass,\

sanitiseArg:pwd“

362181c01.indd 55 11/1/12 10:57 AM

Preparing the Battle Space56

R
ecip

e 1-9

When the login form is submitted, this is how the transactional data now appears in
the audit log file:

--e947184b-A--

[20/Feb/2012:09:54:24 --0500] T0Jen8CoAWcAAQ0jNzcAAAAA 192.168.1.103

 59884 192.168.1.103 80

--e947184b-B--

POST /wordpress/wp-login.php HTTP/1.1

Host: 192.168.1.103

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:10.0.1)

Gecko/20100101 Firefox/10.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;

q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Connection: keep-alive

Referer: http://192.168.1.103/wordpress/wp-login.php

Content-Type: application/x-www-form-urlencoded

Content-Length: 63

--e947184b-C--

log=admin&pwd=*****&submit=Login+%C2%BB&redirect_to=wp-admin%2F

--e947184b-F--

HTTP/1.1 302 Found

X-Powered-By: PHP/5.3.2-1ubuntu4.5

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Last-Modified: Sat, 18 Feb 2012 09:32:29 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Pragma: no-cache

Location: wp-admin/

Vary: Accept-Encoding

Content-Length: 0

Content-Type: text/html; charset=UTF-8

Set-Cookie: wordpressuser_fdd6fe9e4093f5711cf9621dd3ae90d9=admin;

path=/wordpress/

Set-Cookie: wordpresspass_fdd6fe9e4093f5711cf9621dd3ae90d9=

c3284d0f94606de1fd2

af172aba15bf3; path=/wordpress/

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

As you can see from the bold data in Section C, the pwd parameter payload is now
obscured with asterisks.

362181c01.indd 56 11/1/12 10:57 AM

Application Fortification 57

Credit Card Usage

If your web application conducts e-commerce transactions in which users submit credit
card data, you need to be sure to also obscure that data within the audit logs. The follow-
ing ModSecurity rules sanitize any payload that passes the @verifyCC operator check:

SecRule ARGS “@verifyCC \d{13,16}” “id:’112’,phase:2,log,capture,\

pass,msg:’Credit Card Number Detected in Request’,sanitiseMatched“

This example uses sanitiseMatched instead of the specific sanitiseArg action because
organizations often are not completely sure of every possible parameter location within
their applications where credit card data may be submitted. Here is a sample audit log
entry showing that the bold creditCardNumber parameter payload is now obscured:

--4358a809-A--

[20/Feb/2012:11:02:53 --0500] T0Jup8CoqAEAAUFmEEgAAAAA 127.0.0.1

60880 127.0.0.1 80

--4358a809-B--

POST /site/checkout.jsp HTTP/1.1

Host: www-ssl.site.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:10.0.1)

Gecko/20100101 Firefox/10.0.1

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;

q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

DNT: 1

Connection: keep-alive

Referer: https://www-ssl.site.com/site/cart.jsp

Cookie: JSESSIONID=CD052245017816ABD24D4FD2C836FAD9;

Content-Type: application/x-www-form-urlencoded

Content-Length: 6020

--4358a809-C--

paymentType=default&_D%3ApaymentType=+&

creditCardNumber=***************&_D%3AcreditCardNumber=+&cid=6802

&_D%3Acid=+&selCreditCardType=AmericanExpress&_D%3AselCreditCardType

=+&_D%3AexpirationMonth=+&expirationMonth=10&_D%3

AexpirationYear=+&expirationYear=2013&_D%3

AchkSaveCreditCard=+&financeOptions=14&_D%3AfinanceOptions=+&_D%3

AfinanceOptions=+&_D%3AfinanceOptions=+&...

18http://sourceforge.net/apps/mediawiki/mod-security/index
.php?title=Reference_Manual

362181c01.indd 57 11/1/12 10:57 AM

Preparing the Battle Space58

Centralized Logging

Recipe 1-10: Sending Alerts to a Central Log Host Using
Syslog

This recipe shows you how to configure Apache to use Syslog to send alert data to a
central logging host.

Ingredients

•	 Apache ErrorLog directive19

•	 Syslog configuration file

•	 Central Syslog host

The standard logging mechanism for ModSecurity uses the local file system for stor-
age. The short, one-line alert messages are automatically logged to the Apache ErrorLog
directive location. This approach works fine for smaller organizations, but if you have an
entire web server farm to monitor, it can quickly become unmanageable to keep track of
alerts. In this scenario, you can quite easily reconfigure your Apache settings to send its
error_log data to the local Syslogd process for handling. This is quickly accomplished by
updating the ErrorLog directive like this:

$ grep ErrorLog httpd.conf

#ErrorLog /var/log/httpd/error_log

ErrorLog syslog:local7

This new setting sends all Apache error messages to the local syslog process using
the local7 facility. The next step is to edit the syslog.conf file and add some new entries:

$ grep local7 /etc/syslog.conf

local7.* /data/httpd/error_log

local7.* @192.168.1.200

Here we have added two entries to the syslog.conf file. The first entry simply reroutes
the Apache error_log data to the normal local file location on the host. The second entry
forwards all the same data to the central logging host at IP address 192.168.1.200 using the
default UDP protocol on port 514. After these settings are added, you should restart your
Syslogd service. After this is done, the Apache error_log data should be sent to the central
logging host. Here is some sample output after the ngrep tool on the ModSecurity sensor
host has been used to monitor the data as it is sent to the central log host using Syslog:

$ sudo ngrep -d eth5 port 514

interface: eth5 (192.168.1.0/255.255.255.0)

R
ecip

e 1-10

362181c01.indd 58 11/1/12 10:57 AM

Application Fortification 59

filter: (ip or ip6) and (port 514)

#

U 192.168.1.110:514 -> 192.168.1.200:514

 <187>httpd[16219]: [error] [client 192.168.1.103] ModSecurity:

Warning. Pattern match “^[\\\\d.:]+$” at REQUEST_HEADERS:Host.

[file “/opt/wasc-honeypot/etc/crs/activated_rules/

modsecurity_crs_21_protocol_anomalies.conf”] [line

“98”] [id “960017”] [rev “2.2.1”] [msg “Host header is a numeric

IP address”] [severity “CRITICAL”] [tag “PROTOCOL_VIOLATION/IP_

HOST”] [tag “WASCTC/WASC-21”] [tag “OWASP_TOP_10/A7”]

[tag “PCI/6.5.10”] [tag “http://technet.microsoft.com/en-

us/magazine/2005.01.hackerbasher.aspx”]

[hostname “192.168.1.110”] [uri “/wp-content/themes

/pbv_multi/scripts/timthumb.php”] [unique_id

“T0J-M38AAQEAAD9bDpAAAAAA”]

#

U 192.168.1.110:514 -> 192.168.1.200:514

 <187>httpd[16219]: [error] [client 192.168.1.103] ModSecurity:

Warning. Match of “beginsWith %{request_headers.host}” against

“TX:1” required. [file “/opt/wasc-honeypot

/etc/crs/activated_rules/modsecurity_crs_40_generic_attacks.

conf”] [line “168”] [id “950120”] [rev “2.2.1”] [msg “Remote

File Inclusion Attack”] [severity “CRITICAL”] [hostname

“192.168.1.110”] [uri “/wp-content/themes/pbv_multi/scripts/

timthumb.php”] [unique_id “T0J-M38AAQEAAD9bDpAAAAAA”]

#

U 192.168.1.110:514 -> 192.168.1.200:514

 <187>httpd[16219]: [error] [client 192.168.1.103] ModSecurity:

Warning. Pattern match “\\\\bsrc\\\\b\\\\W*?\\\\bhttp:” at

REQUEST_URI.

 [file “/opt/wasc-honeypot/etc/crs/activated_rules/

modsecurity_crs_41_xss_attacks.conf”] [line “405”] [id “958098”]

[rev “2.2.1”] [msg “Cross-site Scripting (XSS) Attack”] [data

“src=http:”] [severity “CRITICAL”] [tag “WEB_ATTACK/XSS”]

[tag “WASCTC/WASC-8”] [tag “WASCTC/WASC-22”]

[tag “OWASP_TOP_10/A2”] [tag “OWASP_AppSensor/IE1”]

[tag “PCI/6.5.1”] [hostname “192.168.1.110”]

[uri “/wp-content/themes/pbv_multi/scripts/timthumb.php”]

 [unique_id “T0J-M38AAQEAAD9bDpAAAAAA”]

Figure 1-7 shows the Syslog data in a central logging host using the Trustwave Security
Information Event Management (SIEM)20 application.

After these ModSecurity alerts are centralized, custom searching and alerting mecha-
nisms may be implemented to conduct further analysis and trending information for
events from across your web architecture.

19http://httpd.apache.org/docs/2.2/mod/core.html#errorlog

20https://www.trustwave.com/siem/

362181c01.indd 59 11/1/12 10:57 AM

Preparing the Battle Space60

R
ecip

e 1-10

Figure 1-7: Syslog data in Trustwave’s SIEM

Recipe 1-11: Using the ModSecurity AuditConsole

This recipe shows you how to set up the ModSecurity AuditConsole for centralized log-
ging of audit log data.

Ingredients

•	 Jwall AuditConsole21

•	 ModSecurity’s mlogc program

Recipe 1-10 showed you how to centralize the short, one-line ModSecurity alert mes-
sage that is sent to the Apache error_log file by sending it through Syslog. This is a good

R
ecip

e 1-11

362181c01.indd 60 11/1/12 10:57 AM

Application Fortification 61

approach, but the main disadvantage is that the data being centrally logged is only a
small subset of the data that was logged in the audit log file. To confirm the accuracy of
the alert messages, you need to review the full audit log file data. One application that
can be used for central logging of ModSecurity events is AuditConsole, a Java tool writ-
ten by Christian Bockermann.

Installation

Here ar	e the basic steps for installing the AuditConsole. First, download the latest version
of the console from http://download.jwall.org/AuditConsole/current/. Next, you need
to choose a location where you want the console to be installed. The following commands
assume that you will place it under the /opt directory:

cd /opt

unzip /path/to/AuditConsole-0.4.3-16-standalone.zip

cd /opt/AuditConsole

chmod 755 bin/*.sh

At the time this book was written, the latest version was 0.4.3-16.
The chmod command is required, because zip archives normally do not preserve the

executable bit required on the scripts under the bin/ directory. The final step is to start
the console, log into the web interface, and run through the setup wizard:

cd /opt/AuditConsole

sh bin/catalina.sh start

After the application starts, use a web browser to go to https://localhost:8443 and
follow the setup wizard instructions. The default back-end database is Apache Derby.
It is recommended that you change the database to MySQL for production usage. It
is also recommended that you follow the excellent User Guide documentation on the
Jwall web site to configure all aspects of the AuditConsole: https://secure.jwall.org/
AuditConsole/user-guide/.

To set up a remote sensor, go to the System a Sensors location, click the Add Sensor
button, and fill in the data, as shown in Figure 1-8.

As soon as you have added a remote sensor to the AuditConsole, the next step is to
update the ModSecurity host’s audit log configurations so that it can forward its logs.
Update the audit log settings as shown here so that the SecAuditLog directive points to
the mlogc program and the mlogc.conf file:

SecRuleEngine DetectionOnly

SecRequestBodyAccess On

SecResponseBodyAccess On

SecAuditEngine On

SecAuditLogParts ABCIFEHZ

362181c01.indd 61 11/1/12 10:57 AM

Preparing the Battle Space62

R
ecip

e 1-11

SecAuditLog “|/user/local/bin/mlogc /usr/local/apache

/etc/mlogc.conf”

SecAuditLogType Concurrent

SecAuditLogStorageDir /usr/local/apache/audit/logs/audit

Figure 1-8: AuditConsole’s Add Sensor page

The mlogc program acts as an HTTP client utility. As new audit log data is created,
it forwards the individual audit log files to the central logging host by using an HTTP/
HTTPS PUT method and then uploads the file. The mlogc.conf file is the configuration file
where you can specify how to manage the audit logs. The following is an example of the
mlogc.conf configuration file. The bold entries are the most relevant. ConsoleURI points
to the location of the central AuditConsole host, and SensorUsername and SensorPassword
are the credentials you specified when creating the sensor shown in Figure 1-8:

##

Required configuration

At a minimum, the items in this section will need to be adjusted

to fit your environment. The remaining options are optional.

##

362181c01.indd 62 11/1/12 10:57 AM

Application Fortification 63

Points to the root of the installation. All relative

paths will be resolved with the help of this path.

CollectorRoot “/data/mlogc”

ModSecurity Console receiving URI. You can change the host

and the port parts but leave everything else as is.

ConsoleURI “http://192.168.1.201/rpc/auditLogReceiver”

Sensor credentials

SensorUsername “Test”

SensorPassword “test1234”

Base directory where the audit logs are stored. This can be

specified as a path relative to the CollectorRoot, or a full path.

LogStorageDir “data”

Transaction log will contain the information on all log collector

activities that happen between checkpoints. The transaction log

is used to recover data in case of a crash (or if Apache kills

the process).

TransactionLog “mlogc-transaction.log”

The file where the pending audit log entry data is kept. This file

is updated on every checkpoint.

QueuePath “mlogc-queue.log”

The location of the error log.

ErrorLog “mlogc-error.log”

Keep audit log entries after sending? (0=false 1=true)

NOTE: This is required to be set in SecAuditLog mlogc config if

you are going to use a secondary console via SecAuditLog2.

KeepEntries 0

##

Optional configuration

##

The error log level controls how much detail there

will be in the error log. The levels are as follows:

0 - NONE

1 - ERROR

2 - WARNING

3 - NOTICE

4 - DEBUG

5 - DEBUG2

362181c01.indd 63 11/1/12 10:57 AM

Preparing the Battle Space64

R
ecip

e 1-11

#

ErrorLogLevel 3

How many concurrent connections to the server

are we allowed to open at the same time? Log collector uses

multiple connections in order to speed up audit log transfer.

This is especially needed when the communication takes place

over a slow link (e.g. not over a LAN).

MaxConnections 10

The time each connection will sit idle before being reused,

in milliseconds. Increase if you don’t want ModSecurity Console

to be hit with too many log collector requests.

TransactionDelay 50

The time to wait before initialization on startup in milliseconds.

Increase if mlogc is starting faster than termination when the

sensor is reloaded.

StartupDelay 1000

How often is the pending audit log entry data going to be written

to a file? The default is 15 seconds.

CheckpointInterval 15

If the server fails all threads will back down until the

problem is sorted. The management thread will periodically

launch a thread to test the server. The default is to test

once in 60 seconds.

ServerErrorTimeout 60

The following two parameters are not used yet, but

reserved for future expansion.

KeepAlive 150

KeepAliveTimeout 300

When everything is configured and you have restarted Apache, new audit log files
are sent to the AuditConsole host in real time. You can then use the AuditConsole to
view, sort, and search for events of interest and see full audit log details, as shown in
Figure 1-9.

21http://jwall.org/web/audit/console/index.jsp

362181c01.indd 64 11/1/12 10:57 AM

Application Fortification 65

Figure 1-9: AuditConsole’s Events page

362181c01.indd 65 11/1/12 10:57 AM

362181c01.indd 66 11/1/12 10:57 AM

