
1
Programming with Visual C++

 WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ What the principal components of Visual C++ are

 ➤ What solutions and projects are and how you create them

 ➤ About console programs

 ➤ How to create and edit a program

 ➤ How to compile, link, and execute C++ console programs

 ➤ How to create and execute basic Windows programs

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can fi nd the wrox.com code downloads for this chapter on the Download Code tab at
www.wrox.com/remtitle.cgi?isbn=9781118368084. The code is in the Chapter 1
download and individually named according to the names throughout the chapter.

LEARNING WITH VISUAL C++

Windows programming isn’t diffi cult. Microsoft Visual C++ makes it remarkably easy,
as you’ll see throughout the course of this book. There’s just one obstacle in your path: Before
you get to the specifi cs of Windows programming, you have to be thoroughly familiar with the
capabilities of the C++ programming language, particularly the object-oriented capabilities.
Object-oriented techniques are central to the effectiveness of all the tools provided by Visual
C++ for Windows programming, so it’s essential that you gain a good understanding of them.
That’s exactly what this book provides.

c01.indd 1c01.indd 1 24/08/12 7:44 AM24/08/12 7:44 AM

CO
PYRIG

HTED
 M

ATERIA
L

2 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

This chapter gives you an overview of the essential concepts involved in programming applications
in C++. You’ll take a rapid tour of the integrated development environment (IDE) that comes with
Visual C++. The IDE is straightforward and generally intuitive in its operation, so you’ll be able
to pick up most of it as you go along. The best way to get familiar with it is to work through the
process of creating, compiling, and executing a simple program. So power up your PC, start
Windows, load the mighty Visual C++, and begin your journey.

WRITING C++ APPLICATIONS

You have tremendous fl exibility in the types of applications and program components that you can
develop with Visual C++. Applications that you can develop fall into two broad categories:
desktop applications and Windows 8 apps. Desktop applications are the applications that you
know and love; they have an application window that typically has a menu bar and a toolbar and
frequently a status bar at the bottom of the application window. This book focuses primarily on
desktop applications.

Windows 8 apps are different from desktop applications. They have a user interface that is
completely different from desktop applications. The focus is on the content where the user
interacts directly with the data, rather than interacting with controls such as menu items and
toolbar buttons.

Once you have learned C++, this book concentrates on using the Microsoft Foundation Classes
(MFC) with C++ for building desktop applications. The application programming interface (API)
for Windows desktop applications is referred to as Win32. Win32 has a long history and was
developed long before the object-oriented programming paradigm emerged, so it has none of the
object-oriented characteristics that would be expected if it were written today. The MFC consists
of a set of C++ classes that encapsulate the Win32 API for user interface creation and control and
greatly eases the process of program development. You are not obliged to use the MFC, though.
If you want the ultimate in performance you can write your C++ code to access the Windows API
directly, but it certainly won’t be as easy.

Figure 1-1 shows the basic options you have for
developing C++ applications.

Figure 1-1 is a simplifi ed representation of what
is involved. Desktop applications can target
Windows 7, Windows 8, or Windows Vista.
Windows 8 apps execute only with Windows 8
and you must have Visual Studio 2012 installed
under Windows 8 to develop them. Windows
8 apps communicate with the operating system
through the Windows Runtime, WinRT.
I’ll introduce you to programming Windows 8
applications in Chapter 18.

FIGURE 1-1

Native C++

Desktop Applications Windows 8 Apps

MFCNative C++ Native C++

Windows Runtime (WinRT)Windows API (Win32)

Windows 7/8 Windows 8

Hardware

c01.indd 2c01.indd 2 24/08/12 7:44 AM24/08/12 7:44 AM

Learning Desktop Applications Programming ❘ 3

LEARNING DESKTOP APPLICATIONS PROGRAMMING

There are always two basic aspects to interactive desktop applications executing under Windows:
You need code to create the graphical user interface (GUI) with which the user interacts, and you
need code to process these interactions to provide the functionality of the application. Visual C++
provides you with a great deal of assistance in both aspects. As you’ll see later in this chapter,
you can create a working Windows program with a GUI without writing any code at all. All the
basic code to create the GUI can be generated automatically by Visual C++. Of course, it’s essential
to understand how this automatically generated code works because you need to extend and
modify it to make the application do what you want. To do that you need a comprehensive
 understanding of C++.

For this reason you’ll fi rst learn C++ without getting involved in Windows programming
considerations. After you’re comfortable with C++ you’ll learn how to develop fully fl edged
Windows applications. This means that while you are learning C++, you’ll be working with
programs that involve only command line input and output. By sticking to this rather limited
input and output capability, you’ll be able to concentrate on the specifi cs of how the C++ language
works and avoid the inevitable complications involved in GUI building and control. Once you are
 comfortable with C++ you’ll fi nd that it’s an easy and natural progression to applying C++ to the
development of Windows application programs.

NOTE As I’ll explain in Chapter 18, Windows 8 apps are diff erent. You specify the
GUI in XAML, and the XAML is used to generate the C++ program code for GUI
elements.

Learning C++

Visual C++ supports the C++ language defi ned by the most recent ISO/IEC C++ standard that was
published in 2011. The standard is defi ned in the document ISO/IEC 14882:2011 and commonly
referred to as C++ 11. The Visual C++ compiler does not support all the new language features
introduced by this latest standard, just some of the most commonly used features, but it will surely
be extended over time. Programs that you write in standard C++ can be ported from one system
environment to another reasonably easily, although the library functions that a program
uses — particularly those related to building a graphical user interface — are a major determinant
of how easy or diffi cult it will be. ISO/IEC standard C++ is the fi rst choice of a great many
professional program developers because it is so widely supported, and because it is one of the most
powerful programming languages available today.

Chapters 2 through 9 of this book teach you the C++ language and introduce some of the most
commonly used C++ standard library facilities along the way. Chapter 10 explains how you can use
the Standard Template Library (STL) for C++ for managing collections of data.

c01.indd 3c01.indd 3 24/08/12 7:44 AM24/08/12 7:44 AM

4 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

Console Applications

Visual C++ console applications enable you to write, compile, and test C++ programs that have
none of the baggage required for Windows programs. These programs are called console
applications because you communicate with them through the keyboard and the screen in character
mode, so they are essentially character-based, command-line programs.

When you write console applications, it might seem as if you are being sidetracked from the main
objective of programming applications for Windows, but when it comes to learning C++ it’s by far
the best way to proceed in my view. There’s a lot of code in even a simple Windows program, and
it’s very important not to be distracted by the complexities of Windows when learning the ins and
outs of the C++ language. In the early chapters of the book that are concerned with how C++ works,
you’ll spend time walking with a few lightweight console applications before you get to run with the
heavyweight sacks of code in the world of Windows.

Windows Programming Concepts

The project creation facilities provided with Visual C++ can generate skeleton code for a wide
variety of C++ application programs automatically. A Windows program has a different structure
from that of the typical console program that you execute from the command line and it’s more
complicated. In a console program you can get user input from the keyboard and write output back
to the command line directly, and that is essentially it. A Windows application can access the input
and output facilities of the computer only by way of functions supplied by the host environment;
no direct access to the hardware resources is permitted. Several programs can be active at one time
under Windows, so the operating system has to determine which application a given raw input such
as a mouse click or the pressing of a key on the keyboard is destined for, and signal the program
concerned accordingly. Thus, the Windows operating system always has primary control of all
communications with the user.

The nature of the interface between a user and a Windows desktop application is such that a wide
range of different inputs is usually possible at any given time. A user may select any of a number
of menu options, click on one of several toolbar buttons, or click the mouse somewhere in the
application window. A well-designed Windows application has to be prepared to deal with any
of the possible types of input at any time because there is no way of knowing in advance which
type of input is going to occur. These user actions are received by the operating system in the
fi rst instance, and are all regarded by Windows as events. An event that originates with the user
interface for your application will typically result in a particular piece of your program code
being executed. How program execution proceeds is therefore determined by the sequence of
user actions. Programs that operate in this way are referred to as event-driven programs, and are
 different from traditional procedural programs that have a single order of execution. Input
to a procedural program is controlled by the program code and can occur only when the program
permits it; therefore, a Windows program consists primarily of pieces of code that respond to
events caused by the action of the user, or by Windows itself. This sort of program structure is
illustrated in Figure 1-2.

c01.indd 4c01.indd 4 24/08/12 7:44 AM24/08/12 7:44 AM

What Is the Integrated Development Environment? ❘ 5

Each block within the Desktop Application block in Figure 1-2 represents a piece of code written
specifi cally to deal with a particular event. The program may appear to be somewhat fragmented
because of the disjointed blocks of code, but the primary factor welding the program into a whole
is the Windows operating system itself. You can think of your program as customizing Windows to
provide a particular set of capabilities.

Of course, the modules servicing external events such as the selection of a menu or a mouse click,
all typically have access to a common set of application-specifi c data in a particular program. This
data contains information that relates to what the program is about — for example, blocks of text
 recording scoring records for a player in a program aimed at tracking how your baseball team is
doing — as well as information about some of the events that have occurred during execution of the
program. This shared collection of data allows various parts of the program that look independent to
communicate and operate in a coordinated and integrated fashion. I will go into this in much more
detail later in the book.

Even an elementary Windows program involves several lines of code, and with Windows programs
generated by the application wizards that come with Visual C++, “several” turns out to be “very many.”
To simplify the process of understanding how C++ works, you need a context that is as uncomplicated
as possible and at the same time has the tools to make it easy to navigate around sacks of code.
Fortunately, Visual C++ comes with an environment that is designed specifi cally for the purpose.

WHAT IS THE INTEGRATED DEVELOPMENT ENVIRONMENT?

The integrated development environment (IDE) that comes with Visual C++ is a completely self-contained
environment for creating, compiling, linking, and testing your C++ programs. It also happens to be a
great environment in which to learn C++ (particularly when combined with a great book).

FIGURE 1-2

Your Desktop Application

Program Data

Keyboard

Input

Press

Left Mouse

Button

Press

Right Mouse

Button

Events

Windows 7/8

Other Event

Process

Keyboard

Input

Process

Left Mouse

Button

Process

Other Event

Process

Right Mouse

Button

c01.indd 5c01.indd 5 24/08/12 7:44 AM24/08/12 7:44 AM

6 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

Visual C++ incorporates a range of fully integrated tools designed to make the whole process of
writing C++ programs easy. You will see something of these in this chapter, but rather than grind
through a boring litany of features and options in the abstract, you can fi rst take a look at the basics
to get a view of how the IDE works and then pick up the rest in context as you go along.

The fundamental parts of Visual C++, provided as part of the IDE, are the editor, the compiler, the
linker, and the libraries. These are the basic tools that are essential to writing and executing a C++
program.

The Editor

The editor provides an interactive environment in which to create and edit C++ source code. As well
as the usual facilities, such as cut and paste, which you are certainly already familiar with, the
editor also provides color cues to differentiate between various language elements. The editor
 automatically recognizes fundamental words in the C++ language and assigns a color to them
according to what they are. This not only helps to make your code more readable, but also provides
a clear indicator of when you make errors in keying such words. Another very helpful feature is
IntelliSense. IntelliSense analyzes the code as you enter it, and underlines anything that is incorrect
with a red squiggle. It can also provide prompts where the options for what you need to enter next
in the code can be determined.

NOTE IntelliSense doesn’t just work with C++. It works with XAML too.

The Compiler

You execute the compiler when you have entered the C++ code for your program. The compiler
converts your source code into object code, and detects and reports errors in the compilation process.
The compiler can detect a wide range of errors caused by invalid or unrecognized program code, as
well as structural errors, such as parts of a program that can never be executed. The object code output
from the compiler is stored in fi les called object fi les that have names with the extension .obj.

The Linker

The linker combines the various modules generated by the compiler from source code fi les,
adds required code modules from program libraries that are supplied as part of C++, and welds
 everything into an executable whole, usually in the form of an .exe fi le. The linker can also detect
and report errors — for example, if part of your program is missing, or a nonexistent library
component is referenced.

The Libraries

A library is simply a collection of prewritten routines that supports and extends the C++ language
by providing standard professionally produced code units that you can incorporate into your
 programs to carry out common operations. The operations implemented by the various libraries

c01.indd 6c01.indd 6 24/08/12 7:44 AM24/08/12 7:44 AM

Using the IDE ❘ 7

provided by Visual C++ greatly enhance productivity by saving you the effort of writing and testing
the code for such operations yourself.

The Standard C++ Library defi nes a basic set of facilities that are common to all ISO/IEC
 standard-conforming C++ compilers. It contains a wide range of commonly used routines, including
numerical functions, such as the calculation of square roots and the evaluation of trigonometrical
functions; character- and string-processing functions, such as the classifi cation of characters and the
comparison of character strings; and many others. It also defi nes data types and standard templates
for generating customized data types and functions. You’ll get to know quite a number of these as
you develop your knowledge of C++.

Window-based desktop applications are supported by a library called the Microsoft Foundation
Classes (MFC). The MFC greatly reduces the effort needed to build the GUI for an application.
(You’ll see a lot more of the MFC when you fi nish exploring the nuances of the C++ language.)

USING THE IDE

All program development and execution in this book is performed from within the IDE. When you
start Visual C++ you’ll see an application window similar to that shown in Figure 1-3.

FIGURE 1-3

c01.indd 7c01.indd 7 24/08/12 7:44 AM24/08/12 7:44 AM

8 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

The pane to the left in Figure 1-3 is the Solution Explorer
window, the top right pane presently showing the Start page
is the Editor window, and the tab visible in the pane at the
bottom is the Output window. The Solution Explorer window
enables you to navigate through your program fi les and
display their contents in the Editor window, and to add new
fi les to your program. The Solution Explorer window can
display other tabs (only three are shown in Figure 1-3), and
you can select which tabs are to be displayed from the View
menu. The Editor window is where you enter and modify
source code and other components of your application. The
Output window displays the output from build operations in
which a project is compiled and linked. You can choose to
display other windows by selecting from the View menu.

Note that a window can generally be undocked from its
position in the Visual C++ application window. Just right-click
the title bar of the window you want to undock and select
Float from the pop-up menu. In general, I will show windows
in their undocked state in the book. You can restore a window
to its docked state by right-clicking its title bar and selecting
Dock from the pop-up or by dragging it with the left mouse
button down to the position that you want in the application
window.

Toolbar Options

You can choose which toolbars are displayed in your Visual
C++ window by right-clicking in the toolbar area. The range
of toolbars in the list depends on which edition of Visual
Studio 2012 you have installed. A pop-up menu with a list of
toolbars (Figure 1-4) appears, and the toolbars currently
displayed have checkmarks alongside them.

This is where you decide which toolbars are visible at any
one time. You can make your set of toolbars the same as
those shown in Figure 1-3 by making sure the Build, Debug,
Formatting, Layout, Standard, and Text Editor menu items
are selected. Clicking a toolbar in the list checks it if it is deselected, and results in its being
displayed; clicking a toolbar that is selected/deselects it and hides the toolbar.

NOTE A toolbar won’t necessarily display all the buttons that are available for
it. You can add or remove buttons for a toolbar by clicking the down arrow that
appears at the right of the button set. The buttons in the TextEditor toolbar
that indent and unindent a set of highlighted statements are particularly useful, as
are the buttons that comment out or uncomment a highlighted set of statements.

FIGURE 1-4

c01.indd 8c01.indd 8 24/08/12 7:44 AM24/08/12 7:44 AM

Using the IDE ❘ 9

You don’t need to clutter up the application window with all the toolbars you think you might need
at some time. Some toolbars appear automatically when required, so you’ll probably fi nd that the
default toolbar selections are perfectly adequate most of the time. As you develop your applications,
from time to time you might think it would be more convenient to have access to toolbars that aren’t
displayed. You can change the set of visible toolbars whenever it suits you by right-clicking in the
toolbar area and choosing from the context menu.

NOTE As in many other Windows applications, the toolbars that make up Visual
C++ come complete with tooltips. Just let the mouse pointer linger over a toolbar
button for a second or two, and a white label will display the function of that
button.

Dockable Toolbars

A dockable toolbar is one that you can move around to position it at a convenient place in the
window. You can arrange for any of the toolbars to be docked at any of the four sides of the
 application window. If you right-click in the toolbar area and select Customize from the pop-up, the
Customize dialog will be displayed. You can choose where a particular toolbar is docked by selecting
it and clicking the Modify Selection button. You can then choose from the drop-down list to dock
the toolbar where you want. Figure 1-5 shows how the dialog looks after the user selects the Build
toolbar on the left and clicks the Modify Selection drop-down list.

FIGURE 1-5

c01.indd 9c01.indd 9 24/08/12 7:44 AM24/08/12 7:44 AM

10 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

You’ll recognize many of the toolbar icons that Visual C++ uses from other Windows applications,
but you may not appreciate exactly what these icons do in the context of Visual C++, so I’ll describe
them as we use them.

Because you’ll use a new project for every program you develop, looking at what exactly a project is
and understanding how the mechanism for defi ning a project works is a good place to start fi nding
out about Visual C++.

Documentation

There will be plenty of occasions when you’ll want to fi nd out more information about Visual C++
and its features and options. Press Ctrl+F1 to access the product documentation. With the cursor on
elements in your code that are part of the C++ language or a standard library item, pressing F1 will
usually open browser window showing documentation for the element. The Help menu also provides
various routes into the documentation, as well as access to program samples and technical support.

Projects and Solutions

A project is a container for all the things that make up a program of some kind — it might be a
 console program, a window-based program, or some other kind of program — and it usually consists
of one or more source fi les containing your code, plus possibly other fi les containing auxiliary data.
All the fi les for a project are stored in the project folder; detailed information about the project is
stored in an XML fi le with the extension .vcxproj, also in the project folder. The project folder also
contains other folders that are used to store the output from compiling and linking your project.

The idea of a solution is expressed by its name, in that it is a mechanism for bringing together one
or more programs and other resources that represent a solution to a particular data-processing
problem. For example, a distributed order-entry system for a business operation might be
composed of several different programs that could each be developed as a project within a single
solution; therefore, a solution is a folder in which all the information relating to one or more
 projects is stored, and one or more project folders are subfolders of the solution folder. Information
about the projects in a solution is stored in two fi les with the extensions .sln and .suo, respectively.
When you create a project a new solution is created automatically unless you elect to add the project
to an existing solution.

When you create a project along with a solution, you can add further projects to the same solution.
You can add any kind of project to an existing solution, but you will usually add only a project
related in some way to the existing project, or projects, in the solution. Generally, unless you have a
good reason to do otherwise, each of your projects should have its own solution. Each example you
create with this book will be a single project within its own solution.

Defi ning a Project

The fi rst step in writing a Visual C++ program is to create a project for it using the File ➪ New ➪
Project menu option from the main menu or by pressing Ctrl+Shift+N; you can also simply click
New Project… on the Start page. As well as containing fi les that defi ne all the code and any other
data that makes up your program, the project XML fi le in the project folder also records the Visual
C++ options you’re using. That’s enough introductory stuff for the moment. It’s time to get your
hands dirty.

c01.indd 10c01.indd 10 24/08/12 7:44 AM24/08/12 7:44 AM

Using the IDE ❘ 11

TRY IT OUT Creating a Project for a Win32 Console Application

You’ll now take a look at creating a project for a console application. First, select File ➪ New ➪ Project
or use one of the other possibilities mentioned earlier to bring up the New Project dialog box.

The left pane in the New Project dialog box displays the types of projects you can create; in this case,
click Win32. This also identifi es an application wizard that creates the initial contents for the project.
The right pane displays a list of templates available for the project type you have selected in the left
pane. The template you select is used by the application wizard in creating the fi les that make up the
project. In the next dialog box you have an opportunity to customize the fi les that are created when you
click the OK button in this dialog box. For most of the type/template options, a basic set of program
source modules is created automatically. You can choose Win32 Console Application in this instance.

You can now enter a suitable name for your project by typing into the Name: text box — for example,
you could call this one Ex1_01, or you can choose your own project name. Visual C++ supports long
fi lenames, so you have a lot of fl exibility. The name of the solution folder appears in the bottom text box
and, by default, the solution folder has the same name as the project. You can change this if you want.
The dialog box also enables you to modify the location for the solution that contains your project —
this appears in the Location: text box. If you simply enter a name for your project, the solution folder is
automatically set to a folder with that name, with the path shown in the Location: text box. By default
the solution folder is created for you, if it doesn’t already exist. If you want to specify a different path for
the solution folder, just enter it in the Location: text box. Alternatively, you can use the Browse button to
select another path for your solution. Clicking OK displays the Win32 Application Wizard dialog box.

T his dialog box explains the settings currently in effect. In this case, you can click Application Settings
on the left to display the Application Settings page of the wizard, shown in Figure 1-6.

FIGURE 1-6

c01.indd 11c01.indd 11 24/08/12 7:44 AM24/08/12 7:44 AM

12 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

The Application Settings page enables you to choose options that you want to apply to the project. You
can see that you are creating a console application and not a Windows application. The Precompiled
header option is a facility for compiling source fi les such as those from the standard library that do not
change just once. When you recompile your program after making changes or additions to your code,
the precompiled code will be reused as is. You can see on the right of the dialog options for using MFC,
which I have mentioned, and ATL — the Application Template Library — which is outside the scope of
this book. Here, you can leave things as they are and click Finish. The application wizard then creates
the project with all the default fi les.

The project folder will have the name that you supplied as the project name and will hold all the fi les
making up the project defi nition. If you didn’t change it, the solution folder has the same name as the
project folder and contains the project folder plus the fi les defi ning the contents of the solution. If you
use Windows Explorer to inspect the contents of the solution folder, you’ll see that it contains four fi les:

 ➤ A fi le with the extension .sln that records information about the projects in the solution.

 ➤ A fi le with the extension .suo in which user options that apply to the solution will be recorded.

 ➤ A fi le with the extension .sdf that records data about IntelliSense for the solution. IntelliSense is
the facility that I mentioned earlier that provides auto-completion and prompts you for code in the
Editor window as you enter it.

 ➤ A fi le with the extension .opensdf that records information about the state of the project. This
fi le exists only while the project is open.

If you use Windows Explorer to look in the Ex1_01 project folder, you will see that there are seven fi les
initially, including a fi le with the name ReadMe.txt that contains a summary of the contents
of the fi les that have been created for the project. The project you have created will automatically open in
Visual C++ with the Solution Explorer pane, as in Figure 1-7.

The Solution Explorer tab presents a view of all the projects in the
current solution and the fi les they contain — here, of course, there
is just one project. You can display the contents of any fi le as an
additional tab in the Editor pane just by double-clicking the name
in the Solution Explorer tab. In the Editor pane, you can switch
instantly to any of the fi les that have been displayed just by
clicking on the appropriate tab.

The Class View tab displays the classes defi ned in your project and
also shows the contents of each class. You don’t have any classes in
this application, so the view is empty. When I discuss classes you will
see that you can use the Class View tab to move around the code
relating to the defi nition and implementation of all your application
classes quickly and easily.

You can also display the Property Manager tab by selecting it
from the View menu. It shows the properties that have been set for
the Debug and Release versions of your project. I’ll explain these a
little later in this chapter. You can change any of the properties for
a version by right-clicking a version and selecting Properties from

FIGURE 1-7

c01.indd 12c01.indd 12 24/08/12 7:44 AM24/08/12 7:44 AM

Using the IDE ❘ 13

the context menu; this displays a dialog where you can set the project properties. You can also press
Alt+F7 to display the Property Pages dialog at any time. I’ll discuss this in more detail when we go into
the Debug and Release versions of a program.

If it is not already visible, you can display the Resource View tab by selecting from the View menu or
by pressing Ctrl+Shift+E. The Resource View shows the dialog boxes, icons, menus, toolbars, and other
resources used by the program. Because this is a console program, no resources are used; however,
when you start writing Windows applications, you’ll see a lot of things here. Through this tab you can
edit or add to the resources available to the project.

As with most elements of the Visual C++ IDE, the Solution Explorer and other tabs provide
 context-sensitive pop-up menus when you right-click items displayed in the tab, and in some cases
when you right-click in the empty space in the tab, too. If you fi nd that the Solution Explorer pane gets
in your way when you’re writing code, you can hide it by clicking the Auto Hide icon. To redisplay it,
click the Name tab on the left of the IDE window.

Modifying the Source Code

The application wizard generates a complete Win32 console program that you can compile and
execute. Unfortunately, the program doesn’t do anything as it stands, so to make it a little more
interesting you need to change it. If it is not already visible in the Editor pane, double-click Ex1_01
.cpp in the Solution Explorer pane. This is the main source fi le for the program that the application
wizard generated, and is shown in Figure 1-8.

FIGURE 1-8

If the line numbers are not displayed on your system, select Tools ➪ Options from the main menu
to display the Options dialog. If you extend the C/C++ option in the Text Editor subtree in the left
pane and select General from the extended tree, you can check the Line numbers option in the
right pane of the dialog. I’ll give you a rough guide to what this code in Figure 1-8 does, and you’ll
see more on all of this later.

c01.indd 13c01.indd 13 24/08/12 7:44 AM24/08/12 7:44 AM

14 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

The fi rst two lines are just comments. Anything following // in a line is ignored by the compiler.
When you want to add descriptive comments in a line, precede your text with //.

Line 4 is an #include directive that adds the contents of the fi le stdafx.h to this fi le in place of this
#include directive. This is the standard way to add the contents of .h source fi les to a .cpp source
fi le in a C++ program.

Line 7 is the fi rst line of the executable code in this fi le and the beginning of the function called
_tmain(). A function is simply a named unit of executable code in a C++ program; every C++
program consists of at least one — and usually many more — functions.

Lines 8 and 10 contain left and right braces, respectively, that enclose all the executable code in
the function _tmain(). The executable code is just the single line 9, and all this does is end the
program.

Now you can add the following two lines of code in the Editor window:

// Ex1_01.cpp : Defines the entry point for the console application.
//

#include “stdafx.h”
#include <iostream>

int _tmain(int argc, _TCHAR* argv[])
{
 std::cout << “Hello world!\n”;
 return 0;
}

The new lines you should add are shown in bold; the others are generated for you. To introduce each
new line, place the cursor at the end of the text on the preceding line and press Enter to create an
empty line in which you can type the new code. Make sure it is exactly as shown in the preceding
example; otherwise the program may not compile.

The fi rst new line is an #include directive that adds the contents of one of the C++ standard library
fi les to the Ex1_01.cpp source fi le. The iostream library defi nes facilities for basic I/O operations,
and the one you are using in the second line that you added writes output to the command line.
std::cout is the name of the standard output stream, and you write the string "Hello world!\n"
to std::cout in the second addition statement. Whatever appears between the pair of double-quote
characters is written to the command line.

Building the Solution

To build the solution, press F7 or select the Build ➪ Build Solution menu item. Alternatively, you can
click the toolbar button corresponding to this menu item. The toolbar buttons for the Build menu
may not be displayed, but you can easily fi x this by right-clicking in the toolbar area and
selecting the Build toolbar from those in the list. The program should compile successfully. If there
are errors, it may be that you created them while entering the new code, so check the two new lines
very carefully.

c01.indd 14c01.indd 14 24/08/12 7:44 AM24/08/12 7:44 AM

Using the IDE ❘ 15

Files Created by Building a Console Application

After the example has been built without error, take a look in the project folder by using Windows
Explorer to see a new subfolder to the solution folder Ex1_01 called Debug. This is the folder
Ex1_01\Debug, not the folder Ex1_01\Ex1_01\Debug. This folder contains the output of the build
you just performed on the project. Notice that this folder contains three fi les.

Other than the .exe fi le, which is your program in executable form, you don’t need to know much
about what’s in these fi les. In case you’re curious, however, the .ilk fi le is used by the linker when
you rebuild your project. It enables the linker to incrementally link the object fi les produced from
the modifi ed source code into the existing .exe fi le. This avoids the need to relink everything each
time you change your program. The .pdb fi le contains debugging information that is used when you
execute the program in debug mode. In this mode, you can dynamically inspect information
generated during program execution.

There’s a Debug subdirectory in the Ex1_01 project folder too. This contains a large number of fi les
that were created during the build process, and you can see what kind of information they contain
from the Type description in Windows Explorer.

Debug and Release Versions of Your Program

You can set a range of options for a project through the Project ➪ Ex1_01 Properties menu item.
These options determine how your source code is processed during the compile and link stages.
The set of options that produces a particular executable version of your program is called a
 confi guration. When you create a new project workspace, Visual C++ automatically creates con-
fi gurations for producing two versions of your application. The Debug version includes additional
information that helps you debug the program. With the Debug version of your program, you
can step through the code when things go wrong, checking on the data values in the program as
you go. The Release version has no debug information included and has the code-optimization
options for the compiler turned on to provide you with the most effi cient executable module.
These two confi gurations are suffi cient for your needs throughout this book, but when you need
to add other confi gurations for an application you can do so through the Build ➪ Confi guration
Manager menu. (Note that this menu item won’t appear if you haven’t got a project loaded. This
is obviously not a problem, but might be confusing if you’re just browsing through the menus to
see what’s there.)

You can choose which confi guration of your program to work with by selecting from the
drop-down list in the toolbar. If you select Confi guration Manager… from the drop-down list, the
Confi guration Manager dialog will be displayed. You use this dialog when your solution contains
multiple projects. Here you can choose confi gurations for each of the projects and choose which
ones you want to build.

After your application has been tested using the debug confi guration and appears to be
working correctly, you typically rebuild the program as a release version; this produces
optimized code without the debug and trace capability, so the program runs faster and occupies
less memory.

c01.indd 15c01.indd 15 24/08/12 7:44 AM24/08/12 7:44 AM

16 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

Executing the Program

After you have successfully compiled the
solution, you can execute your program by
pressing Ctrl+F5. You should see the window
shown in Figure 1-9.

As you can see, you get the text between the
double quotes written to the command line. The
"\n" that appeared at the end of the text string is
a special sequence called an escape sequence that denotes a newline character. Escape sequences
are used to represent characters in a text string that you cannot enter directly from the
keyboard.

TRY IT OUT Creating an Empty Console Project

The previous project contained a certain amount of excess baggage that you don’t need when working
with simple C++ language examples. The precompiled headers option chosen by default resulted in the
stdafx.h fi le being created in the project. This is a mechanism for making the compilation process
more effi cient when there are a lot of fi les in a program, but it won’t be necessary for most of our
examples. In these instances, you start with an empty project to which you can add your own source
fi les. You can see how this works by creating a new project in a new solution for a Win32 console
program with the name Ex1_02. After you have entered the project name and clicked OK, click
Application Settings on the left side of the dialog box that follows. You can then select Empty project
from the additional options.

When you click Finish, the project is created as before, but this time without any source fi les.

By default, the project options will be set to use Unicode libraries. This makes use of a non-standard
name for the main function in the program. In order to use standard native C++ in your console
programs, you need to switch off the use of Unicode libraries. To do this, select the Project ➪
Properties menu item, or press Alt+F7, to display the Property Pages dialog for the project. Select the
All Confi gurations option from the Confi guration: drop-down list at the top. Select the General option
under Confi guration Properties in the left pane and select the Character Set property in the right pane.
You will then be able to set the value of this property to Not Set from the drop-down list to the right of
the property name, as shown in Figure 1-10. Click OK to close the dialog. You should do this for all the
C++ console program examples in the book. If you forget to do so, they won’t build. You will be using
Unicode libraries in the Windows examples, though.

Next, you can add a new source fi le to the project. Right-click the Solution Explorer pane and then
select Add ➪ New Item… from the context menu. A dialog displays: click Code in the left pane and
C++ File(.cpp) in the right pane. Enter the fi lename as Ex1_02.

When you click Add in the dialog, the new fi le is added to the project and is displayed in the Editor
window. The fi le is empty, of course, so nothing will be displayed. Enter the following code in the
Editor window:

FIGURE 1-9

c01.indd 16c01.indd 16 24/08/12 7:44 AM24/08/12 7:44 AM

Using the IDE ❘ 17

// Ex1_02.cpp A simple console program
#include <iostream> // Basic input and output library
int main()
{
 std::cout << “This is a simple program that outputs some text.” << std::endl;
 std::cout << “You can output more lines of text” << std::endl;
 std::cout << “just by repeating the output statement like this.” << std::endl;
 return 0; // Return to the operating system
}

Note the automatic indenting that occurs as you type the code. C++ uses indenting to make programs
more readable, and the editor automatically indents each line of code that you enter based on what
was in the previous line. You can change the indenting by selecting the Tools ➪ Options… menu item
to display the Options dialog. Selecting Text Editor ➪ C/C++ ➪ Tabs in the left pane of the dialog
 displays the indenting options in the right pane. The editor inserts tabs by default, but you can change
it to insert spaces if you want.

You can also see the syntax color highlighting in action as you type. Some elements of the program are
shown in different colors, as the editor automatically assigns colors to language elements depending on
what they are.

FIGURE 1-10

c01.indd 17c01.indd 17 24/08/12 7:44 AM24/08/12 7:44 AM

18 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

The preceding code is the complete program. You probably noticed a couple of differences compared
to the code generated by the application wizard in the previous example. There’s no #include directive
for the stdafx.h fi le. You don’t have this fi le as part of the project here because you are not using the
precompiled headers facility. The name of the function here is main; before it was _tmain. In fact all
ISO/IEC standard C++ programs start execution in a function called main(). Microsoft also provides
for this function to be called wmain when Unicode characters are used, and the name _tmain is defi ned
to be either main or wmain (in the tchar.h header fi le), depending on whether or not the program is
going to use Unicode characters. In the previous example the name _tmain is defi ned behind the scenes
to be main. I’ll use the standard name main in all the C++ examples, which is why you need to change
the Character Set property value for these projects to Not Set.

The output statements are a little different. The fi rst statement in main() is the following:

 std::cout << “This is a simple program that outputs some text.” << std::endl;

You have two occurrences of the << operator, and each one sends whatever follows to std::cout,
the standard output stream. First, the string between double quotes is sent to the stream, and then
std::endl, where std::endl is defi ned in the standard library as a newline character. Earlier, you
used the escape sequence \n for a newline character within a string between double quotes. You could
have written the preceding statement as follows:

 std::cout << “This is a simple program that outputs some text.\n”;

You can now build this project in the same way as the previous example. Note that any open source
fi les in the Editor pane are saved automatically if you have not already saved them. When you have
compiled the program successfully, press Ctrl+F5 to execute it. If everything works as it should, the
 output will be as follows:

This is a simple program that outputs some text.
You can output more lines of text
just by repeating the output statement like this.

Dealing with Errors

Of course, if you didn’t type the program correctly, you get errors reported. To see how this
works you could deliberately introduce an error into the program. If you already have errors of
your own, you can use those to perform this exercise. Go back to the Editor pane and delete the
semicolon at the end of the second-to-last line between the braces (line 8); then rebuild the source
fi le. The Output pane at the bottom of the application window will include the following error
message:

C2143: syntax error : missing ‘;’ before ‘return’

Every error message during compilation has an error number that you can look up in the
documentation. Here the problem is obvious, but in more obscure cases the documentation may help

c01.indd 18c01.indd 18 24/08/12 7:44 AM24/08/12 7:44 AM

Using the IDE ❘ 19

you fi gure out what is causing the error. To get the documentation on an error, click the line in the
Output pane that contains the error number and then press F1. A new window displays containing
further information about the error. You can try it with this simple error, if you like.

When you have corrected the error, you can then rebuild the project. The build operation works
effi ciently because the project defi nition keeps track of the status of the fi les making up the project.
During a normal build, Visual C++ recompiles only the fi les that have changed since the program
was last compiled or built. This means that if your project has several source fi les, and you’ve edited
only one of the fi les since the project was last built, only that fi le is recompiled before linking to
create a new .exe fi le. If you modify a header fi le, all fi les that include that header will be
 recompiled, along with the header fi le itself of course.

Setting Options in Visual C++

Two sets of options are available. You can set options that apply to the tools provided by Visual
C++, which apply in every project context. You also can set options that are specifi c to a project,
and that determine how the project code is to be processed when it is compiled and linked. Options
that apply to every project are set through the Options dialog that’s displayed when you select Tools
➪ Options from the main menu. You used this dialog earlier to change the code indenting used by
the editor. The Options dialog box is shown in Figure 1-11.

FIGURE 1-11

c01.indd 19c01.indd 19 24/08/12 7:44 AM24/08/12 7:44 AM

20 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

Clicking the symbol to the left of any of the items in the left pane displays a list of subtopics.
Figure 1-11 shows the options for the General subtopic under Projects and Solutions. The right pane
 displays the options you can set for the topic you have selected in the left pane. You should concern
yourself with only a few of these at this time, but you’ll fi nd it useful to spend a little time browsing
the range of options available to you. Clicking the Help button (the one with the question mark)
at the top right of the dialog box displays an explanation of the current options.

One option you should set right now relates to how IntelliSense works. Expand Text Editor ➪
C/C++ ➪ Advanced in the Options dialog and select the last property in the IntelliSense group,
Member List Commit Characters. Delete the characters that appear as the property value in the
right column. This will prevent IntelliSense from selecting wholly inappropriate choices from the list
of possibilities by default. Just to make sure, I’ll remind you about this again later in the book.

You probably want to choose a path to use as a default when you create a new project, and you can
do this through the fi rst option shown in Figure 1-11. Just set the path to the location where you
want your projects and solutions stored.

You can set options that apply to every C++ project in the Options dialog that is displayed by
 selecting the Projects and Solutions ➪ VC++ Project Settings topic in the left pane. You can set
options specifi c to the current project through the dialog that displays when you select the Project
➪ Ex1_02 Properties menu item in the main menu, or by pressing Alt+F7. This menu item label is
tailored to refl ect the name of the current project. You used this to change the value of the Character
Set property for the Ex1_02 console program.

Creating and Executing Windows Applications

Just to show how easy it’s going to be, you can now create a working Windows application. I’ll defer
discussion of the program that you’ll generate until I’ve covered the necessary ground for you to
understand it in detail. You will see, though, that the processes are straightforward.

Creating an MFC Application

To start with, if an existing project is active — as indicated by the project name appearing in the
title bar of the Visual C++ main window — you can select Close Solution from the File menu.
Alternatively, you can create a new project and have the current solution closed automatically.
Create directory for solution is selected by default in the New Project dialog.

To create the Windows program, select New ➪ Project from the File menu or press Ctrl+Shift+N;
then set the project type as MFC, and select MFC Application as the project template. You can then
enter the project name as Ex1_03. When you click OK the MFC Application Wizard dialog is
displayed. The dialog has a range of options that let you choose the features you’d like to have
included in your application. These are identifi ed by the items in the list on the left of
the dialog.

Click Application Type to display these options. Click the Tabbed documents option to deselect it
and select Windows Native/Default from the drop-down list to the right. The dialog should then
look as shown in Figure 1-12.

c01.indd 20c01.indd 20 24/08/12 7:44 AM24/08/12 7:44 AM

Using the IDE ❘ 21

Click Advanced Features next, and deselect Explorer docking pane, Output docking pane,
Properties docking pane, ActiveX controls, Common Control Manifest, and Support Restart
Manager so that the dialog looks as shown in Figure 1-13.

FIGURE 1-12

FIGURE 1-13

c01.indd 21c01.indd 21 24/08/12 7:44 AM24/08/12 7:44 AM

22 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

Finally, click Finish to create the project. The undocked
Solution Explorer pane in the IDE window will look as shown
in Figure 1-14.

The list shows the large number of source fi les that have been
created, and several resource fi les. You need plenty of space on
your hard drive when writing Windows programs! The fi les
with the extension .cpp contain executable C++ source code,
and the .h fi les contain C++ code consisting of defi nitions that
are used by the executable code. The .ico fi les contain icons. The
fi les are grouped into subfolders you can see for ease of access.
These aren’t real folders, though, and they won’t appear in the
project folder on your disk.

If you now take a look at the Ex1_03 solution folder and
 subfolders using Windows Explorer or whatever else you may
have handy for looking at the fi les on your hard disk, you’ll
notice that you have generated a total of 28 fi les. Four of these
are in the solution folder that includes the transient .opensdf fi le,
a further 19 are in the project folder, and the rest are
in a subfolder, res, of the project folder. The fi les in the res
subfolder contain the resources used by the program, such
as the menus and icons. You get all this as a result of just
 entering the name you want to assign to the project. You
can see why, with so many fi les and fi lenames being created
 automatically, a separate directory for each project becomes
more than just a good idea.

One of the fi les in the Ex1_03 project directory is ReadMe.txt,
and it provides an explanation of the purpose of each of the
fi les that the MFC Application Wizard has generated. You can
take a look at using Notepad, WordPad, or even the Visual C++
editor. To view it in the Editor window, double-click it in the Solution Explorer pane.

Building and Executing the MFC Application

Before you can execute the program, you have to build
the project — that is, compile the source code and
link the program modules. You do this in exactly
the same way as with the console application example.
To save time, press Ctrl+F5 to get the project built and
then executed in a single operation.

After the project has been built, the Output window
indicates that there are no errors, and the executable
starts running. The window for the program you’ve
generated is shown in Figure 1-15.

FIGURE 1-14

FIGURE 1-15

c01.indd 22c01.indd 22 24/08/12 7:44 AM24/08/12 7:44 AM

Summary ❘ 23

As you see, the window is complete with menus and a toolbar. Although there is no specifi c
 functionality in the program — that’s what you need to add to make it your program — all the
menus work. You can try them out. You can even create further windows by selecting New from the
File menu.

I think you’ll agree that creating a Windows program with the MFC Application Wizard hasn’t
stressed too many brain cells. You’ll need to get a few more ticking away when it comes to
developing the basic program you have here into a program that does something more interesting,
but it won’t be that hard. Certainly, for many people, writing a serious Windows program the
 old-fashioned way, without the aid of Visual C++, required at least a couple of months on a
brain-enhancing fi sh diet before making the attempt. That’s why so many programmers used to eat
sushi. That’s all gone now with Visual C++. You never know, however, what’s around the corner in
programming technology. If you like sushi, it’s best to continue eating it to be on the safe side.

SUMMARY

In this chapter you have run through the basic mechanics of using Visual C++ to create applications.
You created and executed console programs, and with the help of the application wizard you created
an MFC-based Windows program.

Starting with the next chapter, all the examples illustrating how C++ language elements are used
are executed using Win32 console applications. You will return to the application wizard for MFC-
based programs as soon as you have fi nished delving into the secrets of C++.

c01.indd 23c01.indd 23 24/08/12 7:44 AM24/08/12 7:44 AM

24 ❘ CHAPTER 1 PROGRAMMING WITH VISUAL C++

 � WHAT YOU LEARNED IN THIS CHAPTER

TOPIC CONCEPT

C++ Visual C++ supports C++ language statements that conform to the C++ 11 language

standard that is defi ned in the document ISO/IEC 14882:2011. Visual C++ does not

yet implement all language features defi ned by this standard.

Solutions A solution is a container for one or more projects that form a solution to an

information-processing problem of some kind.

Projects A project is a container for the code and resource elements that make up a

functional unit in a program.

The Solution

Explorer

Pane

The Solution Explorer pane displays one or more tabs showing diff erent aspects

of a project. The Solution Explorer tab shows the project fi les. The Class View tab

shows classes in the project. The Resource View tab shows project resources.

Project

Options

You can display and modify the options that apply to all C++ projects through the

dialog that is displayed when you select Options from the Tools menu.

Project

Properties

You can set values for properties for the current project through the dialog that is

displayed when you select Properties from the Project menu.

Console

Applications

A console application is a basic C++ application with no GUI. Typically, input is from

the keyboard and output is to the command line.

The main()

function

The starting point for a standard C++ program is the main() function. The New

Project dialog generates a console application that starts with the _tmain() function.

Unicode The default console program uses Unicode characters by default. If you want

to use the standard main() function in a console program, you can generate

an empty Win32 project and add the source fi le for main() after disabling the

Character Set project property value that selects the Unicode character set.

Windows 8

Apps

Windows 8 Apps target tablet computers and desktop PCs running the Windows 8

operating system.

Windows

Runtime

The Windows Runtime, WinRT, provides the interface to the operating system for

Windows 8 Apps.

Windows

Desktop

Applications

Windows desktop applications have an application window and a GUI incorporat-

ing controls such as menus, toolbars, and dialogs. Desktop applications interface

to the operating system through the Win32 set of functions. Desktop applications

execute under Windows Vista, Windows 7 and Windows 8.

The

Microsoft

Foundation

Classes.

The MFC is a set of C++ classes that encapsulate the functions provided by Win32.

MFC makes it easier to develop Windows desktop applications.

MFC

Projects

You create an MFC project by selecting MFC then MFC Application in the New

Project dialog.

c01.indd 24c01.indd 24 24/08/12 7:44 AM24/08/12 7:44 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2019-12-03T05:39:39-0500
	Certified PDF 2 Signature

