
  CHAPTER 1     

   BASIC MATHEMATICAL 
REDUNDANCY MODELS    

   A series system of independent subsystems is usually considered 
as a starting point for optimal redundancy problems. The most 
common case is when one considers a group of redundant units as 
a subsystem. The  reliability objective function  of a series system is 
usually expressed as a product of probabilities of successful opera-
tion of its subsystems. The  cost objective function  is usually assumed 
as a linear function of the number of system ’ s units. 

 There are also more complex models (multi-purpose systems 
and multi-constraint problems) or more complex objective func-
tions, such as average performance or the mean time to failure. 
However, we don ’ t limit ourselves to pure reliability models. The 
reader will fi nd a number of examples with various networks as 
well as examples of resource allocation in counter-terrorism 
protection. 

 In this book we consider main practical cases, describe 
various methods of solutions of optimal redundancy problems, and 
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2 BASIC MATHEMATICAL REDUNDANCY MODELS

demonstrate solving the problems with numerical examples. 
Finally, several case studies are presented that refl ect the author ’ s 
personal experience and can demonstrate practical applications of 
methodology.  

  1.1     TYPES OF MODELS 

 A number of mathematical models of systems with redundancy 
have been developed during the roughly half a century of modern 
reliability theory. Some of these models are rather specifi c and some 
of them are even “extravagant.” We limit ourselves in this discus-
sion to the main types of redundancy and demonstrate on them 
how methods of optimal redundancy can be applied to solutions of 
the optimal resource allocation. Redundancy in general is a wide 
concept, however, we mainly will consider the use of a redundant 
unit to provide (or increase) system reliability. 

 Let us call a set of operating and redundant units of the same 
type  a redundant group . Redundant units within a redundant group 
can be in one of two states: active (in the same regime as operating 
units, i.e., so-called hot redundancy) and standby (idle redundant 
units waiting to replace failed units, i.e. so-called cold redundancy). 
In both cases there are two possible situations: failed units could 
be repaired and returned to the redundant group or unit failures 
lead to exhaustion of the redundancy. 

 In accordance with such very rough classifi cations of redun-
dancy methods, this chapter structure will be arranged as pre-
sented in Table  1.1 . 

  We consider two main reliability indices: probability of failure-
free operation during some required fi xed time  t  0 ,  R ( t  0 ), and mean 
time to failure,  T . In practice, we often deal with a system consisting 
of a serial connection of redundant groups (see Fig.  1.1 ). Usually, 
such kinds of structures are found in systems with spare stocks 
with periodical replenishment. 
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 TABLE 1.1       Types of Redundancy 

1.   Redundant units regime

Active Standby

2.   Type of maintenance Non-repairable Section  1.1 Section  1.2 

Repairable Section  1.3 Section  1.4 

  FIGURE 1.1         General block diagram of series connection of redundant 
groups. 

    1.2     NON-REPAIRABLE REDUNDANT GROUP 
WITH ACTIVE REDUNDANT UNITS 

 Let us begin with a simplest redundant group of two units (dupli-
cation), as in Figure  1.2 . 

  Such a system operates successfully if at least one unit is operat-
ing. If one denotes random time to failure of unit  k  by   ξ  k  , then the 
system time to failure,   ξ  , could be written as

    ξ ξ ξ= max{ , }.1 2     (1.1)   

 The time diagram in Figure  1.3  explains Equation  (1.1) . 

  FIGURE 1.2         Block diagram of a duplicated system. 
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  The probability of failure-free operation (PFFO) during time  t  
for this system is equal to

    R t r t( ) [ ( )] ,= − −1 1 2     (1.2)   

 where  r ( t ) is PFFO of a single active unit. 
 We will assume an exponential distribution of time to failure 

for an active unit:

    F t t( ) exp( ).= −λ     (1.3)   

 In this case the mean time to failure (MTTF),  T , is equal to:
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    (1.4)   

 Now consider a group of  n  redundant units that survives if at 
least one unit is operating (Fig.  1.4 ). 

  FIGURE 1.3         Time diagram for a non-repairable duplicated system with 
both units active. 

1

Units

x
1

x
2

t

2

System
failure



NON-REPAIRABLE REDUNDANT GROUP 5

  We omit further detailed explanations that could be found in 
any textbook on reliability (see Bibliography to Chapter  1 ). 

 For this case PFFO is equal:

    R t r t n( ) [ ( )] ,= − −1 1     (1.5)  

and the mean time to failure (under assumption of the exponential 
failure distribution) is

    T
kk n

=
≤ ≤
∑ 1

1

.     (1.6)   

 The most practical system of interest is the so-called  k  out of  n  
structure. In this case, the system consists of  n  active units in total. 
The system is deemed to be operating successfully if  k  or more units 
have not failed (sometimes this type of redundancy is called “fl oat-
ing”). The simplest system frequently found in engineering prac-
tice is a “2 out of 3” structure (see Fig.  1.5 ). 

  FIGURE 1.4         Block diagram of redundant group of  n  active units. 

  FIGURE 1.5         Block diagram of a “2 out of 3” structure with active redun-
dant unit. 
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  A block diagram for general case can be presented in the fol-
lowing conditional way. It is assumed that any redundant unit can 
immediately operate instead of any of  k  “main” units in case a 
failure.   

  Redundancy of this type can be found in multi-channel systems, 
for instance, in base stations of various telecommunication networks: 
transmitter or receiver modules form a redundant group that includes 
operating units as well as a pool of active redundant units. 

 Such a system is operating until at least  k  of its units are operat-
ing (i.e., less than  n   −   k   +  1 failures have occurred). Thus, PFFO in 
this case is

    R t
n

j
p t p tj n j

k j n

( ) ( ) ( )= ⎛
⎝⎜

⎞
⎠⎟ [ ] −[ ] −

≤ ≤
∑ 1     (1.7)  

and

    T
j
nk j n

=
≤ ≤
∑1

λ
.     (1.8)   

 If a system is highly reliable, sometimes it is more reasonable 
to use Equation  (1.7)  in supplementary form (especially for approx-
imate calculations when  p ( t ) is close to 1).

  FIGURE 1.6         Block diagram of a “ k  out of  n ” structure with active redun-
dant units. 
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  (1.9)    

  1.3     NON-REPAIRABLE REDUNDANT GROUP 
WITH STANDBY REDUNDANT UNITS 

 Again, begin with a duplicated system presented in Figure  1.7 . For 
this type of system, the random time to failure is equal to:

    ξ ξ ξ= +1 2.     (1.10)   

  The time diagram in Figure  1.8  explains Equation (1.10). The 
PFFO of a considered duplicate system can be written in the form:

    R t p t p t( ) ( ) ( ),= +0 1     (1.11)   

  FIGURE 1.7         A non-repairable duplicated system with a standby redun-
dant unit. (Here gray color denotes a standby unit.) 

  FIGURE 1.8         Time diagram for a non-repairable duplicated system with a 
standby redundant unit. 
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  where  p  0 ( t ) is the probability of no failures at time interval [0,  t ], 
and  p  1 ( t ) is the probability of exactly one failure in the same time 
interval. Under assumption of exponentiality of the time-to-failure 
distribution, one can write:

    p t0 = −exp( )λ     (1.12)  

and

    p t t1 = −λ λexp( ),     (1.13)  

so fi nally

    R t t t( ) exp( ) ( ).= − ⋅ +λ λ1     (1.14)   

 Mean time to failure is defi ned as

    T E= + ={ } ,ξ ξ
λ1 2
2

    (1.15)  

since   λ    =  1/ T . 
 For a multiple standby redundancy, a block diagram can be 

presented in the form shown in Figure  1.9 . For this redundant 
group, one can easily write (using the arguments given above):

    R t t
t
j

j

j n

( ) exp( )
( )

!
= −

≤ ≤ −
∑λ λ

1 1

    (1.16)  

  FIGURE 1.9         Block diagram of redundant group of one active and  n   −  1 
standby units. (Here gray boxes indicate standby units.) 
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and

    T
n=
λ

.     (1.17)   

  A block diagram for a general case of standby redundancy of  k  
out of  n  type can be presented as shown in Figure  1.10 . It is assumed 
that any failed operational unit can be instantaneously replaced 
by a spare unit. Of course, no replacement can be done instanta-
neously: in these cases, we keep in mind the fi ve-second rule.  1   

  This type of redundant group can be found in spare inventory 
with periodical restocking. Such replenishment is typical, for instance, 
for terrestrially distributed base stations of global satellite telecom-
munication systems. One observes a Poisson process of operating 
unit failures with parameter  k λ  , and the group operates until the 
number of failures exceeds  n   −   k . The system PFFO during time  t  
is equal to:

    R t k t
k t

j

j

j n k

( ) exp( )
( )

!
= − ⋅

≤ ≤ −
∑λ λ

0

    (1.18)  

  FIGURE 1.10         Block diagram of a “ k  out of  n ” structure with standby 
redundant units. (Here gray color is used to show standby redundant units.) 

  1   Russian joke: If a fallen object is picked up in 5 seconds, it is assumed that it 
hasn ’ t fallen at all. 
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and the system MTTF is

    T
n k

k
= ⋅ − +1 1

λ
.     (1.19)   

 Of course, there are more complex structures that involve active 
and standby redundant units within the same redundant group. 
For instance, structure “ k  out of  n ” with active units could have 
additional “cold” redundancy that allows performing “painless” 
replacements of failed units.  

  1.4     REPAIRABLE REDUNDANT GROUP 
WITH ACTIVE REDUNDANT UNITS 

 Consider a group of two active redundant units, that is, two units 
in parallel. Each unit operates independently: after failure it is 
repaired during some time and then returns to its position. Behav-
ior of each unit can be described as an alternating stochastic process: 
a unit changes its states: one of proper functionality during time  ξ , 
followed by a failure state induced repair interval,  η . The cycle 
of working/repairing repeats. This process is illustrated in Figure 
 1.11 . From the fi gure, one can see that system failure occurs when 
failure intervals of both units overlap. 

  Notice that for repairable systems, one of the most signifi cant 
reliability indices is the so-called availability coeffi cient,   �r. This 
reliability index is defi ned as the probability that the system is in 
a working state at some arbitrary moment of time. (This moment 
of time is assumed to be “far enough” from the moment the process 
starts.) It is clear that this probability for a single unit is equal to a 
portion of total time when a unit is in a working state, that is,

    �r
E

E E
=

+
{ }

{ } { }
.

ξ
ξ η

    (1.20)   
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  FIGURE 1.11         Time diagram for a repairable system with standby redun-
dancy. White parts of a strip denote operating state of a unit and black parts 
its failure state. Here   ξ j

i( ) denotes  j th operating interval of unit  i , and   η j
i( ) 

denotes  j th interval of repair of this unit. 
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 If there are no restrictions, that is, each unit can be repaired 
independently, the system availability coeffi cient,   �R, can be written 
easily:

    �R r= − −1 1 2( ) .     (1.21)   

 For general types of distributions, reliability analysis is not 
simple. However, if one assumes exponential distributions for both 
 ξ  and  η , reliability analysis can be performed with the help of 
Markov models. 

 If a redundant group consists of two units, there are two pos-
sible regimes of repair, depending on the number of repair facili-
ties. If there is a single repair facility, units become dependent 
through the repair process: the failed unit can fi nd the facility busy 
with the repair of a previously failed unit. Otherwise, units operate 
independently. Markov transition graphs for both cases are pre-
sented in Figure  1.12 . 

  With the help of these transition graphs, one can easily write 
down a system of linear differential equations that can be used 
for obtaining various reliability indices. Take any two of the three 
equations:
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    (1.22)  

and take into account chosen initial conditions. 
 The availability coeffi cient for these two cases can be calculated 

using the formulas (where  γ   =   λ / μ ) in Table  1.2 . However, our intent 
is to present methods of optimal redundancy rather than to give 
detailed analysis of redundant systems. (Such analysis can be found 
almost in any book listed in the Bibliography to Chapter  1 .) Thus 

  FIGURE 1.12         Transition graphs for repairable duplicated system with 
active redundancy for two cases: restricted repair (only one failed unit can 
be repaired at a time) and unrestricted repair (each failed unit can be 
repaired independently). The digit in the circle denotes the number of failed 
units. 
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 TABLE 1.2       Availability Coeffi cient for Two Repair Regimes 

Formula for availability coeffi cient,   �R

Restricted repair Unrestricted repair

Strict formula
  
1 2

1 2

+
+

γ
γ( )

  
1 2

1 2 2

+
+ +

γ
γ γ( )

Approximation for  γ   <  <  1 1  −   γ  2 1  −  2 γ  2 
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we will consider only the simplest models of redundant systems, 
that is, systems with unrestricted repair. 

  We avoid strict formulas because they are extremely clumsy; 
instead we present only approximate ones that mostly are used in 
practical engineering calculations (Table  1.3 ). 

    1.5     REPAIRABLE REDUNDANT GROUP 
WITH STANDBY REDUNDANT UNITS 

 Consider now a repairable group of two units: one active and one 
standby. Behavior of such a redundant group can be described with 
the help of a renewal process: after a failure of the operating unit 
a standby unit becomes the newly operating one, while the failed 
unit after repair becomes a standby one, and so on. System failure 
occurs when a unit undergoing repair is not ready to replace a now 
not operating unit that has just failed. The process of functioning 
in this type of duplicated system is illustrated in Figure  1.13 . In this 
case, fi nding PFFO of the duplicated system is also possible with 
the use of Markov models under assumption of exponentiality of 
both distributions (of repair time and time to failure). 

  Transition graphs for restricted and unrestricted repair are 
shown in Figure  1.14 . 

  Again, we present only approximate formulas in Table  1.4 . 

 TABLE 1.3       Approximate Formulas for Availability Coeffi cient 

Type of redundant group Approximate formula for availability coeffi cient, 
  �R

Restricted repair Unrestricted 
repair

Group of  n  units 1  −  ( n !)·  γ  n  1  −    γ   n  

Group of type “ k  out of  n ”
  1 1

1
1− − + ⋅

− +
⎛
⎝⎜

⎞
⎠⎟

+[( ) !]n k
n

n k
nγ   1

1
1−

− +
⎛
⎝⎜

⎞
⎠⎟

+n

n k
nγ
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  FIGURE 1.13         Time diagram for a repairable duplicated system with 
standby redundancy. White parts of a strip denote the operating state of a 
unit, gray parts show the standby state, and black parts show the failure 
state. Here   ξ j

i( ) denotes  j th operating interval of unit  i , and   η j
i( ) denotes  j th 

interval of repair of this unit. 
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  FIGURE 1.14         Transition graphs for repairable duplicated systems with 
standby redundancy for two cases: restricted repair (only one failed unit can 
be repaired at a time) and unrestricted repair (each failed unit can be 
repaired independently). 
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    1.6     MULTI-LEVEL SYSTEMS AND SYSTEM 
PERFORMANCE ESTIMATION 

 Operation of a complex multi-level system cannot be satisfactorily 
described in traditional reliability terms. In this case, one has to talk 
about performance level of such systems rather than simple binary 
type “up and down” operating. 

 Let a system consist of  n  independent units characterized by 
their reliability indices  p  1 ,  p  2 ,  . . . ,  p n  . Assume that with unit failure 
a level of system performance degrades. Denote by  Φ   i   a quantita-
tive measure of the system performance under the condition that 
unit  i  failed, by  Φ   ij   the same measure if units  i  and  j  failed, and in 
general, if some set of units,   α   have failed then the system perfor-
mance is characterized by value  Φ   a  . In this case the system perfor-
mance can be characterized by the mean value:

    Φ Φ
Α

System H=
∈
∑ α α
α

,     (1.23)  

where A is a set of all possible states of units 1, 2,  . . . ,  n , that is, 
power of this set is 2  n   and

    H p pi

i

i

i A

α
α α

= −
∈ ∈
∏ ∏( ) ,

\

1     (1.24)  

where notation  A \   α   means the total set of unit subscripts with 
exclusion of subset   α  . 

 The measure of system performance could be taken from con-
ditional probability of successful fulfi llment of the operation, pro-
ductivity, or other operational parameters. 

 Several years after Kozlov and Ushakov ( 1966 ) had been pub-
lished, there was a relative silence with quite rare appearance 
of works on the topic. Since average measure is not always a 
good characterization, soon there was a suggestion to evaluate the 
probability that multi-state system performance is exceeding some 
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required level. In a sense, it was nothing more than introducing a 
failure criterion for a multi-state system. In this case, new formula-
tion of the system reliability has the form

    R HSystem quired

quired

= ≥ =
≥
∑Pr{ } .Re

: Re

Φ Φ Φ
Φ Φ

α α α
α α

    (1.25)   

 In 1985, Kurt Reinschke (in Ushakov,  1985 ) introduced a system 
that itself consists of multi-state units. However, this work also did 
not fi nd an appropriate response among reliability specialists at the 
time. 

 Nevertheless, reliability analysis of multi-state systems has 
started for all three possible classes:

   (1)    Multi-state systems consisting of binary units 

  (2)    Binary systems consisting of multi-state units 

  (3)    Multi-state systems consisting of multi-state units.   

 In the late 1990s, there was a veritable avalanche of papers on 
this topic, which has maintained a steady fl ow ever since. This 
subject is considered in more detail in Chapter  11 . 

 Naturally, after multi-system analysis, attention to the prob-
lems of optimal redundancy in such systems arose. Now the 
problem of optimal redundancy in multi-state systems is a subject 
of intensive research.  

  1.7     BRIEF REVIEW OF OTHER TYPES OF REDUNDANCY 

 In reliability theory, redundancy is understood as using additional 
units for replacement/substitution of failed units. Actually, there 
are many various types of redundancy. Below we briefl y consider 
structural redundancy, functional redundancy, a system with spare 
time for operation performance, and so on. 
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  1.7.1     Two-Pole Structures 

 One of the typical types of structural redundancy is presented by 
networks. The simplest network structure is the so-called  bridge 
structure  (see Fig.  1.15 ). Assume that a connection between points 
 A  and  D  is needed. 

  A failure of any one unit does not lead to failure of the system 
because of the redundant structure. There are the following paths 
from  A  to  D :  ABD, ACD, ACBD , and  ABCD . If at least one of those 
paths exists, the system performs its task. Of course, one can con-
sider all cuts that lead to the system failure:  AB&AC, BD&CD, 
AB&BC&CD , and  AC&BC&BD . However, in this case we cannot 
use simple formulas of series and parallel systems, since paths are 
interdependent, as are cuts. Because of this, one can only write the 
upper and lower bounds for PFFO of such systems:

   
( ) ( ) ( ) ( )1 1 1 1− ⋅ − ⋅ − ⋅ − <

<
Q Q Q Q Q Q Q Q Q Q RAB AC BD CD AB BC CD AC BC BD Bridge

11 1 1 1 1− − ⋅ − ⋅ − ⋅ −( ) ( ) ( ) ( ).P P P P P P P P P PAB BD AC CD AB BC CD AC BC BD
  

  (1.26)   

 For this simple case, one can fi nd a strict solution using a 
straightforward enumeration of all possible system states:

  FIGURE 1.15         Bridge structure. 
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   R R Q Q Q Q Q P P P PBridge BC AB AC BD CD BC AB BD AC CD= − ⋅ − + − − −( ) ( ) [ ( )(1 1 1 1 1 ))]. 
   (1.27)   

 More complex systems of this type are presented by the two-
pole networks: in such systems a “signal” has to be delivered from 
terminal  A  to terminal  B  (see Fig.  1.16 ). Reliability analysis of 
such systems is normally performed with the use of Monte Carlo 
simulation. 

  For networks with a general structure, the exact value of the 
reliability index can be found only with the help of a direct enu-
meration. For evaluation of this index, one can use the upper and 
lower bounds of two types: Esary-Proschan boundaries (Barlow 
and Proschan,  1965 ) or Litvak-Ushakov boundaries (Ushakov, ed., 
 1985 ). Unfortunately, boundaries cannot be effectively used for 
solving optimal redundancy problems.  

  1.7.2     Multi-Pole Networks 

 This kind of network is very common in modern life, appearing 
in telecommunication networks, transportation and energy grids, 
and so on. The most important specifi c of such systems is their 
structural redundancy and the redundant capacity of their compo-

  FIGURE 1.16         An example of a two-pole network. 
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nents. We demonstrate the specifi cs of such systems using a simple 
illustrative example. Consider the bridge structure that was 
described above, but assume that each node is either a “sender” or 
a “receiver” of “fl ows” to each other. Of course, fl ows can be dif-
ferent, as well as the capacities of particular links. Assume that 
traffi c is symmetrical, that is, traffi c from  X  to  Y  is equal to traffi c 
from  Y  to  X . This assumption allows us to consider only one-way 
fl ow between any points. 

 Let the traffi c in the considered network be described as is 
shown in Table  1.5 . For normal operating, it is enough to have the 
capacities of the links as described in Figure  1.17 . (We will assume 
that traffi c within the network is distributed as uniformly as 
possible.)  

  However, links (as well as nodes) are subject to failure. For 
protection of the system against link failures, let us consider pos-
sible scenarios of link failure and measures of system protection by 
means of links ’  capacities increase. 

 What should we do if link  AB  has failed? The fl ow from  A  to  B  
and from  A  to  D  should be redirected. Thus, successful operation 
of the network requires an increase of the links ’  capacities (see 
Fig.  1.18 ). 

  Since all four outside links are similar, failure of any link ( AC, 
BD , or  CD ) leads to a similar situation. Thus, to protect the system 
against failure of any outside link, one should increase the capaci-
ties of each outside link from 2 to 3 units. 

 TABLE 1.5       Traffi c in the Network (in conditional units) 

A B C D

A – 1 1 1

B 1 – 2 1

C 1 2 – 1

D 1 1 1 –
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  FIGURE 1.18         Traffi c distribution in the case of link  AB  failure. 
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  FIGURE 1.17         Traffi c distribution. 
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 What happens if link  BC  fails? This link originally was used 
only for connecting nodes  B  and  C . This traffi c should be redistrib-
uted: half of the fl ow is directed through links  BA–AC , and the rest 
through links  BD–DC . To protect the system against link BC failure, 
the capacity of each outside link has to be increased by one unit.   

  To protect the system against any single link failure, one has to 
make link capacities corresponding to the maximum at each con-
sidered scenario, as demonstrated in Figure  1.20 . 

    1.7.3     Branching Structures 

 Another rather specifi c type of redundant system is a branching 
structure system (see Fig.  1.21 ). In such systems, actual operational 
units are on the lowest level, and successfully operate only under 
the condition that their controlling units at the upper levels are 
successfully operating. Such structures are very common, espe-
cially in military control systems. 
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  FIGURE 1.19         Traffi c distribution in the case of link  BC  failure. 
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  FIGURE 1.20         Final values of link capacities for a network protected against 
any possible single failure. 
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  FIGURE 1.21         System with branching structure. 
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  Assume that the branching system performs satisfactorily 
until four or more units of the lower level failed or lost control by 
upper level units. Types of possible system failures are given in 
Figure  1.22 . 

  Of course, for complex systems the concept of “failure” is not 
adequate; instead, there is the notion of diminished performance. 
For instance, for the same branching system considered above, it 
is possible to introduce several levels of performance. Assume that 
the system performance depending on the system state is described 
by Table  1.6 . 

  Usually, for such systems with structural redundancy, one uses 
the average level of performance. However, it is possible to introduce 
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  FIGURE 1.22         Types of situations when the branching system has 4 lower 
level units that have failed to perform needed operations. (Failed units are 
in black and units without control are in gray.) 

 TABLE 1.6       Levels of System 
Performance for Various System 
States 

Quantity of failed 
units of lower level

Conditional level 
of performance

0 100%

1 99%

2 95%

3 80%

4 60%

5 50%

6 10%

7 2%

8 0%

a new failure criterion and talk about the reliability of such a 
system. For instance, under the assumption that admissible level 
of performance is 80%, one comes to the situation considered above: 
the system is considered failed only when four (or more) of its 
lower level units do not operate suffi ciently (failed or lost control).  

  1.7.4     Functional Redundancy 

 Sometimes to increase the probability of successful performance of 
a system, designers envisage functional redundancy, that is, make 
it possible to use several different ways of completing a mission. 
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As an example, one can consider the procedure of docking a space 
shuttle with a space station (Fig.  1.23 ). 

  This complex procedure can be fulfi lled with the use of several 
various methods: by signals from the ground Mission Control 
Center (MCC), by the on-board computer system, and manually. 
In all these cases, video images sent from space objects are usually 
used. However, MCC can also use telemetry data. All methods can 
ensure success of the operation, though with different performance.   

  1.8     TIME REDUNDANCY 

 One very specifi c type of redundancy is the so-called  time redun-
dancy . There are three main schemes of time redundancy.

   (a)     A system is operating during interval  t  0 . There are instan-
taneous interruptions of the system operation (failures), 
after which the system starts its operation from the begin-
ning. The system operation is considered successful if 
during interval  t  0  there is at least one interval with length 
larger than some required value   τ  . In other words, there is 
some extra time to restart the operation (see Fig.  1.24 ). 

  FIGURE 1.23         Phases of a space shuttle docking to a space station. 
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  Denote the probability of success for such a system by 
 R ( t  0  |   τ  ). If there is a failure on interval [0,  t  0 ] at such 
moment  x   <    τ   that still  t  0   −   x    >     τ  , the needed operation can 
be restarted, otherwise  R ( t  0  |   τ  )  =  0. This verbal explanation 
leads us to the recurrent expression  

    R t  R  R x t x dF x( ) ( ) ( ) ( ),0 0

0

τ τ
τ

= + −∫     (1.28)   

 where  F ( x ) is distribution function of the system time to 
failure. 

 These types of recurrent equations are usually solved 
numerically.  

  (b)     Independent of the number of sustained failures, system 
operation is considered successful if the cumulative time of 
the system operation is no less than the required amount   θ   
(see Fig.  1.25 ). 

  Denote the distribution of repair time,  η , by  G ( t ). If the 
fi rst failure has occurred at moment  x  such that  x   >    θ  , it 
means that the system fulfi lled its operation. If failure 
happens at moment   ξ  , the system can continue its operation 
after repair that takes time   η  , only if  t  0   −    η    >   θ . It is clear 

  FIGURE 1.24         Examples of possible implementation of the successful 
system operation. 
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that the probability that the total operating time during 
interval [0,  t  0 ] is no less than  θ  is equal to the probability 
that the total repair time during the same interval is no 
larger than  t  0   −   θ . 

 For this probability, one considers two events that lead 
to success:

   •    System works without failures during time   θ   from the 
beginning. 

  •    System has failed at the moment  x    <    t  0   −    θ  , and was repaired 
during time  y,  and during the remaining interval of 
 t  0   −   x   −   y  accumulates   θ    −   x  units of time of successful 
operation. This verbal description permits us to write the 
following recurrent expression:    

    R t F t R t x y dG y dF x
t xt

( ) ( ) ( ) ( ) ( ),0 0 0

00

1
00

θ θ= − + − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−

∫∫     (1.29)   

 where  R ( t  0  |  z )  =  0 if  z   <    θ  .  

  (c)     A system “does not feel” failures of duration less than   χ   
(Fig.  1.26 ). (In a sense, the system possesses a kind of 
“inertia” much like the famous “fi ve second rule.”) 

  FIGURE 1.25         Examples of possible implementation of the successful 
system operation. 
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  A system is considered to be successfully operating if 
during period [0,  t  0 ] there is no down time longer than  ψ . 
This case, in some sense, is a “mirror” of what was consid-
ered at the beginning. We will skip explanation details and 
immediately write the recurrent expression:  

    R t F t R t x y dG y dF x
t

( ) ( ) ( | ) ( ) ( ).0 0 0

00

1
0

ψ ψ
η

= − + − −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫∫     (1.30)   

 We will not consider this type of redundancy in details; 
instead we refer the reader to special literature on the subject 
(Cherkesov,  1974 ; Kredentser,  1978 ).     

  1.9     SOME ADDITIONAL OPTIMIZATION PROBLEMS 

  1.9.1     Dynamic Redundancy 

  Dynamic redundancy  models occupy an intermediate place between 
optimal redundancy and inventory control models. 

 The essence of a dynamic redundancy problem is contained in 
the following. Consider a system with  n  redundant units. Some 
redundant units are operating and represent an active redundancy. 
These units can be instantly switched into a working position 
without delay and, consequently, do not interrupt the normal 

t

t
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t0

downtime

cc

no failures

xxxx

  FIGURE 1.26         Time diagram for a system accumulating operation time. 
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operation of the system. These units have the same reliability 
parameters (e.g., for exponential distribution, and the same failure 
rate). The remaining units are on standby and cannot fail while 
waiting. But at the same time, these units can be switched in an 
active redundant regime only at some predetermined moments 
of time. The total number of such switching moments is usually 
restricted because of different technical and/or economical reasons. 

 A system failure occurs when at some moment there are no active 
redundant units to replace the main ones that have failed. At the 
same time, there may be many standby units that cannot be used 
because they cannot be instantly switched after a system failure. 

 Such situations in practice can arise in different space vehicles 
that are participating in long journeys through the Solar System. A 
similar situation occurs when one considers using uncontrolled 
remote technical objects whose monitoring and service can be per-
formed only rarely. 

 It is clear that if all redundant units are switched to an active 
working position at an initial moment  t  =   0, the expenditure of 
these units is highest. Indeed, many units might fail in vain during 
the initial period. At the same time, the probability of the unit ’ s 
failure during this interval will be small. On the other hand, if there 
are few active redundant units operating in the interval between 
two neighboring switching points, the probability of the system ’ s 
failure decreases. In other words, from a general viewpoint, there 
should exist an optimal rule (program) of switching standby units 
into an active regime and allocating these units over all these periods. 

 Before we begin to formulate the mathematical problem, we 
discuss some important features of this problem in general. 

  Goal Function 

 Two main reliability indices are usually analyzed: the probability 
of failure-free system operation during some specifi ed interval of 
time, and the mean time to system failure.  
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  System Structure 

 Usually, for this type of problem, a parallel system is under ana-
lytical consideration. Even a simple series system requires a very 
complex analysis.  

  Using Active Redundant Units 

 One possibility is that actively redundant units might be used only 
during one period after being switched into the system. Afterward, 
they are no longer used, even if they have not failed. In other 
words, all units are divided in advance into several independent 
groups, and each group is working during its own specifi ed period 
of time. After this period has ended, another group is switched into 
the active regime. In some sense, this regime is similar to the pre-
ventive maintenance regime. 

 Another possibility is to keep operationally redundant units in 
use for the next stages of operation. This is more effective but may 
entail some technical diffi culties.  

  Controlled Parameters 

 As we mentioned above, there are two main parameters under our 
control: the moments of switching (i.e., the periods of work) and 
the number of units switched at each switching moment. Three 
particular problems arise: we need to choose the switching moments 
if the numbers of switched units are fi xed in each stage; we need 
to choose the numbers of units switched in each stage if the switch-
ing moments are specifi ed in advance; and, in general, we need to 
choose both the switching moments and the numbers of units 
switched at each stage.  

  Classes of Control 

 Consider two main classes of switching control. The fi rst one is the 
so-called  prior rule  ( program switching ) where all decisions are made 
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in advance at time  t   =  0. The second class is the  dynamic rule  
where a decision about switching is made on the basis of current 
information about a system ’ s state (number of forthcoming stages, 
number of standby units, number of operationally active units at 
the moment, etc.). 

 We note that analytical solutions are possible only for exponen-
tially distributed TTFs. The only possible method of analysis for an 
arbitrary distribution is via a Monte Carlo simulation.       
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