
PART I

Manipulating and Displaying Data
on the iPhone and iPad

 � CHAPTER 1: Introducing Data-Driven Applications

 � CHAPTER 2: The iOS Database: SQLite

 � CHAPTER 3: Displaying Your Data: The UITableView

 � CHAPTER 4: User Interface Elements

c01.indd 1c01.indd 1 4/1/2013 1:01:43 PM4/1/2013 1:01:43 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 4/1/2013 1:01:44 PM4/1/2013 1:01:44 PM

Introducing Data-Driven
Applications

WHAT’S IN THIS CHAPTER?

 ➤ Creating a view-based application using Xcode

 ➤ Building a simple data model

 ➤ Neatly displaying your data in a table using the UITableView control

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=1118391845 on the Download Code tab. The code is in the Chapter 1 download
and individually named according to the names throughout the chapter.

Data is the backbone of most applications. It is not limited only to business applications.
Games, graphics editors, and spreadsheets all use and manipulate data in one form or another.
One of the most exciting things about iOS applications is that they enable you and your cus-
tomers to take your data anywhere. The mobility of iOS devices gives the developer an amaz-
ing platform for developing applications that work with that data. You can use the power of
existing data to build applications that use that data in new ways. In this book, you will learn
how to display data, create and manipulate data, and send and retrieve data over the Internet.

In this chapter, you learn how to build a simple data-driven application. While this applica-
tion will not be production-ready, it is intended to help you to get started using the tools
that you will use as you build data-driven applications. By the end of this chapter, you will
be able to create a view-based application using Xcode that displays your data using the
UITableView control. You will also gain an understanding of the Model-View-Controller
(MVC) architecture that underlies most iOS applications.

1

c01.indd 3c01.indd 3 4/1/2013 1:01:44 PM4/1/2013 1:01:44 PM

4 ❘ CHAPTER 1 INTRODUCING DATA-DRIVEN APPLICATIONS

BUILDING A SIMPLE DATA-DRIVEN APPLICATION

Many applications that you will build for iOS will need to handle data in one form or another. It is
common to display this data in a table. In this section, you learn how to build an application that
displays your data in a table in an iOS application.

Creating the Project

To build applications for iOS, you need to use the Xcode development environment provided by
Apple. Xcode is a powerful integrated development environment that has all of the features of
a modern IDE. It integrates many powerful features including code editing, debugging, version
 control, and software profi ling. If you do not have Xcode installed, you can install it via the Mac
App Store or by downloading it from the Apple developer website at https://developer.apple
.com/xcode/index.php.

To begin, start up Xcode and select File ➪ New ➪ Project. A dialog box appears that displays tem-
plates for the various types of applications that you can create for iOS and Mac OS X, as shown in
Figure 1-1.

FIGURE 1-1: New Project dialog

Each option presented provides you with the basic setup needed to start developing your application.
The default iOS templates are divided into three groups: Application, Framework & Library, and
Other.

c01.indd 4c01.indd 4 4/1/2013 1:01:45 PM4/1/2013 1:01:45 PM

Building a Simple Data-Driven Application ❘ 5

The Application group consists of the following templates:

 ➤ Master-Detail Application: This template provides a starting point for a master-detail appli-
cation. It provides a user interface confi gured with a navigation controller to display a list of
items and a split view on iPad. The Contacts application is an example of a Master-Detail
Application. The contact list is the master table and detail is the individual contact informa-
tion that you see when you tap a contact.

 ➤ OpenGL Game: This template provides a starting point for an OpenGL ES-based game.
It provides a view into which you render your OpenGL ES scene and a timer to allow you
to animate the view. OpenGL is a graphics language that you can use to build games and
other graphics-intensive applications. You will not be using OpenGL in this book.

 ➤ Page-Based Application: This template provides a starting point for a page-based applica-
tion that uses a page view controller. You can use this template to build applications that
incorporate page layout and page turning animations like iBooks.

 ➤ Single View Application: This template provides a starting point for an application that uses
a single view. It provides a view controller to manage the view and a storyboard or nib fi le
that contains the view. The calculator application is an example of a single view application.

 ➤ Tabbed Application: This template provides a starting point for an application that uses a
tab bar. It provides a user interface confi gured with a tab bar controller, and view control-
lers for the tab bar items. The Clock application is a tabbed application. The tabs at the bot-
tom let you switch between the world clock, alarm, stopwatch, and timer.

 ➤ Utility Application: This template provides a starting point for a utility application that has
a main view and an alternate view. For iPhone, it sets up an Info button to fl ip the main
view to the alternate view. For iPad, it sets up an Info bar button that shows the alternate view
in a popover. Weather is a utility application. It provides a simple interface and an informa-
tion button that fl ips the interface to allow for advanced customization.

 ➤ Empty Application: This template provides a starting point for any application. It provides
just an application delegate and a window. You can use this template if you want to build
your application entirely from scratch without very much template code.

The Framework & Library template set consists of a single template: Cocoa Touch Static Library.
You can use this template to build static libraries of code that link against the Foundation frame-
work. You will not use this template in this book. However, this template is useful for building
libraries of code that you can share amongst multiple projects.

The Other template set consists of only a single template: Empty. The Empty template is just an
empty project waiting for you to fi ll it up with code. You will not use this template in this book, but
it is useful if you want to start a new project and none of the existing templates is appropriate.

For this sample application, you are going to use the straightforward Single View Application
template.

 Select the Single View Application template from the dialog box and click the Next button. Set the
Product Name of your project to SampleTableProject, leave the Company Identifi er at its default
 setting, and choose iPhone from the Devices drop-down. Check the checkbox labeled Use Automatic

c01.indd 5c01.indd 5 4/1/2013 1:01:45 PM4/1/2013 1:01:45 PM

6 ❘ CHAPTER 1 INTRODUCING DATA-DRIVEN APPLICATIONS

Reference Counting, and make sure that the other two checkboxes are unchecked. Click the Next
button. Select a location to save your project, and click the Create button. Xcode creates your proj-
ect and presents the project window. You are now ready to get started!

Xcode now displays the project window, as shown in Figure 1-2. In the project window, you will see
the navigator in the left-hand pane. The navigator simplifi es navigation through various aspects of
your project. The selector bar at the top of the navigator area allows you to select the specifi c area
that you want to navigate. There are seven different navigators that you can use.

FIGURE 1-2: Xcode project window

The fi rst icon in the navigator selector bar represents the Project Navigator. You use the Project
Navigator to view the fi les that are part of your project. You can organize your fi les in folders and
use the Project Navigator to drill down through these folders to get to the fi le that you want to edit.

Whatever item you select in the Project Navigator appears in the Editor area. Selecting a source code
fi le (.m extension) will result in that fi le opening in the Editor area. If you select a user interface fi le
(.xib extension), Interface Builder will open in the Editor area, allowing you to work on the user
interface fi le. Double-clicking on a code fi le opens the code in a new tab, which can make your code
easier to work with. If you prefer that double-clicking a code fi le opens the code in a new window,
you can change this behavior in the General tab of Xcode ➪ Preferences dialog.

c01.indd 6c01.indd 6 4/1/2013 1:01:45 PM4/1/2013 1:01:45 PM

Building a Simple Data-Driven Application ❘ 7

You can change various confi guration settings for your project by selecting the project node at the
top of the Project Navigator to open the project settings in the Editor area.

In addition to the Project Navigator, you can also fi nd the Symbol, Search, Issue, Debug, Breakpoint,
and Log Navigators in the left pane. You can use these various navigators to get different views
of your project. Feel free to click on any of the folders, fi les, or navigator tab icons to explore how
Xcode organizes your project. You can add additional folders at any time to help keep your code and
other project assets such as images, sound, and text fi les under control.

Adding a UITableView

The most common control used to display data on iOS is the UITableView. As the name suggests,
the UITableView is a view that you can use to display data in a table. You can see the UITableView
in action in iOS’s Contacts application. The application displays your list of contacts in a
UITableView control. You learn much more about the UITableView control in Chapter 3.

Typically, when developing the interface for your iOS applications, you will use the Interface
Builder. This tool is invaluable for interactively laying out, designing, and developing your user
interface. However, the focus of this chapter is not on designing a beautiful interface; it is on dis-
playing data on iOS. So instead of using Interface Builder to design the screen that will hold a table
view, you will just create and display it programmatically.

To create the table view, you will be modifying the main View Controller for the sample project.

Model-View-Controller Architecture

Before I move on with the sample, it’s important that
you understand the basic architecture used to build
most iOS applications: Model-View-Controller.
There are three parts to the architecture, shown in
Figure 1-3. As you can probably guess, they are the
model, the view, and the controller.

The model is the class or set of classes that represent
your data. You should design your model classes to
contain your data, the functions that operate on that
data, and nothing more. Model classes should not need
to know how to display the data that they contain. In
fact, think of a model class as a class that doesn’t know
about anything else except its own data. When the
state of the data in the model changes, the model can
notify anyone interested, informing the listener of the state change. Alternatively, controller classes
can observe the model and react to changes.

In general, model objects should encapsulate all your data. Encapsulation is an important object-
oriented design principle. The idea of encapsulation is to prevent other objects from changing your
object’s data. To effectively encapsulate your data, you should implement interface methods or prop-
erties that expose the data of a model class. Classes should not make their data available through
public variables.

FIGURE 1-3: Model-View-Controller

architecture

Controller

ViewModel

c01.indd 7c01.indd 7 4/1/2013 1:01:45 PM4/1/2013 1:01:45 PM

8 ❘ CHAPTER 1 INTRODUCING DATA-DRIVEN APPLICATIONS

A complete discussion of object-oriented programming is beyond the scope of this book, but there
are many good resources for learning all about OOP. I have included some sources in the “Further
Exploration” section at the end of this chapter. Encapsulating your data in model objects will lead
to good, clean, object-oriented designs that you can easily extend and maintain.

The view portion of the MVC architecture is your user interface. The graphics, widgets, tables, and
text boxes present the data encapsulated in your model to the user. The user interacts with your
model through the view. View classes should contain only the code that is required to present
the model data to the user. In many iOS applications, you won’t need to write any code for your
view. Quite often, you will design and build it entirely within Interface Builder.

The controller is the glue that binds your model to your view. The controller contains all the logic
for telling the view what to display. It is also responsible for telling your model how to change
based on input from the user. Almost all the code in your iOS applications will be contained in
controller classes.

To quickly summarize, the model is your application data, the view is the user interface, and the
controller is the business logic code that binds the view to the model.

In the sample application, you will be creating a class that acts as the model for the data. Xcode
creates a default controller for the application as part of the Single View Application code template,
and you are going to add a table view as the view so that you can see the data contained in the
model. You will then code the controller to bind the view and model.

Adding the Table View Programmatically

Now that you have a basic understanding of the MVC architecture, you can move ahead and add
the table view to the application. Open the SampleTableProject folder in the Project Navigator
pane by clicking the disclosure triangle to the left of the folder. Select the ViewController.m fi le to
display its code in the code window.

Because you are not using Interface Builder to build the interface for this application, you will over-
ride the loadView method of the UIViewController to build the view. You are going to write code
in the loadView method so that when the View Controller tries to load the view, it will create an
instance of the UITableView class and set its view property to the newly created view. Add the
 following code to the ViewController class implementation:

- (void)loadView {
 CGRect cgRct = CGRectMake(0, 20, 320, 460);
 UITableView * myTable = [[UITableView alloc] initWithFrame:cgRct];
 self.view = myTable;
}

The fi rst line creates a CGRect, which is a Core Graphics structure used to specify the size and loca-
tion for the table view. You set it to have its origin at (0, 20), and defi ned it to be 320 points wide
by 460 points high. The table view will cover the entire screen, but start 20 points from the top,
below the status bar.

The next line creates an instance of a UITableView and initializes it with the dimensions that you
specifi ed in the previous line.

c01.indd 8c01.indd 8 4/1/2013 1:01:45 PM4/1/2013 1:01:45 PM

Building a Simple Data-Driven Application ❘ 9

Just creating the table view instance is not enough to get it to display
in the view. You have to inform the View Controller about it by setting
the View Controller’s view property to the table view that you just
created.

You can go ahead and click the Run icon in the toolbar at the top
left of the Xcode window to run the project. You will see that your
application compiles successfully and starts in the iOS simulator. You
should also see a bunch of gray lines in the simulator, as shown in
Figure 1-4. That is your table view! Those gray lines divide your
rows of data. Unfortunately, there is no data for your table view to
display yet, so the table is blank. You can, however, click in the simu-
lator and drag the table view. You should see the lines move as you
drag up and down and then snap back into position as you let go of the
mouse button.

Retrieving Data

A table is useless without some data to display. To keep this fi rst example simple, you are going to
create a very simple data model. The data model will be a class that contains a list of names that you
would like to display in the table. The model class will consist of an array to hold the list of data, a
method that will return the name for any given index, and a method that will return the total num-
ber of items in the model.

To create a new class in your project, begin by clicking the SampleTableProject folder in the Project
Navigator in Xcode. Then select File ➪ New ➪ File. You will see the New File dialog that shows all
of the types of fi les that you can create in an Xcode project.

Select Cocoa Touch in the left pane of the dialog box, select Objective-C Class as the type of fi le
that you want to create, and click Next. On the next screen, name your class DataModel by typing
DataModel into the Class text box. Then select NSObject in the drop-down box next to Subclass
Of. The template allows you to create Objective-C classes that are subclasses of NSObject, UIView,
UIViewController, UITableViewController, or UITableViewCell. In this case, you want
to create a subclass of NSObject, so just leave NSObject selected. Click Next to move to the net
screen.

In the fi nal dialog screen, you can tell Xcode where to put your new fi le. The options in this dialog
allow you to specify the location for your fi le, the group to contain your new class, and the build
target to compile your fi le. Leave the options at their defaults and click Create to have Xcode gener-
ate your new class fi les.

Implementing Your Data Model Class

For your class to serve data to the table view, you’ll need a method to return the requested data.
So, you’ll create an interface method called getNameAtIndex that will return the name from the
model that corresponds with the index that is passed in.

FIGURE 1-4: Running an

application with table view

c01.indd 9c01.indd 9 4/1/2013 1:01:46 PM4/1/2013 1:01:46 PM

10 ❘ CHAPTER 1 INTRODUCING DATA-DRIVEN APPLICATIONS

Bring up your DataModel.h header fi le by selecting it in the Project Navigator in Xcode. Below
the interface defi nition, add the following line of code to declare the getNameAtIndex interface
method:

-(NSString*) getNameAtIndex:(int) index;

You will also need an interface method that tells users of the class how many rows you will be
returning. So, add another method to the interface called getRowCount. Below the declaration for
getNameAtIndex, add the declaration for getRowCount:

-(int) getRowCount;

Your header fi le should look like this:

#import <Foundation/Foundation.h>

@interface DataModel : NSObject
-(NSString*) getNameAtIndex:(int) index;
-(int) getRowCount;

@end

Now switch over to the data model implementation fi le DataModel.m and implement the new meth-
ods. You can quickly switch between a header and an implementation fi le in Xcode by using the
shortcut key combination Ctrl+Cmd+Up Arrow. You can also use the Assistant Editor to view your
source and header fi les side by side. The Assistant Editor is the second icon in the Editor menu bar
on the top right side of the Xcode window. It looks like a tuxedo.

NOTE You will be well served to learn the keyboard shortcuts in Xcode. The
small amount of time that you invest in learning them will more than pay off in
time saved.

Below the #import statement in your implementation fi le, add a local variable to hold the data
list. Typically, the data in your application will come from a database or some other datasource.
To keep this example simple, you’ll use an NSArray as the datasource. Add the following line to the
DataModel.m fi le below the #import statement:

NSArray* myData;

Now, inside the @implementation block, you add the implementation of the getNameAtIndex
method. Add the following code stub between the @implementation and @end tags in
DataModel.m:

-(NSString*) getNameAtIndex:(int) index
{

}

c01.indd 10c01.indd 10 4/1/2013 1:01:46 PM4/1/2013 1:01:46 PM

Building a Simple Data-Driven Application ❘ 11

Before you get to the lookup implementation, you need to initialize the data store, the myData array.
For this example, you do that in the initializer of the class. Above the function stub getNameAtIndex,
add the following code to initialize the class:

-(id)init
{
 if (self = [super init])
 {
 // Initialization code
 myData = [[NSArray alloc] initWithObjects:@"Albert", @"Bill", @"Chuck",
 @"Dave", @"Ethan", @"Franny", @"George", @"Holly", @"Inez",
 nil];
 }
 return self;
}

The fi rst line calls the superclass’s init function. You should always call init on the superclass in
any subclass that you implement. You need to do this to ensure that attributes of the superclass are
constructed before you begin doing anything in your subclass.

The next line allocates memory for the array and populates it with a list of names.

The fi nal line returns an instance of the class.

Now that you have the data initialized, you can implement the function to get your data. This is
quite simple in this example. You just return the string at the specifi ed location in the array like so:

-(NSString*) getNameAtIndex:(int) index
{
 return (NSString*)[myData objectAtIndex:index];
}

This line of code simply looks up the object at the specifi ed index in the array and casts it to an
NSString*. You know that this is safe because you have populated the data by hand and are sure
that the object at the given index is an NSString.

NOTE To keep this example simple, I have omitted bounds checking that you
would add in a production application.

To implement getRowCount, you simply return the count of the local array like this:

-(int) getRowCount
{
 return [myData count];
}

At this point, if you build your project by selecting Product ➪ Build from the menu or pressing
Cmd+B, your code should compile and link cleanly with no errors or warnings. If you have an error
or warning, go back and look at the code provided and make sure that you have typed everything
correctly.

c01.indd 11c01.indd 11 4/1/2013 1:01:46 PM4/1/2013 1:01:46 PM

12 ❘ CHAPTER 1 INTRODUCING DATA-DRIVEN APPLICATIONS

I am a big proponent of compiling early and often. Typically, after every method that I write or any
particularly tricky bit of code, I attempt to build. This is a good habit to get into, because it is much
easier to narrow down compile errors if the amount of new code that you have added since your
last successful compile is small. This practice also limits the number of errors or warnings that you
receive. If you wait until you have written 2,000 lines before attempting to compile, you are likely to
fi nd the number of errors (or at least warnings) that you receive overwhelming. It is also sometimes
diffi cult to track down the source of these errors because compiler and linker errors tend to be a
little cryptic.

Your completed data model class should look like this:

#import "DataModel.h"
NSArray* myData;

@implementation DataModel

-(id)init
{
 if (self = [super init])
 {
 // Initialization code
 myData = [[NSArray alloc] initWithObjects:@"Albert", @"Bill", @"Chuck",
 @"Dave", @"Ethan", @"Franny", @"George", @"Holly", @"Inez",
 nil];
 }
 return self;
}

-(NSString*) getNameAtIndex:(int) index
{
 return (NSString*)[myData objectAtIndex:index];
}

-(int) getRowCount
{
 return [myData count];
}

@end

Displaying the Data

Now that you have the view and model in place, you have to hook them up using the controller.
For a table view to display data, it needs to know what the data is and how to display it. To do
this, a UITableView object must have a delegate and a datasource. The datasource coordinates
the data from your model with the table view. The delegate controls the appearance and behav-
ior of the table view. To guarantee that you have properly implemented the delegate, it must
implement the UITableViewDelegate protocol. Likewise, the datasource must implement the
UITableViewDataSource protocol.

c01.indd 12c01.indd 12 4/1/2013 1:01:46 PM4/1/2013 1:01:46 PM

Building a Simple Data-Driven Application ❘ 13

Protocols

If you are familiar with Java or C++, protocols should also be familiar. Java interfaces and C++ pure
virtual classes are the same as protocols. A protocol is just a formal contract between a caller and
an implementer. The protocol defi nition states what methods a class that implements the protocol
must implement. The protocol can also include optional methods.

Saying that a table view’s delegate must implement the UITableViewDelegate protocol means you
agree to a contract. That contract states that you will implement the required methods specifi ed in
the UITableViewDelegate protocol. Similarly, a class that will be set as the datasource for a table
view must implement the required methods specifi ed in the UITableViewDataSource protocol. This
may sound confusing, but it will become clearer as you continue to work through the example.

To keep this example as simple as possible and to avoid introducing more classes, you make the
ViewController the delegate and datasource for the table view. To do this, you have to implement
the UITableViewDelegate and UITableViewDataSource protocols in the ViewController. You
need to declare that the ViewController class implements these protocols in the header fi le. Change
the @interface line in the ViewController.h header fi le to add the protocols that you plan to
implement in angle brackets after the interface name and inheritance hierarchy like so:

@interface ViewController : UIViewController
 <UITableViewDataSource, UITableViewDelegate>

If you try to build your project now, you will get some warnings. Go to the Issue Navigator in the
navigator pane by clicking the Issue Navigator icon at the top of the navigator pane or by using
the shortcut Cmd+4. Your screen should look something like Figure 1-5.

FIGURE 1-5: Using the Issue Navigator

c01.indd 13c01.indd 13 4/1/2013 1:01:46 PM4/1/2013 1:01:46 PM

14 ❘ CHAPTER 1 INTRODUCING DATA-DRIVEN APPLICATIONS

You should see warnings associated with the compilation of ViewController.m; specifi cally, you
should see the warnings “Semantic Issue incomplete implementation” and “Semantic Issue Method
in protocol not implemented.”

These warnings are clear. You have not implemented the protocols that you claimed you would
implement. In fact, if you expand the issues in the Issue Navigator, you can use the navigator to
see the required methods that you failed to implement. Expand the fi rst “Semantic Issue Method
in protocol not implemented” issue, and you will see two items. Click on the item labeled “Method
declared here,” and you will see the protocol defi nition in the editor pane with the method that you
did not implement highlighted. In this case, it is the tableView:numberOfRowsInSection: method.
If you click on the item labeled “Required for direct or indirect protocol ‘UITableViewDataSource,’”
the editor window changes back to your source code where you declared that you were going to
implement the UITableViewDataSource protocol.

If you have any doubt about which methods are required to implement a protocol, a quick build will
tell you and show you the exact method or methods that you have failed to implement.

Implementing the UITableViewDataSource Protocol

You can get rid of those warnings and move one step closer to a working application by implement-
ing the UITableViewDataSource protocol.

Because you will be using the DataModel class in the ViewController class, you have to import the
DataModel.h header fi le. In the ViewController.h header fi le, add the following #import state-
ment just below the #import <UIKit/UIKit.h> statement:

#import "DataModel.h"

Now that you’ve imported the DataModel class, you have to create an instance variable of the
DataModel type. In the ViewController.m implementation, add the following declaration below
the @implementation keyword:

DataModel* model;

To actually create the instance of the model class, add the following code to the beginning of the
loadView method:

model = [[DataModel alloc] init];

Now that you have an initialized model ready to go, you can implement the required
UITableViewDataSource protocol methods. You can see from the compiler warnings that the meth-
ods you need to implement are cellForRowAtIndexPath and numberOfRowsInSection.

The numberOfRowsInSection method tells the table view how many rows to display in the current
section. You can divide a table view into multiple sections. In the Contacts application, a letter of
the alphabet precedes each section. In this example, you have only one section, but in Chapter 3,
you see how to implement multiple sections.

c01.indd 14c01.indd 14 4/1/2013 1:01:46 PM4/1/2013 1:01:46 PM

Building a Simple Data-Driven Application ❘ 15

To implement numberOfRowsInSection, get the number of rows that the datasource contains by
calling the model’s getRowCount method:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section{
 return [model getRowCount];
}

If you look at the Issue Navigator now, you will see that the warning about not implementing
numberOfRowsInSection is gone.

The cellForRowAtIndexPath method returns the actual UITableViewCell object that will
display your data in the table view. The table view calls this method any time it needs to display
a cell. The NSIndexPath parameter identifi es the desired cell. So, what you need to do is write a
method that returns the correct UITableViewCell based on the row that the table view asks for.
You do that like so:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] ;
 }

 NSUInteger row = [indexPath row];
 cell.textLabel.text = [model getNameAtIndex:row];
 return cell;
}

The fi rst few lines of code return a valid UITableViewCell object. I will not go into the details of
exactly what is happening here because I cover it in detail in Chapter 3, which is dedicated to the
UITableView. For now, suffi ce it to say that for performance purposes you want to reuse table view
cells whenever possible, and this code does just that.

The last few lines of code fi nd the row that the caller is interested in, look up the data for that row
from the model, set the text of the cell to the name in the model, and return the UITableViewCell.

That’s all there is to it. You should now be able to successfully build the project with no errors or
warnings.

Delegates

In designing the iOS SDK and the Cocoa libraries in general, Apple engineers frequently implemented
common design patterns. You’ve already seen how to use the MVC pattern in an application design.
Another pattern that you will see all across the Cocoa and Cocoa touch frameworks is delegation.

c01.indd 15c01.indd 15 4/1/2013 1:01:46 PM4/1/2013 1:01:46 PM

16 ❘ CHAPTER 1 INTRODUCING DATA-DRIVEN APPLICATIONS

In the delegate pattern, an object appears to do some bit of work; however, it can delegate that work
to another class. For example, if your boss asks you to do some work and you hand it off to some-
one else to do, your boss doesn’t care that you or someone else did the work, as long as the work is
completed.

While working with the iOS SDK, you will encounter many instances of delegation, and the table
view is one such instance. A delegate for the table view implements the UITableViewDelegate
protocol. This protocol provides methods that manage the selection of rows, control adding and
deleting cells, and control confi guration of section headings along with various other operations that
control the display of your data.

Finishing Up

The only thing left to do with the sample is to set the UITableView’s delegate and DataSource
properties. Because you have implemented the delegate and DataSource protocols, in the
ViewController, you set both of these properties to self.

In the loadView method of the ViewController.m fi le, add the following code to confi gure the
datasource and the delegate for the table view:

[myTable setDelegate:self];
[myTable setDataSource:self];

The fi nal code for the ViewController.m should look something like Listing 1-1.

LISTING 1-1: ViewController.m

#import "ViewController.h"

@interface ViewController ()

@end

@implementation ViewController
DataModel* model;

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section{
 return [model getRowCount];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
 dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault

c01.indd 16c01.indd 16 4/1/2013 1:01:46 PM4/1/2013 1:01:46 PM

Building a Simple Data-Driven Application ❘ 17

 reuseIdentifier:CellIdentifier] ;
 }

 NSUInteger row = [indexPath row];
 cell.textLabel.text = [model getNameAtIndex:row];
 return cell;
}

- (void)loadView {
 model = [[DataModel alloc] init];

 CGRect cgRct = CGRectMake(0, 20, 320, 460);
 UITableView * myTable = [[UITableView alloc] initWithFrame:cgRct];
 self.view = myTable;

 [myTable setDelegate:self];
 [myTable setDataSource:self];

}

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 // Release any retained subviews of the main view.
}

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation
{
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

@end

You should now be able to build and run your application in the simu-
lator. You should see the table populated with the names that are con-
tained in your DataModel class, as in Figure 1-6.

Congratulations! You have successfully built your fi rst data-driven
application! If you feel adventurous, feel free to go back and modify the
DataModel to use a different datasource, like a text fi le.

FIGURE 1-6: Running table

view with data

c01.indd 17c01.indd 17 4/1/2013 1:01:46 PM4/1/2013 1:01:46 PM

18 ❘ CHAPTER 1 INTRODUCING DATA-DRIVEN APPLICATIONS

FURTHER EXPLORATION

In this chapter, you learned how to build an iOS application that uses the UITableView control
to display data. You also learned a little bit about design patterns — specifi cally the Model-View-
Controller pattern that is prevalent in iOS application development. In the next chapter, you
learn how to use the SQLite database as your datasource. Then, in Chapter 3, you master the
UITableView control. By the end of Chapter 3, you should be able to build a data-centric iOS appli-
cation on your own.

Design Patterns

If you are interested in writing maintainable, high-quality software, I highly recommend Design
Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley, 1994). This is the bible of OO design patterns. The
book illustrates each pattern with a UML model, very readable explanations of the patterns and
their implementation, and code samples in both C++ and Smalltalk. If you don’t already have this
masterpiece of computer science, get it now — you won’t regret it.

I would also recommend Object-Oriented Design and Patterns by Cay S. Horstmann (Wiley, 2005).
Although the code in the book is in Java, you will fi nd that the explanations of the patterns intro-
duced are outstanding and will help you further understand the patterns and their importance in
implementing high-quality software.

Even if you are not interested in either of these titles, do yourself a favor and search Google for
“design patterns.” There is a reason why there is a lot of literature on design patterns. It doesn’t
make any sense to try to reinvent the wheel. Others have already discovered the solutions to many
of the problems that you will fi nd in your software designs. These solutions have become design pat-
terns. The point of these design patterns is to present well-tested designs to developers in a form that
everyone can understand. The patterns are time proven and offer a common vocabulary that is use-
ful when communicating your design to other developers.

Reading a Text File

If you are interested in making your simple table-viewing application more interesting, it is easy to
read data from a text fi le. The following code snippet shows you how:

NSError *error;

NSString *textFileContents = [NSString
 stringWithContentsOfFile:[[NSBundle mainBundle]
 pathForResource:@"myTextFile"
 ofType:@"txt"]
 encoding:NSUTF8StringEncoding
 error:&error];

// If there are no results, something went wrong
if (fileContents == nil) {
 // an error occurred
 NSLog(@"Error reading text file. %@", [error localizedFailureReason]);

c01.indd 18c01.indd 18 4/1/2013 1:01:47 PM4/1/2013 1:01:47 PM

Moving Forward ❘ 19

}

NSArray *lines = [textFileContents componentsSeparatedByString:@"\n"];
NSLog(@"Number of lines in the file:%d", [lines count]);

This code reads the contents of the fi le myTextFile.txt, which should be included in your code
bundle. Simply create a text fi le with this name and add it to your Xcode project.

The fi rst line declares an error object that will be returned to you should anything go wrong while
trying to read your text fi le. The next line loads the entire contents of your fi le into a string.

The next line is an error handler. If you get nil back from the call to
stringWithContentesOfFile, something went wrong. The error is output to the console
using the NSLog function.

The next line breaks up the large string into an array separated by \n, which is the return character.
You create an element in the lines array for each line in your fi le.

The fi nal line outputs the number of lines read in from the fi le.

MOVING FORWARD

In this chapter, you learned how to build a simple data-driven application using an NSArray as your
datasource. You also explored the project options available when creating a project in Xcode. Then
you learned about the Model-View-Controller architecture and how the table view fi ts in with that
design. Finally, you looked at the important concepts of protocols and delegates.

In the next chapter, you will learn how to get data from a more robust datasource, the SQLite data-
base. This is the embedded database that is included as part of the iOS SDK. Learning to use this
database will enable you to build rich, data-driven applications for iOS.

c01.indd 19c01.indd 19 4/1/2013 1:01:47 PM4/1/2013 1:01:47 PM

c01.indd 20c01.indd 20 4/1/2013 1:01:47 PM4/1/2013 1:01:47 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2013-04-02T11:53:42-0400
	Certified PDF 2 Signature

