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  CHAPTER ONE 

        Probability and Statistics    

   The organization of this book is such that by the time reader gets to the last 
chapter, all necessary terminology and methods of solutions of standard math-
ematical background has been covered. Thus, we start the book with the basics 
of probability and statistics, although we could have placed the chapter in a 
later location. This is because some chapters are independent of the others. 

 In this chapter, the basics of probability and some important properties of 
the theory of probability, such as discrete and continuous random variables 
and distributions, as well as conditional probability, are covered. 

 After the presentation of the basics of probability, we will discuss statistics. 
Note that there is still a dispute as to whether statistics is a subject on its own 
or a branch of mathematics. Regardless, statistics deals with gathering, analyz-
ing, and interpreting data. Statistics is an important concept that no science 
can do without. Statistics is divided in two parts:  descriptive statistics  and  infer-
ential statistics . Descriptive statistics includes some important basic terms that 
are widely used in our day-to-day lives. The latter is based on  probability 
theory . To discuss this part of the statistics, we include point estimation, interval 
estimation, and hypothesis testing. 

 We will discuss one more topic related to both probability and statistics, 
which is extremely necessary for business and industry, namely  reliability of a 
system . This concept is also needed in applications such as queueing networks, 
which will be discussed in the last chapter. 

 In this chapter, we cover as much probability and statistics as we will need 
in this book, except some parts that are added for the sake of completeness 
of the subject.  

  1.1.       BASIC DEFINITIONS AND CONCEPTS OF PROBABILITY 

 Nowadays, it has been established in the scientifi c world that since quantities 
needed are not quite often predictable in advance, randomness should be 
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2  PROBABILITY AND STATISTICS

accounted for in any realistic world phenomenon, and that is why we will 
consider random experiments in this book. 

 Determining probability, or chance, is to quantify the variability in the 
outcome or outcomes of a random experiment whose exact outcome or out-
comes cannot be predicted by certainty. Satellite communication systems, such 
as radar, are built of electronic components such as transistors, integrated 
circuits, and diodes. However, as any engineer would testify, the components 
installed usually never function as the designer has anticipated. Thus, not only 
is the probability of failure to be considered, but the reliability of the system 
is also quite important, since the failure of the system may have not only eco-
nomic losses but other damages as well. With probability theory, one may 
answer the question, “How reliable is the system?”

    Defi nition 1.1.1.    Basics  

    (a)    Any result of performing an experiment is called an  outcome  of that 
experiment. A set of outcomes is called an  event . 

  (b)    If occurrences of outcomes are not certain or completely predictable, 
the experiment is called a  chance  or  random experiment . 

  (c)    In a random experiment, sets of outcomes that cannot be broken down 
into smaller sets are called  elementary  (or  simple  or  fundamental ) 
 events . 

  (d)    An elementary event is, usually, just a singleton (a set with a single 
element, such as { e }). Hence, a combination of elementary events is just 
an  event . 

  (e)    When any element (or outcome) of an event happens, we say that the 
 event occurred . 

  (f)    The  union  (set of all elements, with no repetition) of all events for a 
random experiment (or the set of all possible outcomes) is called the 
 sample space . 

  (g)    In “set” terminology, an  event  is a  subset  of the sample space. Two 
events  A  1  and  A  2  are called  mutually exclusive  if their intersection is 
the empty set, that is, they are disjoint subsets of the sample space. 

  (h)    Let  A  1 ,  A  2 ,  . . .  ,  A n   be mutually exclusive events such that  A  1   ∪   A  2   ∪  
 . . .   ∪   A n    =   Ω . The set of { A  1 ,  A  2 ,  . . .  ,  A n  } is then called a  partition  of 
the sample space  Ω . 

  (i)     For an experiment, a collection or a set of all individuals, objects, or 
measurements of interest is called a (statistical)  population . 

 For instance, to determine the average grade of the differential 
equation course for all mathematics major students in four-year col-
leges and universities in Texas, the totality of students majoring math-
ematics in the colleges and universities in the Texas constitutes the 
population for the study. 
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 Usually, studying the population may not be practically or economi-
cally feasible because it may be quite time consuming, too costly, and/
or impossible to identify all members of it. In such cases, sampling is 
being used.  

  (j)     A portion, subset, or a part of the population of interest (fi nite or 
infi nite number of them) is called a  sample . 

 Of course, the sample must be  representative  of the entire popula-
tion in order to make any prediction about the population.  

  (k)    An element of the sample is called a  sample point . By  quantifi cation  
of the sample we mean changing the sample points to numbers. 

  (l)    The  range  is the difference between the smallest and the largest sample 
points. 

  (m)    A sample selected such that each element or unit in the population 
has the same chance to be selected is called a  random sample . 

  (n)    The  probability of an event A , denoted by  P ( A ), is a number between 
0 and 1 (inclusive) describing likelihood of the event  A  to occur. 

  (o)    An event with probability 1 is called an  almost   sure event . An event 
with probability 0 is called a  null  or an  impossible event . 

  (p)     For a sample space with  n  (fi nite) elements, if all elements or outcomes 
have the same chance to occur, then we assign probability 1/ n  to each 
member. In this case, the sample space is called  equiprobable . 

 For instance, to choose a digit at random from 1 to 5, we mean 
that every digit of {1, 2, 3, 4, 5} has the same chance to be picked, 
that is, all elementary events in {1}, {2}, {3}, {4}, and {5} are equi-
probable. In that case, we may associate probability 1/5 to each digit 
singleton.  

  (q)    If a random experiment is repeated, then the chance of occurrence of 
an outcome, intuitively, will be approximated by the ratio of occur-
rences of the outcome to the total number of repetitions of the experi-
ment. This ratio is called the  relative frequency .    

   Axioms of Probabilities of Events  
 We now state properties of probability of an event  A  through  axioms of prob-
ability . The Russian mathematician Kolmogorov originated these axioms in 
early part of the twentieth century. By an axiom, it is meant a statement that 
cannot be proved or disproved. Although all probabilists accept the three 
axioms of probability, there are axioms in mathematics that are still contro-
versial, such as the axiom of choice, and not accepted by some prominent 
mathematicians. 

 Let  Ω  be the sample space,   B the set function containing all possible events 
drawn from  Ω , and  P  denote the probability of an event. The triplet   Ω, ,B P( ) 
is then called the  probability space . Later, after we defi ne a random variable, 
we will discuss this space more rigorously.  
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   Axioms of Probability  

    Axiom A1.    0  ≤   P ( A )  ≤  1 for each event  A  in   B. 
  Axiom A2.     P ( Ω )  =  1. 
  Axiom A3.    If  A  1  and  A  2  are  mutually exclusive  events in   B, then:

    P A A P A P A1 2 1 2∪( ) = ( ) + ( ),     

where mutually exclusive events are events that have no sample point in 
common, and the symbol  ∪  means the union of two sets, that is, the set of all 
elements in both set without repetition. 

 Note that the axioms stated earlier are for events. Later, we will defi ne 
another set of axioms of probability involving random variables. 

 If the occurrence of an event has infl uence on the occurrence of other 
events under consideration, then the probabilities of those events change.  

     Defi nition 1.1.2   
 Suppose   Ω, ,B P( ) is a probability space and  B  is an event (i.e.,   B ∈B) with 
positive probability,  P ( B )  >  0. The  conditional probability of A given B , denoted 
by  P ( A | B ), defi ned on   B , is then given by:

    P A B
P AB
P B

A P B( ) = ( )
( )

( ) >, , .for any event in and forB 0     (1.1.1)   

 If  P ( B )  =  0, then  P ( A | B ) is not defi ned. Under the condition given, we will 
have a new triple, that is, a new probability space   Ω, ,B P A B( )( ). This space 
is called the  conditional probability space induced on    Ω, ,B P( ) , given B .  

     Defi nition 1.1.3   
 For any two events  A  and  B  with conditional probability  P ( B  |  A ) or  P ( A  |  B ), 
we have the  multiplicative law , which states:

    P AB P B A P A P A B P B( ) = ( ) ( ) = ( ) ( ).     (1.1.2)   

 We leave it as an exercise to show that for  n  events  A  1 ,  A  2 ,  . . .  ,  A n  , we have:

    P A A A P A P A A P A A A P A A A An n n1 2 1 2 1 3 1 2 1 2 1… � …( ) = ( ) × ( ) × ( ) × × ( )− .   
  (1.1.3)    

     Defi nition 1.1.4   
 We say that events  A  and  B  are  independent  if and only if:

    P AB P A P B( ) = ( ) ( ).     (1.1.4)   
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 It will be left as an exercise to show that if events  A  and  B  are independent 
and  P ( B )  >  0, then:

    P A B P A( ) = ( ).     (1.1.5)   

 It can be shown that if  P ( B )  >  0 and  (1.1.5)  is true, then  A  and  B  are indepen-
dent. For proof, see Haghighi et al. (2011a, p. 139). 

 The concept of independence can be extended to a fi nite number of events.  

     Defi nition 1.1.5   
 Events  A  1 ,  A  2 ,  . . .  ,  A n   are  independent  if and only if the probability of the 
intersection of any subset of them is equal to the product of corresponding 
probabilities, that is, for every subset { i  1 ,  . . .  ,  i k  } of {1,  . . .  ,  n } we have:

    P A A A P A P A P Ai i i i i in k1 2 1 2… �( ){ } = ( ) × ( ) × × ( ).     (1.1.6)   

 As one of the very important applications of conditional probability, we 
state the following theorem, whose proof may be found in Haghighi et al. 
(2011a):  

    Theorem 1.1.1.    The Law of Total Probability  
 Let  A  1 ,  A  2 ,  . . .  ,  A n   be a partition of the sample space  Ω . For any given event 
 B , we then have:

    P B P A P B Ai i

i

n

( ) = ( ) ( )
=
∑

1

.     (1.1.7)   

 Theorem  1.1.1  leads us to another important application of conditional prob-
ability. Proof of this theorem may also found in Haghighi et al. (2011a).  

    Theorem 1.1.2.    Bayes ’  Formula  
 Let  A  1 ,  A  2 ,  . . .  ,  A n   be a partition of the sample space  Ω . If an event  B  occurs, 
the probability of any event  A j   given an event  B  is:

    P A B
P A P B A

P A P B A
j nj

j j

i i
i

n( ) = ( ) ( )
( ) ( )

=

=∑ 1

1 2, , , , .…     (1.1.8)    

     Example 1.1.1   
 Suppose in a factory three machines A, B, and C produce the same type of 
products. The percent shares of these machines are 20, 50, and 30, respectively. 
It is observed that machines A, B, and C produce 1%, 4%, and 2% defective 
items, respectively. For the purpose of quality control, a produced item is 
chosen at random from the total items produced in a day. Two questions to 
answer:
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   1.    What is the probability of the item being defective? 
  2.    Given that the item chosen was defective, what is the probability that it 

was produced by machine B?    

   Answers  
 To answer the fi rst question, we denote the event of defectiveness of the item 
chosen by  D . By the law of total probability, we will then have:

    

P D P P D P P D B P P D C( ) = ( ) ( ) + ( ) ( ) + ( ) ( )
= × + × +

A A B C

0 20 0 01 0 50 0 04 0 3. . . . . 00 0 20

0 002 0 020 0 006 0 028

×
= + + =

.

. . . . .
   

 Hence, the probability of the produced item chosen at random being defective 
is 2.8%. 

 To answer the second question, let the conditional probability in question 
be denoted by  P (B |  D ). By Bayes ’  formula and answer to the fi rst question, 
we then have:

    P D
P P D

P D
B

B B( ) = ( ) ( )
( )

=
×

=
0 50 0 04

0 028
0 714

. .
.

. .    

 Thus, the probability that the defective item chosen be produced by machine 
C is 71.4%.  

     Example 1.1.2   
 Suppose there are three urns that contain black and white balls as follows:

    

Urn

Urn

Urn and

1 2

2 2

1 1 1

:

:

: .

blacks

whites

black white

⎧
⎨
⎪

⎩⎪
    (1.1.9)   

 A ball is drawn randomly and it is “white.” Discuss possible probabilities.  

   Discussion  
 The sample space  Ω  is the set of all pairs (·,·), where the fi rst dot represents 
the urn number (1, 2, or 3) and the second represents the color (black or 
white). Let  U  1 ,  U  2  and  U  3  denote events that drawing was chosen from, respec-
tively. Assuming that urns are identical and balls have equal chances to be 
chosen, we will then have:

    P U P U P U1 2 3
1
3

( ) = ( ) = ( ) = .     (1.1.10)   

 Also,  U  1   =  (1,·),  U  2   =  (2,·),  U  3   =  (3,·). 
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 Let  W  denote the event that a white ball was drawn, that is,  W   =  {(·,  w )}. From 
 (1.1.9) , we have the following conditional probabilities:

    P W U P W U P U1 2 30 1
1
2

( ) = ( ) = ( ) =, , .     (1.1.11)   

 From Bayes ’  rule,  (1.1.9) ,  (1.1.10) , and  (1.1.11) , we have:

   P U W
P W U P U

P W U P U P W U P U P W U P U
1

1 1

1 1 2 2 3 3

( ) = ( ) ( )
( ) ( ) + ( ) ( ) + ( ) ( )

,     (1.1.12)  

    = 0.     (1.1.13)   

 Note that denominator of  (1.1.12)  is:

    0 1
1
3

1
2

1
3

1
3

1
6

1
2

+ ( )⎛⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟ = + = .     (1.1.14)   

 Using  (1.1.14) , we have:

   

P U W
P W U P U

P W U P U P W U P U P W U P U
2

2 2

1 1 2 2 3 3

1
1

( ) = ( ) ( )
( ) ( ) + ( ) ( ) + ( ) ( )

=
( )

33
1
2

2
3

⎛
⎝

⎞
⎠
= .

    (1.1.15)   

 Again, using  (1.1.14) , we have:

   

P U W
P W U P U

P W U P U P W U P U P W U P U
3

3 3

1 1 2 2 3 3

1
2

( ) = ( ) ( )
( ) ( ) + ( ) ( ) + ( ) ( )

=

⎛
⎝

⎞⎞
⎠
⎛
⎝

⎞
⎠
=

1
3

1
2

1
3

.

    (1.1.16)   

 Now, observing from  (1.1.13) ,  (1.1.15) , and  (1.1.16) , there is a better chance that 
the ball was drawn from the second urn. Hence, if we assume that the ball was 
drawn from the second urn, there is one white ball that remains in it. That is, we 
will have the three urns with 0, 1, and 1 white ball, respectively, in urns 1, 2, and 3.    

  1.2.       DISCRETE RANDOM VARIABLES AND PROBABILITY 
DISTRIBUTION FUNCTIONS 

 As we have seen so far, elements of a sample space are not necessarily numbers. 
However, for convenience, we would rather have them so. This is done through 



8  PROBABILITY AND STATISTICS

what is called a  random variable . In other words, a  random variable  quantifi es 
the sample space. That is, a  random variable  assigns numerical (or set) labels 
to the sample points. Formally, we defi ne a random variable as follows:

     Defi nition 1.2.1   
 A  random variable  is a function (or a mapping) on the sample space. 

 We note that a random variable is really neither a variable (as known inde-
pendent variable) nor random, but as mentioned, it is just a function. Also note 
that sometimes the range of a random variable may not be numbers. This is 
simply because we defi ned a random variable as a mapping. Thus, it maps ele-
ments of a set into some elements of another set. Elements of either set do 
not have to necessarily be numbers. 

 There are two main types of random variables, namely,  discrete  and  continu-
ous . We will discuss each in detail.  

     Defi nition 1.2.2   
 A  discrete random variable  is a function, say  X , from a countable sample space, 
 Ω  (that could very well be a numerical set), into the set of real numbers.  

     Example 1.2.1   
 Suppose we are to select two digits from 1 to 6 such that the sum of the two 
numbers selected equals 7. Assume that repetition is not allowed. The sample 
space under consideration will then be  S   =  {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), 
(6, 1)}, which is discrete. This set can also be described as  S   =  {( i ,  j ):  i   +   j   =  7,  i , 
 j   =  1, 2,  . . .  , 6}. 

 Now, the random variable  X  can be defi ned by  X (( i ,  j ))  =   k ,  k   =  1, 2,  . . .  , 6. 
That is, the range of  X  is the set {1, 2, 3, 4, 5, 6} such that, for instance, 
 X ((1, 6))  =  1,  X ((2, 5))  =  2,  X ((3, 4))  =  3,  X ((4, 3))  =  4,  X ((5, 2))  =  5, and 
 X ((6, 1))  =  6. In other words, the discrete random variable  X  has quantifi ed 
the set of ordered pairs  S  to a set of positive integers from 1 to 6.  

     Example 1.2.2   
 Toss a fair coin three times. Denoting heads by  H  and tails by  T , the sample 
space will then contain eight triplets as  Ω   =  { HHH ,  HHT ,  HTH ,  HTT ,  THH , 
 THT ,  TTH ,  TTT }. Each tossing will result in either heads or tails. Thus, we 
might defi ne the random variable  X  to take values 1 and 0 for heads and tails, 
respectively, at the  j th tossing. In other words,

    X
j

j
j =

⎧
⎨
⎩

1

0

, ,

, .

if th outcome is heads

if th outcome is tails
   

 Hence,  P { X j    =  0}  =  1/2 and  P { X j    =  1}  =  1/2. Now from the sample space we see 
that the probability of the element HTH is:

    P X X X1 2 31 0 1
1
8

= = ={ } =, , .     (1.2.1)   
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 In contrast, product of individual probabilities is:

    P X P X P X1 2 31 0 1
1
2

1
2

1
2

1
8

={ }× ={ }× ={ } = × × = .     (1.2.2)   

 From  (1.2.1)  and  (1.2.2) , we see that  X  1 ,  X  2 , and  X  3  are mutually independent. 
 Now suppose we defi ne  X  and  Y  as the total number of heads and tails, 

respectively, after the third toss. The probability, then, of three heads and three 
tails is obviously zero, since these two events cannot occur at the same time, 
that is,  P { X   =  3,  Y   =  3}  =  0. However, from the sample space probabilities of 
individual events are  P { X   =  3}  =  1/8 and  P { Y   =  3}  =  1/8. Thus, the product is:

    P X P Y={ }× ={ } = × = ≠3 3
1
8

1
8

1
64

0.    

 Hence,  X  and  Y , in this case, are not independent. 
 One of the useful concepts using random variable is the  indicator function  

(or  indicator random variable  that we will defi ne in the next section.  

     Defi nition 1.2.3   
 Let  A  be an event from the sample space  Ω . The random variable  I A  (  ω  ) for 
  ω    ∈   A  defi ned as:

    I
A

A
A c
ω

ω
ω

( ) =
∈
∈

⎧
⎨
⎩

1

0

, ,

, ,

if

if
    (1.2.3)   

 is called the indicator function (or indicator random variable). 
 Note that for every   ω    ∈   Ω ,  I   Ω  (  ω  )  =  1 and  I  ϕ   (  ω  )  =  0. 
 We leave it as an exercise for the reader to show the following properties 

of random variables:

   (a)    if  X  and  Y  are two discrete random variables, then  X   ±   Y  and  XY  are 
also random variables, and 

  (b)    if { Y   =  0} is empty,  X / Y  is also a random variable.   

 The way probabilities of a random variable are distributed across the possible 
values of that random variable is generally referred to as the  probability dis-
tribution  of that random variable. The following is the formal defi nition.  

     Defi nition 1.2.4   
 Let  X  be a discrete random variable defi ned on a sample space  Ω  and  x  is a 
typical element of the range of  X . Let  p x   denote the probability that the 
random variable  X  takes the value  x , that is,

    p P X x p P X xx x= =[ ]( ) = =( )or ,     (1.2.4)   
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 where  p X   is called the  probability mass function  (pmf) of  X  and also referred 
to as the ( discrete )  probability density function  (pdf) of  X . 

 Note that   ∑ =x xp 1, where  x  varies over all possible values for  X .  

     Example 1.2.3   
 Suppose a machine is in either “good working condition” or “not good working 
condition.” Let us denote “good working condition” by 1 and “ not good 
working condition” by 0. The sample space of states of this machine will then 
be  Ω    =   {0, 1}. Using a random variable  X , we defi ne  P ([ X   =  1]) as the probabil-
ity that the machine is in “good working condition” and  P ([ X   =  0]) as the 
probability that the machine is not in “good working condition.” Now if 
 P ([ X   =  0])   =   4/5 and  P ([ X   =  0])  =  1/5, then we have a distribution for  X .  

     Defi nition 1.2.5   
 Suppose  X  is a discrete random variable, and  x  is a real number from the 
interval ( −  ∞ ,  x ]. Let us defi ne  F X  ( x ) as:

    F x P X x pX n

n

x

( ) = ≤[ ]( ) =
=−∞
∑ ,     (1.2.5)  

where  p n   is defi ned as  P ([ X   =   n ]) or  P ( X   =   n ).  F X  ( x ) is then called the  cumula-
tive distribution function  ( cdf )  for X.  

 Note that from the set of axioms of probability mentioned earlier, for all  x , 
we have:

    p px x

x

≥ =∑0 1, .and     (1.2.6)   

 We now discuss selected important discrete probability distribution functions. 
Before that, we note that a random experiment is sometimes called a  trial .  

     Defi nition 1.2.6   
 A  Bernoulli trial  is a trial with exactly two possible outcomes. The two possible 
outcomes of a Bernoulli trial are often referred to as  success  and  failure  
denoted by  s  and  f , respectively. If a Bernoulli trial is repeated independently 
 n  times with the same probabilities of success and failure on each trial, then 
the process is called  Bernoulli trials .  

   Notes:  

    (1)    From Defi nition  1.2.6 , if the probability of  s  is  p , 0  ≤   p   ≤  1, then, by the 
second axiom of probability, the probability of  f  will be  q   =  1  −   p . 

  (2)    By its defi nition, in a Bernoulli trial, the sample space for each trial has 
two sample points.    
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     Defi nition 1.2.7   
 Now, let  X  be a random variable taking values 1 and 0, corresponding to 
success and failure, respectively, of the possible outcome of a Bernoulli trial, 
with  p  ( p   >  0) as the probability of success and  q  as probability of failure. We 
will then have:

    P X k p q kk k=( ) = =−1 0 1, , .     (1.2.7)   

 Formula  (1.2.7)  is the probability distribution function (pmf) of the Bernoulli 
random variable  X . 

 Note that  (1.2.7)  is because fi rst of all,  p k q  1 −    k    >  0, and second, 
  ∑ = + ==

−
k

k kp q p q0
1 1 1 .  

     Example 1.2.4   
 Suppose we test 6 different objects for strength, in which the probability of 
breakdown is 0.2. What is the probability that the third object test be successful 
is, that is, does not breakdown?  

   Answer  
 In this case, we have a sequence of six Bernoulli trials. Let us assume 1 for a 
success and 0 for a failure. We would then have a 6-tuple (001000) to symbolize 
our objective. Hence, the probability would be (0.2)(0.2)(0.8)(0.2)(0.2)
(0.2)  =  0.000256. 

 Now suppose we repeat a Bernoulli trial independently fi nitely many times. 
We would then be interested in the probability of given number of times that 
one of the two possible outcomes occurs regardless of the order of their occur-
rences. Therefore, we will have the following defi nition:  

     Defi nition 1.2.8   
 Suppose  X n   is the random variable representing the number of successes in  n  
independent Bernoulli trials. Denote the  pmf  of  X n   by B k   =   b ( k ;  n ,  p ).   B k   =   b ( k ; 
 n ,  p ) is called the  binomial distribution function  with  parameters n  and  p  of 
the random variable  X , where the parameters  n ,  p  and the number  k  refer to 
the number of independent trials, probability of  success  in each trial, and the 
number of successes in  n  trials, respectively. In this case,  X  is called the  bino-
mial random variable . The notation  X   ∼   b ( k ;  n ,  p ) is used to indicate that  X  is 
a binomial random variable with parameters  n  and  p . 

 We leave it as an exercise to prove that:

    Bk =
⎛
⎝⎜

⎞
⎠⎟

=−n

k
p q k nk n k, , , , , ,0 1 2 …     (1.2.8)  

where  q   =  1  −   p .  
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     Example 1.2.5   
 Suppose two identical machines run together, each to choose a digit from 1 to 
9 randomly fi ve times. We want to know what the probability that a sum of 6 
or 9 appears  k  times ( k   =  0, 1, 2, 3, 4, 5) is.  

   Answer  
 To answer the question, note that we have fi ve independent trials. The sample 
space in this case for one trial has 81 sample points and can be written in a 
matrix form as follows:

    

1 1 1 2 1 8 1 9

2 1 2 2 2 8 2 9

8 1 8 2

, , , ,

, , , ,

, ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

�
�

� � � � �
� 88 8 8 9

9 1 9 2 9 8 9 9

, ,

, , , ,

.

( ) ( )
( ) ( ) ( ) ( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

�

   

 There are 13 sample points, where the sum of the components is 6 or 9. 
They are:

   1 5 2 4 3 3 4 2 5 1 1 8 2 7 3 6 4 5 5 4, , , , , , , , , , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )) ( ) ( ) ( ), , , , , , .6 3 7 2 8 1   

 Hence, the probability of getting a sum as 6 or 9 on one selection of both 
machines together (i.e., probability of a success) is  p   =  13/81. Now let  X  be the 
random variable representing the total times a sum as 6 or 9 is obtained in 5 
trials. Thus, from  (1.2.8) , we have:

    P X k
k

k
k k

=[ ]( ) = ⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ =

−5 13
81

68
81

0 1 2 3 4 5
5

, , , , , , .      

 For instance, the probability that the sum as 6 or 9 does not appear at all will 
be (68/81) 5   =  0.42, that is, there is a (100  −  42)  =  58% chance that we do get 
at least a sum as 6 or 9 during the fi ve trials. 

 Based on a sequence of independent Bernoulli trials, we now defi ne two 
other important discrete random variables. Consider a sequence of indepen-
dent Bernoulli trials with probability of success in each trial as  p , 0  ≤   p   ≤  1. 
Suppose we are interested in the total number of trials required to have the 
 r th success,  r  being a fi xed positive integer. The answer is in the following 
defi nition:

     Defi nition 1.2.9   
 Let  X  be a random variable with  pmf  as:

    f k r p
r k

k
p q kr k; , , , , .( ) =

+ −⎛
⎝⎜

⎞
⎠⎟

=
1

0 1…     (1.2.9)   



DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTION FUNCTIONS  13

 Formula  (1.2.9)  is then called a  negative binomial  (or  Pascal )  probability dis-
tribution function  (or  binomial waiting time ) .  In particular, if  r   =  1 in  (1.2.9) , 
then we will have:

    f k p P x k pq kk; , , , , , .1 1 0 1( ) = = +( ) = = …     (1.2.10)   

 The pmf given by  (1.2.10)  is called a geometric probability distribution 
function.  

     Example 1.2.6   
 As an example, suppose a satellite company fi nds that 40% of call for services 
received need advanced technology service. Suppose also that on a particular 
crazy day, all tickets written are put in a pool and requests are drawn randomly 
for service. Finally, suppose that on that particular day there are four advance 
service personnel available. We want to fi nd the probability that the fourth 
request for advanced technology service is found on the sixth ticket drawn 
from the pool.  

   Answer  
 In this problem, we have independent trials with  p   =  0.4 as probability of 
success, that is, in need of advanced technology service, on any trial. Let  X  rep-
resent the number of the tickets on which the fourth request in question is 
found. Thus,

    P X =( ) = ⎛
⎝⎜
⎞
⎠⎟
( ) ( ) =4

6

4
0 4 0 6 0 092164 2. . . .     

     Example 1.2.7   
 We now want to derive  (1.2.9)  differently. Suppose treatment of a cancer 
patient may result in “response” or “no response.” Let the probability of a 
response be  p  and for a no response be 1  −   p . Hence, the simple space in this 
case has two outcomes, simply, “response” and “no response.” We now repeat-
edly treat other patients with the same medicine and observe the reactions. 
Suppose we are looking for the probability of the number of trials required 
to have exactly  k  “responses.”  

   Answer  
 Denoting the sample space by  S ,  S   =  {response, no response}. Let us defi ne the 
random variable  X  on  S  to denote the number of trials needed to have exactly 
 k  responses. Let  A  be the event, in  S , of observing  k   −  1 responses in the fi rst 
 x   −  1 treatments. Let  B  be the event of observing a response at the  x th treat-
ment. Let also  C  be the event of treating  x  patients to obtain exactly  k  
responses. Hence,  C   =   A   ∩   B . The probability of  C  is:

    P C P A B P A P B A( ) = ( ) = ( )⋅ ( )∩ .    
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 In contrast,  P ( B  |  A )  =   p  and:

    P A
x

k
p pk x k( ) =

−
−

⎛
⎝⎜

⎞
⎠⎟

−( )− −1

1
11 .    

 Moreover,  P ( X   =   x )  =   P ( C ). Hence:

    P X x
x

k
p p x k kk x k=( ) =

−
−

⎛
⎝⎜

⎞
⎠⎟

−( ) = +−1

1
1 1, , , .…     (1.2.11)   

 We leave it as an exercise to show that  (1.2.11)  is equivalent to  (1.2.9) .  

     Defi nition 1.2.10   
 Let  n  represent a sample (sampling without replacement) from a fi nite popula-
tion of size  N  that consists of two types of items  n  1  of “defective,” say, and  n  2  
of “nondefective,” say,  n  1   +   n  2   =   n . Suppose we are interested in the probability 
of selecting  x  “defective” items from the sample.  n  1  must be at least as large 
as  x . Hence,  x  must be less than or equal to the smallest of  n  and  n  1 . Thus,

    p P X x

n

x

N n

n x
N

n

x n nx ≡ =( ) =

⎛
⎝⎜

⎞
⎠⎟
×

−
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

1 1

0 1 2, , , , , min ,… 11( ),     (1.2.12)   

 defi nes the general form of  hypergeometric pmf  of the random variable  X .  

   Notes:  

    i.    If sampling would have been with replacement, distribution would have 
been binomial. 

  ii.     p x   is the probability of waiting time for the occurrence of exactly  x  
“defective” outcomes. We could think of this scenario as an urn contain-
ing  N  white and green balls. From the urn, we select a random sample (a 
sample selected such that each element has the same chance to be 
selected) of size  n , one ball at a time without replacement. The sample 
consists of  n  1  white and  n  2  green balls,  n  1   +   n  2   =   n . What is the probability 
of having  x  white balls drawn in a row? This model is called an  urn model . 

  iii.    If we let  x i   equal to 1 if a defective item is selected and 0 if a nondefec-
tive item is selected, and let  x  be the total number of defectives selected, 
then   x xi

n
i= ∑ =1 . Now, if we consider selection of a defective item as a 

success, for instance, then we could also interoperate  (1.2.12)  as:

    
p

x n x
x =

( ) × −(number of ways for successes number of ways for failures))
total number of ways to select

.
  

  (1.2.13)      
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     Example 1.2.8   
 Suppose we have 100 balls in a box and 10 of them are red. If we randomly 
take out 40 of them (without replacement), what is the probability that we will 
have at least 6 red balls?  

   Answer  
 In this example, which is a hypergeometric distribution, if we assume that all 
40 balls are withdrawn at the same time,  N   =  100,  n   =  40,  n  1   =  10, “defective,” 
is replaced by “red,” and  n  2   =  90, and “nondefective” is replaced by “nonred”. 
The question is to fi nd the probability of selecting at least six red balls. To fi nd 
the probabilities, we need to calculate the probabilities of 7, 8, 9, and 10 red 
balls and sum them all or calculate  p   ≡  1  −   P {number of red balls}  ≤  5. To do 
this, we could use statistical software, called Stata, for instance. However, using 
 (1.2.12)  or  (1.2.13) , we have:

   

P number of red balls{ } ≤ =

⎛
⎝⎜

⎞
⎠⎟
×

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+5

10

0

90

40 0
100

40

10

11

90

40 1
100

40

10

2

90

40 2
100

⎛
⎝⎜

⎞
⎠⎟
×

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+

⎛
⎝⎜

⎞
⎠⎟
×

−
⎛
⎝⎜

⎞
⎠⎟

440

10

3

90

40 3
100

40

10

4

90

40

⎛
⎝⎜

⎞
⎠⎟

+

⎛
⎝⎜

⎞
⎠⎟
×

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+

⎛
⎝⎜

⎞
⎠⎟
×

−−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+

⎛
⎝⎜

⎞
⎠⎟
×

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=4
100

4

10

5

90

40 5
100

40

0 84. 66.

  

 Thus,  p   =  1  −  0.846  =  0.154  =  15.4%. 
 We caution that if one uses Excel formula as: “ = HYPGEOMDIST

(6,40,10,100),” which works out to be 10%, it is not quite right. 
 As our fi nal important discrete random variable, we defi ne the Poisson 

probability distribution function.  

     Defi nition 1.2.11   
 A  Poisson random variable  is a nonnegative random variable  X  such that:

    p P X x
e

k
kk

k

= =[ ]( ) = =
−λλ

!
, , , ,0 1…     (1.2.14)  

where   λ   is a constant. Formula  (1.2.14)  is called a  Poisson probability distribu-
tion function  with parameter   λ  .  
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     Example 1.2.9   
 Suppose that the number of telephone calls arriving to a switchboard of an 
institution every working day has a Poisson distribution with parameter 20. 
What is the probability that there will be:

   (a)    20 calls in one day? 
  (b)    at least 30 calls in one day? 
  (c)    at most 30 calls in one day?    

   Answers  
 Using   λ    =  20 in  (1.2.12)  we will have:

   (a)      P P X e30
20 3030 20 30 0 0083= =[ ]( ) = ( )( )( ) =− ! . . 

  (b)      P X e kk
k≥[ ]( ) = ∑ ( ) ==

∞ −30 20 0 021830
20 ! . . 

  (c)      P X P X P X≤[ ]( ) = − ≥[ ]( ) + =[ ]( )
= − + =

30 1 30 30

1 0 0218 0 0083 0 9865. . . .
   

 Let  X  be a binomial random variable with distribution function B k  and   λ    =   np  
be fi xed. We will then leave it as an exercise to show that:

    Bk = = =
→∞
→

−

lim
!

, , , , .
,n

p

k ke
k

k
0

0 1 2
λ

…     (1.2.15)      

  1.3.       MOMENTS OF A DISCRETE RANDOM VARIABLE 

 We now discuss some properties of a discrete distribution.

     Defi nition 1.3.1   
 Suppose  X  is a discrete random variable defi ned on a sample space  Ω  with 
pmf of  p X  . The  mathematical expectation  or simply  expectation  of  X , or  expected 
value  of  X , or the  mean  of  X  or  the fi rst moment  of  X , denoted by  E ( X ), is 
then defi ned as follows:If  Ω  is fi nite and the range of  X  is { x  1 ,  x  2 ,  . . .  ,  x n  }, then:

    E X x pi X

i

n

i( ) =
=
∑

1

,     (1.3.1)  

and if  Ω  is infi nite and the range of  X  is { x  1 ,  x  2 ,  . . .  ,  x n  ,  . . . }, then:

    E X x pi X

i

i( ) =
=

∞

∑
1

,     (1.3.2)  

provided that the series converges. If  Ω  is fi nite and   pXi,  i   =  1, 2,  . . .  ,  n , is con-
stant for all  i  ’ s, say 1/ n , then the right-hand side of  (1.3.1)  will become  x  1   +   x  2  
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 +   . . .   +   x n  / n . This expression is denoted by   x  and is called  arithmetic average  
of  x  1 ,  x  2 ,  . . .  ,  x n  , that is,

    x
x x x

n
n=

+ + +1 2 � .     (1.3.3)   

   pXi,  i   =  1, 2,  . . .  ,  n  in  (1.3.1) ,  (1.3.2) , and  (1.3.3)  is called the  weight  for the 
values of the random variable  X . Hence, in  (1.3.1)  and  (1.3.2) , the weights vary 
and  E ( X ) is called the  weighted average , while in  (1.3.3)  the weights are the 
same and   x is called the  arithmetic average  or simply the  average . 

 We next state some properties of the fi rst moment without proof. We leave 
the proof as exercises.  

   Properties of the First Moment  

    1.    The expected value of the indicator function  I A  (  ω  ) defi ned in  (1.2.3)  is 
 P ( A ), that is,

    E I P AA( ) = ( ).     (1.3.4)   

  2.    If  c  is a constant, then  E ( c )  =   c . 
  3.    If  c ,  c  1 , and  c  2  are constants and  X  and  Y  are two random variables, then:

    E cX cE X E c X c Y c E X c E Y( ) = ( ) +( ) = ( ) + ( )and 1 2 1 2 .     (1.3.5)   

  4.    If  X  1 ,  X  2 ,  . . .  ,  X n   are  n  random variables, then:

    E X X X E X E X E Xn n1 2 1 1+ + +( ) = ( ) + ( ) + + ( )� � .     (1.3.6)   

  5.    Let  X  1  and  X  2  be two independent random variables with marginal mass 
(density) functions   px1 and   px2, respectively. If  E ( X  1 ) and  E ( X  2 ) exist, we 
will then have:

    E X X E X E X1 2 1 2( ) = ( ) ( ).     (1.3.7)   

  6.    For a fi nite number of random variables, that is, if  X  1 ,  X  2 ,  . . .  ,  X n   are  n  
independent random variables, then:

    E X X X E X E X E Xn n1 2 1 2… …( ) = ( ) ( ) ( ).     (1.3.8)     

 We now extend the concept of moments.  

     Defi nition 1.3.2   
 Let  X  be a discrete random variable and  r  a positive integer.  E ( X r  ) is then 
called the  r th  moment  of  X  or  moment of order r  of  X . In symbols:
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    E X x P X xr
k
r

k

k

( ) = =( )
=

∞

∑
1

.     (1.3.9)   

 Note that if  r   =  1,  E ( X r  )  =   E ( X ), that is, the moment of fi rst order or the fi rst 
moment of  X  is just the expected value of  X . The second moment, that is,  E ( X  2 ) 
is also important, as we will see later. 

 Let us denote  E ( X ) by   μ  , that is,  E ( X )  ≡    μ  . It is clear that if  X  is a random 
variable, so is  X   −    μ  , where   μ   is a constant. However, since  E ( X   −    μ  )  =   E ( X )  −  
 E (  μ  )  =    μ    −    μ    =  0, we can  center   X  by choosing the new random variable  X   −    μ  . 
This leads to the following defi nition.  

     Defi nition 1.3.3   
 The  r th moment of the random variable  X   −    μ  , denoted by   μ  r  ( X ) is defi ned by 
 E [( X   −    μ  )  r  ], and is called the  r th  central moment  of  X , that is,

    μ μr
rX E X( ) = −( ) .     (1.3.10)   

 Note that the random variable  X   −    μ   measures the  deviation  of  X  from its 
mean. Thus, we have the next defi nition:  

     Defi nition 1.3.4   
 The  variance  of a random variable,  X , denoted by  Var ( X ) or equivalently by 
  σ   2 ( X ), or if there is no fear of confusion, just   σ   2 , is defi ned as the second central 
moment of  X , that is,

    σ μ2 2X E X( ) = −( )⎡⎣ ⎤⎦ .     (1.3.11)   

 The positive square root of the variance of a random variable  X  is called the 
 standard deviation  and is denoted by   σ  ( X ). 

 It can easily be shown that if  X  is a random variable and   μ   is fi nite, then:

    Var X E X( ) = ( ) −2 2μ .     (1.3.12)   

 It can also be easily proven that if  X  is a random variable and  c  is a real 
number, then:

    Var X c Var X+( ) = ( ),     (1.3.13)  

    Var cX c Var X( ) = ( )2 .     (1.3.14)    

     Example 1.3.1   
 Consider the Indicator function defi ned in  (1.2.3) . That is,

    I
A

A
A c
ω

ω
ω

( ) =
∈
∈

⎧
⎨
⎩

1

0

, ,

, .

if

if
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 The expected value of  I A  (  ω  ) is:

    E I P A P A P AA ω( )( ) = ⋅ ( ) + ⋅ − ( )[ ] = ( )1 0 1 .     

     Example 1.3.2   
 Consider the Bernoulli random variable defi ned in Defi nition  1.2.7 . Thus, the 
random variable  X  takes two values 1 and 0, for instance, for success and 
failure, respectively. The probability of success is assumed to be  p . Thus, the 
expected value of  X  is:

    E X p p p( ) = ⋅ + ⋅ −( ) =1 0 1 .    

 To fi nd the variance, note that:

    E X p p p2 2 21 1 0 0 1( ) = =( ) ⋅ + =( ) ⋅ −( ) = .    

 Hence,

    Var X p p p p( ) = − = −( )2 1 .     

     Example 1.3.3   
 We want to fi nd the mean and variance of the random variable  X  having 
binomial distribution defi ned in  (1.2.8) .  

   Answer  
 From  (1.2.8) , we have:

    

E X k
n

k
p p k

n

k
p p

np
n

k n k

k

n
k n k

k

n

( ) = ⎛
⎝⎜

⎞
⎠⎟

−( ) = ⎛
⎝⎜

⎞
⎠⎟

−( )

=

−

=

−

=
∑ ∑1 1

0 1

−−⎛
⎝⎜

⎞
⎠⎟

−( ) =− −

=

−

∑ 1
1 1

0

1

r
p p npr n r

r

n

.

   

 We leave it as an exercise to show that the  Var ( X )  =   np (1  −   p ).  

     Example 1.3.4   
 Consider the Poisson distribution defi ned by  (1.2.14) . We want to fi nd the 
mean and variance of the random variable  X  having Poisson pmf as given in 
 (1.2.14) .  

   Answer  

     E X x
e

x
e

x
e e

x

x

x

x

( ) = =
−( )

= =
−

=

∞
−

−

=

∞
−∑ ∑

λ
λ λ λλ λ λ λ λ

! !
,

0

1

0 1
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    Var X( ) = + − =λ λ λ λ2 2 .       

  1.4.       CONTINUOUS RANDOM VARIABLES 

 So far we have been discussing discrete random variables, discrete distribution 
functions, and some of their properties. We now discuss continuous cases.

     Defi nition 1.4.1   
 When the values of outcomes of a random experiment are real numbers (not 
necessarily integers or rational), the sample space,  Ω , is a called a  continuous 
sample space , that is,  Ω  is the entire real number set   R or a subset of it (i.e., 
an interval or a union of intervals). 

 The set consisting of all subsets of real numbers   R is extremely large and 
it will be impossible to assign probabilities to all of them. It has been shown 
in the theory of probability that a smaller set, say   B, may be chosen that con-
tains all events of our interest. In this case,   B is, loosely, referred to as the  Borel 
fi eld . We now pause to discuss Borel fi eld more rigorously.  

     Defi nition 1.4.2   
 A nonempty set-function   F  is called a   σ -algebra  if it is closed under comple-
ments, and under fi nite or countable unions, that is,

   (i)     A  1 ,   A2 ∈F , then  A  1   ∪   A  2  and   Ac
1 ∈F , and 

  (ii)      Ai ∈F ,  i   ≥  1, then   ∪ i iA=
∞ ∈1 F  .    

 Note that axioms (i) and (ii) imply that,   F  should be closed under fi nite and 
countable intersections as well.  

     Example 1.4.1   
 The power set of a set  X ,   F , is a   σ  -algebra.  

     Defi nition 1.4.3   
 Earlier in this chapter we defi ned “function.” The way it was defi ned, it was a 
“point function” since values were assigned to each point of a set. A  set func-
tion   F  assigns values to sets or regions of the space.  
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     Defi nition 1.4.4   
 A  measure,    μ  , on a set   F  is a set function that assigns a real number to each 
subset of   F , (which intuitively determines the size of the set   F ) such that:

   i.      μ  (  ϕ  )  =  0, where   ϕ   is the empty set, 
  ii.      μ  ( A )  ≥  0,   ∀ ∈A F , that is, nonnegative, and 
  iii.    if   A ii, ∈{ }∈Z F  is a fi nite or countable sequence of mutually disjoint 

sets in   F , then   μ μ∪ i i i iA A∈ ∈( ) = ∑ ( )Z Z , the countably additive axiom, 
where   Z is the set of integers.    

   Notes:  

    1.    What the third axiom says is that the measure of a “large” subset (the 
union of subsets  A i   ’ s) that can be partitioned into a fi nite (or countable) 
number of “smaller” disjoint subsets is the sum of the measures of the 
“smaller” subsets. 

  2.    Generally speaking, if we were to associate a size to each subset of a 
given set so that we are consistent yet satisfying the other axioms of a 
measure, only trivial examples like the counting measure would be avail-
able. To remove this barrier, a measure would be defi ned only on a 
subcollection of all subsets, the so called  measurable   subsets , which are 
required to form a   σ  -algebra. In other words, elements of the   σ  -algebra 
are called  measurable sets . This means that countable unions, countable 
intersections, and complements of measurable subsets are measurable. 

  3.    Existence of a nonmeasurable set involves axiom of choice. 
  4.    Main applications of measures are in the foundations of the Lebesgue 

integral, in Kolmogorov ’ s axiomatization of probability theory, including 
ergodic theory. (Andrey Kolmogorov was a Russian mathematician who 
was a pioneer of probability theory.) 

  5.    It can be proven that a measure is  monotone , that is, if  A  is a subset of 
 B , then the measure of  A  is less than or equal to the measure of  B .   

 Let us now consider the following example.  

     Example 1.4.2   
 Consider the life span of a patient with cancer who is under treatment. Hence, 
the duration of the patient ’ s life is a positive real number. This number is actu-
ally an outcome of our treatment (experiment). Let us denote this outcome 
by   ω  . Thus, the sample space is the set of all real numbers (of course, in reality, 
truncated positive real line). Now, we could include the nonpositive part of 
the real line to our sample space as long as probabilities assigned to them are 
zeros. Thus, the sample space would become just the real line. While the treat-
ment goes on, we might ask, what is the probability that the patient dies before 
a preassigned time, say   ω  t  ? 
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 It might also be of interest to know the time interval, say   ω ωt t1 2,( ) , in which 
the dose level of a medicine needs to show a reaction. 

 To answer questions of these types, we would have to consider intervals 
( −  ∞ ,   ω  t  ) and   ω ωt t1 2,( ) as events. Thus, we need to consider a family of sets, 
called Borel sets.  

     Defi nition 1.4.5   
 Let  Ω  be a sample space. A family (or a collection)   B of subsets of  Ω  satisfi es 
the following axioms:

   Axiom B1.      Ω ∈B, 
  Axiom B2.    If   A ∈B, then   Ac ∈B, that is, is closed under complement, and 
  Axiom B3.    If   A ii, ∈{ }Z  is a fi nite or countable family of subsets of  Ω  in   B, 

then also   ∪ i iA∈ ∈Z B, that is,   B is closed under the union of at most count-
able many of its members, called the  class of events . The class of events 
  B satisfying Axioms B1–B3 is called a  Borel fi eld  or a   σ -fi eld  (reads as 
sigma-fi eld, which is a   σ - algebra).    

     Example 1.4.3   
 The family of events   B = { }φ, Ω  satisfi es axioms B1–B3 stated in Defi nition 
 1.4.5  and hence is a Borel fi eld. In fact, this is the smallest family that satisfi es 
the axioms. This family is called the  trivial Borel fi eld .  

     Example 1.4.4   
 Let  A  be a nonempty set such that   ϕ    ⊂   A   ⊂   Ω . Thus, {  ϕ  ,  A ,  A c  ,  Ω } is the small-
est Borel fi eld that contains  A .  

     Defi nition 1.4.6   
 The smallest Borel fi eld of subsets of the real line   R that contains all intervals 
( −  ∞ ,   ω  ) is called  Borel sets .  

   Notes:  

    1.    A subset of the real line   R is a Borel set if and only if it belongs to the 
Borel fi eld mentioned in Defi nition  1.4.5 . 

  2.    Since intersection of   σ  -algebras is again a   σ  -algebra, the Borel sets are 
intersection of all   σ  -algebras containing the collection of open sets in   T . 

  3.    We may defi ne Borel sets as follows: let   X , T( ) be a topological space. 
The smallest   σ  -algebra containing the open sets in   T  is then called the 
collection of Borel sets0 in  X , if such a collection exists.    

     Defi nition 1.4.7   
 Let  X  be a set and   B be a Borel set. The ordered pair   X , B( ) is then called a 
 measurable space .  
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     Defi nition 1.4.8   
 Let  Ω  be a sample space. Also let  P (·) be a nonnegative function defi ned on 
a Borel set   B. The function  P (·) is then called a  probability measure , if and 
only if the following axioms M1–M3 are satisfi ed:

   Axiom M1.     P ( Ω )  =  1. 
  Axiom M2.     P ( A )  ≥  0,   ∀ ∈A B. 
  Axiom M3.    If   A i Ii, ∈{ }∈B is a fi nite or countable sequence of mutually dis-

joint sets (i.e.,  A i    ∩   A j    =    ϕ  , for each  i   ≠   j ) in   B, then   P A P Ai I i i I i∪ ∈ ∈( ) = ∑ ( ), 
 the countably additive axiom .    

     Example 1.4.5   
 Let  Ω  be a countable set and   B the set of all subsets of  Ω . Next, let 
  P A pA( ) = ∑ ( )∈ω ω , where  p (  ω  )  ≥  0 and   ∑ ( ) =∈ω ωΩ p 1. The function  P (·), then, 
is a probability measure.  

     Defi nition 1.4.9   
 The triplet   Ω, ,B P( ), where  Ω  is a sample space,   B is a Borel set, and 
  P : ,B→[ ]0 1  is a probability measure, is called the  probability space . 

 Note that a probability space is a measure space with a probability 
measure.  

     Defi nition 1.4.10   
 A measure   λ   on the real line   R such that   λ  (( a ,  b ])  =   b   −   a ,  ∀  a   <   b , and   λ R( ) = ∞, 
is called a  Lebesgue measure .  

     Example 1.4.6   
 The Lebesgue measure of the interval [0, 1] is its length, that is, 1. 

 Note that a particularly important example is the Lebesgue measure on 
a Euclidean space, which assigns the conventional length, area, and volume 
of Euclidean geometry to suitable subsets of the  n -dimensional Euclidean 
space   Rn. 

 We now return to the discussion of a continuous random variable. 
 If  A  1 ,  A  2 ,  A  3 ,  . . .  is a sequence of mutually exclusive events represented as 

intervals of   R  and  P ( A i  ),  i   =  1, 2,  . . .  , is the probability of the event  A i  ,  i   =  1, 
2,  . . .  , then, by the third axiom of probability, A3, we will have:

    P A P Ai

i

i

i=

∞

=

∞⎛
⎝⎜

⎞
⎠⎟
= ( )∑

1 1
∪ .     (1.4.1)   

 For a random variable,  X , defi ned on a continuous sample space,  Ω , the prob-
ability associated with the sample points for which the values of  X  falls on the 
interval [ a ,  b ] is denoted by  P ( a   ≤   X   ≤   b ).  
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     Defi nition 1.4.11   
 Suppose the function  f ( x ) is defi ned on the set of real numbers,   R, such that 
 f ( x )  ≥  0, for all real  x , and   ∫ ( ) =−∞

∞
f x dx 1. Then,  f ( x ) is called a  continuous prob-

ability density function  ( pdf ) (or just  density function ) on   R and it is denoted 
by,  f X  ( x ). If  X  is a random variable that its probability is described by a con-
tinuous pdf as:

    P a X b f x dx a bX
a

b

≤ ≤( ) = ( ) [ ]∫ , , ,for any interval     (1.4.2)  

then  X  is called a  continuous random variable . The  probability distribution 
function  of  X , denoted by  F X  ( x ), is defi ned as:

    F x P X x f t dtX

x

( ) = ≤( ) = ( )
−∞∫ .     (1.4.3)    

   Notes:  

    1.    There is a signifi cant difference between discrete pdf and continuous 
pdf. For a discrete pdf,  f X    =   P ( X   =   x ) is a probability, while with a con-
tinuous pdf,  f X  ( x ) is not a probability. The best we can say is that 
 f X  ( x ) dx   ≈   P ( x   ≤   X   ≤   x   +   dx ) for all infi nitesimally small  dx . 

  2.    If there is no fear of confusion, we will suppress the subscript “ X ” from 
 f X  ( x ) and  F X  ( x ) and write  f ( x ) and  F ( x ), respectively.   

 As it can be seen from  (1.4.3) , distribution function can be described as the 
area under the graph of the density function. 

 Note from  (1.4.2)  and  (1.4.3)  that if  a    =    b    =    x , then:

    P x X x P X x f t dt
x

x

≤ ≤( ) = =( ) = ( ) =∫ 0.     (1.4.4)   

 What  (1.4.4)  says is that if  X  is a continuous random variable, then the prob-
ability of any given point is zero. That is, for a continuous random variable to 
have a positive probability, we have to choose an interval.  

   Notes:  

    (a)    From  (1.4.4) , we will have:

    P a X b P a X b P a X b P a X b≤ ≤( ) = < ≤( ) = ≤ <( ) = < <( ).     (1.4.5)   

  (b)    Since by the fundamental theorem of integral calculus,  f x  ( x )  =   dF x  ( x )/ dx , 
the density function of a continuous random variable can be obtained 
as the derivative of the distribution function, that is,   ′ ( ) = ( )F x f xX X . 
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Conversely, the cumulative distribution function can be recovered from 
the probability density function with  (1.4.3) . 

  (c)     F X  ( x ) collects all the probabilities of values of  X  up to and including  x . 
Thus, it is the   cumulative distribution function   (  cdf  ) of  X . 

  (d)    For  x  1   <   x , the intervals ( −  ∞ ,  x  1 ] and ( x  1 ,  x ] are disjoint and their union 
is ( −  ∞ ,  x ]. Hence, from  (1.4.2)  and  (1.4.3) , if  a   ≤   b , then:

    P a X b P X b P X a F b F aX X≤ ≤( ) = ≤( ) − ≤( ) = ( ) − ( ).     (1.4.6)   

  (e)    It can easily be verifi ed that  F X  ( −  ∞ )  =  0 and  F X  ( ∞ )  =  0 (why?). 
  (f)    As it can be seen from  (1.4.3) , the concept and defi nition of cdf applies 

to both discrete and continuous random variables. If the random vari-
able is discrete,  F X  ( x ) is the sum of  f x   ’ s. However, if the random variable 
is continuous, then the sum becomes a limit and eventually an integral 
of the density function. The most obvious difference between the cdf 
for continuous and discrete random variables is that  F X   is a continuous 
function if  X  is continuous, while it is a step function if  X  is discrete.      

  1.5.       MOMENTS OF A CONTINUOUS RANDOM VARIABLE 

 As part of properties of continuous random variables, we now discuss continu-
ous moments. Before doing that, we note that in an integral when the variable 
of integration,  X , is replaced with a function, say  F ( x ), the integral becomes a 
Stieltjes integral that looks as   ∫ ( )a

b
dF x , found by Stieltjes in late nineteenth 

century. If  F ( x ) is a continuous function and its derivative is denoted by  f ( x ), 
then the  Lebesgue–Stieltjes integral  becomes   ∫ ( ) = ∫ ( )a

b
a
b

dF x f x dx. Henri Leb-
esgue was a French mathematician (1875–1941) and Thomas Joannes Stieltjes 
was a Dutch astronomer and mathematician (1856–1899).

     Defi nition 1.5.1   
 Let  X  be a continuous random variable defi ned on the probability space 
  Ω, ,B F( ) with pdf  f X  ( x ). The  mathematical expectation  or simply  expectation  of 
 X , or  expected value  of  X , or the  mean  of  X  or  the fi rst moment  of  X , denoted 
by  E ( X ), is then defi ned as the Lebesgue–Stieltjes integral:

    E X XdF xf x dx( ) = = ( )∫ ∫−∞
∞

Ω
,     (1.5.1)  

provided that the integral exists. Formula  (1.5.1) , for a case for an arbitrary 
(continuous measurable) function of  X , say  g ( X ), where  X  is a bounded 
random variable with continuous pdf  f X  ( x ), will be:

    E g X g X dF g x f x dx( )( ) = ( ) = ( ) ( )∫ ∫−∞
∞

Ω
,     (1.5.2)  

provided that the integral converges absolutely.  
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     Defi nition 1.5.2   
 The  k th  moments  of the continuous random variable  X  with pdf  f X  ( x ), denoted 
by  E [ X k  ],  k   =  1, 2,  . . .  , is defi ned as:

    E X x f x dxk k( ) = ( )
−∞

∞

∫ ,     (1.5.3)  

provided that the integral exists, that is,

    E X x f x dxk k( ) = ( ) < +∞
−∞

∞

∫ .     (1.5.4)   

 In other words, from  (1.5.3)  and  (1.5.4) , the  k th of  X  exists if and only if the 
 k th  absolute moment  of  X ,  E (| X |  k  ), is fi nite.  

   Notes:  

    (1)    It can be shown that if the  k th,  k   =  1, 2,  . . .  moment of a random vari-
able (discrete or continuous) exists, then do all the lower order moments. 

  (2)     Among standard known continuous distributions,  Cauchy probability 
distribution  with  density function :

    f x
x

X ( ) =
+( )
1

1 2π
,     (1.5.5)   

 is the only one that its  k th,  k   =  1, 2,  . . .  , moments do not exist for even 
values of  k  and exist for odd values of  k  in the sense that the Cauchy 
principal values of the integral exist and are equal to zero.    

 Several examples will be given in the next section.    

  1.6.       CONTINUOUS PROBABILITY DISTRIBUTION FUNCTIONS 

 As in the discrete case, we now list a selected number of continuous probabil-
ity distributions that we may be using in this book.

     Defi nition 1.6.1   
 A continuous random variable  X  that has the probability density function:

    f x b a
a b

X ( ) = −
≤⎧

⎨
⎪

⎩⎪

1

0

, ,

, .

if

elsewhere
    (1.6.1)  

has a  uniform distribution  over an interval [ a ,  b ]. 
 It is left for the reader to show that  (1.6.1)  defi nes a probability density 

function and that the  uniform distribution function of X  is given by:
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    F x

x a

x a
b a

a x b

x b

X ( ) =

<
−
−

≤ ≤

>

⎧

⎨
⎪⎪

⎩
⎪
⎪

0

1

, ,

, ,

, .

if

if

if

    (1.6.2)   

 Note that since the graphs of the uniform density and distribution functions 
have rectangular shapes, they are sometimes referred to as the  rectangular 
density   functions  and  rectangular distribution functions , respectively.  

     Example 1.6.1   
 Suppose  X  is distributed uniformly over [0, 10]. We want to fi nd  P (3  <   X   ≤  7). 
Thus:

    P X dx3 7
1

10
1

10
7 3 0 4

3

7

< ≤( ) = = −( ) =∫ . .     

     Example 1.6.2   
 Suppose a counter registers events according to a Poisson distribution with 
rate 4. The counter begins at 8:00  a.m.  and registers 1 event in 30 minutes. What 
is the probability that the event occurred by 8:20  a.m. ?  

   Answer  
 We will restate the problem symbolically and then substitute the values of the 
parameters to answer the question. We have a Poisson distribution with rate   λ   
and registration rate of 1 per   τ   minutes. We are to fi nd the pdf of the occurrence 
at time  t . Hence, we let  N ( t ) be the number of events registered from start to 
time  t . We also let  T  1  be the time of occurrence of the fi rst event. Next, using 
properties of the conditional probability and the Poisson distribution, the cdf is:

    

F t P T t N t

P N t N

P N t N

( ) = ≤ ( ) = ≤ ≤{ }
= ( ) = ( ) ={ }

= ( ) = ( ) ={

1 1 0

1 1

1 1

τ τ
τ

τ

,

and }}
( ) ={ }

= ( ) = ( ) ={ } ( ) ={ }
( ) ={ }

= −( ) = (

P N

P N N P N t
P N

P N t N

τ
τ

τ
τ

1

1 0 1 1
1

1 0)) ={ } ( ) ={ }
( ) ={ }

= −( ) = ( ) ={ } ( ) ={ }
( ) =

1 1
1

0 0 0 1
1

P N t
P N

P N t N P N t
P N

τ
τ

τ{{ }

=

= < <

− −( ) −

−

e te
e

t
t

t tτ λ λ

λτ

λ
λτ

τ
τ, .0
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 Therefore,  T  1  is a uniform random variable in (0,   τ  ). Hence, the fi rst count 
happened before 8:20  a.m.  with probability (20/30)  =  66.67%.  

     Defi nition 1.6.2   
 A continuous random variable  X  with pdf

    f t
e t

X

t

( ) = ≥⎧
⎨
⎩

−μ μ , ,

, ,

0

0 elsewhere
    (1.6.3)  

and cdf

    F t
e t

X

t

( ) = − ≥⎧
⎨
⎩

−1 0

0

μ , ,

, ,elsewhere
    (1.6.4)  

is called a  negative exponential  (or  exponential )  random variable . Relation 
 (1.6.3)  and relation  (1.6.4)  are called  exponential density function  and  expo-
nential distribution function , respectively.   μ   is called the parameter for the pdf 
and cdf. See Figure  1.6.1  and Figure  1.6.2 . 

 We note that the expected value of exponential distribution is the reciprocal 
of its parameter. This is because from  (1.6.3)  we have:

    E X te dtt( ) = =−
∞

∫ μ
μ

μ

0

1
.    

 See also Figure  1.6.1  and Figure  1.6.2 .  

  Figure 1.6.1.         Exponential pdf with different values for its parameters. 
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     Example 1.6.3   
 Suppose it is known that the lifetime of a light bulb has an exponential distri-
bution with parameter 1/250. We want to fi nd the probability that the bulb 
works (a) for more than 300 hours and (b) for more than 300 if it has already 
worked 200 hours.  

   Answer  
 Let  X  be the random variable representing the lifetime of a bulb. From  (1.6.3)  
and  (1.6.4) , we then have:

    f t
e t

F t e
X

t

X

t

( ) = ≥⎧
⎨
⎪

⎩⎪
( ) = −

− −1
250

0

0

1
1

250
1

250, ,

, ,

,

elsewhere
and xx

t

≥
<

⎧
⎨
⎪

⎩⎪
0

0 0

,

, .
   

 Therefore,

   (a)     P ( X   >  300)  =   e   − 1.2   =  0.3012, and 

  (b)      P X X
P X X

P X

P X
P X

e

> >( ) = > >( )
>( )

= >( )
>( )

=
−

300 200
300 200

200

300
200

and

11 2

0 8
4 0 6703

.

.
. . .

e
e−
−= =

   

 See Figure  1.6.3 .  

     Defi nition 1.6.3   
 A continuous random variable,  X , with probability density function  f ( x ) 
defi ned as:

  Figure 1.6.2.         Exponential cdf as area under pdf with different intervals of t. 
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    f x
x

e x

x
X

x

; ,
, , ,

, ,

μ α
μ

α
α

α α
μ

( ) = ( )
> >

≤

⎧
⎨
⎪

⎩⎪

−
−

1

0 0

0 0

Γ
is real and

    (1.6.5)  

where  Γ (  α  ) is defi ned by:

    Γ α α( ) = − −
∞

∫ x e dxx1

0
,     (1.6.6)  

where   μ   is a positive number, is called a  gamma random variable with param-
eters  μ  and  α .  The corresponding distribution called  gamma distribution func-
tion  will, therefore, be:

    F x
u e du x

x
X

u
x

; ,
, ,

, .
μ α α

μα α μ

( ) = ( )
≥

<

⎧
⎨
⎪

⎩⎪

− −∫1
0

0 0

1

0Γ
if

if

    (1.6.7)    

     Defi nition 1.6.4   
 In  (1.6.4) , if   μ   is a nonnegative integer, say  k , then the distribution obtained is 
called the  Erlang distribution of order k , denoted by  E k  (  μ  ;  x ), that is,

    E x k
u e du x

x
k

k u
x

μ

μ

;
, ,

, .
( ) = ( )

≥

<

⎧
⎨
⎪

⎩⎪

− −∫1
0

0 0

1

0Γ
if

if

    (1.6.8)   

 The pdf in this case, denoted by  e k  (  μ  ;  x ), will be:

    e x x e xk
k k xμ μ μ; , .( ) = ≥− −1 0     (1.6.9)    

  Figure 1.6.3.         Exponential probability for x  >  300. 
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   Notes:  

    (a)    We leave it as an exercise to show that  f X  ( x ;   μ  ,   α  ) given by  (1.6.4) , 
indeed, defi nes a probability density function. 

  (b)    The parameter   μ   in  (1.6.8)  is called the  scale parameter , since values 
other than 1 either stretch or compress the pdf in the  x -direction. 

  (c)    In  (1.6.4) , if   α    =  1, we will obtain the exponential density function with 
parameter   μ   defi ned by  (1.6.4) . 

  (d)     Γ (  α  ) is a positive function of   α  . 
  (e)     If   α   is a natural number, say   α    =   n , then we leave it as an exercise to 

show that:

    Γ n n n( ) = −( ) =1 1 2!, , , ,…     (1.6.10)   

 where  n ! is defi ned by:

    n n n n! .= −( ) −( ) ( )( )1 2 2 1…     (1.6.11)    

  (f)    We leave it as an exercise to show that from  (1.6.5)  and  (1.6.10) , one 
obtains:

    0 1! .=     (1.6.12)   

  (g)    Because of  (1.6.11) , the gamma function defi ned in  (1.6.5)  is called the 
 generalized factorial . 

  (h)    We leave it as an exercise to show that using double integration and 
polar coordinates, we obtain:

    e dxx−
∞

∫ =2

0
2π .     (1.6.13)   

  (i)    We leave it as an exercise to show that using  (1.6.13) , one can obtain 
the following:

    Γ Γ
1
2

1
2

⎛
⎝⎜

⎞
⎠⎟ =

⎛
⎝⎜

⎞
⎠⎟ =π π .     (1.6.14)   

  (j)     Using  (1.6.4) , we denote the integral   ∫ − −
0

1x uu e duα ,  x   >  0, by  Γ (  α  ,  x ), 
that is,

    Γ α α, , .x u e du xu
x

( ) = >− −∫ 1

0
0     (1.6.15)   

 The integral in  (1.6.15) , which is not an elementary integral, is called 
the  incomplete gamma function .  

  (k)    The parameter   α   in  (1.6.4)  could be a complex number whose real part 
must be positive for the integral to converge. There are tables available 
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for values of  Γ (  α  ,  x ), defi ned by  (1.6.15) . As  x  approaches infi nity, the 
integral in  (1.6.5)  becomes the gamma function defi ned by  (1.6.4) . 

  (l)    If  k   =  1, then  (1.6.6)  reduces to the exponential distribution function 
 (1.6.2) . In other words, exponential distribution function is a special 
case of gamma and Erlang distributions.    

     Defi nition 1.6.5   
 In  (1.6.4) , if   α    =   r /2, where  r  is a positive integer, and if   μ    =  1/2, then the random 
variable  X  is called the  chi-square  random variable with  r  degrees of freedom, 
denoted by  X  2 ( r ). The pdf and cdf in this case with shape parameter  r  are:

    f x
r

x e x
r r x

( ) =
⎛
⎝

⎞
⎠

≤ < ∞
− −1

2

2 02 2
1

2

Γ
,     (1.6.16)  

and

    
F x

r
e dr

rx

( ) =
⎛
⎝

⎞
⎠

− −

∫ 1

2
22

2
1

2

0
Γ

ν ν
ν

,
    (1.6.17)  

respectively, where  Γ ( r /2) is the gamma function with parameter  r /2 defi ned 
in  (1.6.4) .  

   Notes:  

    (a)    Due to the importance of  X  2  distribution, tables are available for values 
of the distribution function  (1.6.17)  for selected values of  r  and  x . 

  (b)    We leave as an exercise to show the following properties of  X  2  random 
variable: mean  =   r , and variance  =  2 r .   

 The next distribution is widely used in many areas of research where statistical 
analysis is being used, particularly in statistics.  

     Defi nition 1.6.6   
 A continuous random variable  X  with pdf denoted by  f ( x ;   μ  ,   σ   2 ) with two real 
parameters   μ  ,  −  ∞   <    μ    <   ∞ , and   σ   2 ,   σ    >  0, where:

    f x e x
x

; , ,μ σ
σ π

μ
σ2 2

1

2

2

2( ) = −∞ < < ∞
− −( )

,     (1.6.18)  

is called a  Gaussian  or  normal  random variable. 
 The notation  ∼  is used for distribution. The letter  N  and character  Φ  are 

used for normal cumulative distribution. Hence,
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    X N X~ , ~ ,μ σ μ σ2 2( ) ( )or Φ     (1.6.19)  

is to show that the random variable  X  has a normal cumulative probability 
distribution with parameters   μ   and   σ   2 . The normal pdf has a  bell-shaped  curve 
and is  symmetric  about the line  f ( x )  =    μ   (see Figure  1.6.4 ). The normal pdf is 
also asymptotic, that is, the tails of the curve from both sides get very close to 
the horizontal axis, but never touch it. Later, we will see that   μ   is the  mean  
and   σ   2  is the  variance  of the normal distribution function. The smaller the value 
of variance is, the narrower the shape of the “bell” would be. That is, the data 
points are clustered around the mean (i.e., the peak). 

 We leave it as an exercise to show that  f ( x ;   μ  ,   σ   2 ), defi ned in (1.6.18), is 
indeed a pdf.  

     Defi nition 1.6.7   
 A continuous random variable  Z  with   μ    =  0 and   σ   2   =  1 is called a  standard 
normal  random variable. From  (1.6.19) , the cdf of  Z ,  P ( Z   ≤   z ), is denoted by 
 Φ ( z ). The notation  N (0, 1) or  Φ (0, 1) is used to show that a random variable 
has a standard normal distribution function, which means it has the parameters 
0 and 1. The pdf of  Z , denoted by   ϕ  ( z ), therefore, will be:

    φ
π

z e z
z

( ) = −∞ < < ∞
−1

2

2

2 , .     (1.6.20)   

 Note that any normally distributed random variable  X  with parameters   μ   and 
  σ    >  0 can be standardized using a substitution:

    Z
X

=
− μ
σ

.     (1.6.21)   

  Figure 1.6.4.         Normal pdf with different values for its parameters. 
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 The cdf of  Z  is:

    Φ z P Z z e du
uz

( ) = ≤( ) = −

−∞∫
1

2

2

2

π
,     (1.6.22)  

which is the integral of the pdf defi ned in  (1.6.20) . We leave it as an exercise 
to show that   ϕ  ( x ) defi ned in  (1.6.20)  is a pdf. 

 Note that the cumulative distribution function of a normal random variable 
with parameters   μ   and   σ   2 ,  F ( x ;   μ  ,   σ   2 ), whose pdf was given in  (1.6.18) , may be 
obtained by  (1.6.22)  as:

    F x
x

P Z z e du
uz

; , .μ σ μ
σ π

2 2
1

2

2

( ) = −⎛
⎝

⎞
⎠ = ≤( ) = −

−∞∫Φ     (1.6.23)   

 A practical way of fi nding normal probabilities is to fi nd the value of  z  from 
 (1.6.22) , and then use available tables for values of the area under the curve 
of   ϕ  ( x ). 

 Figure  1.6.4  shows a graph of normal pdf for different values of its param-
eters. It shows the standard normal as well as the shifted mean and variety of 
values for standard deviation. Figure  1.6.5  shows a graph of normal cdf as area 
under pdf curve with different intervals.  

  Figure 1.6.5.         Normal cdf as area under pdf curve with different intervals. 
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     Defi nition 1.6.8   
 A continuous random variable  X , on the positive real line, is called a  Galton  
or  lognormal  random variable if ln( X ) is normally distributed.  

   Notes:  

    (a)    If  X  is a normally distributed random variable, then  Y   =   e X   has a log-
normal distribution. 

  (b)    From Defi nition  1.6.8 ,  X  can be written as  X   =   e  μ     +     σ Z  , where  Z  is a stan-
dard normal variable, and   μ   (location parameter) and   σ   (scale param-
eter) are the mean and standard deviation, respectively, of the natural 
logarithm of  X .   

 The probability density function and cumulative distribution function of a 
lognormal random variable  X , denoted by  f X  ( x ;   μ  ,   σ  ) and  F X  ( x ;   μ  ,   σ  ), respec-
tively, are:

    f x
x

e xX

x

; , , ,
ln

μ σ
σ π

μ
σ( ) = >

−
−( )1

2
0

2

22     (1.6.24)  

and

    F x
x

X ; ,
ln

,μ σ μ
σ

( ) = −⎛
⎝⎜

⎞
⎠⎟Φ     (1.6.25)  

where  Φ (·) is defi ned by  (1.6.22) . 
 We leave it as an exercise to show that mean and variance of a lognormal 

random variable  X  are, respectively, as

    E X e Var X e e( ) = ( ) = −( )+ +μ σ σ μ σ2 2 22 21, .and     (1.6.26)    

     Defi nition 1.6.9   
 A continuous random variable,  X , with cumulative probability distribution 
function  F ( x ) defi ned as

    F x
e

e

x

x
( ) =

+1
,     (1.6.27)  

is called the  standard logistic probability distribution . By adding location and 
scale parameters, we will have  general logistic cumulative probability distribu-
tion  and  probability density function , respectively, defi ned as:

    F x
e

e
x

x a
b

x a
b

( ) =
+

≥

−

−

1
0, ,     (1.6.28)  
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and

    f x
e

b e

x

x a
b

x a
b

( ) =
+⎡

⎣⎢
⎤
⎦⎥

≥

−

−

1

02 , ,     (1.6.29)  

where  a  and  b  are location (mean) and scale (a parameter proportion to the 
standard deviation), respectively. 

 In case there is no confusion, we refer to the general logistic as logistic 
distribution.  

   Notes:  

    (1)    If we set  a   =  0 and  b   =  1 in  (1.6.28) , we obtain  (1.6.29) . 
  (2)    For standard logistic,  a  and  b  are location (mean) and scale (a param-

eter proportion to the standard deviation), respectively. 
  (3)     f ( x ), defi ned in  (1.6.29) , is symmetric about  x   =   a . 
  (4)     f ( x ) is increasing on ( −  ∞ ,  a ) and decreasing on ( a ,  ∞ ). This implies that 

the mode and median occur at  x   =   a .   

 The graph of logistic distribution is very much like a normal distribution. 
Hence, we may approximate a logistic distribution by a normal distribution or 
vice versa. If we consider the standard logistic, one possibility is to set the 
mean of the normal distribution to zero so it is also symmetric about zero, as 
logistic is, then pick the variance of the normal distribution,   σ   2   =    π   2 /3, so that 
both distributions have the same variance. 

 We leave it as an exercise to show that the mean and variance of standard 
logistic random variable  X , respectively, are:

    E X a Var X b( ) = ( ) =and
1
3

2 2π .     (1.6.30)    

     Example 1.6.4   
 For values of  x  from  − 3 to 7 with increments of 0.1,  a   =  2, and  b   =  2, 3, and 4, 
the pdf of logistic is shown in Figure  1.6.6 .  

     Example 1.6.5   
 Let there be 10 possible values available for  x , in a logistic distribution, that 
is, the domain of the random variable  X  (the sample space) is  Ω   =  {1, 2, 3, 4, 
5, 6, 7, 8, 9, 10}. If we choose  a    =   5.5 and  b   =  1.5 in  (1.6.28) , then we will have 
results as presented in Table  1.6.1 . 

 With the chosen parameter values, we will have  F (5.50)  =  0.50 and 
 F (8.80)  =  0.90. In other words, we set the median of the logistic distribution at 
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  Figure 1.6.6.         Logistic pdf with fi xed location parameter and three values of scale 
parameter. 
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 TABLE 1.6.1.       Logistic cdf 

Given  x 1 2 3 4 5 6 7 8 9 10
Logistic cdf 0.047 0.088 0.159 0.269 0.417 0.583 0.731 0.841 0.912 0.953

5.5 and the 90th percentile at 8.80. Note that this choice of parameters centers 
the values of  X . 

 We can fi nd the inverse of the logistic distribution as follows. Let us write 
 (1.6.28)  as:

    F x
e

x a
b

( ) =
+

− −

1

1
.     (1.6.31)   

 By dropping  x  and cross-multiplying  (1.6.28) , we have  F   +   Fe   −    x    −    a/b    =  1, or:

    e
F

F

x a
b

− −

=
−1

,   

or

    −
−

=
−x a

b
F

F
ln

1
,   

or

    x a
b

F
F

−
=

−
ln

1
.    
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 Hence, the inverse of logistic cdf  (1.6.30)  is:

    x a b
F

F
= +

−
⎛
⎝⎜

⎞
⎠⎟ln .

1
    (1.6.32)   

 If we choose values for  F  as 0.1, 0.2, 0.25, 0.33, 0.5, and 0.9, from  (1.6.30)  we 
will have results as presented in Table  1.6.2 .  

     Defi nition 1.6.10   
 A continuous random variable  X  with cdf denoted by  F ( x ;   α  ,   β  ,   γ  ) as:

    F x e x
x

; , , , , , ,α β γ α β γ
γ

α

β

( ) = − > ≥ ≥
− −⎛
⎝⎜

⎞
⎠⎟1 0 0     (1.6.33)  

is called the  Weibull cumulative probability distribution function , where   α  ,   β   
and   γ   are the  scale  (stretches/shrinks the graph),  shape  (such as skewness and 
kurtosis), and  location  (shifts the graph) parameters, respectively. 

 Without loss of generality, we let   γ    =  0. Thus,  (1.6.33)  will be reduced to the 
two-parameter Weibull cumulative distribution function as follows:

    F x e x
x

; , , , , , ,

, .
α β α βα

β

( ) = − > ≥
⎧
⎨
⎪

⎩⎪

−⎛⎝⎜
⎞
⎠⎟1 0 0

0 otherwise
    (1.6.34)   

 From  (1.6.34) , the two-parameter Weibull pdf, denoted by  f ( x ;   α  ,   β  ), is:

    f x
x
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x
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α β
β
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α β
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    (1.6.35)   

 In this case, we write  X   ∼   Weibull (  α  ,   β  ). When   α    =  1,  (1.6.34)  and  (1.6.35)  are 
referred to as  single-parameter  Weibull cdf and Weibull pdf, respectively. This 
case is referred to as  standard Weibull density  and  distribution , respectively. 

 Note that when   β    =  1, we will have the exponential distribution,  (1.6.4) . In 
other words, exponential distribution function is a special case of Weibull 
distribution. 

 From  (1.6.34) , we fi nd  the inverse , that is,  x , as follows:

 TABLE 1.6.2.       Inverse Logistic Cumulative Distribution Probability 

Given values of logistic 
distribution probabilities,  F 

0.10 0.20 0.25 0.33 0.50 0.90

 x  values found 2.2042 3.4206 3.8521 4.4377 5.5000 8.7958
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     Example 1.6.6   
 For different pair values of (  α  ,   β  ), we have the results presented in Table  1.6.3 . 

 We leave it as an exercise to show that the mean and variance of the Weibull 
random variable, respectively, are

   E X Var X( ) = +⎛
⎝⎜

⎞
⎠⎟

( ) = +⎛
⎝⎜

⎞
⎠⎟
− +⎛
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12
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, and
⎦⎦
⎥ .     (1.6.37)   

 See also Figure  1.6.7  and Figure  1.6.8 .  

 TABLE 1.6.3.       Inverse Weibull Probability Distribution 

Given Weibull cdf, 
 F ( x ,   α  ,   β  )

0.10 0.20 0.25 0.33 0.50 0.90

Weibull parameters 
(  α  ,   β  ) (scale, 
shape)

(4.0,3.0) (4.507, 
3.25)

(5.014, 
3.5)

(5.521, 
3.75)

(8.028, 
4.0)

(6.535, 
4.25)

Inverse Weibull cdf,  x 1.8892 2.8409 3.5123 4.3255 5.5002 7.9519

  Figure 1.6.7.         Two-parameter Weibull pdf with different scale and shape parameters. 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

a = 0.8, b = 2

a = 1, b = 2

a = 2, b = 2

a = 2, b = 3

x

f(
x,

a,
b,

) 

Weibull Probability Density (b/a)(x/a)(b
 
–

 
1)exp(–(x/a)b), x ≥ 0



40  PROBABILITY AND STATISTICS

  Figure 1.6.8.         Two-parameter Weibull cdf with different scale and shape parameters. 
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     Defi nition 1.6.11   
 A random variable  X  has an  extreme value distribution  if the distribution is of 
one the following three forms:

   1.    Type 1 (or  double exponential  or  Gumbel-type  distribution), with   ν   as the 
location parameter and   θ   as the scale parameter:

    F x P X x eX
e x

; , .ν θ ν θ( ) ≡ ≤( ) = − − −( )     (1.6.38)   

  2.    Type 2 (or  Fréchet-type distribution ) with three parameters:

    F x P X x e xX
e x

; , , , , , .ν θ α ν θ α
ν θ α

( ) ≡ ≤( ) = ≥ >−( )− −( )
0     (1.6.39)   

  3.    Type 3 (or  Weibull-type distribution ) with two parameters:

    F x P X x e x

x
X

e x

; , , , , , ,

, .
ν θ α ν θ α

ν

ν θ α

( ) ≡ ≤( ) = ≤ >
>

⎧
⎨
⎪

⎩⎪

−( )− −( )
0

1
    (1.6.40)      

   Notes:  

    (a)    If  X  is an extreme value random variable, so is ( −  X ). 
  (b)    Type 2 and Type 3 can be obtained from each other by changing the 

sign of the random variable. 
  (c)    Type 2 can be transformed to Type 1 by the following transformation: 

  Z X= −( )ln .ν  
  (d)    Type 3 can be transformed to Type 1 by the following transformation: 

  Z X= − −( )ln .ν  
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  (e)    Of the three types, Type 1 is the most commonly used as  the extreme 
value distribution . The pdf for Type 1 is:

    f x e eX
e ex x

; , .ν θ
θ

ν θ ν θ( ) = − −− −( ) − −( )1     (1.6.41)   

  (f)    From  (1.6.41) , we have:

    − − <( )[ ] = −
ln ln .P X x

x ν
θ

    (1.6.42)   

  (g)    All three types of extreme value distributions can be obtained from the 
following cdf:
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    (1.6.43)     

 Relation  (1.6.43)  is called a generalized extreme value or von Mises-type or 
von Mises–Jenkinson-type distribution.   

              1.7.       RANDOM VECTOR 

 We have occasions where more than one random variable are considered at 
a time. Suppose that two distinct random experiments with sample spaces  Ω  1  
and  Ω  2  can conceptually be combined into a single one with only one sample 
space,  Ω . The new sample space,  Ω  ,  will be the Cartesian product of  Ω  1  and 
 Ω  2 , that is,  Ω  1   ×   Ω  2 , which is the set of all ordered pairs (  ω  i  ,   ω  j  ), where   ω  i   and 
  ω  j   are outcomes of the fi rst and the second experiment, respectively, that is, 
  ω  i    ∈   Ω  1  and   ω  j    ∈   Ω  2 . This idea may be extended to a fi nite number of sample 
spaces. In such cases, we are talking of a random vector. In other words, a 
 random vector  is defi ned as an  n -tuple of random variables. More precisely, 
we have the following defi nition:

     Defi nition 1.7.1   
 A  discrete random vector X (  ω  )  =  [ X  1 (  ω  ),  . . .  ,  X r  (  ω  )], where  X  1 ,  . . .  ,  X r   are  r  
discrete random variables and   ω    ∈   Ω , is a function from the sample space  Ω  
into the  r -tuple ( r -dimensional) real line,   Rr , such that for any  r  real numbers 
 x  1 ,  x  2 ,  . . .  ,  x r  , the set {  ω    ∈   Ω :  X i  (  ω  )  =   x i  ,  i   =  1, 2,  . . .  ,  r } is an event.  

     Example 1.7.1   
 Suppose a factory wants to conduct a quality control of its product by con-
sidering numerical factors  x  1 ,  x  2 ,  . . .  ,  x n   such as weight, height, volume, and 
color. Such a test can be done by the numerical value of the probability 
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 P ( X  1   ≤   x  1 ,  . . .  ,  X n    ≤   x n  ), where the random vector ( X  1 ,  X  2 ,  . . .  ,  X n  ) will describe 
the joint factors concerned by the factory. 

 When we have a random vector, the probability distribution of such a vector 
must give the probability for all the components at the same time. This is the 
joint probability distribution for the  n  component random variables which 
make up the random vector, such as the ones in previous example. Therefore, 
the necessary probabilistic information can be transferred to the range value 
from the original probability space.  

     Defi nition 1.7.2   
 Let  X  be a discrete bivariate random vector, that is,  X   =  ( x  1 ,  x  2 ). Suppose that 
 x  1  and  x  2  are two real numbers. Let   p P X x X xx x1 2 1 1 2 2= = =( ), .   px x1 2 is then 
called the  joint probability mass function of x  1   and x  2  .  

 We have already discussed independence of two events. We now want to 
defi ne it for random variables as follows:  

     Defi nition 1.7.3   
 Suppose ( S ,  Ω ,  P ) is an elementary probability space and the random 
vector  X   =  ( X  1 ,  X  2 ) is defi ned on the sample space  S . The random variables 
 X  1  and  X  2  are  independent  if the partitions generated by  X  1  and  X  2  are 
independent. 

 The following theorem gives a better understanding of the independence 
concept.  

     Theorem 1.7.1   
 Two discrete random variables  X  and  Y  are independent if and only if the 
joint pmf of  X  and  Y  is the product of the marginal pmf of each  X  and  Y . In 
other words,  X  and  Y  are independent if and only if:

    P P PX Y X Y, ,=     (1.7.1)  

where  P X   and  P Y   are the pmf of  X  and  Y , respectively.  

   Proof:  
 See Haghighi et al. (2011a, p. 179). 

 The bivariate  X  can be extended to a random vector with discrete compo-
nents  X  1 ,  X  2 ,  . . .  ,  X r  . The joint probability mass function of  x  1 ,  x  2 ,  . . .  ,  x r   then, 
is similarly defi ned as:

    P P X x X x X xx x x r rr1 2 1 1 2 2, , , , , , .… …= = = =( )     

   Notes:  

    (1)    From the axioms of probability, a joint probability mass function has 
the following properties:
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   (a)      px x xr1 2 0, ,� ≥ , and 
  (b)      ∑ ∑ ∑ =x x x x x xr rp1 2 1 2 1� � .   

  (2)     The discrete bivariate,   px yi j,  means the probability that  X   =   x i  ,  Y   =   y j  , 
and  P  is defi ned on the set of ordered pairs {( x i  ,  y j  ),  j   ≤   i   ≤   m ,  i   ≤   j   ≤   n } 
by   p P X x Y yx y i ji j, = =[ ] =[ ]( )and . We may obtain each individual dis-
tribution functions from the joint distribution. If  A i    =  [ X   =   x i  ] and 
 B j    =  [ Y   =   y j  ] are events, then  A i B j  ,  i   =  1, 2,  . . .  ,  m , are mutually exclusive 
events and  A i    =   ∪  A i B j  . Thus, we have:

    p P A P A B p i mx i i j

j

n

x y

j

n

i i j= ( ) ( ) = =
= =
∑ ∑

1 1

1 2, , , , , .…     (1.7.2)   

 Similarly, we will have:

    p P B P A B p i ny j i j

i

m

x y

i

m

j i j= ( ) ( ) = =
= =
∑ ∑

1 1

1 2, , , , , .…     (1.7.3)       

     Example 1.7.2   
 Let  X  and  Y  be two random variables with the following joint distribution:

 p X,Y   Y 

 X 

 − 1 0 1 2

 − 1 0   1
36

  
1
6

  
1

12

0
  

1
18

0
  

1
18

0

1 0
  

1
36

  
1
6

  
1

12

2
  

1
12

0
  

1
12

  
1
6

      Questions:  

    (a)    Find  P { X   ≥  1 and  Y   ≤  0}. 
  (b)    Find  P { Y   ≤  0 |  X   =  2}. 
  (c)    Are  X  and  Y  independent? Why? 
  (d)    Find the distribution of  Z   =   X  ·  Y .    
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   Answers  

    (a)    For  X   ≥  1 and  Y   ≤  0, we have the following pairs (1, 0), (1,  − 1), (2, 0), 
and (2,  − 1), with probabilities 1/36, 0, 0, and 1/12, yielding:

    P X Y≥ ≤{ } = + + + =1 0
1

36
0 0

1
12

1
9

and .    

  (b)    For given  X  given as 2 and  Y  to be less than or equal to 0, we have the 
following pairs (2, 0) and (2,  − 1), with probabilities 0 and 1/12, 
yielding:

    P Y X≤ ={ } = + =0 2 0
1

12
1

12
.    

  (c)      X  and  Y  are dependent. Here is one reason why:

    P X Y= − = −{ } =1 1 0and .    

 However,

    P X P Y= −{ } = = −{ } =1 5 18 1 5 36and .    

 Hence,

    P X P Y P X Y= −{ }⋅ = −{ } = ⋅ ≠ = − = −{ } =1 1
5

18
5

36
1 1 0, .     

  (d)    Since the values for both  X  and  Y  from the table given are as  − 1, 0, 1, 
2, we will have  Z   =   X  ·  Y   =   − 2,  − 1, 0, 1, 2, 4. Pairs comprising these values 
and corresponding probabilities are given in the following table: 

 XY  − 2  − 1 0 1 2 4

Possible 
pairs

( − 1,2), (2, − 1) ( − 1,1), 
(1, − 1)

(0, − 1), (0,0), (0,1), 
(0,2), ( − 1,0), (1,0), 

(2,0)

(1,1), 
( − 1, − 1)

(1,2), (2,1) (2,2)

 P ( Z   =   X  ·  Y )
  

1
12

1
12

1
6

+ =   
1
6

0
1
6

+ =    
1

18
0

1
18

+ +  

   0
1

36
1

36
0

1
6

+ + + =  

  
1
6

0
1
6

+ =   
1

12
1

12
1
6

+ =   
1
6
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           Defi nition 1.7.4   
 Each probability mass function  p X   and  p Y  , defi ned by  (1.2.15)  and (1.2.16), 
respectively, is called the  marginal probability mass function.  In other words, 
a marginal probability mass function,  p X   or  p Y  , can be found from the joint 
distribution function  p XY   of  X  and  Y  by summing up the joint distribution over 
all values of the  Y  or  X , respectively. 

 Now let  X  1 ,  X  2 ,  . . .  ,  X r   be  r  random variables representing the occurrence 
of  r  outcomes among  X  1 ,  X  2 ,  . . .  ,  X n   possible outcomes of a random experi-
ment, which is being repeated independently  n  times. Suppose the correspond-
ing probabilities of these outcomes are  p  1 ,  p  2 ,  . . .  ,  p r  , respectively. The joint 
pmf of these random variables will then be:

    P X x X x
n

n n
p pr r

r

n
r
nr

1 1
1

1
1= =( ) =,

!
! !

,…
…

…     (1.7.4)  

where  n j   ranges over all possible integral values subject to  (1.7.4) . The relation 
 (1.7.4)  does, indeed, represent a probability mass function (why?) and it is 
called the  multinomial probability mass   function  for the random vector ( X  1 , 
 X  2 ,  . . .  ,  X r  ). We denote this distribution similar to the binomial distribution 
as:  m ( n ;  r :  n  1 ,  . . .  ,  n r  ), subject to  p  1   +   p  2   +   . . .   +   p r    =  1. 

 Marginal mass function for each one of the random variables  X  1 ,  X  2 ,  . . .  , 
 X r   alone will be a binomial probability mass function and can be obtained 
from  (1.7.4) . For instance, for  X  1  we have:

    P X x b n p n
n

n n n
p pn n n

1 1
1 1

1 11=( ) = ( ) =
−( )

−( ) −; ,
!

! !
.     (1.7.5)   

 As the reader recalls, we defi ned the conditional probability of the event and 
the law of total probability. Both these concepts may be extended to random 
variables. We leave the proof of the following theorem as an exercise.  

    Theorem 1.7.2.    The Law of Total Probability  
 Let  X  be a random variable and let the event  A  be represented by a discrete 
random variable, then we have:

    P A P A X x P X x
x

( ) = =( ) =( )∑ .     (1.7.6)   

 An important notion that measures the dependency of random variables is 
the notion of covariance, which will be defi ned in the following sections.  

     Defi nition 1.7.5   
 Let  E ( X )  =    μ  X   and  E ( Y )  =    μ  Y  . The  covariance  of two random variables  X  and 
 Y , denoted by  Cov ( X ,  Y ), is then defi ned by:

    Cov X Y E X YX Y, .( ) ≡ −( ) −( )[ ]μ μ     (1.7.7)   
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 The following properties of covariance can easily be proved and are left as 
exercises.  

   Properties of Covariance  

    1.       Cov X X Var X, .( ) = ( )     (1.7.8)   
  2.       Cov X Y E XY X Y, .( ) = [ ]− μ μ     (1.7.9)   
  3.       Cov X Y Cov Y X, , .( ) = ( )     (1.7.10)   
  4.    If  c  is a real number, then:

    Cov cX Y cCov Y X, , .( ) = ( )     (1.7.11)   

  5.    For two random variables  X  and  Y , we have:

    Var X Y Var X Var Y Cov X Y+( ) = ( ) + ( ) + ( )2 , .     (1.7.12)     

 As an important application of covariant, we defi ne the following:  

     Defi nition 1.7.6   
 The  coeffi cient of correlation  of two random variables  X  and  Y , denoted by 
  ρ  ( X ,  Y ), is given by:

    ρ
σ σ

X Y
Cov X Y

X Y
,

,
,( ) ≡ ( )

( ) ( )     (1.7.13)  

where   σ  ( X ) and   σ  ( Y ) are the standard deviations of  X  and  Y , respectively, 
provided that the denominator is not zero. 

 It can be shown that:

    − ≤ ( ) ≤1 1ρ X Y, .     (1.7.14)   

 We note that when   ρ   is negative, it means that the random variables are 
dependent oppositely, that is, if one increases, the other will decrease. When   ρ   
is positive, it means that both random variables increase and decrease together. 
However, if   ρ     =   0, the random variables are called  uncorrelated . Some other 
properties of the correlation coeffi cient are as follows:

    ρ ρX Y Y X, , ,( ) = ( )     (1.7.15)  

    ρ X X, ,( ) = 1     (1.7.16)  

    ρ X X, ,−( ) = −1     (1.7.17)  

and

    ρ ρaX b cY d X Y+ +( ) = ( ), , ,     (1.7.18)  

where,  a ,  b ,  c , and  d  are real numbers and  a ,  c   ≠  0.  
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     Example 1.7.3   
 Suppose  X  and  Y  are two random variables representing the “on” or 
“off” situation of two automatic switches that work together with the following 
joint distribution:  P ( X   =  0,  Y   =  0)  =  1/5,  P ( X   =  0,  Y   =  0)  =  1/4,  P ( X   =  1, 
 Y   =  0)  =  1/4, and  P ( X   =  1,  Y   =  1)  =  3/10. We may tabulate these values as 
follows:

  Y  
  X  

0 1 Sum

0 1/5 1/4 9/20

1 1/4 3/10 11/20

Sum 9/20 11/20

 X 0 1

 p X  9/20 11/20

 Y 0 1

 p Y  9/20 11/20

   The marginal distributions of  X  and  Y , denoted by  p X   and  p Y  , respectively, are 
as follows:
   

   Hence,

   E XY( ) = ( )( )( ) + ( )( )( ) + ( )( )( ) + ( )( )( ) = =0 0 0 0 0 0 01 5 1 1 4 1 1 4 1 1 3 1 3 1 3. 0000,  

    E X X( ) = = ( )( ) + ( )( ) = =μ 0 0 0 0 0 009 2 1 11 2 11 2 55. ,   

    E Y Y( ) = = ( )( ) + ( )( ) = =μ 0 0 0 0 0 009 2 1 11 2 11 2 55. ,   

    E X 2 0 0 0 0 0 00( ) = ( )( ) + ( )( ) = =9 2 1 11 2 11 2 55. ,   

    E Y 2 0 0 0 0 0 00( ) = ( )( ) + ( )( ) = =9 2 1 11 2 11 2 55. ,   

    Var X( ) = − =0 00 0 0 0. . . ,55 3 25 2475   

    Var Y( ) = − =0 00 0 0 0. . . ,55 3 25 2475   

    σ X( ) = 0. ,4975   

    σ Y( ) = 0. ,4975   

    Cov XY E XY X Y( ) = ( ) − = − ( )( ) = −μ μ 0 000 0 00 0 00 0 00. . . . ,3 55 55 25 and   

    r X Y, . . . . .( ) = −( ) ( )( ) = −0 00 0 0 0 0 025 4975 4975 1 1    
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 The value of the correlation coeffi cient, in this case, is very close to 0. Hence, 
 X  and  Y  in this case are uncorrelated.    

  1.8.       CONTINUOUS RANDOM VECTOR 

      Defi nition 1.8.1   
 The  joint bivariate pdf  of two continuous random variables  X  and  Y  with 
pdf  f X  ( x ) and  f Y  ( y ), respectively, is an integrable function, say  f X   ,   Y  ( x ,  y ) or just 
 f ( x ,  y ), with the following properties:

   (a)       P X x Y y f x y dx dyX Y= =( ) ≈ ( )and , , .     (1.8.1)   
  (b)     f X   ,   Y  ( x ,  y )  ≥  0. 
  (c)      ∫ ∫ ( ) =−∞

∞
−∞
∞

f x y dx dyX Y, , 1. 

  (d)        P X Y A f x y dx dyX Y
A

, , ,,( ) ∈{ } = ( )∫∫     (1.8.2)   

 where  P {( X ,  Y )   ∈   A } is an event defi ned in the  x–y  plane.    

 We note that property (d) implies that properties of discrete joint pmf can be 
extended to a continuous case using the approximation  (1.8.1) .  

     Defi nition 1.8.2   
 The  marginal pdf  of  X  and  Y  can be obtained from  (1.8.1) , respectively, as:

    f x f x y dyX X Y( ) = ( )
−∞

∞

∫ , , ,     (1.8.3)  

and

    f y f x y dxY X Y( ) = ( )
−∞

∞

∫ , , .     (1.8.4)    

     Defi nition 1.8.3   
 The  conditional probability density function of X given Y  is given by:

    f x y
f x y

f y
X Y

X Y

Y

( ) = ( )
( )

.     (1.8.5)   

 As in the discrete case, the joint pdf can be extended for fi nitely many random 
variables.  

     Defi nition 1.8.4   
 Let  X   =  ( X  1 ,  X  2 ,  . . .  ,  X n  ) be a fi nite or denumerable random vector with 
joint pdf or pmf of  f X  ( x  1 ,  x  2 ,  . . .  ,  x n  ). We denote the marginal pdf or pmf of  X i  , 
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 i   =  1, 2,  . . .  ,  n , by   f xX ii ( ).  X  1 ,  X  2 ,  . . .  ,  X n   are then  mutually independent random 
variables  if for every ( x  1 ,  x  2 ,  . . .  ,  x n  ) we have:

    f x x x f x f x f xn X X X nnX 1 2 1 21 2, , , .… �( ) = ( ) × ( ) × × ( )     (1.8.6)   

 If   f xX ii ( ) is parametric pdf or pmf with, say one parameter,   θ  , say, denoted by 
  f xX ii ; θ( ), then the joint parametric pdf or pmf is:

    f x x x f x f x f xn X X X nnX 1 2 1 21 2, , , ; ; ; ; .… �θ θ θ θ( ) = ( ) × ( ) × × ( )     (1.8.7)   

 Note that pairwise independence does not apply mutual independence.    

  1.9.       FUNCTIONS OF A RANDOM VARIABLE 

 We now consider a random variable as a general term to include both discrete 
and continuous.

     Defi nition 1.9.1   
 Suppose that   ϕ  (·) is a function that associates real numbers onto real numbers. 
Next, the composite function   ϕ  [ X (·)] is defi ned and with each outcome   ω  , 
  ω    ∈   Ω , it associates the real number   ϕ  [ X (  ω  )].  Y (  ω  )  ≡    ϕ  [ X (  ω  )] is called the 
 function of the random variable X . If  X   =  ( X  1 ,  X  2 ,  . . .  ,  X n  ) is a random vector 
of  n  random variable that associates the sample space  Ω  to the space   Rn of 
real  n -tuples, then the function   ϕ  (·,  . . .  , ·) on  n  real variables associates with 
each point in   Rn a real number. Hence, we defi ne   ϕ  [ X ]  =    ϕ  [ X  1 (·),  X  2 (·),  . . .  , 
 X n  (·)] for each   ω    ∈   Ω  as the real number   ϕ  [ X  1 (  ω  ),  X  2 (  ω  ),  . . .  ,  X n  (  ω  )]. 
 Y (  ω  )  ≡    ϕ  [ X  1 (  ω  ),  X  2 (  ω  ),  . . .  ,  X n  (  ω  )] is called the  function of n ,  n   ≥  1 , random 
variables . 

 It can be easily proved that:  

     Theorem 1.9.1   
 If  Y  is a function of a discrete random variable  X , say  Y   =    ϕ  [ X (  ω  )] and 
 p (  ω  )  =   P ( X   =    ω  ), then:

    E Y E X p( ) = ( )[ ] = ( ) ( )
∈
∑φ φ ω ω
ω Ω

.     (1.9.1)   

 Limiting distribution functions of certain functions of  n  random variables 
when  n  approaches infi nity is an important class of problems in the theory of 
probability that serves mathematical statistics. In other words, let  X   =  ( X  1 ,  X  2 , 
 . . .  ,  X n  ) be a fi nite or denumerable random vector and  f n  ( X  1 ,  X  2 ,  . . .  ,  X n  ) is a 
function of  X   =  ( X  1 ,  X  2 ,  . . .  ,  X n  ), which itself is a random variable. The ques-
tion is to fi nd the limit of the cumulative distribution function of  X   =   f n  ( X  1 ,  X  2 , 
 . . .  ,  X n  ) as  n  approaches infi nity, and if this is not possible, maybe fi nd some 
properties of cdf, if it exists. This idea leads to considering a  stochastic process  
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that is a sequence of random variables. We will discuss this process in detail 
in Chapter  5.  But here we want to use it for a different purpose.  

     Defi nition 1.9.2   
 Let ( X  1 ,  X  2 ,  . . .  ,  X n  ) be a stochastic process such that for an arbitrary small 
positive number   ε  ,

    lim .
n

nP X X
→∞

− >{ } =ε 0     (1.9.2)   

 We then say that ( X  1 ,  X  2 ,  . . .  ,  X n  )  converges stochastically  or  converges in 
probability  to the random variable  X . 

 We note that if  P { X   =   x  0 }  =  1, where  x  0  is a constant, that is,  X  is a degener-
ate random variable, then ( X  1 ,  X  2 ,  . . .  ,  X n  ) converges in probability to the 
constant  x  0 . 

 One of the most important examples of stochastic convergence is the weak 
law of large numbers. Before we state and prove this law, we present two 
important inequalities.  

    Theorem 1.9.2.    Markov ’ s Inequality  
 Let  X  be a nonnegative discrete random variable with a fi nite mean,  E ( X ). 
Let  a  be a fi xed positive number. Hence,

    P X a
E X

a
≥{ } ≤ ( )

.     (1.9.3)    

   Proof:  
 By defi nition,

    

E X xf x

xf x xf x

x

x a x a

( ) = ( )

= ( ) + ( )

∑

∑ ∑
≤ < =

∞

0

.
    (1.9.4)   

 The fi rst term on the right-hand side of  (1.9.4)  is positive. Hence,

    E X xf x
x a

( ) ≥ ( )
=

∞

∑ .     (1.9.5)   

 Since  a  is the minimum value of  x , from  (1.9.5)  we have:

    E X af x a f x
x a x a

( ) ≥ ( ) = ( )
=

∞

=

∞

∑ ∑ .     (1.9.6)   
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 Hence,

    E X aP X a( ) ≥ ≥{ }.     (1.9.7)   

 It is clear from  (1.9.7)  that  (1.9.3)  follows.  

    Theorem 1.9.3.    Chebyshev ’ s Inequality  
 Let  X  be a nonnegative random variable with fi nite mean   μ   and variance   σ   2 . 
Let  k  also be a fi xed positive number. Hence:

    P X k
k

− >{ } ≤μ σ 2

2
.     (1.9.8)    

   Proof:  
 Consider the random variable ( X   −    μ  ) 2 , which is positive. From Marko ’ s 
inequality (Theorem  1.9.2 ), we now have:

    P X k
E X

k
−( ) ≥{ } ≤ −( )⎡⎣ ⎤⎦)μ

μ2 2

2

2
.     (1.9.9)   

 Now ( X   −    μ  ) 2   ≥   k  2  implies that | X   −    μ  |  ≥   k . Hence,

    P X k
E X

k k
−( ) ≥{ } ≤ −( )⎡⎣ ⎤⎦) =μ

μ σ2 2

2

2

2

2
.     (1.9.10)    

     Example 1.9.1   
 Let us assume that the number of production of an item per week by a factory 
is a random variable with a mean of 600. We want to fi nd (a) the probability 
that the number of production per week be at least 1200 and (b)the number 
of production to be between 500 and 600, if the variance of the number of 
production is 120.  

   Answer  

    (a)    By Markov ’ s inequality (Theorem  1.9.2 ) we have:

    P X
E X

≥{ } ≤ ( ) = =1200
1200

600
1200

1
2

.    

  (b)    By Chebyshev ’ s inequality (Theorem  1.9.3 ) we have:

    P X − ≥{ } ≤
( )

=600 120
120

1
120

2

2

σ
.      
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 Therefore,

    P X − <{ } ≥ − =600 120 1
1

120
119
120

.     

    Theorem 1.9.4.    The Weak Law of Large Numbers  
 Let { X  1 ,  X  2 ,  . . .  ,  X n  ,  . . .  } be a sequence of independent and identically distrib-
uted (iid) random variables with mean   μ  . Next, for an arbitrary small positive 
number   ε  , we have:

    lim .
n

nP
X X X

n→∞

+ + +
− >{ } =1 2 0

� μ ε     (1.9.11)    

   Proof:  
 Since { X  1 ,  X  2 ,  . . .  ,  X n  ,  . . . } is iid, due to additivity property of expected value, 
we have:

    E
X X X

n
n
n

n1 2+ + +⎛
⎝⎜

⎞
⎠⎟ = =

� μ μ.    

 Similarly,

    Var
X X X

n
n
n

nn1 2
2

2
2+ + +⎛

⎝⎜
⎞
⎠⎟ = =

� σ σ .    

 Next, by Chebyshev inequality, we have:

    P
X X X

n
Var X X X

n
n n1 2 1 2

2

2

2

+ + +
− ≥{ } ≤ + + +( ) =� �μ ε

ε
σ
ε

.     (1.9.12)   

 Thus,   limn n→∞( ) =σ ε2 2 0, regardless how small   ε   is. 
 We note that  (1.9.11)  states that under the conditions of the theorem, the 

stochastic process   X X Xn1 2, , , ,… …{ } converges in probability to 0. 
 Theorem  1.9.4  may be stated differently and will be called differently, as follows:  

    Theorem 1.9.5.    The Strong Law of Large Numbers  
 Let { X  1 ,  X  2 ,  . . .  ,  X n  ,  . . .  } be a sequence of iid random variables with mean   μ  . 
We then have:

    P
X X X

nn

nlim .
→∞

+ + +
={ } =1 2 1

� μ     (1.9.13)    

   Proof:  
 See  Neuts  ( 1973 , p. 304). 

 We note that  (1.9.13)  states that under the conditions of the theorem, the 
sample mean, repeated infi nitely many times, converges almost surely to the 
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expected value. It is sometimes denoted as   Xn
a s. .⎯ →⎯ μ when  n   →   ∞ . Note also 

that in this convergence we are using “almost surely,” while in the previous 
case, we used the expression “in probability.” The Weal law essentially says 
that for a given small positive number, with a suffi cient large number of 
sample, there will be a very high probability that the mean of observations will 
be within the given number of the expected value. This, of course, leaves open 
the possibility that   Xn − >μ ε happens many times, although at infrequent 
intervals. The strong law prevents this to happen, that is,   Xn − <μ ε will hold 
when  n  is large enough.  

     Example 1.9.2   
 Consider fl ipping a fair coin. Let  A  be an event. Let  X i  ,  i   =  1, 2,  . . .  , represent 
the  i th trial such that:

    X
A i

i

th

= ⎧
⎨
⎩

1

0

, ,

, .

if occurs on the trial

otherwise
   

 Based on the strong law of large numbers (Theorem  1.9.5 ), we then have:

    X X X
n

E X P An n1 2+ + +
⎯ →⎯⎯ ( ) = ( )→∞�

.    

 In other words, with probability 1, the limiting proportion of times the event 
 A  occurs is  P ( A ).    

  1.10.       BASIC ELEMENTS OF STATISTICS 

 The purpose of most statistical studies is to obtain information about the 
population from a random sample by generalization. It is a common practice 
to identify a population and a sample with a distribution of their values: 
 parameters  and  statistic , respectively. A  parameter  is a number that describes 
a character of the population. Numbers such as the mean and variance of a 
distribution are examples of a parameter. A characteristic of a sample is called 
a  statistic . The smallest and largest values of a data set are referred to as the 
 minimum  and the  maximum , respectively. The absolute value of difference 
between the maximum and minimum is called the  range . 

 A set of data points may be summarized or grouped in a simple way or into 
a suitable number of classes (or categories). However, this grouping may cause 
the loss of some information in the data. This is because instead of knowledge 
of an individual data point, knowledge of its belonging to a group will be 
known. 

 A  simple frequency distribution  is a grouping of a data set according to 
the number of repetitions of a data point. The ratio of a frequency to the 
total number of observations is called  relative frequency . This is the same 



54  PROBABILITY AND STATISTICS

terminology we used for outcomes earlier in this chapter. A relative frequency 
multiplied by 100 will yield a  percent relative frequency .

     Example 1.10.1   
 Consider the set of 30 observations of daily emission (in tons) of sulfur from 
an industrial plant that is given by:

   
20 2 12 7 18 3 18 3 23 0 23 0 12 7 11 0 21 5 10 2 17 1 07. , . , . , . , . , . , . , . , . , . , . , .33 11 0 18 3 17 1

12 7 18 3 20 2 20 2 20 2 18 3 12 7 21 5

, . , . , . ,

. , . , . , . , . , . , . , . , 117 1 11 0 12 7 11 0 23 0 07 9 07 9. , . , . , . , . , . , .
  

 We rewrite the data in ordered points as follows:
 

7.3 7.9 7.9 10.2 11.0
11.0 11.0 11.0 12.7 12.7
12.7 12.7 12.7 17.1 17.1
17.1 18.3 18.3 18.3 18.3
18.3 20.2 20.2 20.2 20.2
21.5 21.5 23.0 23.0 23.0

Data Point Frequency Relative Frequency Percent Frequency

07.3 1 0.033 03.3
0.79 2 0.067 06.7

10.2 1 0.033 03.3
11.0 4 0.133 13.3
12.7 5 0.167 16.7
17.1 3 0.100 10.0
18.3 5 0.167 16.7
20.2 4 0.133 13.3
21.5 2 0.067 06.7
23.0 3 0.100 10.0
Total 30 1.000 100

   In presenting a set of data points (in the form of a table, in percents, or a graph, 
for instance), one must be careful for any misinterpretation. In fact, two very 
important words should be in mind for such presentation. They are  abuse  and 
 misuse . The word “abuse” means the use of a wrong concept intentionally. But 
“misuse” is often referred to as the unintentional use of a wrong concept. 
However, the “misuse” of statistics is not limited to unintentionally using a 
wrong concept; it could be a misrepresentation of a set of data points for a 
regular audience who does not have much knowledge of statistics. Even sci-
entists have been known to fool themselves with statistics due to lack of 
knowledge of  probability theory  and the lack of mathematical statistical con-
cepts. Thus, it is important to make it clear for what purpose the statistical 
representation is for and avoid all ambiguity as much as possible.  
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     Example 1.10.2   
 Just recently, the following table was posted on  Facebook  regarding the 2012 
Summer Olympics in London, England. The table of medals received by dif-
ferent countries was to show the ranking of countries based on the percent of 
the number of medals versus the number of athletes that participated in that 
country. The following table was sourced from the  Los Angeles Times  (August 
13, 2012):

London Olympics 2012 Medal Winners

% of medals per athletes

Source: LA Times Aug. 13, 2012

Country % of athletes 
with medals

Total 
Athletes

Total 
Medals

CHINA 22.83465 381 87
IRAN 22.64151 53 12
USA 19.29499 539 104
Russia 18.7643 437 82
Japan 12.45902 305 38
UK 11.883 547 65
Germany 11.11111 396 44
S. Korea 10.85271 258 28
France 10.36585 328 34
Italy 9.824561 285 28

     Here is a simple frequency distribution and percent of ratios of two variables: 
“Total Athletes” and “Total Medals.” The second column shows the percent 
ratios. The ranking caught the fi rst author ’ s attention since Iran is ranked 
second, receiving  12  medals with only  53  athletes, while the United States is 
ranked third, receiving  104  medals with  539  athletes participating in the games. 
To the author, this was an example of “misuse” of statistics. It gives a good 
feeling to a person from Iran, seeing his/her country ranked higher than the 
United States, but what does this ranking tell us? To get a sense of how other 
statisticians felt, the following question was posted on an online statistics site, 
 ResearchGate , for statisticians to comment on (note that due to the limitation 
of the number of characters you are allowed in a post, the description of the 
question is brief):

   Is it misuse of statistics?  

 Countries 1 and 2 send team to Olympic. C1 team has 1 athlete and C2 has 500. 
C1 gets a medal. C2 gets 100 medals. C1 ’ s percent of medals versus its athletes 
is 100% but C2 is 20%. Billboard ranks C1 # 1 and C2 # 2 for percents. Is it 
misuse of statistics? If so, how should it be corrected? 
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   There were 13 responses by worldwide statisticians, ranging from academic 
statisticians to medical doctors. For instance, here are four excerpts: 

 Someone from the IFF of India said:

  No, it is not misuse of statistics, this is the statistics. 

   Someone from the Danish methodological Institute said:

  I like to worry about signifi cance levels—if a big country gets 100 medals and a 
small one gets a single medal, then at the very least it is not certain that the small 
country with its single medal is a ‘robust signal’—that small country might easily 
be replaced by any of several other small countries with a good chance of getting 
about one medal, while the big country with its 100 medals is almost certainly a 
‘stable’ result. 

   A part of a reply from someone from the Université René Descartes of Paris 
reads as follows:

  Then you must think if what you observed is really a random sample or not. I 
would personally say here that not in that context and that instead we have an 
exhaustive examination of the results, but let ’ s assume than yes. In that case, you 
can ask “does a C1 ’ s athletes signifi cantly has a higher probability to obtain a 
medal than a C2 ’ s athletes?”. And here, you can apply “usual” statistical methods. 
But, with only n  =  1 in the C1 sample, there cannot be any signifi cant difference 
here at usual alpha levels. So, in that case, concluding that “C1 is better than C2” 
may be seen as misuse of statistics. 

   A medical doctor from Shiraz University of Medical Science said:

  I believe that the interpretation of the data is more important. For instance, in 
Olympic Games, the total number of medals is important not the percentage of 
medal winners. But in another issue (e.g., incidence of a disease) the percentage 
is important not the number. So you should interpret the data based on your 
variable and background. 

   Hence, as it can be seen, statisticians are not unanimous in interpreting a sta-
tistical presentation. This, of course, is because they look much deeper in the 
presented than just a presentation itself. However, people not in the profession 
of statistics take it at face value, and that is where misleading and “misuse” 
enters the equation. 

 Another grouping of data is a  frequency distribution with classes  (or  inter-
vals ). Here is how we construct it:

   1.    Find the range. 
  2.    Decide how many classes you want to have. However, we don ’ t want too 

many or too few classes. 
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  3.    Classes may be chosen with equal lengths. If that is the case, divide the 
range by the number of classes selected and choose the rounded up 
number. This number will be the  length  (or  size )  of a class . 

  4.    Now to avoid overlaps, move 0.5 (if data are with integral digits and 0.05 
if data are with no digits and start with the tenth decimal place, and 0.005 
if the data start with the hundredth decimal place, and so on), down and 
up from each end of the interval ( class   boundaries ) and choose the inter-
val half-open on the right end. 

  5.    If, however, the length of an interval is given, then divide the range by 
the length of an interval and choose the rounded up number to fi nd the 
number of classes. 

  6.    After the intervals have been determined, count the number of data 
points in each class to fi nd the frequency for each class. We note that a 
sample point such that there is an unusually large gap between the largest 
and the smallest data point is called an  outlier  (or an  extreme data point ).   

 In addition to grouping data, there are several graphic ways that a set of data 
may be presented such as  histogram ,  dot plot ,  box plot ,  stem-and-leaves , and 
 scatter plot . The  histogram  is one of the most common graphic presentations 
of a data set. It displays data that have been summarized into class intervals. 
The histogram is a graph that indicates the “shape” of a sample. It can be used 
to assess the  symmetry  or  skewness  of the data. To construct a histogram: (1) 
the horizontal axis is divided into equal intervals, (2) a vertical bar (or a strip) 
is drawn at each interval to represent its frequency (the number of data points 
that fall within the interval), and (3) adjacent rectangles are constructed, with 
(4) the bases of the rectangles representing the end points of the class intervals 
and the heights representing the frequencies of the classes. 

 Using the concept of a random variable, we can redefi ne the random sample 
we defi ned in Section  1.1  as follows: a random sample  X   =  ( X  1 ,  X  2 ,  . . .  ,  X n  ) is 
defi ned as a sample consisting of  n  independent random variables with the 
same distribution. Each component of a random sample is a random variable 
representing observations. The term “random sample” is also used for a set of 
observed values  x  1 ,  x  2 ,  . . .  ,  x n   of the random variables. We should, however, 
caution that it is not always easy to select a random sample, particularly when 
the population size is very large and the sample size is to be small. For instance, 
to select a sample of size 10 cartons of canned soup to inspect thousands of 
cartons in the storage, it is almost impossible to number all these cartons and 
then choose 10 at random. Hence, in cases like this, we do not have many 
choices; we have to do the best we can and hope that we are not seriously 
violating the randomness property of the sample. 

 A statistic is itself a random variable because the value of it is uncertain 
prior to gathering data. Denoted by, say   λ  , a statistic is usually calculated based 
on a random sample. In other words, a statistic is a function of the random 
vector  X   =  ( X  1 ,  X  2 ,  . . .  ,  X n  ), say   ˆ , , ,Λ X( ) = ( )f X X Xn1 2 … . 
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 In Section  1.3 , we discussed moments of a random variable that included 
mean and variance. We now defi ne the concept of random sampling and its 
properties that includes sample mean and sample variance.

     Defi nition 1.10.1   
 Let the random variables  X  1 ,  X  2 ,  . . .  ,  X n   be a sample of size  n  chosen from a 
population (of  infi nite size ) in such a way that each sample has the same chance 
to be selected. This type of sampling is called  random sampling  (or  random 
sampling from an infi nite population ) and the result is called a  random sample . 
If the population is  fi nite of size N , then a sample of size  n  from this population 
such that each sample of the combination:

    
N

n
⎛
⎝⎜

⎞
⎠⎟

,    

 would be referred to as a  random sample . 
 The reader is encouraged to show that in sampling from a fi nite population, 

if selections are without replacement, then the random variables  X  1 ,  X  2 ,  . . .  , 
 X n   are not mutually independent. 

 A population may be identifi ed by its distribution  F ( x ). In that case, each 
 X i  ,  i   =  1, 2,  . . .  ,  n  is an observation and has a marginal distribution  F ( X ). 
Additionally, each observation is taken such that its value has no effect or 
relationship with any other observation. In other words,  X  1 ,  X  2 ,  . . .  ,  X n   are 
mutually independent.   

  1.10.1.       Measures of Central Tendency 

 Here in this section, we defi ne the mean, median, and the mode for a distribu-
tion as examples of  measures of central tendency . Each measure of central 
tendency defi ned loses some information of data points. 

 In Section  1.3 , we defi ned  arithmetic average  or simply the  average . In fact 
that is the mean of a sample as we defi ne next. 

 Let  X   =  ( X  1 ,  X  2 ,  . . .  ,  X n  ) be a random vector with  x  1 ,  x  2 ,  . . .  ,  x n   as values of 
observations. The statistic  sample mean  denoted by   x  is then defi ned as:

    x
n

xi

i

n

=
=
∑1

1

.     (1.10.1)   

 Now suppose we have a sample of size  n , and  p  is a number between 0 and 1, 
exclusive. The (100 p )th     sample  percentile  is then a sample point at which there 
are approximately  np  sample points below it and  n ( 1   −   p ) sample point above 
it. The 25th  percentile  (also called the  fi rst quartile , denoted by  Q  1 ) and the 
75th  percentile  (also called the  third   quartile , denoted by  Q  3 ) are the highest 
value for the lowest 25% of the data points and the lowest value for the highest 
25% of the data points, respectively. Similarly, we could have  deciles  that are 
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the percentiles in the 10th increments, such as the  fi rst deciles   as the   10th   per-
centile ,  the fi fth deciles as the   50th   percentile  or  median , and so on. The  inter-
quartile range , denoted by IQR, is the range of the middle 50% of the data 
points and is calculated as the difference between  Q 3   and  Q 1  , that is,  Q 3    −   Q 1  . 
The  median  (also called the  second quartile ) of  n  (nonmissing) observations 
 x  1 ,  x  2 ,  . . .  ,  x n   is loosely defi ned as the  middlemost  of the observed values. 

 To fi nd the median, arrange  x  1 ,  x  2 ,  . . .  ,  x n   according to their values in ascend-
ing or descending order, and then pick the middle value if  n  is odd, that is, 
( n   +  1)/2, and the average (mean) of the middle two if  n  is even, that is, 
[( n /2  +  ( n   +  2)/2]/2. In general, to fi nd a percentile, we consider three cases for 
the ( n   +  1) p , namely, (1) ( n   +  1) p  as an integer, (2) ( n   +  1) p  as an integer plus 
a proper fraction, and (3) ( n   +  1) p   <  1. Then:

   1.    If ( n   +  1) p  is an integer, the (100 p )th   sample percentile is the ( n   +  1) p th 
ordered data point display. 

  2.    If ( n   +  1) p  is not an integer, but is equal to  r    +    a , where  r  is the 
whole part and  a  is the proper fraction part of ( n   +  1) p , then take the 
weighted average of the  r th and ( r   +  1)st ordered data points. In other 
words, let  D r    =  the  r th ordered data point and the  D r    + 1   =  ( r   +  1)st ordered 
data point. Next, denoting the weighted average by   π p , we will have 
  π p r r r r rD a D D a D aD= + −( ) = −( ) ++ +1 11 . 

  3.    If ( n   +  1) p   <  1, then the sample percentile is not defi ned.   

 The median is less sensitive to extreme values than the mean. Thus, when data 
contain outliers, or are  skewed  (lack of symmetry), the median is used instead 
of the mean. If one tail extends farther than the other, we say the distribution 
is  skewed . Outliers cause  skewness . An outlier on the far left will cause a  nega-
tive or left skew , while on the far right will cause a  positive  or  right skew . To 
avoid outliers, it is customary to  trim  the data. The  trimmed mean  is the mean 
of the  trimmed data , that is, of the  remaining data set  by cutting the data about 
5–10% (rounded to the nearest integer) on each end (after being sorted in 
ascending or descending order). The measure of the sharpness of the peak of 
a distribution is referred to as  kurtosis . Similar to skewness, positive or nega-
tive values of kurtosis will cause a peak fl atter than or sharper than the peak 
of the normal curve. 

 The most frequent of the observed values is called  mode . When a distribu-
tion has more than one mode, the data set is said to have  multimodes . If this 
number is two, it is called  bimodal .  

  1.10.2.       Measure of Dispersion 

 Now that we have discussed measures of central tendency, we will discuss 
measures of dispersion. Range, as defi ned before, is a statistic that is often used 
to describe dispersion in data sets. As another measure of dispersion, let 
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 x   =  ( x  1 , x 2 ,  . . .  ,  x n  ) be a random vector of observations with sample mean   x . 
The statistic  sample variance  (sometimes called  mean square ) denoted by  S  2  
with its values as  s  2 , is then defi ned as:

    s
n

x xi

i

n
2 2

1

1
1

=
−

−( )
=
∑ .     (1.10.2)   

 Note that in the denominator of  (1.10.2) , the term  n   −  1 instead of  n  has been 
used. Although logically we should use  n  (and some authors in their publica-
tions a couple of decades ago used  n ), it tends to underestimate the population 
variance   σ   2 . Since the primary use of the sample variance  s  2  is to estimate the 
population variance   σ   2 , by replacing  n   −  1 and, thus, enlarging  s  2 , the tendency 
is corrected. The same correction is made in the use of sample  standard devia-
tion , which is the positive square root of the sample variance. 

 In practice, the following formula (Formula 1.10.3) for sample variance is 
used instead of  (1.10.2) . It is easy to see that  (1.10.2)  is equivalent to  (1.10.3) :
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 In case that data are grouped in a simple frequency format, the sample vari-
ance would be calculated using:
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where  f i  , 1  ≤   k   ≤   n  denote frequencies of each group of data points. 
 We note that it is usually desired to have the variance as small as possible 

so that data points are gathered around the mean. However, there might be 
cases that we have to deal with highly scattered data such that the mean is 
smaller than the variance or the standard deviation. There is no theory avoid-
ing such cases. Particularly, since mean and variance are with different units 
of measurement, it would be diffi cult to compare the two. 

 In the following example, we will construct a histogram using the statistical 
software MINITAB. Using MINITAB has the advantage of providing infor-
mation such as the measure of central tendencies. We note that this example 
is taken from Haghighi et al. (2011a, p. 265).

     Example 1.10.3   
 Consider Example  1.7.1 . The median for this data set is  Q  2 , that is,  p   =  0.50. 
Hence, ( n   +  1) p   =  (31)(0.5)  =  15.5. Thus,  r   =  15 and  a   =  0.5. Therefore,  Q  2  is the 
average of the 15th and the 16th data points, which is 17.1. In contrast, for the 
53rd percentile, (31)(0.53)  =  16.43, yielding  r   =  16 and  a   =  0.43. Hence:

    π0 53 16 171 0 43 0 43 0 57 17 1 0 43 18 3 17 616. . . . . . . .= −( ) + = ( )( ) + ( )( ) =D D ..    



BASIC ELEMENTS OF STATISTICS  61

 In addition, the 95th percentile is:

    π0 95 29 301 0 45 0 45 0 55 23 0 45 23 23. . . . . .= −( ) + = ( )( ) + ( )( ) =D D    

 Using MINITAB, we obtain the following information as well as a histogram. 
Note that the “confi dence interval” will be discussed later in this chapter.   

  Descriptive Statistics: Observations   

  Sum of  
  Variable      Mean     SE Mean TrMean StDev   Variance CoefVar Squares  
  Observations 15.880  0.899  15.969 4.92  24.231  31.00  8267.940  
  Variable    Minimum Q1     Median Q3    Maximum Range  IQR Skewness  
  Observations 7.300   11.000 17.100 20.200 23.000  15.700 9.200 –0.19    
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     1.10.3.       Properties of Sample Statistics 

 Suppose  X  1 ,  X  2 ,  . . .  ,  X n   is a random sample from a population with mean and 
variance   μ   and   σ   2   <   ∞ , respectively. Denoting the sample mean and variance 
by   X  and  S  2 , respectively, we then leave it as an exercise to prove the following 
properties of sample mean:

    E X( ) = μ,     (1.10.5)  
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and

    Var X
n

( ) = σ 2

.     (1.10.6)   

 A measure of variability of the sampling distribution of the sample mean 
is called the  standard error of the sample mean . If the population standard 
deviation,   σ  , is  known , then the standard error of the sample mean, denoted 
by   σX, is defi ned by:

    σ σ
X

n
= .     (1.10.7)   

 If the population standard deviation is  unknown , and denoting  S  as the 
 sample standard deviation , then the  standard error of the sample mean , denoted 
by   SX, is:

    S
S

n
X = .     (1.10.8)   

 We now want to show that the mean of sample variance, as we defi ned in 
 (1.10.2) , is, indeed, the variance of the population.

     Theorem 1.10.1   

     E S2 2( ) = σ ,     (1.10.9)  

where  S  2  is defi ned in  (1.10.2) .  

   Proof:  
 Recall from  (1.10.2)  that the observed value of the sample variance is defi ned 
as:
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as defi ned in  (1.10.1) . Now, we add and subtract   μ   in   ∑ −( )=i
n

ix x1
2
 and do some 

algebra as follows:
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 Now consider a population with a mean and variance of   μ   and   σ   2 , respectively. 
As  n  increases without bound, we see from  (1.10.6)  that the variance of   X  will 
decrease. Hence, the distribution of   X  depends on the sample size  n . In other 
words, for different sizes of  n , we will have a sequence of distributions to deal 
with. To see the limit of such a sequence as  n  increases without bound, let us 
consider the random variable  W  defi ned by:

    W
X

n
n=

−
=

μ
σ

, , , .1 2 …     (1.10.10)   

 We then leave it as an exercise to show that  W  is a standard normal random 
variable for each positive integer  n . Therefore, the limiting distribution of  W  
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is also a standard normal, which we will state as the following theorem known 
as the  central limit theorem , and we refer the reader to  Hogg and Tanis  ( 1993 ) 
for the proof.  

    Theorem 1.10.2.    The Central Limit Theorem  
 Suppose  X  1 ,  X  2 ,  . . .  ,  X n   is a random sample of size  n  from a distribution with 
fi nite mean   μ   and a fi nite positive variance   σ   2 . Then the limiting distribution 
(i.e., as  n  →  ∞ ) of

    W
X

n

X n

n
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i
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σ
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is the standard normal. 
 As we noted before, we are using  n   −  1 instead of  n  in the sample variance. 

We stated the reason for such a choice. That choice actually causes the obtain-
ing of  (1.10.10) , which makes the sample variance the so-called  unbiased  
estimator for the population variance. 

 To fi nd the variance of the sample variance, we remind the reader of equa-
tions  (1.10.2)  and  (1.10.9) . We leave it as an exercise to show that the second 
moment of  S  2  is:

    E S
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n n
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μ σ ,     (1.10.11)  

where   μ   4  is the fourth central moment of  X . Hence, from  (1.10.2)  we 
will have:
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    (1.10.12)    

   Example 1.10.4  
 As an example, let us fi nd the mean and variance of the sampling distribution 
of the standard deviation for Gaussian (normal) distributions.  

   Answer  
 What the question says is that we have a standard normal population. Take a 
sequence of samples from this population, calculate the standard deviation for 
each sample taken, and consider the values of these standard deviations as a 
set of data or new sample points. The question is, what are the mean and 
standard deviation of this set of data? 
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 Let  X  1 ,  X  2 ,  . . .  ,  X n   be a simple random sample (i.e., a set of  n  independent 
random variables) from a normal population with mean   μ   and variance   σ   2 . Now, 
multiplying both sides of  (1.10.2)  by ( n   −  1) and dividing by   σ   2 , we will have:

    n S X Xi
i

n

−( ) =
−( )

=∑1 2

2

2

1
2σ σ

.     (1.10.13)   

 We leave it as an exercise to show that:
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2
2
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 Therefore, let:
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−( )1 2

2σ
.     (1.10.15)   

 From  (1.10.13)  and  (1.10.15) ,  W  is   χ   2 ( n   −  1). Thus, the pdf of  W , denoted by 
 g W  ( w ) is:
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 From  (1.10.15) , we have:
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W
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−
σ

.     (1.10.17)   

 Letting  S  denote the sample standard deviation for the normal population, 
from  (1.10.17)  we have:

    S
n

W=
−
σ

1
.     (1.10.18)   

 We defi ne the random variable  Y  as:

    Y W≡     (1.10.19)   

 To fi nd the pdf of  Y , we note that since  W  is a continuous-type random vari-
able with pdf of  g W  ( w ) as defi ned in  (1.10.15) , for  w   ∈  [0,  ∞ ),  Y  is defi ned as a 
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function of  W , as in  (1.10.19) , say  Y   =   r ( W ), and  Y  and its inverse  W   =   f ( Y ) 
are increasing continuous functions, then the pdf of  Y  is:

    h y g f y f yY ( ) = ( )[ ] ′ ( ).     (1.10.20)   

 Hence, since from  (1.10.19) ,  W   =   f ( Y )  =   Y  2  and thus  f  ′ ( Y )  =  2 Y . From  (1.10.20) , 
we have:
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 Then:
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 Now, let  u   =   y  2 /2, from which we have  du   =   ydy  and  y n    − 1   =  2  n    − 1  u  (   n    − 1)/2 . Then, from 
 (1.10.22) , we have:
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    (1.10.23)   
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 Now, from  (1.10.18)  and  (1.10.19)  we have:
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.     (1.10.24)   

 Substituting  (1.10.23)  in  (1.10.24) , the mean of standard deviation of the 
normal population is:
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 It is known that:

    Var S E S E S( ) = ( ) − ( )( )2 2.     (1.10.26)   

 Since the mean of   χ   2 ( n   −  1) is  n   −  1, from  (1.10.14) , we will have:
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 Thus, from  (1.10.25)  and  (1.10.27) , the variance of the standard deviation of 
the normal population is:
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 For the standard normal population,   μ    =  0 and   σ    =  1. Therefore, the mean of 
standard normal standard deviation remains as in  (1.10.25) , and its variance 
from  (1.10.26)  will be:
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  1.11.       INFERENTIAL STATISTICS 

 The purpose of most statistical investigations is to generalize information 
contained in samples to the populations from which the samples were drawn. 
This is the essence of statistical inference. The term  inference  means a conclu-
sion or a deduction. Two major areas are main components of the methods of 
 statistical inference  in the classical approach: (1)  hypotheses testing  and (2) 
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 estimation  ( point  and  interval ). In summary, an  estimate  of a distribution based 
on a sample and drawing a conclusion about a parameter based on a sample 
is called a  statistical inference . Of the different methods of estimation that are 
available, we discuss  point  and  interval   estimations . 

  1.11.1.       Point Estimation 

      Defi nition 1.11.1   
 The most plausible value of a parameter   μ   (population value) is called the 
 point   estimate  of   μ  . The statistic (sample value) that estimates this parameter 
is called the  point estimator  of   μ   and is denoted by   μ̂. In other words, we want 
to fi nd a number   ̂μ as a function of observations ( x  1 ,  x  2 ,  . . .  ,  x n  ), that is, 
  ˆ , , ,μ = ( )Y x x xn1 2 … . The function  Y  is a statistic that estimates   μ  , that is, a  point 
estimator  for   μ  . We want the computed value   ˆ , , ,μ = ( )Y x x xn1 2 …  to be closed 
to the actual value of the parameter   μ .  

 Note that  Y  is a random variable and thus has a pdf by its own. 
 It is known that a good estimator is the one that, on the average, is equal 

to the parameter ( unbiased ) and its  variance is as small as possible  ( minimum 
variance ). In other words, a point estimator, denoted by   μ̂, of a parameter   μ   is 
 unbiased  if   E μ̂ μ( ) = , otherwise it is said to be  biased . The amount of  bias  of 
  μ̂, denoted by   B μ̂( ), is defi ned by   B Eˆ ˆμ μ μ( ) = ( ) − . 

 Let   μ   be a parameter and   μ̂ an estimator of it. Then the  mean square error  
of   μ̂, denoted by  MSE , (and if there is confusion, by   MSE μ̂( )) is defi ned by:

    MSE MSE E Varˆ ˆ ˆ .μ μ μ μ( ) ≡ = ( ) −[ ] + ( )2     (1.11.1)   

 There are different methods of point estimation. One common one is the 
 method of moments . However, the maximum likelihood estimation method 
(MLE), which is defi ned later, is the most widely used method of estimation, 
especially when the sample size is large. It is a method that allows one to 
choose a value for the unknown parameter that most likely is the closest to 
the observed data. 

 We note that in the maximum likelihood function described later, for dis-
crete distribution function we use the probability mass function, and for con-
tinuous distribution function we use the probability density function. However, 
we will use the pdf notation for both cases. Hence, we will use  f ( x ;   θ  ) for a 
density function with one parameter and  f ( x ;   θ   1 ,   θ   2 ) for a density function with 
two parameters.  

     Defi nition 1.11.2   
 Suppose ( X  1 ,  X  2 ,  . . .  ,  X n  ) is a random sample of size  n , with observed values 
( x  1 ,  x  2 ,  . . .  ,  x n  ) from a cumulative distribution function (cdf)  F ( x ;   θ  ) with pdf 
 f ( x ;   θ  ), where   θ   is a vector of  k  parameters   θ   1 ,   θ   2 ,  . . .  ,   θ  k  . The cdf of this random 
sample denoted by  F n  ( x  1 ,  . . .  ,  x n  ;   θ   1 ,   θ   2 ,  . . .  ,   θ  k  ) is:
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    F x x F xn n k i k

i

n

1 1 2 1 2

1

, , ; , , , ; , , , .… … …θ θ θ θ θ θ( ) = ( )
=
∏     (1.11.2)   

 For the given sample ( x  1 ,  x  2 ,  . . .  ,  x n  ), the quantity   dF x dF xn i i
n

i; ;θ θ( ) = ∏ ( )=1  is 
called the  likelihood function  of   θ   1 ,   θ   2 ,  . . .  ,   θ  k   for ( x  1 ,  x  2 ,  . . .  ,  x n  ). We denote 
the likelihood function of   θ   by  L (  θ  ),

    L L x x f xn k i k

i

n

θ θ θ θ θ θ θ( ) = ( ) = ( )
=
∏1 1 2 1 2

1

, , ; , , , ; , , , ,… … …     (1.11.3)  

that is, the joint density function of  n  random variables and  k  parameters. For 
each sample point  x , let   ̂θ x( ) be a value of the parameter that maximizes  L (  θ  ).
The   maximum likelihood estimator   (  MLE  ) of the parameter   θ   based on a 
sample ( X  1 ,  X  2 ,  . . .  ,  X n  ) is denoted by   ̂θ X( ), where  X   =  ( X  1 ,  X  2 ,  . . .  ,  X n  ). 

 We note that in order fi nd the value of   θ   that maximizes  L (  θ  ), we take the 
derivative of  L (  θ  ), set it equal to zero, and fi nd   θ  . If   θ   is a vector of, say, size 
 k , then we need to take partial derivatives with respect to each element of   θ  , 
set it equal to zero, and solve the system of  k  equations with  k  unknowns. That 
is, if the likelihood function is differentiable with respect to   θ  , then letting x 
represent the random sample, potential candidates for the MLE are the values 
of (  θ   1 ,   θ   2 ,  . . .  ,   θ  k  ) that solve:

    
∂ ( )

∂
= =

L x
i ki

i

;
, , , , .

θ
θ

0 1 2 …    

 In most cases, it is easier to use derivatives of the natural logarithm of  L (  θ  ) 
rather than  L (  θ  ), which is called the  log likelihood function . This is because 
the logarithmic function is strictly increasing on (0,  ∞ ) and that implies that 
the extrema of ln  L (  θ  )   and  L (  θ  )   coincide (we leave the proof of this statement 
as an exercise).  

    Example 1.11.1.    Estimating Poisson Parameter by MLE  
 Suppose  x  1 ,  x  2 ,  . . .  ,  x n   are observed values of a Poisson random variable with 
parameter  λ   representing the random sample  X  1 ,  X  2 ,  . . .  ,  X n   of size  n . We want 
to estimate   λ   using MLE.  

   Answer  
 From the Poisson assumption with parameter   λ  , the probability of observing 
 x i   events in the  i th trial is:

    p x P X x
e

x
i n xX i i i

x

i
i

i

; ;
!

, , , , ; , , , .λ λ λ λ

( ) ≡ =( ) = = =
−

1 2 0 1 2… …     (1.11.4)   
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 We now take a random sample of size  n , say  X  1 ,  X  2 ,  . . .  ,  X n  . Let ( x  1 ,  x  2 ,  . . .  , 
 x n  ) denote the set of observations of ( X  1 ,  X  2 ,  . . .  ,  X n  ). Then, from  (1.11.3)  and 
 (1.11.4) , we have the likelihood function as:
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ii
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and the log likelihood function as:

    ln ln ln ! .L x n xi
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1 1

    (1.11.6)   

 We regard  (1.11.6)  as a function of   λ   and will fi nd the value of   λ   that maximizes 
this likelihood function. Taking derivative with respect to   λ   of  (1.11.6)  and set 
it equal to zero, we obtain:
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from which

    λ = =
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1n
x xi
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.     (1.11.7)   

 Thus, MLE for   λ   is   x, which is the sample mean.  

    Example 1.11.2.    Estimating Weibull Parameters by MLE  
 In Example  1.11.1 , we estimated the parameter of a discrete distribution with 
one parameter. In this example, we want to show how to apply MLE to esti-
mate parameters of a continuous-type distribution with two parameters. 

 We note that the contents of this example are straightforward materials, 
and perhaps this is why similar formulae and discussions appear in different 
textbooks in the literature without any reference to each other. It should 
also be noted that unfortunately, some properties of Weibull distribution 
have appeared in some published papers that are incorrect. Hence, readers 
must be careful when referring to such papers without making necessary 
corrections. 

 We consider the two-parameter Weibull distribution function defi ned in 
 (1.6.34)  and its pdf by  (1.6.35) . Thus, from  (1.11.3) , the likelihood function is:
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    (1.11.8)   
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 Hence, for  n   ≥  1, using log likelihood functions, the  likelihood equations  for   α   
and   β   are as follows:

    

∂
∂

= − + − ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

= =
∑ln

ln ln ln ,
L n

n x
x x

i

i

n
i i

i
β β

α
α α

β

1 1

0
nn

i

i

nL n x

∑

∑∂
∂

= − + ⎛
⎝⎜

⎞
⎠⎟ =

⎧

⎨
⎪
⎪

⎩
⎪
⎪

=

ln
.

α
β
α

β
α α

β

1

0

    (1.11.9)   

 To solve the system  (1.11.9) , we eliminate   α   from the fi rst equation of  (1.11.9) . 
From the second equation of  (1.11.9) , we have:
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 Now from the fi rst equation of  (1.11.9) , we have:
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 Using  (1.11.10)  and cancelling  n  ln   α   terms,  (1.11.11)  will yield:
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from which   β̂ should be found. Substituting   β̂  in the second equation of 
 (1.11.9) , will give   ̂α  as:
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    (1.11.13)   

 Since  (1.11.12)  cannot be solved analytically, we apply Newton ’ s iterative 
method:
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and

    ′ ( ) = − −
( )

+
( )

=

=

=∑
∑

∑
f

x x

x

x x

x

i i
i

n

i
i

n

i i
i

n

i

ˆ
ˆ

ln ln
ˆ

ˆ

ˆ

ˆ
β

β

β

β

β

β

1
2

2

1

1

1

ii

n

=∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1

2

,     (1.11.16)  

to fi nd   β̂ numerically. To do that, we would need to choose a sample of obser-
vations. That can be done by simulation. 

 We should note that we went through the lengthy process to show the MLE 
method. However, we could use the MATLAB computer program, for instance, 
to fi nd the MLE estimate of parameters numerically.    

  1.11.2.       Interval Estimation 

 Although point estimation has its usage, it also has its limitations. For instance, 
point estimation needs to be accompanied by an MSE, as we mentioned 
earlier. In reality, a point estimate cannot be expected to coincide with the 
quantity we are to estimate. Hence, to avoid limitations, that is, to determine 
the precision of the estimate, the  interval estimator  is used. That is, we can 
assert with some level of certainty that the interval contains the parameter 
under consideration. Such an interval is called a  confi dence interval  for the 
parameter. The lower and upper limits for this interval are constructed in such 
a way that the true value of the estimate falls within the interval. The upper 
end point is usually obtained by adding a multiple value of the standard devia-
tion to the estimated value and the lower end point is obtained by subtracting 
the same multiple values from the estimated mean. The likeliness of the true 
value falling within the interval is referred to as the  level  (or  degree )  of 
confi dence .

     Example 1.11.1   
 We use this example to show how to construct a confi dence interval. Suppose 
we have a large random sample of size  n  (i.e.,  n   ≥  30), say  X  1 ,  X  2 ,  . . .  ,  X n  , from 
a normal population with a  known variance    σ   2  and we want to estimate the 
unknown mean,   μ  . We want to estimate   μ   and fi nd a 95% confi dence for the 
estimate.  
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   Answer  
 Let   X  be the sample mean. We have seen that it is an unbiased point estimator 
of the population mean   μ  . We also have seen that:

    Z
X

n
=

− μ
σ

    (1.11.17)  

is a random variable that has an approximately standard normal distribution. 
The end points of the interval for which the value of the estimator falls within, 
with, say, 95% probability, can be looked up from the standard normal tables. 
Hence, we will see that   X  falls within the 1.96 standard deviation of mean 0.95. 
That is,

    P z− < <( ) =1 96 1 96 0 95. . . .     (1.11.18)   

 This is because 2.5% of the area under the standard normal density curve is 
to the right of the point  z   =  1.96 ( z  α    /2   =   z  .025   =  1.96) and 2.5% of the area is to 
the left of  − 1.96. Hence, 95% of the area is between  − 1.96 and  + 1.96. Thus, 
from  (1.11.17)  and  (1.11.18) , we have:
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    (1.11.19)   

 or

    P X
n

X
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⎝⎜

⎞
⎠⎟ =1 96 1 96 0 95. . . .

σ μ σ
    (1.11.20)   

 Therefore, since 1.96 is 97.5% of the standard normal distribution, a 95% 
confi dence interval estimator of the population mean   μ   is:

    X
n

X
n

− +⎛
⎝⎜

⎞
⎠⎟1 96 1 96. , . .

σ σ
    (1.11.21)   

 In other words, 95 times out of every 100 times we sample,   μ   will fall within 
the interval   X n± ( )1 96. σ . For instance, suppose  X  represent the lifetime 
of a light bulb. Suppose also that  X  is normally distributed with mean   μ   and 
standard deviation of 42. The manufacturer chose 36 light bulbs and lighted 
them to observe their lifetime until each burned out. The mean of this sample 
was 1500 hours. To estimate the mean of all such light bulbs, a 95% confi dence 
interval is decided. Thus, from  (1.11.21)  we will have:

    1500 1 96
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36
1486 28 1513 72− +⎛
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 We note that we can use the central limit theorem to approximate the confi -
dence interval. This is because when the sample size is large enough, the ratio

    Z
X

n
=

− μ
σ

   

 is  N (0,1). Hence, a 100(1  −    α  )% confi dence interval for   μ   is:

    P z
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μ
σ

α2 2 1 ,     (1.11.22)   

 and that implies that the  standard normal confi dence interval  is:

    x z
n

x z
n

− +⎛
⎝⎜

⎞
⎠⎟α α

σ σ
2 2, ,     (1.11.23)  

where  z  α    /2  is the value of the area under the normal curve to its right. We note 
that the amount of error of the estimate is   X − μ  and:

    the maximum error of estimate ,with probability of 1< −z nα σ2 αα.   
  (1.11.24)   

 Other percent confi dence intervals can be found similarly. 
 In case the  variance is unknown , the sample variance,  S  2 , can be used. In 

this case, however, we can again use the quantity   X n−( ) ( )μ σ  with the 
population standard deviation   σ   replaced by the sample standard deviation, 
 S , that is,

    T
X

S n
≡

− μ
    (1.11.25)   

 The  T  defi ned in  (1.11.25)  is a random variable since it depends upon  S  and 
  X ; however, it is not normally distributed; rather, it has  Student ’ s t-distribution  
(or just simply,  t-distribution ).  T  may be treated as a standard normal as long 
as the sample size is large (30 or more), since in that case there is a high prob-
ability that  S  is very close to   σ  . 

 So far, we have discussed the confi dence interval for the population mean 
based on large sample sizes ( n   ≥  30). Those discussions should ensue regardless 
of the distribution because of the central limit theorem. When the sample size 
is small ( n   <  30),  S  may not be close to   σ   and so   X  may not be normally dis-
tributed, unless the sample is selected from a normal population. For a small 
sample size, there is no good general method for fi nding the confi dence inter-
val. In such a case, the Student ’ s  t -distribution will be used along with the 
 t -distribution tables. The  Student ’ s t-distribution confi dence interval , then, 
would be:
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     Example 1.11.3   
 Suppose that to determine a value of interest (the melting point of tin, for 
instance), an experiment is conducted six times (sample size). The mean and 
standard deviation are found to be 0.14 and 232.26, respectively. If the 
researcher is to use the mean to estimate the actual value of interest (meting 
point) with high probability, say 98%, what would be the expected maximum 
error?  

   Answer  
 Since 1  −    α    =  98%,   α  /2  =  0.01, thus, from the  t -table, for  n   −  1  =  5 (degrees of 
freedom) is  i  0.01   =  3.365. Hence, from (1.8.13), with probability of 98%, the 
maximum error will be less than   3 365 0 14 6 0 19. . .× ( ) = . 

 We note that one must be careful about rounding off numbers; the least 
signifi cant digit should refl ect the precision of the estimate. The precision 
depends on the variable, on the technique of measurement, and also on the 
sample size. It is not suffi cient to round off just by taking into consideration 
the sample size alone.     

  1.12.       HYPOTHESIS TESTING 

 A question such as if the average lifetime of a light bulb is more than 2000 
hours is answered by fi rst hypothesizing it and then testing it. This is the objec-
tive of this section. 

 By a  statistical hypothesis , we mean a statement about the nature of a 
parameter of a population. By  testing of a   hypothesis , we mean to determine 
the truth or falsity of the statement. The way the testing is set up is that a 
default position is set, called the  null hypothesis , denoted by  H 0  . The negation 
of the null hypothesis,  H  0 , is called the  alternative hypothesis , denoted by  H 1  . 
A statistic whose value is determined from the sample observations is called 
a  test statistic . The test statistic is used to decide to reject or accept the null 
hypothesis.  Critical region  (or  rejection region ) is the set of values of the test 
statistics for which  H  0  is rejected. The  critical value  is the dividing point of the 
region between values for which the null hypothesis is rejected and not 
rejected. Testing a null hypothesis may cause two types of errors, called  Type 
I error  and  Type II error . 

 If  H  0  is erroneously rejected, it is said that the Type I error has occurred. 
In contrast, if  H  0  is erroneously accepted, it is said that the Type II error has 
occurred. To assure that the decision of rejecting  H  0  is the correct one, one 
requires that the probability of rejection be less than or equal to a small 
number, say   α  . The preassigned small number   α  , which is the  probability of a 
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Type I error  (i.e., the probability that  H  0  is true and  H  1  was not rejected), and 
is often chosen as 0.01, 0.05, or 0.10, is called the  level of signifi cance of the test  
(or  signifi cance level of the test ). The smallest signifi cance level at which the 
data lead to the rejection of  H  0  is called the  p-value . A small  p -value (0.05 or 
less) strongly suggests that  H  0  is not true. In contrast, if the  p -value is large, it 
would mean that there is strong evidence not to reject  H  0 . 

 Let the  probability of Type II error  be denoted by   β   (i.e., the probability 
that  H  1  is true and  H  0  was not rejected). The probability of erroneously reject-
ing  H  0 , 1  −    β  , is then called the  power of the test . The ideal power function is 
  β    =  0. However, that is only possible in trivial cases. Hence, the practical hope 
is that the power function is near 1. 

 We note that increasing the sample size will reduce Type II error and 
increase power. However, it will not affect Type I error. 

 The comparison of means of several populations is called the   analysis 
of variance   (  ANOVA  ). By that, it is meant estimating the means of more 
than one population simultaneously. ANOVA is one of the most widely used 
statistical methods. It is not about variance; rather, it is about analyzing varia-
tions in means. In statistical design, ANOVA is used to determine how one 
can get the most information on the most populations with a fewer observa-
tions. Of course, this desire is extremely important in the industry due to 
minimizing the cost. 

 In addition to ANOVA, the  t-test  or  error bar  (a graphical representation 
of the variability of data, which gives a general idea of how accurate a mea-
surement is), when one uses multipliers based on the Student distribution, may 
be used for the same purpose. The error bar may also be used with normal, 
Poisson, and other distributions as well. For most straightforward situations, 
the multiplier lies between 1.95 and 2.00 for  p -value less than the 0.05 test 
(two sided against a known chance/null baseline or one sided against an alter-
native result expected to beat). Usually, the multiplier is applied to the stan-
dard error of the cases one regards as the baseline or null hypothesis, but even 
when comparing two or more arbitrary conditions/systems in an ad hoc way 
with no strong a priori idea that a particular one should be better, perhaps it 
is preferred to make the error bars 1 standard error around points from each 
source, and regard differences as tentatively signifi cant if the error bars do not 
cross, corresponding to an averaging of the conditions where each is consid-
ered the baseline for the other. By “tentative,” is it meant that this acts as a 
fi lter and formal tests can be done for those that are interesting and potentially 
signifi cant. 

 For a two-sided test, for a  p -value to be considered signifi cant, one needs 
to judge that 1.5 standard errors would not meet. This problem may be taken 
care of by including additional whiskers, so at  ± 1 and  ± 1.5 standard error. 

  A word of caution:  One should not compare means in cases like repeated 
measures or pre- or posttest designs. In such cases, the individual differences 
across the system should be used. Comparing means is often too conservative 
and is not sensitive to correlation between the individual measurements. 
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 Often there is interest in knowing the relationship between two variables. 
Finding the relationship and degree of dependence are what  regression analy-
sis  does. Regression (in different forms such as linear, nonlinear, parametric, 
nonparametric, simple, and multiple) is widely used in different disciplines 
such as engineering, biological sciences, social and behavioral sciences, and 
business. For instance, we might be interested in analyzing the relation between 
two variables such as the strength of and stress on a beam in building a bridge; 
or a student ’ s grade point average and his/her grade in a statistics course. The 
analysis of regression is not only used to show the relationship between vari-
ables, but it is also for prediction. 

 The simplest relation between two variables is a straight line, say  Y   =    β   0   +    β   1  x.  
Hence, for each value of  x , the value of  Y  will be predicted, but not exactly 
when estimations are involved. In those cases, the values are subject to  random 
error . Thus, in general, the linear equation considered is of the type 
 Y   =    β   0   +    β   1  x   +    ε  , where   β   0  and   β   1  are  parameters , called  regression coeffi cients , 
and   ε   is what is called the  random error  with mean 0. 

 We note that the error terms   ε   for different trials are assumed to be uncorre-
lated. Thus, the outcome in any trial has no effect on the error term for any other 
trial. This implies that  Y i   and  Y j  ,  i   ≠   j , are uncorrelated. It should also be noted 
that, essentially, regression and correlation (that we discussed earlier) are the 
same. However, we cannot conclude causation from either one. Causes can only 
be established by an experiment. Causality cannot be determined by statistics; it 
needs to be assumed. In fact R.A. Fisher, one of the pioneers of statistics, has 
tried and failed. Correlation and regression are analyses of relationships among 
mathematical constructs. Causal models are hypothetical statements which 
guide both the choice of which variables should be measured as potentially rel-
evant and the interpretation of associations that are found in the data. 

 We also make a general note on rounding numbers that usually causes error 
of some type. There are no standards to how to round a number to the nearest 
tenth or others. Essentially, the precision depends on the variable, on the 
technique of measurement, and also on the sample size. One cannot rule just 
by sample size alone. Some have set as their basic underlying principle the 
effect of rounding should always be less than 1% of the standard error of the 
observation or estimate. In other words, set the rounding error to be less than 
1% of the calculated standard error. 

 One should make sure that rounding numbers is done only after all com-
putations have been completed. 

 Some use the following rule, called the  rounding interval , denoted, say, by 
 r . It is defi ned as the smallest possible positive difference between two rounded 
values for the same statistic as reported in a study report. If results are 
reported in two decimal places, the rounding interval  r   =  0.01. Admissible 
values for  r  are powers of 10 only, that is, they all belong to the set {  . . . ; 0.001; 
0.01; 0.1; 1; 10; 100; 1000;  . . . }. For  r , the maximum value should be selected 
from this set that does not exceed half the standard error of the observation 
or of the statistic. So  r   ≤  1/2 (standard error)  <  10 r . For instance, if some 
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statistic has a standard error of 0.042, then  r  should be selected as 0.01, since 
0.01  <  0.021  <  0.1. 

 Numbers are rounded to the nearest rounded value. If the choice is not 
confusing, the last digit after rounding should be even. For instance, for  r   =  0.01, 
we should have the following: 5.233 rounded to 5.23; 4.268 rounded to 4.27; 
6.445 rounded to 6.43; and 6.435 rounded to 6.44.  

  1.13.       RELIABILITY 

 It is now well known to the industry that for manufacturing goods, along with 
all factors considered such as ease of manufacturing, cost, size, weight, and 
maintenance, they must pay great attention to the reliability of their products. 
If a system is multicomponent, then reliability of each component should be 
considered. 

 In simple words, the  reliability  of a product is the probability that the 
product will function within specifi ed limits for at least a specifi ed period of 
time under specifi ed environmental conditions. These components may be 
installed in parallel, series, or a mixture of both. A system and each of its 
components may be in  functioning , or  partially functioning , or  failed  state. 

 If we assume a system with  n  independent components that are connected 
in series and only with two states, namely  function  and  failed , then the prob-
ability of the system in series, denoted by  R S  , is the product of reliabilities of 
its components, denoted by  R i  ,  i   =  1, 2,  . . .  ,  n . To increase the reliability of a 
system, the components may be connected in parallel. In such a case, the 
system fails only if all components fail. Hence, if we denote the probability of 
failure of each component by  F i    =  1  −   R i  , then the probability of the system 
failure, denoted by  F P  , will be the product of  F i   ’ s, that is, the reliability of the 
system in parallel, denoted by  R P  , is  R P    =  1  −   F P  . 

 Suppose that each component  x i  ,  i   =  1, 2,  . . .  ,  n , of the system has only two 
states, namely  functioning , denoted by 1, and  nonfunctioning  ( failed ), denoted 
by 0. If we assume that the state of the system is determined completely by 
the states of its components and denote the state of the system by  Ψ , then:

    Ψ Ψ= ( ) = ( )x x, , , , .x x xn1 2 …     (1.13.1)   

 The function  Ψ ( x ) defi ned by  (1.13.1)  is called the  structure function  of the 
system and the number of components,  n , is called the  order of the system . A 
 series structure  ( n out of n ) functions if and only if each component functions, 
while a  parallel structure  ( 1   out of n ) functions if and only if at least one com-
ponent functions. Thus, for these two cases, structure functions are given by:

    Ψ x( ) = = ( )
=
∏x x x xi

i

n

n

1

1 2min , , , , .… series structure     (1.13.2)  
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and

    Ψ x( ) = ≡ − −( ) = ( )
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  (1.13.3)   

 A  k-out-of-n structure  functions if and only if  k  out of  n  components function. 
In this case, the structure function is:
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    (1.13.4)   

 Relation  (1.13.4)  is equivalent to:

    Ψ x( ) =
=
∏ x k ni

i

k

1

, .-out-of- structure     (1.13.5)   

 As mentioned earlier, the probability  R  that the system functions is called the 
 reliability of the system , that is,

    R P X X Xn≡ ( ) ={ } = ( )Ψ X X1 1 2, , , , .…     (1.13.6)   

 Thus,

    E RΨ X( )[ ] = .     (1.13.7)   

 We defi ne  r  as the random vector,  r   =  ( r  1 ,  r  2 ,  . . .  ,  r n  ). Based on the independence 
assumption, the system reliability  R  will be a function of  r , that is,

    R R= ( )r .     (1.13.8)   

 Let a random variable, say  T , represent the lifetime of a component or a 
system with  f T  ( t ) and  F T  ( t ) as the pdf and cdf, respectively. The  reliability func-
tion , at a time  t , denoted by  R ( t ), is the probability that the component or the 
system is still functioning at time  t , that is,

    R t P T t( ) = >( ).     (1.13.9)   

 From  (1.13.9) , it is clear that:

    R t P T t P T F tT( ) = >( ) = − ≤( ) = − ( )1 1 .     (1.13.10)   

 Hence,

    ′ ( ) = − ( )R t f tT .     (1.13.11)   
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 Also, the  mean functioning  time or  survival  is:

    E T f t dt R t dtT T( ) = ( ) = ( )
∞ ∞

∫ ∫0 0
.     (1.13.12)   

 The  failure rate function  (or  force of mortality ), denoted by  r ( t ), is defi ned by:

    r t f x T tT x t( ) = >( ) = .     (1.13.13)   

 The function  r ( t ) is an increasing function of  t , that is, the older the unit is, the 
better the chance of failure within a short interval of length  h , namely  r ( t ) h . 
Thus,  (1.13.13)  is equivalent to:

    r t f t T t
R t
R t

T( ) = >( ) = − ′ ( )
( )

.     (1.13.14)   

 In general, the failure rate function and the reliability are related by:

    R t e
r d

t

( ) = ∫− ( )τ τ
0 ,     (1.13.15)  

and

    f t r t eT
r d

t

( ) = ( ) ∫− ( )τ τ
0 .     (1.13.16)   

 As an example, suppose that the time to failure of two units 1 and 2 of a system 
is exponentially distributed with parameters   λ   1   =  2 and   λ   2   =  2.5, respectively. 
From  (1.13.15) , the reliability functions of the units are  R  1 ( t )  =   e   − 0.5   t   and 
 R  2 ( t )  =   e   − 0.4   t  , respectively. Assume that the units fail independently. Thus, the 
reliability functions for the series and parallel systems, respectively, are:

    R R t e e eS i

i

n
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− − −∏
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ee e et t t− − −+ −0 4 0 5 0 9. . . .

   

 For instance, if a unit of time is 2000 hours, then the probability that the 
series and parallel systems function for more than a unit of time each is 
 R S  (1)  =   e   − 0.9   =  0.4066 and  R P    =   e   − 0.4   t    +   e   − 0.5   t    −   e   − 0.9   t    =  0.8703, respectively. 
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 The estimation of the reliability has become a concern for many quality 
control professionals and statisticians. When  Y  represents the random value 
of a stress (or supply) that a device (or a component) will be subjected to in 
service,  X  represents the strength (or demand) that varies from product to 
product in the population of devices. The device fails at the instant that the 
stress applied to it exceeds the strength and functions successfully whenever 
 X   >   Y . The reliability (or the measure of reliability)  R  is then defi ned as 
 P ( Y   <   X ), that is, the probability that a randomly selected device functions 
successfully. 

 Consider a system with only one component. Suppose the random variable 
 X  that represents the  strength  takes place in the lifetime,  T , of a device. 
Suppose also that  Y  that represents the random value of a  stress  takes place 
in the time of failure. The reliability, then, that a randomly selected device 
survives under the stress exerted is the probability that the device functions 
successfully, that is,

    R P Y X= <( ).     (1.13.17)   

 The Weibull distribution is commonly used as a life-lengths model and in the 
study of breaking strengths of materials. The value of  R  has been calculated 
in the literature under the assumed distributions and using different methods 
of estimations such as MLE, shrinkage estimation procedures, and method of 
moments. 

 As an example, for the random variables  X  and  Y  as strength and stress, 
respectively, we choose a random sample for each, say,  X  1 ,  X  2 ,  . . .  ,  X m   and  Y  1 , 
 Y  2 ,  . . .  ,  Y n  . To conduct a simulation, due to the involved and tedious calcula-
tions of the MLE of   α  , we choose   α     =   2, 3, and 4 when the ratio of   β   1 /  β   2  is 1, 
1/2, and 2, with   β   1  and   β   2  as parameters for  X  and  Y , respectively. We choose 
the ratio of the scale parameters to compare the effect measures of the reli-
ability. We also choose  m   =   n , and  m   =  5(1)10, (5–10 with increment 1). For 
instance, based on 1000 runs, estimated values of the different estimators can 
be calculated.  

  EXERCISES 

    1.1.    Suppose we want to seat two persons on two chairs. 
    a.      What are the possible outcomes?  
   b.      List all possible simple events.     

    1.2.    Three pairs of “before” and “after” pictures of three different people are 
given. Holding the “before” pictures and randomly matching the “after” 
pictures, what is the probability of: 
    a.      all matching?  
   b.      none matching?     
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    1.3.    Suppose an election is to choose a set of 4 persons from a group of 10 
people without replacement. What is the number of ways to choose the set?   

    1.4.    Suppose a repairman has a diagnostic instrument which can identify 
problems with a machine three out of four times. Suppose he runs the 
diagnostic eight times. What is the probability that he identifi es the 
problem 
    a.      less than four times?  
   b.      exactly four times?     

    1.5.    A “fair” coin is tossed three times. What is the probability that two heads 
turn up?   

    1.6.    A random number generator generates numbers at random from the 
unit interval [0, 1]. Find the following: 
    a.       P ( A ), where  A    =   (1/2, 2/3].  
   b.       P ( B ), where  B   =  [0,1/2).  
  c.     the partition generated by  A  and  B .  
  d.     the event algebra.     

    1.7.    For mutually exclusive events  A  1 ,  A  2 ,  . . .  ,  A n   from a probability space 
  Ω, ,B P( ), show that:   P A P Ai i i i∪( ) = ∑ ( ).   

    1.8.    If  A  and  B  are events and  A  is a subset of  B , prove that  P ( B   −   A )  =   
P ( B )  −   P ( A ) and  P ( A )  ≤   P ( B ).   

    1.9.    If  A  and  B  are two events, prove that  P ( A   ∪   B )  =   P ( A )  +   P ( B )  −  
 P ( A   ∩   B ).   

    1.10.    Manufactured articles in a manufacturing company are required to pass 
two inspections by two inspectors. Experience shows that one inspector 
will miss 5% of the defective articles, whereas the second inspector will 
miss 4% of them. If good articles always pass inspection and if 10% of the 
articles turned out in manufacturing process are defective, what percent-
age of the articles that passes both inspections will be defective?   

    1.11.    Suppose an institution of higher learning has equal numbers of male and 
female students, The chance of male students majoring in  science, tech-
nology, engineering and mathematics  ( STEM ) is1/5 and for female stu-
dents this probability is 1/25. A student is chosen at random; what is the 
probability that: 
    a.      the chosen student will be a male majoring in STEM?  
   b.      the chosen student will be a STEM major?  
   c.      a science student selected at random will be a male student?     

    1.12.    Suppose two technicians  T  1  and  T  2  independently inspect a unit for a 
problem. The probability that technician  T  1  fi nds the problem is 1/3 and 
technician  T  2  is 1/6. What is the probability that: 
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    a.      both  T  1  and  T  2  fi nd the problem?  
   b.      at least one will fi nd the problem?  
   c.      neither will fi nd the problem?  
   d.      only  T  2  fi nds the problem?     

    1.13.    A gambler has three coins in his pocket, two of which are fair and one 
is two headed. He selects a coin. If he tosses the selected coin 
    a.      and it turns up a head, what is the probability that the coin is a fair?  
   b.      fi ve times, what is the probability that he gets fi ve heads?  
   c.      six times, what is the probability of getting fi ve heads followed by 

a tail?     

    1.14.    Suppose a polling institution fi nds the approval rating of the handling 
of foreign policy by the president of the United States during the last 4 
years is 23%. Ten Americans are chosen randomly and each is asked 
about the president ’ s handling of foreign policy. What is the probability 
that there are at least 2 among the 10 who approve of the handling of 
foreign policy by the President?   

    1.15.    Suppose that telephone calls enter the department of mathematics ’  
switchboard, on the average, 2 every 10 minutes. Arriving calls are known 
to have a Poisson pmf with parameter 3. What is the probability of less 
than 7 calls in a 20-minute period?   

    1.16.    A material is known for 20% of breakage under stress. Five different 
samples of such materials are tested. What is the probability that: 
    a.      the second sample resists the stress?  
   b.      the second and third samples resist the stress?     

    1.17.    Show that if a random sample of size  n ,  X  1 ,  X  2 ,  . . .  ,  X n  , is drawn from a 
fi nite population without replacement, then the random variables  X  1 ,  X  2 , 
 . . .  ,  X n   are not mutually independent.   

    1.18.    In a game, a fair die is rolled. To win or lose dollar amounts equal to the 
number that shows up depends on whether an even or odd number turns 
up, respectively. 
    a.      What is the expected win or loss in the game?  
   b.       What is the probability if the order of winning and losing is changed?     

    1.19.    Suppose that  X  is a discrete random variable whose values are 0, 1, 2, 3, 
4, and 5, with probabilities 0.2, 0.3, 0.1, 0.1, 0.2, and 0.1, respectively. Find 
the mean and standard deviation of  X .   

    1.20.    Let  X  be the number of modules with programming errors in a piece of 
computer software. Let  Y  be the number of days it takes to debug the 
software. Suppose  X  and  Y  have the following joint probability mass 
function:
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   Find the following: 
    a.       E ( XY )  
   b.      The marginal probability mass function for each  X  and  Y   
   c.      The  Cov ( X ,  Y )     

    1.21.    Let  X  denote the number of hotdogs and  Y  the number of sodas con-
sumed by an individual at a game. Suppose  X  and  Y  have the following 
joint probability mass function:

 X 

 p X  0 1 2 3 4

 Y 

0 0.20 0.08 0.03 0.02 0.01
1 0 0.06 0.09 0.04 0.01
2 0 0.04 0.09 0.06 0.02
3 0 0.02 0.06 0.04 0.03
4 0 0 0.03 0.02 0.02
5 0 0 0 0.02 0.01

 X 

 p X,Y  0 1 2 3

 Y 

0 0.06 0.15 0.06 0.03
1 0.04 0.20 0.12 0.04
2 0.02 0.08 0.06 0.04
3 0.01 0.03 0.04 0.02

      a.      Find  E ( X ),  STD ( X ),  E ( Y ), and  STD ( Y ).  
   b.      Find  Cov ( X ,  Y ) and  Corr ( X ,  Y ).  
   c.      If hotdogs cost $4.00 each and soda cost $2.50 a can, fi nd an individ-

ual ’ s expected value and standard deviation of total costs for sodas 
and hotdogs at a game.     

    1.22.    A number is to be chosen at random from the interval [0, 1]. What is the 
probability that the number is less than 2/5?   

    1.23.    Let  X  is a standard logistic random variable. Show that

    Y
e

X
X

=
+

−∞ < < ∞−

1
1

, ,   

has a uniform distribution with mean 0 and variance 1.   

    1.24.    Show that for  n  events  A  1 ,  A  2 ,  . . .  ,  A n  , we have:

   P A A A P A P A A P A A A P A A A An n n1 2 1 2 1 3 1 2 1 2 1� � �( ) = ( ) × ( ) × ( ) × × ( )− .     



EXERCISES  85

    1.25.    Show that if events  A  and  B  are independent and  P ( B )  >  0, then 
 P ( A  |  B )  =   P ( A ).   

    1.26.    Show the following properties of random variables: 
    a.      if  X  and  Y  are two discrete random variables, then  X   ±   Y  and  XY  are 

also random variables, and  
   b.      if { Y   =  0} is empty, then  X / Y  is also a random variable.     

    1.27.    Let  X  be a binomial random variable with distribution function B k . 
Prove that:

    Bk =
⎛
⎝⎜

⎞
⎠⎟

=−n

k
p q k nk n k, , , , , ,0 1 2 …    

 where  q   =  1  −   p .   

    1.28.    Show that  (1.2.11)  is equivalent to  (1.2.9) .   

    1.29.    Let  X  be a binomial random variable with distribution function B k  and 
  λ    =   np  be fi xed. Show that:

    Bk = = =
→∞
→

−

lim
!

, , , , .
,n

p

k ke
k

k
0

0 1 2
λ

…      

    1.30.    Prove: 
    a.      The expected value of the indicator function  I A  (  ω  ) defi ned in  (1.2.3)  

is  P ( A ), that is,  E ( I A  )  =   P ( A ).  
   b.    If  c  is a constant, then  E ( c )  =   c .  
   c.    If  c ,  c  1 , and  c  2  are constants and  X  and  Y  are two random variables, 

then  E ( cX )  =   cE ( X ) and  E ( c  1  X    +    c  2  Y )  =   c  1  E ( X )  +   c  2  E ( Y ).  
   d.    If  X  1 ,  X  2 ,  . . .  ,  X n   are  n  random variables, then  E ( X  1   +   X  2   +   . . .   +   X n  )  =  

 E ( X  1 )  +   E ( X  1 )  +   . . .   +   E ( X n  ).  
   e.    Let  X  1  and  X  2  be two independent random variables with marginal 

mass (density) functions  p x   1  and   px2 , respectively. Then, if  E ( X  1 ) and 
 E ( X  2 ) exist, we will have  E ( X  1  X  2 )  =   E ( X  1 ) E ( X  2 ).  

   f.    For a fi nite number of random variables, that is, if  X  1 ,  X  2 ,  . . .  ,  X n   are 
 n  independent random variables, then:

    E X X X E X E X E Xn n1 2 1 2� �( ) = ( ) ( ) ( ).        

    1.31.    Show that the variance of a binomial random variable  X  with parameters 
 n  and  p  is  Var ( X )  =   np (1  −   p ).   

    1.32.    Verify that  F X  ( −  ∞ )  =  0 and  F X  ( ∞ )  =  0.   

    1.33.    Show that  f X  ( x ;   μ  ,   α  ) given by:
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    f x
e x

X

x

( ) = ≥⎧
⎨
⎩

−μ μ , ,

, ,

0

0 elsewhere
  

indeed, defi nes a probability density function.   

    1.34.    If  n  is a natural number, show that  Γ ( n )  =  ( n   −  1)!,  n   =  1, 2,  . . .  , where 
 n ! is defi ned by  n !  =   n ( n   −  1)( n   −  2)  . . .  (2)(1).   

    1.35.    Show that 0!  =  1.   

    1.36.    Show that   ∫ =
∞ −
0

2
2e dxx π .   

    1.37.    Show that   Γ Γ1 2 1 2( ) = ( ) =π π .   

    1.38.    Show the following properties of  X  2  (chi-square) random variable: 
mean  =   r , and variance  =  2 r .   

    1.39.    Show that  f ( x ;   μ  ,   σ   2 ) given by:

    f x e x
x

; , ,μ σ
σ π

μ
σ2 2

1

2

2

2( ) = −∞ < < ∞
− −( )

  

is indeed a pdf.   

    1.40.    Show that   ϕ  ( z ) given by:

    φ
π

z e z
z

( ) = −∞ < < ∞
−1

2

2

2 ,   

is indeed a pdf.   

    1.41.    Show that the mean and variance of a lognormal random variable  X  are, 
respectively,

    E X e Var X e e( ) = ( ) = −( )+ +μ σ σ μ σ2 2 22 21and .      

    1.42.    Show that the mean and variance of standard logistic random variable 
 X , respectively, are  E ( X )  =   a  and  Var ( X )  =  1/3(  π   2  b  2 ).   

    1.43.    Show that the mean and variance of the Weibull random variable, respec-
tively, are:

    E X Var X( ) = +⎛
⎝⎜

⎞
⎠⎟

( ) = +⎛
⎝⎜

⎞
⎠⎟
− +⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
α

β
α

β β
Γ Γ Γ1

1
1

2
1

12
2

and ⎥⎥ .      

    1.44.    Show that the relation  (1.7.4)  represents a probability mass function.   

    1.45.    Prove Theorem  1.7.2 , the law of total probability.   

    1.46.    Prove the following properties of covariance: 
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    a.       Cov ( X ,  X )  =   Var ( X ).  
   b.       Cov ( X ,  Y )  =   E [ XY ]  −    μ  X     μ  Y  .  
   c.       Cov ( X ,  Y )  =   Cov ( Y ,  X ).  
   d.      If  c  is a real number, then  Cov ( cX ,  Y )  =   cCov ( Y ,  X ).  
   e.      For two random variables  X  and  Y  we have:

    Var X Y Var X Var Y Cov X Y+( ) = ( ) + ( ) + ( )2 , .        

    1.47.    Prove the following properties of sample mean   E X( ) = μ and 
  Var X n( ) = σ 2 .   

    1.48.    Show that the random variable

    W
X

n
n= − =μ

σ
, .1 2, ,…   

is a standard normal random variable for each positive integer  n .   

    1.49.    Show that the second moment of  S  2  is:

    E S
n

n
n n

2 2 4
2

41 2
1

( )⎡⎣ ⎤⎦ = + −( ) +
−( )

μ σ ,   

where   μ   4  is the fourth central moment of  X .   

    1.50.    Show that:

    n S
n

−( ) −( )1
1

2

2
2

σ
χ~ .      

    1.51.    Use derivatives of the natural logarithm of  L (  θ  ) rather than ln  L (  θ  ) ln 
 L (  θ  ) to show that the extrema of ln  L (  θ  ) and ln  L (  θ  ) coincide.   

    1.52.    Is it possible for the standard deviation to be 0? If so, give an example; 
if not, explain why not.   

    1.53.    Let  X  be a continuous random variable with pdf  f ( x )  =  1  −  | x   −  1|, 0  ≤   x   ≤  2. 

    a.      Find the 20th and 95th percentiles and show them on the graph of cdf 
of  X .  

   b.      Find the IQR.     

    1.54.    Suppose a random variable  X  represents a large population consisting 
of three measurements 0, 3, and 12 with the following distribution:

 X 0 3 12
 P X  1/3 1/3 1/3
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      a.      Write every possible sample of size 3.  
   b.      Assuming equiprobable property for every possible sample of size 3, 

what is the probability of each?  
   c.      Find the sample mean,   X , for each possible sample.  
   d.      Find the sample median,  M m  , for each possible sample.  
   e.      Find the sampling distribution of the sample mean,   X .     

    1.55.    For Exercise 1.54, show that   X  is an unbiased estimator of the popula-
tion parameter  μ  .   

    1.56.    Let  X  1 ,  X  2 ,  . . .  ,  X n   represent a random sample with its  n  independent 
observed values  x  1 ,  x  2 ,  . . .  ,  x n   from a normal random variable with mean 
  μ   and variance   σ   2 . Find the MLE of   θ  (  μ  ,   σ   2 ) .    

    1.57.    Suppose  X  1 ,  X  2 ,  . . .  ,  X n   is a random sample of size  n  with pdf  f ( x ;   λ  )  =  
(1/  λ  ) e   −    x   /    λ   ,  x   ≥  0,   λ    >  0. Find the MLE for the parameter   λ  .   

    1.58.    Consider the pdf of a one-parameter  Cauchy distribution  as:

    f x
x

; , .λ λ
π λ

λ( ) =
+( ) >

2 2
0    

 Find the maximum likelihood estimate of the parameter   λ  .   

    1.59.    Find  z  α    /2  for each of the following values of   α  : 
    a.      0.10  
   b.      0.05  
   c.      0.01     

    1.60.    A random sample of 80 shoppers at an automotive part store showed 
that they spent an average of $20.5 with variance of $39.2. Find a 95% 
confi dence interval for the average amount spent by a shopper at the 
store.   

    1.61.    The time it takes for a manufacturer to assemble an electronic instru-
ment is a normal random variable with mean of 1.2 hours and a variance 
of 0.04 hour. To reduce the assembly time, the manufacturer implements 
a new procedure. A random sample of size 35 is then taken and it shows 
the mean assembly time as 0.9 hour. Assuming the variance remains 
unchanged, form a 95% confi dence interval for the mean assembly time 
under the new procedure.   

    1.62.    Find the value of  t n    − 1,    α    to construct a two-sided confi dence interval of the 
given level with the indicated sample size: 
    a.      95% level,  n   =  5.  
   b.      99% level,  n   =  29.     
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    1.63.    Suppose that at a company it is known that over the past few years, 
employees ’  sick days averaged 5.4 days per year. To reduce this number, 
the company introduces telecommuting (allowing employees to work at 
home on their computers). After implementing the new policy, the 
Human Resource Department chooses a random sample of 50 employ-
ees at the end of the year and found an average of 4.5 sick days with a 
standard deviation of 2.7 days. Let   μ   be the mean sick days of all employ-
ees of the company. Find the  p -value for testing hypothesis  H  0 :   μ    ≥  5.4 
versus  H  1 :   μ    <  5.4.   

    1.64.    In a comparison of the effectiveness of online leaning with the tradi-
tional in-classroom instruction, 12 students enrolled in a business course 
online and 14 enrolled in a course with traditional in-classroom instruc-
tion. The fi nal exam scores were as follows:

Classroom 80 77 74 64 71 80 68 85 83 59 55 75 81 81

Online 64 66 74 69 75 72 77 83 77 91 85 88

   Does the mean score differ between the two type of course?    

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


