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CHAPTER 1
DYNAMIC-SYSTEM MODELS
AND SIMULATION

SIMULATION IS EXPERIMENTATION
WITH MODELS

1-1. Simulation and Computer Programs

Simulation is experimentation with models. For system design, research, and edu-
cation, simulations must not only construct and modify many different models but
also store and access a large volume of results. That is practical only with models
programmed on computers [1, 2].

In this book we model changes of system variables with time; we represent
physical time by the simulation time variable t. Our models then attempt to predict
different time histories y1 = y1(t), y2 = y2(t), . . . of system variables such as veloc-
ity, voltage, and biomass. Static models simply relate values of system variables
x(t), y(t), . . . at the same time t; a gas pressure P(t), for instance, might be a function
P = aT of the slowly changing temperature T(t).

Dynamic-system models predict values of model-system state variables x1(t),
x2(t), . . . by relating them to past states [x1(t), x2(t), . . .] (Sec. 1-2). Computer simu-
lation of such systems was applied first in the aerospace industry. Simulation is now
indispensable not only in all engineering disciplines, but also in biology, medicine,
and agroecology. At the same time, discrete-event simulation gained importance for
business and military planning.

Simulation is most effective when it is combined with mathematical analyses.
But simulation results often provide insight and suggest useful decisions where exact
analysis is difficult or impossible. This was true for many early control-system opti-
mizations. As another example, Monte Carlo simulations simply measure statistics
over repeated experiments to solve problems too complicated for explicit probability-
theory analysis. All simulation results must eventually be validated by real experi-
ments, just like analytical results.

Computer simulations can be speeded up or slowed down for the experimenter’s
convenience. One can simulate a flight to Mars or to Alpha Centauri in one second.
Periodic clock interrupts synchronizing suitably scaled simulations with real time
permit “hardware in the loop”: One can “fly” a real autopilot—or a human pilot—on
a tilt table controlled by computer flight simulation. In this book we are interested
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2 CHAPTER 1 DYNAMIC-SYSTEM MODELS AND SIMULATION

in very fast simulation because we need to study many different model changes very
quickly. Specifically, we would like to

• enter and edit programs in convenient editor windows.

• use typed or graphical-interface commands to start, stop, and pause simula-
tions, to select displays, and to make parameter changes. Displays of simulation
results ought to appear immediately to provide an intuitive “feel” for the effects
of model changes (interactive modeling).

• program systematic parameter-optimization studies and produce cross-plots
and statistics.

1-2. Dynamic-System Models

(a) Difference-Equation Models1

The simplest way to relate present values x(t) and past values x(t − �t) of a state
variable x = x(t) is a difference equation such as the simple recurrence

x(t) = F[x(t), x(t − �t)]

More general difference-equation models relate several state variables and their past
values. In Chapter 2 we discuss such models in detail.

(b) Differential-Equation Models

Much of classical physics and engineering is based on differential-equation models
that relate delayed interactions of continuous differential-equation state variables
x1(t), x2(t), . . . with first-order ordinary differential equations (state equations)2

(d/dt) xi = fi(t; x1, x2, . . . ; y1, y2, . . . ; a1, a2, . . .) (i = 1, 2, . . .) (1-1a)

Here t again represents the time, and the quantities

yj = gj(t; x1, x2, . . . ; y1, y2, . . . ; b1, b2, . . .) (j = 1, 2, . . .) (1-1b)

are defined variables. a1, a2, . . . and b1, b2, . . . are constant model parameters.
A computer-implemented simulation run exercises such a model by solving

the state-equation system (1-1) to produce time histories of the system variables
xi = xi(t) and yj = yj(t) for t = t0 to t = t0 + TMAX. An integration routine increments
the model time t and integrates the derivatives (1-1a) to produce successive values of
xi(t) (Sec. 1-7), starting with given initial values xi = xi(t0).

1We refer to recursive relations in general as difference equations, whereas some authors reserve this term
for relations formulated in terms of explicit finite differences [11].
2We reduce higher-order differential equations to first-order systems by introducing derivatives as extra
state variables. Thus, d2x/dt2 = −kx becomes

dx/dt = xdot dxdot/dt = −kx

(see also Sec. 1-10).
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Each state variable xi is a model output. There are three types of defined
variables yj:

1. model inputs (specified functions of the time t),

2. model outputs, and

3. intermediate results needed to compute the derivatives fi.

The defined-variable assignments (1-1b) must be sorted into a procedure that derives
updated values for all yj from current values of the state variables xi, already computed
yj values, and/or t without “algebraic loops” (Sec. 1-9).

Some dynamic systems (e.g., systems involving linkages in automotive engi-
neering and robotics) are modeled with differential equations that cannot be solved
explicitly for state-variable derivatives as in Eq. (1-1a). Simulation then requires
solution of algebraic equations at each integration step. Such differential-algebraic-
equation systems are not treated in this book. References 6 to 11 describe suitable
mathematical methods and special software.

(c) Discussion

Much of classical physics (Newtonian dynamics, electrical-circuit theory, chemical
reactions) uses differential equations. As a result, most legacy simulation programs are
basically differential-equation solvers and relegate difference equations to accessory
“procedural” program segments. Modern engineering systems, though, often involve
digital controllers and thus sampled-data operations that implement difference equa-
tions. In this book we introduce a program package specifically designed to handle
such problems. We start with differential-equation problems in Chapter 1 and go on
to difference equations and mixed continuous/sampled-data models in Chapter 2.

1-3. Experiment Protocols Define Simulation Studies

Effective computer simulation is not simply a matter of programming model equa-
tions. It must also be truly convenient to modify models and to try many different
experiments (see also Sec. 1-5). In addition to program segments that list model
equations such as those in Sec. 1-2, every simulation needs an experiment-protocol
program that sets and changes initial conditions and parameters, calls differential-
equation-solving simulation runs, and displays or lists solutions.

A simple experiment protocol implements a sequence of successive commands:
say

a = 20.0 | b = −3.35 (set parameter values)
x = 12.0 (set the initial value of x)
drun (make a differential-equation-solving simulation run)
reset (reset initial values)
a = 20.1 (change model parameters)
b = b − 2.2
drun (try another run)
.........................
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Each drun command calls a new simulation run. The command reset resets initial
conditions for new runs.

A command intepreter executes typed commands immediately. Users can
inspect the solution output after each simulation run and then enter new commands
for another run. Command-mode operation permits interactive programming and
program debugging [2].

Graphical-user-interface (GUI) simulation programs replace typed com-
mands with windows for entering model parameters and menus and/or buttons for
executing such commands as run and reset using mouse clicks. This is convenient for
special-purpose simulation programs with simple experiment protocols. Typed and
programmed commands entered in a console window (command window) permit a
much wider choice of operations.

A programmed simulation study combines experiment-protocol commands
into a stored program called an experiment-protocol script. Such a program can
branch and loop to call repeated simulation runs (e.g., for parameter optimization or
statistical studies). Proper experiment-protocol scripts require a full-fledged computer
language with functions, procedures, program loops, conditional execution, and file
operations.

Simulation studies can involve many model and parameter changes, so program
execution must be prompt and fast. We can interpret experiment-protocol scripts. But
“dynamic” program segments that implement simulation runs update system variables
hundreds or thousands of times. Such time-critical operations must be compiled.3

1-4. Simulation Software

Equation-oriented simulation programs such as ACSLTM accept model equations
in a more or less human-readable notation, sort defined-variable assignments as
needed, and feed the sorted equations to a Fortran or C compiler [1]. Berkeley
Madonna and Desire (see below) have runtime equation-language compilers and
execute immediately. Block-diagram interpreters (e.g., SimulinkTM and the free
open-source Scicoslab program) let users compose block-diagram models on the dis-
play screen. Such programs execute interpreted simulation runs immediately but rel-
atively slowly. To improve computing speed, most block-diagram interpreters admit
precompiled equation-language blocks for complicated expressions, and produc-
tion runs are sometimes translated into C for faster execution. Alternatively, ACSL,
Easy5TM, and Berkeley Madonna have block-diagram preprocessors for compiled
simulation programs. Differential-algebraic (DAE) models need substantially more
complicated software, preferably using the Modelica Language [3–6]. DynasimTM

and MaplesimTM are examples.

3Interpreter programs translate individual commands one-by-one into the computer’s machine language.
Compilers speed program execution by translating complete program segments.
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TABLE 1-1. Desire Under Windows

Easy Installation
Simply copy or unzip the distribution folder mydesire on a hard disk or flash stick to produce a
complete, ready-to-run simulation system with an editor, help files, graphics, and many
user-program examples. Deleting the installation folder un-installs the package without leaving any
trace. Unlike most Windows programs Desire never involves the Windows registry.

Run a User Program
� Double-click the Wdesire.bat icon (or a shortcut icon) to open a Command Window and an

empty Editor Window (Fig. 1-la).
� Drag a user-program icon into the Editor window to load the program for editing.
� Clicking the editor’s OK button transfers the edited program to Desire, and a typed erun (or

more simply zz) command starts execution.

The Graph Window displays solution graphs. The Command Window shows error messages and
output listings.

Additional Editor Windows can be added by typed commands. Multiple Editor Windows let
you run and compare different programs, or different versions of the same program (Fig. 1-la).

1-5. Fast Simulation Program for Interactive Modeling

The simulation programs in this book employ the open-source Desire program4 on
the book CD.5 Command scripts and model descriptions use a natural mathematical
notation similar to Basic: for example,

y = a * cos(x) + b d/dt x = −x + 4 * y

so that the system is easy to learn. You can run all our program examples and
make simple parameter changes without learning language details (Table 1-1). The
Reference Manual on the CD describes Desire operations in detail, and Ref. 2 is an
elementary textbook. Sections 1-10 to 1-12 list simple example programs.

Desire runs under WindowsTM, Linux, and Unix and solves up to 40,000 differ-
ential equations in scalar and vector form. Difference equations are handled equally
well. Double-precision floating-point arithmetic is used throughout.

The dual-monitor displays in Fig. 1-1 show Desire running under Windows,
Linux, and Unix. Programs are entered and edited in editor windows and controlled
by commands typed into a command window. Solution graphs display in a graph
window. The graphs in Fig. 1-1 are black-on-white for publication, but ordinarily,
different curves are displayed in bright colors.

Each Desire program begins with an interpreted experiment-protocol script that
defines the experiment. Subsequent DYNAMIC program segments define models
that generate time-history output. When the experiment-protocol script encounters
a drun statement, a built-in runtime compiler automatically compiles a DYNAMIC

4Desire stands for “direct executing simulation in real time.”
5Updated versions of the program package can be downloaded without charge from www.sites.
google.com/site/gatmkorn.
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FIGURE 1-1a. Desire running under Windows. The dual-monitor display shows the
command window, a file-manager (explorer) window, two editor windows, and the graphics
window. The red OK button on each Desire editor window transfers the edited program to
Desire. Multiple editor windows let you run and compare two or more programs, or modified
versions of the same program.

FIGURE 1-1b. Desire running under Linux, showing the command, file-manager, and
graphics windows and three editor windows. The Linux Editor’s Save button transfers the
edited program to Desire, just like the OK button in Fig. 1-1a.

program segment.6 A simulation run solving the state equations then executes at once
and displays solution time histories.

Fast runtime compilation (under 40 ms) permits truly interactive modeling
since results of screen-edited program changes appear immediately. Multiple editor
windows let users enter, edit, and simulate different models to compare results.
Runtime displays show solution time histories and error messages during rather than

6Any subsequent drun call would omit the compilation and simply execute another simulation run.
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FIGURE 1-1c. Cygwin (Unix under Windows) display with a Unix console window serving
as the Desire command window. The single editor window uses the open-source Crimson
Editor.

FIGURE 1-1d. Dual-screen display that lets you read textbook pages on the left and run live
Desire simulation examples on the right.

after each simulation run. This lets users save time by aborting undesirable runs
before they complete.

Experiment protocols can call multiple DYNAMIC segments with different
models, different versions of the same model, and/or different input/output operations.

Table 1-1 shows how to run Desire and our program examples under Windows.
Under Linux, Desire also installs simply by unzipping a distribution folder. Desire
then uses a Linux editor rather than its own editor. The Reference Manual describes
the editor installation and its association with user-program text files. Once this is
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FIGURE 1-1e. Here Linux displays two simultaneous simulations controlled by separate
command windows. Multiple file-manager and editor windows could be added.

done, simply clicking a program-file icon displays the program in an editor window,
ready to run as under Windows (Fig. 1-1b).

ANATOMY OF A SIMULATION RUN

1-6. Dynamic-System Time Histories Are
Sampled Periodically

When drun calls a simulation run, the program initializes input/output opera-
tions specified in the DYNAMIC program segment. The simulation time t and the
differential-equation state variables start with initial values assigned by the experi-
ment protocol.7 A first pass through the DYNAMIC-segment code (1-1) next produces
the resulting initial values of the defined variables (1-1b). Unless stopped, the simu-
lation then runs from t = t0 to t = t0 + TMAX. One can pause a simulation run with a
mouse click (Windows) or by typing ctrl c and space (Linux), and restart or extend
a run with drun.

Desire normally samples DYNAMIC-segment variables for output or sampled-
data operations at NN uniformly spaced sampling times (communication times)

t = t0, t0 + COMINT, t0 + 2 COMINT, . . . , t0 + (NN − 1)COMINT = t0 + TMAX

with COMINT = TMAX/(NN − 1) (1-2)

The experiment-protocol script sets appropriate values of t0, TMAX, and NN or uses
default values listed in the Reference Manual.

If the DYNAMIC program segment contains differential equations (d/dt or
Vectr d/dt statements), t0 defaults to t0 = 0 if no other value is specified. Starting
at t = t0, the integration routine then increments t by successive constant or variable

7Unspecified initial values of differential-equation state variables conveniently default to 0.
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x

x(t)

DT

t0 t0+COMINT t0+2 COMINT t0+TMAX

t

COMINT

FIGURE 1-2a. Time history of a simulation variable, showing sampling times
t = t0, t0 + COMINT, t0 + 2COMINT, . . . , t0 + TMAX and some integration steps. In the figure
all integration steps end on a sampling point. That is always true for variable-step integration
rules, but fixed integration steps DT may overshoot the sampling points by a small fraction of
DT, as shown in Fig. 1-2b.

DT steps until t reaches the next data-sampling communication point (Fig. 1-2a).
Within integration steps; numerical integration approximates continuous updating of
the “continous” model variables t, xi, and yj. Each integration step usually requires
more than one derivative call executing the model equations (1-1) (Sec. 1-7 and Refs.
3 to 11).

In DYNAMIC program segments without differential equations, t0 defaults to
t0 = 1 unless the experiment-protocol script specifies a different value. All opera-
tions in such a DYNAMIC segment are then sampled-data assignments and execute

FIGURE 1-2b. Desire output
listings for variable-step
integration and for fixed-step
integration. Parameters were
deliberately chosen to
exaggerate the fixed-DT effect.
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at successive communication times (1-2). Assignments preceded by a SAMPLE m
statement, where m is an integer > 1, execute only at t = t0 + COMINT and then at
every mth communication point. This permits multirate sampling.

DYNAMIC-segment input/output (e.g., output to displays and listings) occurs
at the NN communication points (1-2) unless the system variable MM, which defaults
to 1, is set to an integer > 1. In that case, input/output occurs at t = t0 + COMINT and
then at every MMth sampling point, and finally at t = t0 + TMAX. NN can thus be set
to a larger value than the desired number of input/output points. This can provide fast
sampling for pseudorandom noise (Sec.4-14) and/or for sampling switch and limiter
functions (Secs. 2-10 and 2-11).

Some defined-variable assignments (1-1b) do not affect state variables but only
scale or modify model output. Such operations are not needed at every derivative call
but only at sampling points. Simulations run faster if one programs such assignments
as sampled-data operations following an OUT statement.

Finally, Desire is designed to solve problems that combine differential equa-
tions with difference equations. Differential-equation-solving DYNAMIC segments
can include difference-equation code that must not execute in the middle of integration
steps. In particular, sampled-data assignments modeling digital controllers and noise
generators execute only at periodic sampling points and must be collected in sections
following an OUT and/or SAMPLE m statement at the end of the DYNAMIC pro-
gram segment. Nonperiodic difference-equation code (recursive assignments) must
similarly follow a step statement. These topics are discussed in Chapter 2.

1-7. Numerical Integration (see also Table A-1)

(a) Euler Integration

The simplest procedure that approximates continuous updating of a state variable x
in successive integration steps is the explicit Euler integration rule

xi(t + DT) = xi(t) + fi[t; x1(t), x2(t), . . . ; y1(t), y2(t), . . .] DT (i = 1, 2, . . . , n) (1-3)

where fi is the value of dx/dt calculated by the derivative call executing Eq. (1-1) at
the time t.

The integration routine loops until t reaches the next communication point
(1-2), where the solution is sampled for input/output and sampled-data operations.
The simulation run terminates after accessing the last sample at t = t0 + TMAX, unless
the run is stopped either by the user or by a programmed termination (term) statement.

(b) Improved Integration Rules [6–11]

The Euler integration rule (1-3) simply increments each state variable by an amount
proportional to its last-computed derivative. That is an acceptable approximation to
true integration only for very small integration steps DT. Improved updating requires
multiple derivative calls per integration step DT. This can reduce the total number of
derivative calls (the main computing load of a simulation) required for a specified
accuracy. In particular,
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• multistep rules extrapolate updated xi values as polynomials based on values
of the x1, x2, . . . and f1, f2, . . . at several past times t − DT, t − 2 DT, . . ..

• Runge–Kutta rules precompute two or more approximate derivative values in
the interval (t, t + DT) by Euler-type steps and use their weighted average for
updating.

Coefficients in such integration formulas are chosen so that polynomials of degree N
integrate exactly (Nth-order integration formula).

Explicit integration rules such as Eq. (1-3) express future values xi(t + DT)
in terms of already computed past state-variable values. Implicit rules such as the
implicit Euler rule

xi(t + DT) = xi(t) + fi[t + DT; x1(t + DT), x2(t + DT), ...; y1(t + DT), y2(t + DT), ...] DT

(i = 1, 2, ..., n) (1-4)

require a program that solves the predictor equations (1-4) for the xi(t + DT) at each
integration step. This clearly involves more computation. But implicit integration
rules often produce more stable solutions and may admit larger DT values without
numerical instability, and thus still save computing time.

Variable-step integration adjusts integration step sizes to maintain accuracy
estimates obtained by comparing various tentative updated solution values. This can
save many steps. Figures 1-5, 8-7, and 8-8 show examples.

Numerical integration normally assumes integrands fi that are continuous and
differentiable within each integration step. Step-function inputs are acceptable only
at t = t0 and thereafter at the end of integration steps. This problem is discussed in
Sections 2-9 to 2-11 in connection with models involving sampled-data operations
and switching functions.

1-8. Sampling Times and Integration Steps

The experiment protocol script selects the simulation-run time TMAX and the number
of samples NN needed for display, listings, and/or sampled-data models. Desire
returns an error message if you select an integration-step value DT value larger than
COMINT = TMAX/(NN − 1); Desire never samples data within integration steps.8

Sampled-data output to displays or sampled-data assignments is not well defined at
such times. Sampled-data input within integration steps might make the numerical-
integration routine invalid (see also Secs. 2-9 to 2-12).

Desire’s variable-step integration routines automatically force the last integra-
tion step in each communication interval to end precisely on one of the user-selected
communication points (1-2). An “illegal sampling rate” message warns you if the
initial DT-value exceeds COMINT. Fixed-step integration routines, though, may have
to add a fraction of DT to each sampling time (1-2) to make sure that sampling always
occurs at the end of an integration step, as shown in Fig. 1-2b. This does not cause
errors in displays or listings, for each x(t)-value is still associated with its correct

8Some other simulation programs admit larger DT values and produce output within integration steps by
interpolation. The accuracy of the interpolation routine must match that of the integration routine.



JWBS097-c01 JWBS097-Korn Printer: Yet to Come January 16, 2013 8:6 6.125in×9.25in

12 CHAPTER 1 DYNAMIC-SYSTEM MODELS AND SIMULATION

t-value. But to produce output listings at exactly specified periodic sampling times
(1-2) you must either use variable-step integration or set DT to a very small integral
fraction of COMINT.

1-9. Sorting Defined-Variable Assignments

DYNAMIC-segment operations (1-1) preceding an OUT or SAMPLE m statement
(if any) execute at every call of the differential-equation-solving integration routine.
Each derivative or defined-variable assignment uses the time and state-variable values
computed by the last derivative call. Derivative and defined-variable values for t = t0
are derived from the given initial state-variable values and t0 by an extra initial
derivative call.

The state equations (1-1a) are normally programmed following the defined-
variable assignments (1-1b). The defined-variable assignments may use yj-values
already computed in the course of the current step. They must, therefore, execute in
the correct procedural order to derive each yj-value from the current state-variable
values and t. An out-of-order assignment might not find all its arguments, or try to use
defined-variable values from an earlier derivative call. Legacy differential-equation
solvers such as ACSL sort the defined-variable assignments automatically so that
they use only yi-values already computed by the current derivative call. If that is
impossible due to an algebraic loop, the program returns an error message (sort
error).

Since unlike most legacy differential-equation solvers, Desire accommodates
difference equations directly (Chapter 2), we do not sort defined-variable assign-
ments automatically. As-yet-undefined variables are correctly identified with error
messages, but users must inspect algebraic loops (if any) and re-sort the assignments
if necessary.

Desire does not treat recursive assignments such as qi = Fi(t; qi) as algebraic
loops but recognizes them automatically as difference equations (Sec. 2-2). In Secs.
2-16 to 2-21 we discuss significant applications of this technique.

SIMPLE APPLICATION PROGRAMS

1-10. Oscillators and Computer Displays

(a) Linear Oscillator

The complete small program in Fig. 1-3 illustrates the main features of a Desire
simulation. The DYNAMIC program segment following the DYNAMIC statement
in Fig. 1-3a defines a differential-equation model. We modeled a simple damped
harmonic oscillator or mass–spring–dashpot system with the derivative assignments

d/dt x = xdot | d/dt xdot = −ww * x − r * xdot
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0 5 →
y ux. 4.

10
xra|a = 1

1

FIGURE 1-3a. Complete simulation program for a linear oscillator, producing five simulation
runs with different values of the damping coefficient r.

We can add a display specification:

• dispt x, xdot displays the variables x and xdot versus the simulation time t

• dispxy x, xdot displays xdot versus x (phase-plane plot)

Model and display are exercised by the experiment-protocol script preceding
the DYNAMIC statement. In Fig. 1-3a successive experiment-protocol lines specify

• the runtime TMAX, the integration step DT, and the number NN of display
points

• a model parameter ww

• the initial value of the state variable x
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DESIRE

0

+

–
–1.0 –0.5 0.0 0.5 1.0
scale = 1
x, xdot

FIGURE 1-3b. Phase-plane plot (xdot vs. x) for the linear oscillator in Fig. 1-3a.

Initial values of the time t and of the state variable xdot were not specified and default
to 0. The integration routine defaults to a fixed-step second-order Runge–Kutta rule.9

A simple experiment-protocol loop next calls five simulation runs with five
values of the oscillator damping parameter r. The display 2 statement keeps the
display alive through multiple runs. The resulting displays are reproduced at the top
of 1-3a. Figure 1-3b shows a phase-plane plot.

(b) Nonlinear Oscillator: Duffing’s Differential Equation

The differential equations

d/dt x = xdot | d/dt xdot = −x * x * x − a * xdot

model an oscillator with a nonlinear spring. Figure 1-4a and b show the resulting
time histories and phase-plane plots obtained with a = 0.02. These results are clearly
different from the linear-oscillator response in Fig. 1-3.

If we drive the nonlinear oscillator with a sinusoidal voltage b cos(t), we obtain

d/dt x = xdot | d/dt xdot = −x * x * x − a * xdot + b * cos(t)

Figure 1-4b shows solution displays and program. Note that the experiment-protocol
script first calls a simulation run to exhibit the initial transient, then a long simulation

9The Desire Reference Manual on the book CD describes in detail the complete program syntax, default
values of different simulation parameters, and operating instructions.
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DESIRE DESIRE

– –

++

0

0 0

40 60 –1.0 –0.5 0.0 0.5 1
scale = 1
x, xdot vs. t

scale = 1
x, xdot 

FIGURE 1-4a. Time histories and a phase-plane plot for the nonlinear oscillator modeled with
d/dt x = xdot | d/dt xdot = −x * x * x − a * xdot + b * cos(t)

run with the display turned off to establish steady-state conditions, and finally, a third
run to display the steady-state solution.

Reference 2 has more Desire programs for small physics problems.

1-11. Space-Vehicle Orbit Simulation with
Variable-Step Integration

The space-vehicle orbit simulation in Fig. 1-5 assumes a fixed Earth that exerts a
simple inverse-square-law gravitational force on a satellite. Forces exerted by the
Moon are neglected. With Earth at the coordinate origin, the inverse-square-law
accelerations in the x and y directions are

(d/dt) xdot = −(a/R2) x/R (d/dt) ydot = −(a/R2) y/R

The program is scaled so that the gravitational constant a equals 1, and we obtain a
very simple differential-equation system:10

rr = (x^2 + y^2)^(-1.5)
d/dt x = xdot | d/dt y = ydot
d/dt xdot = -x * rr | d/dt ydot = -y * rr

The orbit in Fig. 1-5 involves dramatic velocity changes, and the small integration
steps required during the high-velocity portion of the trajectory would slow the

10This Cartesian-coordinate formulation is simpler than the polar-coordinate differential-equation system
[2]

x = r * cos(theta) | y = r * sin(theta)
d/dt r = rdot | d/dt rdot = −GK/(r^2) + r * thdot^2
d/dt theta = thdot | d/dt thdot = 2 * rdot * thdot/r

used in Refs. 1 and 2.
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FIGURE 1-4b. Simulation program for Duffing’s differential-equation system. The
experiment protocol first calls a simulation run demonstrating the initial transient, then a long
run without display to obtain a steady state (TMAX = 200, display 0, display 0), and finally, a
third run showing the steady-state solution with the display turned on again (display 1).
Phase-plane plots are shown as well. A plot of z = cos(t) is shown for comparison.
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rest of the simulation. For this reason such simulations employ an implicit variable-
step/variable-order integration rule (irule15). The second display in Fig. 1-5 illustrates
the integration-step changes.

1-12. Population-Dynamics Model

Typical population-dynamics models represent population counts by continuous
differential-equation state variables. There can be any number of populations, includ-
ing subpopulations such as age and gender cohorts. Assignments to the state deriva-
tives describe interactions of different populations that may breed, die, contract dis-
eases, and fight or eat one another. Quite similar state-equation systems also describe
the reaction rates of “populations” of chemical compounds or radioactive isotope
mixtures (Sec. 8-1).

The classical example of a two-population predator–prey interaction is modeled
by the Volterra–Lotka differential equations

d/dt prey = (a1 − a4 * predator) * prey
d/dt predator = (−a2 + a3 * prey) * predator

Rates of change of each population are proportional to the population size. a1 is
the difference between the natural birth and death rates of the prey (say, of a local
population of rabbits). The prey has an additional death rate a4 * predator proportional
to the size of the predator population (say, a population of foxes). The predator
population has a death rate a2, and its birth rate a3 * prey is proportional to the prey
population, which is its food supply.

The simulation program in Fig. 1-6 demonstrates how easily such simple
population-dynamics models can be modified. We added an extra predator death
rate b * predator to account for the effect of crowding as the predator population
increases and some predators kill one another. For b = 0 (no crowding) we obtain the
classical periodic Volterra–Lotka solution: as the rabbits breed, the foxes have more
food; their number increases until they seriously reduce the rabbit population and thus
their own food supply. The number of rabbits then increases again, and the process
repeats. But crowding (b > 0) limits the predator population, and both populations
converge to steady-state values.

1-13. Splicing Multiple Simulation Runs: Billiard-Ball
Simulation

The DYNAMIC program segment in Fig. 1-7 models a billiard ball as a point (x, y)
on a table bounded by elastic barriers at x = a, x = −a, y = b, and y = −b. For x and
y within the barriers, the only acceleration is due to constant friction in the negative
velocity direction, so that we program

d/dt x = xdot | d/dt y = ydot
d/dt xdot = −fric * xdot/v | d/dt ydot = −fric * ydot/v
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FIGURE 1-5. Space-vehicle-orbit simulation program, orbit display, and stripchart time
histories of y and DT, showing the variable integration steps. For simplicity, the problem was
scaled so that all coefficients equal unity.
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FIGURE 1-6. Population-dynamics simulation. For b = 0 the program implements the
classical Volterra–Lotka differential equations, which produce steady-state periodic
fluctuations of the predator and prey populations. Positive values of b model an increased
predator death rate due to crowding (e.g., by predator cannibalism). Predator and prey
populations then converge to constant steady-state values.

where the velocity v is obtained with the defined-variable assignment

v = sqrt(xdot^2 + ydot^2)

A differential-equation model of barrier impacts would need to formulate elastic
and dissipative forces produced as the ball penetrates each barrier. This is not only
complicated but involves very large accelerations and thus small integration steps.
We neatly avoid these problems by terminating the simulation run when a barrier is
reached; that is, for |x| > a or |y| > b:

term abs(x) − a | term abs(y) − b
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FIGURE 1-7. Billiard-ball simulation. The experiment-protocol script splices multiple
simulation runs terminated by impact on one of four barriers at x = a, x = −a, y = b, y = −b.
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The experiment-protocol script then starts a new simulation run with the current
position coordinates x and y and “reflected” velocity components xdot and ydot:

if abs(x) > a then xdot = −R * xdot | ydot = R * ydot
else proceed

if abs(y) > b then xdot = R * xdot | ydot = −R * ydot
else proceed

(1-5)

where the restitution parameter R measures the energy absorbed by the impact. A
repeat loop continues this process until t > Tstop. The detailed syntax of if/then/else
and repeat/until statements in Desire experiment-protocol scripts is given in the
Reference Manual on the book CD. Figure 1-7 shows typical results as friction
eventually brings the billiard ball to rest. display 2 again keeps the program from
erasing the display between runs.

Similar run-splicing experiment-protocol scripts are useful in many other appli-
cations with radical switching operations, including simulations of electronic switch-
ing circuits. Reference 2 exhibits more examples, including the classical bouncing-
ball simulation and the EUROSIM peg-and-pendulum and switched-amplifier
benchmarks.

INRODUCTION TO CONTROL-SYSTEM
SIMULATION

1-14. Electrical Servomechanism with Motor-Field Delay
and Saturation

The motor of an electrical servomechanism drives a load so that the output displace-
ment x follows a given input u = u(t), typically after an initial transient (Fig. 1-8). The
servo controller produces the motor-control voltage voltage as a function of the posi-
tion error error = x − u and the rate of change xdot = dx/dt measured continuously
by a tachometer on the motor shaft.

Figure 1-8 shows a simulation program. Note that the sinusoidal servo input
u = A * cos(w * t) reduces to a step input for w = 0. We model a simple linear
controller with

voltage = −k * error − r * xdot (1-6)

The controller gain k and damping coefficient r are positive controller parameters.
As is well known, high gain and/or low damping speed the servo response but can
cause output overshoot or even oscillations and instability. A nonlinear controller is
discussed in Chapter 8.

The motor voltage (1-6) produces a field current I with a field-buildup delay
modeled with

d/dt I = −B * I + g1 * voltage (1-7)
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1.25 → 2.5

FIGURE 1-8. Complete simulation program and stripchart display for an electrical servo with
motor-field delay, field saturation, and sinusoidal input u = A * cos(w * t). You can also set
w = 0 to obtain the servomechanism step response.

The resulting motor torque is limited by motor-field saturation represented by the
soft-limiting hyperbolic-tangent function

torque = maxtrq * tanh(g2 * I/maxtrq) (1-8)

The response of motor, gears, and load to the torque satisfies the differential equations
of motion

(d/dt)x = xdot (d/dt)xdot = (torque − R * xdot)/M (1-9)
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where M represents the inertia of motor, gears, and load, and R > 0 is a motor damping
parameter. For convenience, torque and R are scaled so that M = 1.

The simulation program in Fig. 1-8 sets system parameters and models the
servomechanism with two defined-variable assignments (1-6) and (1-8) and three
state differential equations (1-7) and (1-9). Control-system designers can then exer-
cise the resulting “live mathematical model” to observe servo input, output, error,
and motor torque while they adjust controller parameters and motor characteris-
tics. Desirable parameter combinations must, in some sense, produce small servo
errors. We can apply different test inputs u(t) similar to normal inputs for the
intended application (e.g., step inputs, ramps, sinusoids, or noise). Simulations must
be repeated with different input amplitudes, since the field saturation makes our model
nonlinear.

Such computer-aided experiments provide some intuitive feel for the control
problem and may quickly indicate instability or design errors. For objective decision-
making, though, we must define and compute numerical error measures. These are
typically functionals determined by the entire time history of the servo error x(t) − u(t)
for a given input u(t). One can, for instance, record the maximum of the absolute error
or of the squared error as in Sec. 2-16c. More commonly used error measures are
integrals over the error time history. We define such measures as extra state variables
with zero initial values, for instance

d/dt IAE = abs(x − u) (IAE, integral absolute error)
d/dt ISE = (x − u)2 (ISE, integral squared error)
d/dt ITAE = t * abs(x − u)
d/dt ISTAE = t2 * abs(x − u)

ISE/TMAX is the mean square error.
We can now vary the design parameters until selected error measures meet

acceptance limits, or until an error measure is as small as possible. We may also want
to study our control system’s effect on the controlled machine or vehicle (e.g., with
a view to minimizing excessive space-vehicle accelerations). Parameter-influence
studies are discussed in more detail in Secs. 4-1 to 4-3.

1-15. Control-System Frequency Response

Simulation experiments can explore control-system frequency response with suc-
cessive different sinusoidal inputs. Desire experiment-protocol scripts can perform
fast Fourier transforms and work with complex numbers for frequency-response and
root-locus plots [2]. For a linear control system we make a differential-equation-
solving simulation run and then obtain the frequency response with a fast Fourier
transform. We describe such operations in Secs. 8-15 to 8-19 after we acquire more
modeling tools in Chapter 3.
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1-16. Simulation of a Simple Guided Missile [12–15]

(a) Guided Torpedo

In Fig. 1-9a a missile pursues a target. The problem is scaled so that TMAX = 1, and
distances are in 1000-f units. x and y are rectangular Cartesian coordinates of the
missile center of gravity; u and v are velocity components along and perpendicular
to the missile longitudinal axis; phi is the flight path angle; and rudder is the control-
surface deflection. The target proceeds on a straight course at constant velocity.

Our particular missile is a guided torpedo. In water, drag and side forces are
approximately proportional to the square u2 of the torpedo velocity u. Accelerations
along and perpendicular to the torpedo longitudinal axis are then approximated by

(d/dt) u = (thrust − drag)/mass = UT − a2 * u2

(d/dt) v = b1 * u2 * sin γ 2 + b2 * phidot + b3 * v * rudder

The yaw-rotation equations are

(d/dt) phi = phidot
(d/dt) phidot = c1 * u2 * sin γ + c2 * u * phidot + c3 * u2 * rudder

c1 and c2 are hydrodynamic-moment and damping-moment coefficients, and c3 is
the rudder steering-moment coefficient, all divided by the torpedo moment of inertia.

Weathercock stability ensures that the angle of attack γ 2 between the torpedo
longitudinal axis and the velocity vector is so small that

sin γ 2 ≈ tan γ 2 ≈ v/u

and the differential equations of motion for our DYNAMIC program segment become

(d/dt) u = UT − a2 * u2

(d/dt) v = u * (b1 * v + b2 * phidot + b3 * rudder)
(d/dt) phidot = u * (c1 * v + c2 * phidot + c3 * rudder)
(d/dt) phi = phidot
(d/dt) x = u * cos(phi) − v * sin(phi (d/dt)y = u * sin(phi) + v * cos(phi)

The target angle psi is the angle between the horizontal line in Fig. 1-9a
and a line joining torpedo and target. The target coordinates xt and yt, the squared
distance-to-target dd, and the target angle psi are given by

xt = xt0 + vxt * t yt = yt0 + vyt * t
psi = arctan((yt − y)/(xt − x)) dd = (x − xt)2 + (y − yt)2

We aim the torpedo at the target by making the initial value of phi equal to psi. The
initial values of u and v are set to 0.

We control the rudder to keep the torpedo turned toward the target. Such simple
pursuit guidance works only for low target speeds, unless you are initially more
or less directly behind or in front of the moving target (Fig. 1-10). More advanced
guidance systems are discussed in Ref. 14.
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FIGURE 1-9a. Guided torpedo tracking a constant-speed target. The target angle psi, not
shown here, is the angle between the horizontal line and the line joining the torpedo and the
target.

Simple sonar guidance senses psi and dd and actuates the control-surface
deflection rudder to implement

error = (phi − psi) rudder = −rumax * sat(gain * error)

We increase the controller gain as the torpedo approaches the target by setting

gain = gain0 + A * t
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FIGURE 1-9b. Time histories of the torpedo rudder deflection, the error phi-psi, the angle
phi, and the squared distance dd to the target (see the text).

We terminate the run when the torpedo gets close to the target, where psi tends to
change rapidly. The second equation ensures that the absolute value of the control-
surface deflection does not exceed rumax.

(b) Complete Torpedo-Simulation Program

Figure 1-9c lists the complete guided-torpedo program used to produce the displays
in Fig. 1-9a and b. The experiment protocol first selects an integration routine, display
colors, and a display scale, then sets the initial value of the integration step DT, the
simulation runtime TMAX, and the number NN of display sampling points.

The experiment-protocol script next specifies torpedo parameters, initial target
coordinates, and target-velocity components. Finally, we specify initial values for the
state variables x, y, and phi. The initial values of the remaining state variables u, v,
and phidot are allowed to default to zero.

The DYNAMIC program segment following the DYNAMIC line begins with the
defined-variable assignments. We specify the target coordinates xt and yt as functions
of time and then derive the target angle psi and the controller variables error and
rudder. The DYNAMIC segment next lists the state differential equations and a
termination command

term rr − dd

which stops the simulation when the missile closes to within RR = sqrt(rr). If it does
not, our shot has failed, and the run continues to t = TMAX. The simulated rudder
deflection rudder is bounded between - rumax and rumax with the limiter function
sat() (Sec. 2-8a), which is preceded by a step statement to ensure correct integration
(Sec. 2-11).
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FIGURE 1-9c. Complete program for the guided-torpedo simulation.
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Finally, the display command DISPXY x, y, xt, yt produces simultaneous dis-
plays of the missile and target trajectories (y vs. x and yt vs. xt). Alternative display
statements can plot time histories of phi, psi, error, and rudder (Fig. 1-9b). You
can load the simulation program from an editor window. Solution displays will then
appear on a typed erun (or zz) command.

STOP AND LOOK

1-17. Simulation in the Real World: A Word of Caution

Simulations like our torpedo example provide insight and are nice for teaching
and learning. But engineering-design simulation requires much more than solving
textbook problems. In fact, the main result of a few model runs will be questions
rather than answers: you will begin to see how much more you need to know. Here
are just a few questions that might come up:

• Can your missile acquire the target from different directions?

• What happens if the target speed increases?

• Can you improve the design with different vehicle or control-system parame-
ters?

• What parameter-value tolerances are acceptable?

We shall clearly always require multirun simulation studies. Figure 1-10 shows
a simple example, but in practice we investigate combinations of problems like those
listed. It follows that even a simple problem like our torpedo can require over a
thousand simulation runs. A larger project can generate an enormous volume of
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0.5 1.0–1.0
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FIGURE 1-10. Multirun studies showing the results of torpedo shots at low-speed (a) and
high-speed (b) targets appearing in different directions. It is a well-known fact [16,18] that
the primitive pursuit-guidance scheme described in Sec. 1-17 can acquire a high-speed target
only when the target track is either ahead of the missile or behind it.
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simulation data. Intelligent and efficient evaluation of such results is an art rather
than a science. It is our specific purpose in this book to show techniques that generate
thousands of experiments in minutes and display results in various ways.

Computer simulation is convenient and dramatically cheaper than real experi-
ments. But engineering-design models may be meaningless unless they can be val-
idated by actual physical experiments. Very expensive prototype failures have been
traced to oversimplified models (neglecting, for instance, missile fuselage bending
or fuel sloshing). Simulation studies try to anticipate design problems and select test
conditions that will minimize the number of expensive tests.
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