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1
Introduction

Modern engineering has seen a booming demand for analyses of complex systems to unprece-
dented detail, paralleled with an increasing reliance on numerical models for performance
predictions. Systems are designed with an increasing expectation of high performance relia-
bility and robustness in functionality. Assessing the effects of uncertainties and their mitigation
in the design decision-making process allows one to make risk-informed decisions even in
a state of uncertainty. Uncertainties in engineering may arise from incomplete knowledge
about the modeling of system behavior, model parameter values, measurement, environmental
loading conditions, and so on. Probability theory allows a rational framework for plausible
reasoning and decision-making in the presence of uncertainties. The analysis of the effects of
uncertainty includes, but is by no means limited to, the following objectives:

1. Reliability (or risk) analysis – to assess the likelihood of violating specified system perfor-
mance criteria. It involves assessing the probability distribution or performance margins of
some critical system response. This can be used for examining whether the system is likely
to pass specified performance criteria in the presence of modeled uncertainties.

2. Failure analysis – to assess the characteristics of failure scenarios, for example, the likely
cause and consequence of failure. The former provides insights about system failures and
helps devise effective measures for their mitigation. The latter reveals the likely scenarios
when failure occurs and provides information for loss estimation, devising contingency
measures, or trading-off cost–benefits in design.

Models for complex systems are characterized by a large number of governing state vari-
ables, time-varying and response-dependent nonlinear behavior. They are also increasingly
governed by multi-physics laws. Although the advent of computer technology has allowed
the analysis of complex systems for a given scenario to be performed with affordable com-
putational time, the same is not true for analyzing the effects of uncertainty, since the latter
involves information from multiple scenarios and hence repeated system analyses. Even if
resources are available, they should be deployed in an effective manner that yields information
on failure scenarios of concern with a consistent weight on their likelihood. This motivates the
development of efficient yet robust computational algorithms for propagating uncertainties in
complex systems.
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2 Engineering Risk Assessment with Subset Simulation

This book is primarily concerned with performing risk and failure analysis by means of an
advanced Monte Carlo method called “Subset Simulation.” The method is based on the simple
idea that a small failure probability can be expressed as the product of a number of not-so-small
conditional failure probabilities. This idea has led to algorithms that generate random samples
gradually propagating towards the failure region in the uncertain parameter space. The samples
provide information for estimating the whole distribution of the critical response quantity that
governs failure, covering large (central) to small (tail) probability regimes. The method has
been found to be efficient for investigating rare failure events, but still retains some robustness
to problem complexity in different applications. It treats the system as a black box and hence
does not explore any prior information one may have regarding the system behavior, which can
possibly be incorporated into the solution process. Thus, for a particular application, it may not
be the most efficient method. However, since it can be applied without much knowledge about
the system (like Direct Monte Carlo) it may still be a competitive algorithm when robustness
is taken into consideration. The possibility of using the generated samples for investigating
failure scenarios also makes the method versatile for risk and failure analysis.

1.1 Formulation

Despite the wide variety of problems encountered in engineering applications, a failure event
can often be represented as the exceedance of a critical scalar response variable Y over a
specified threshold b. The response variable Y is assumed to be completely determined by a
set of “input variables” X = [X1,… , Xn]. The relationship is generically represented as

Y = h(X) (1.1)

where h : n ↦  is a known deterministic function that represents the computational process,
for example, the analytical formula, empirical formula, finite element model, computational
dynamics, and so on. Clearly, when X is uncertain, so is Y . Using a probabilistic approach,
X1,… , Xn are modeled as random variables with prescribed joint probability distribution
assigned based on the analyst’s knowledge. Induced by the probabilistic modeling on X, Y is
also a random variable. However, its probability distribution is not arbitrary and is not up to
the analyst to decide. Rather, it is completely determined by the probability distribution of X
and the function h. This is depicted in Figure 1.1.

In order to make decisions related to Y , which is nevertheless uncertain, one needs to have
information about its probability distribution. This is generally unknown, however. It must be
determined in accordance with the function h and the probability distribution of X. The effort
required depends largely on which part of the distribution of Y is relevant. Statistical quantities
related to the “frequent” or central part of the distribution, such as the mean or variance, are
often easier to obtain than those related to the “rare” or tail part of the distribution, such
as the exceedance probability P(Y > b) when b is large. The latter is the primary interest in
this book.

If we denote the failure event as F = {Y > b}, then we can write

Failure probability = P(F) = P(Y > b) (1.2)
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Figure 1.1 Input–output context.

Complementary to the failure probability is the “reliability”:

Reliability = 1 − P(F) = P(Y ≤ b) = 1 − P(Y > b) (1.3)

Evaluating the failure probability and conditional expectation for failure analysis requires
information about the system when failure occurs. Properly designed engineering systems are
intended to have high reliability (close to 1) and hence small failure probability (close to zero).
Target failure probabilities often needed to be estimated are in the order of 10−3 ∼ 10−6, which
nevertheless depends on the class of applications.

For complex problems, the relationship between X and Y is analytically intractable and is
often only known implicitly. That is, the value of Y for a given X can be calculated but no
other information (e.g., derivative) is available. The relationship is also difficult to visualize
when X contains a large number of uncertain variables. Analytical or closed-form solutions
for the required statistics of Y are rarely available.

The Direct Monte Carlo method provides a robust means for estimating the statistics by
averaging over pseudo-random samples generated according to the distribution of X. It has
become increasingly popular due to the advent of modern computer technology. When the
statistics are related to the tail of the distribution of Y , however, it is not efficient because most
of the samples lie in the frequent region. Only those lying at the tail of the distribution of Y
provide useful information for estimating the tail statistics, but their occurrence is rare.

The failure probability can be mathematically formulated in several ways that lead to
different strategies for its computation. Without loss of generality (see Section 1.2), assume
that X = [X1,… , Xn] is a set of continuous-valued random variables with probability density
function (PDF) q(x). The failure probability can be formulated as a “probability integral”:

P(Y > b) =
∫F

q(x)dx (1.4)
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where

F = {x : h(x) > b} (1.5)

denotes the “failure region,” that is, a subset in the parameter space of X that corresponds to
failure. The failure probability can thus be viewed as a sum of the probability content within
the failure region. Alternatively, the integral can be written as being over the whole parameter
space:

P(Y > b) =
∫

IF(x)q(x)dx (1.6)

where

IF(x) =
{

1 if h(x) > b
0 if h(x) ≤ b

(1.7)

is the “indicator function” that reveals whether x lies in the failure region or not. This form is
often used for mathematical derivations. Another useful perspective is via the expectation:

P(Y > b) = E[IF(X)] (1.8)

where E[⋅] denotes the mathematical expectation when X is distributed as q. This leads to the
idea of “statistical averaging” and hence Monte Carlo simulation.

Viewing P(Y > b) as a function of b, finding the failure probability is equivalent to finding
the “complementary cumulative distribution function” (CCDF) of Y (CCDF = 1 – CDF),
especially at the tail where small failure probabilities are the main interest. Of course, finding
the whole CDF is much more difficult, or at least computationally more expensive, than finding
just the failure probability at a single threshold level. Nevertheless, estimating small failure
probabilities is intimately related to estimating the upper tail of the CCDF.

Example 1.1 Definition of response variable
Many system failure events can be expressed in terms of the union or intersection of exceedance
events, say, corresponding to system components connected (logically) in series or in parallel.
A failure event of this kind can be expressed in terms of the exceedance of a scalar response
Y . Clearly Y should be defined such that P(Y > b) corresponds to the failure probability of
interest. It is also preferable to define Y in a non-dimensional manner.

Suppose F = {C < D}, where C and D are the “capacity” and “demand” of a system that
can possibly depend on X. Then Y may be defined in a dimensionless manner as Y = D∕C so
that P(F) = P(Y > 1).

Suppose now F =
⋂n1

i=1 {Ci < Di}, where Ci and Di (i = 1,… , n1) can possibly depend on
X. This can be interpreted as the failure of a system of components connected in parallel where
the system fails only when all the components have failed. In this case the critical response Y
may be defined as Y = minn1

i=1 Di∕Ci so that P(F) = P(Y > 1).



JWST423-c01 JWST423-Au Printer: Markono January 22, 2014 16:57 Trim: 244mm × 170mm

Introduction 5

On the other hand, if F =
⋃n2

i=1 {Ci < Di}, then it can be interpreted as the failure of a
system of components connected in series where the system fails if any one of the components
fails. In this case Y may be defined as Y = maxn2

i=1 Di∕Ci so that P(F) = P(Y > 1).
In general, if F is defined via ∩ and/or ∪, then Y can be defined using “min” and/or “max”

appearing in the same order. For example, if F =
⋂n1

i=1

⋃n2
j=1 {Cij < Dij} then we can define

Y = minn1
i=1max

n2
j=1 Dij∕Cij so that P(F) = P(Y > 1).

1.2 Context

Unless otherwise stated, the problems that we deal with in this book have the following context:

1. The input random variables X1,… , Xn are continuous-valued.
2. The input random variables X1,… , Xn are mutually independent.
3. The (one-dimensional) PDF of each Xi, denoted by qi(x) corresponds to some known

“standard distribution” (e.g., Gaussian, exponential) so that
(a) the value of qi(x) can be evaluated efficiently for any given x
(b) random samples distributed as qi can be generated efficiently.

4. The relationship between X and Y is not explicitly known. That is, we can evaluate the value
of Y = h(x) for a given x but generally we are not able to obtain other information such as
gradient or Hessian. The latter quantities if needed have to be computed numerically, for
example, using finite difference.

5. The computational effort for evaluating h(x) for a given x is significant. The total compu-
tational effort is dominated by the number of function evaluations of h(x).

6. Interest is focused on small failure probabilities or, equivalently, the tail of the CCDF of
Y = h(X).

7. The number of random variables in X can be very large (possibly infinite).

Some comments are in order regarding the above context. Assumption 1 on continuous
random variables is introduced primarily for the sake of discussion and elegance in the theory
(e.g., integrals instead of sums). It does not introduce much loss of generality in practice,
because discrete-valued random variables can be generated by a mapping of continuous-
valued random variables. Assumption 2 on mutual independence of input random variables
does not generate any loss of generality because, in reality, dependent variables are generated by
independent ones. Assumption 3 on standard distributions distinguishes the problems discussed
in this book from Bayesian inference problems, in which case the posterior distribution
of random variables given data often do not correspond to any standard distribution (see
Section 1.4).

1.3 Extreme Value Theory

As mentioned in the beginning of this chapter, Subset Simulation treats the input–output
relationship of a system as a black box and so it (often) need not be the most efficient
procedure for a particular application. When there is some knowledge about the relationship
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between X and Y it may be possible to take advantage of it to derive useful statements about
the distribution of Y . One classical example with profound results is when Y is defined as
the maximum over a large number (theoretically infinite) of i.i.d. (independent and identically
distributed) random variables in X. This has been studied extensively, leading to “extreme
value theory” (Gumbel, 1958; Galambos, 1978; David, 1981). When the problem context fits
and the asymptotic distribution of the extreme exists, it is usually more efficient to apply the
theory to determine the failure probability P(Y > b). In this case the main task is to identify
the type of limiting distribution and then to determine the distribution parameters accordingly.
Standard statistical tools are available (Coles, 2001). Although one can still apply Subset
Simulation to solve the same problem, it is less efficient because it does not take advantage of
the special mathematical structure of the problem.

1.4 Exclusion

This book does not deal with the case when the distribution of X arises from Bayesian
inference problems, which is nevertheless a very important problem with wide application
(Cox, 1961; Jaynes, 2003). In this area, the interest is to determine the distribution of X and
update response predictions based on some observed data D. According to Bayes’ Theorem,
the “posterior distribution” (i.e., given data) of X that incorporates the information from the
data D is given by

p(x |D) = p(D)−1p(D | x)p(x) (1.9)

The RHS of this equation should be viewed as a probability distribution of X. The first term
p(D)−1 does not depend on x and so, as far as the distribution of X is concerned, it can be
ignored. The middle term p(D | x) is called the “likelihood function,” which must be formulated
based on modeling assumptions relating the observed data to X in a probabilistic manner. The
last term p(x) is called the “prior distribution” and it reflects one’s knowledge about X in the
absence of data.

Estimating the posterior statistics of X or updating system response prediction by means
of Monte Carlo simulation requires efficient generation of samples according to the posterior
distribution p(x |D). This is generally a highly non-trivial task, however. Although the prior
distribution p(x) is often chosen to follow a standard distribution (like those considered
in Chapter 3), the resulting posterior distribution does not necessarily follow a standard
distribution because the likelihood function p(D | x) arises from system modeling and is
problem-dependent. In many applications the likelihood function is only known implicitly and
its dependence on x is rather complicated.

Conjugate prior distribution is one branch of research that examines the type of prior
distribution that should be assumed for some type of likelihood function so that the resulting
posterior distribution is also of a standard distribution. The use of conjugate prior distribution
is convenient when applicable, but otherwise it limits the type of problem that can be solved.
It has become less popular in modern applications due to the advent of computer technology
and the development of advanced simulation methods that can efficiently handle arbitrary
distributions. The “Markov chain Monte Carlo method” (MCMC) is one popular class of
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methods that has been found useful. This method is discussed in Chapter 4 as it is used for
generating failure samples in Subset Simulation.

1.5 Organization of this Book

This book is organized into seven chapters. After the introduction (this chapter), Chapter 2 gives
an overview of relevant ideas that lead logically to Subset Simulation. These ideas differ in the
way they view the failure probability and the way they gather and use information to account for
the main contribution to the failure probability. Chapter 3 gives a basic introduction to the digital
simulation of random samples according to standard distributions (e.g., Normal, Lognormal,
exponential), which is indispensible for uncertainty modeling and performing Monte Carlo
simulation. Chapter 4 gives a basic introduction to “Markov Chain Monte Carlo” (MCMC),
which is a powerful method for generating random samples according to an arbitrarily given
probability distribution. MCMC is not involved in uncertainty modeling in the context of this
book, as the uncertain parameters are assumed to have standard distributions. Rather, it is
involved in the efficient generation of failure samples in Subset Simulation, which is a highly
non-trivial problem. Chapter 4 provides the necessary background where no pre-requisite in
Markov Chain theory is needed.

Chapter 5 gives a comprehensive coverage of Subset Simulation for estimating failure
probabilities through the CCDF of the critical response governing failure. It covers the basic
algorithm, error estimation, choice of parameters, theoretical properties of estimators, and
potential problems. Chapter 6 introduces the investigation of failure scenarios using the failure
samples in Direct Monte Carlo and Subset Simulation. Chapter 7 presents an Excel spreadsheet
package for performing risk assessment by Direct Monte Carlo and Subset Simulation. It
contains step-by-step procedures that allow the reader to gain hands-on experience with
Monte Carlo simulation. This will hopefully help the reader develop a correct perspective for
interpreting and using simulation results. Mathematical tools are contained in the Appendix
for reference.

1.6 Remarks on the Use of Risk Analysis

Reliability analysis or probabilistic failure analysis, or any kind of analysis in general, does not
itself prevent failure from happening or provide warranty over losses. Nor does it necessarily
provide information close to reality, because the underlying assumptions need not do so.
These issues should not undermine the value of risk analysis because it is not meant to do
so. Risk analysis is only meant to provide the decision-maker with information regarding
the effects of uncertainty on the attributes that may affect a decision. The decision-maker
is still required to make his or her own judgment on the use of the results. It is just a
scientific way of producing relevant information consistent with the assumptions adopted
regarding the modeling of uncertainty and system behavior. Having advanced computational
tools hopefully allows one to focus on the problem itself, especially the decision-making part.
Making assumptions is inevitable and this should be kept in mind. In many cases, an order
of magnitude answer on the probability suffices for making decisions, which may also be
consistent with the variability of such an answer in view of the assumptions made. Making
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assumptions and placing the right confidence into the results is a human art. Practically, it is
better to be “approximately right” rather than “precisely wrong.”

1.7 Conventions

Before we leave this chapter, we cover some notations and conventions used in this book.
We use f (x) to denote a function of the argument x. When this may be confused with the
value of a function at a specific x, we use f or f (⋅) to denote the function. The notation
f : A → B is used to denote a function that takes an element in the set A to give a value in the
set B. For example, f : n →  denotes a real scalar valued multi-variable function on the
n-dimensional Euclidean space.

We reserve P(⋅) for the probability of the statement in the argument. The notation pX(x)
refers to the PDF of the random variable X evaluated at the value x. When the random variable
X is understood in the context it may be omitted for simplicity. Random variables are usually
denoted in capital letters and their parameter value in small letters. For example, X is the
random variable and {X = x} is the event that it is equal to the given parameter value x.
Vector-valued quantities are often denoted in bold, for example, X = [X1,… , Xn] is a vector
of random variables. When the limits of summation or domain of integration are understood,
they may be omitted for simplicity. An integral sign without the domain indicated is over
the whole parameter space on which the integrand is defined. A sequence of quantities may
be denoted in an abbreviated manner in curly braces with a running index. For example,
{X1,… , XN} may be written as {Xk : k = 1,… , N} or abbreviated as {Xk} when the limits
the index runs through are clear. The terms “Gaussian distribution” and “Normal distribution”
refer to the same distribution and are used interchangeably. Other notations and abbreviations
are contained in the Nomenclature.
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