Chapter 1
Logic

There are several kinds of logic in mathematics. The one based
in the construction of Truth tables is called formal logic. This is
the logic used in computer science to design and construct the guts
of your computer. And then there is Aristotle’s logic. This is the
logic used to make arguments in court or when arguing informally
with another person. This is the logic used to prove that something
is, or to prove that something is not. This is the logic used to
examine combinations of any of the mathematical ideas encountered
in this text. While we will examine formal logic and the logic of
sets and functions, we will be most interested in Aristotle’s logic of
the argument in this chapter and throughout the rest of the text.

Oh, and there will be no need for a calculator in this book. I have
made an effort to emphasize the important mathematical content
in this book, not the superfluous, tedious practice of arithmetic.
Arithmetic is important when you work with money, but in more
challenging mathematical problems it only gets in the way. So cradle
your electronic toy if you need to, but there will be almost no use
for it as we do our counting.

1.1 Formal Logic

Formal logic is just a series of tables describing how the words and,
or, not are defined. There is nothing illuminating with this ap-
proach, but it does match the operations of the inner workings of
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your computer. We will minimally justify the tables used here. We
will just write them down and show how they agree with your use
of the words in your language.

These tables define logic. Not just in English, the language that
this book is being written in, but they describe logic in every lan-
guage on earth. If vou are reading a Mandarin Chinese translation
of this book, then the logic presented here will still be the logic of
your language. It is also the binary language in which the software
in your computer is written. Take time to savor that thought. Logic
as it is applied to languages and computers is universal. Logic is
thus common to all forms of communication, analogue or digital.

To begin with we need to know what the logical operations are
and what they operate on. Logic operates on statements, and ordi-
narily we will use the letters P, (7, and R to denote the statements
that we we are working on. These statements can take on the logical
states T {for True) and F (for False).

You already have an intuitive understanding of what it means
for a statement to be True or False. You know that The sky is blue
is True on earth, and you know that You and I are human is a True
statement. You have five dollars might be True right now, but it
might be False come late Friday evening. Of course It is raining is
a False statement on a sunny day over my home, but it might be
a True statement for you where you live. So let us assume that we
know what T" and F' mean in this context.

The first logical operation that we will investigate is the oper-
ation not. The not operation takes a statement P and changes or
negates its logical states. It changes T to F' and F to T. Its Truth
table, the table that lists the logical states of the not operation,
follows.

Plnot P
T F
F T

This is just a tabular way of defining what not is. Notice that
according to the table, if P is T then not P is F', and if P is F then
not P is 7. As we said, not changes a statement’s logical state to
the complementary logical state.
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EXAMPLE 1.1.1 1. If P is the statement The sky is blue on
earth, then not P is the statement The sky is not blue on earth. We
have negated P and changed its logical state from 7" to F'.

2. It PPis 1 4+ 2 = 3 then not P is the statement 1 + 2 # 3.
Again the logical state of P has been changed by an application of
not from 7" to F.

Because of the nature of the word nof, two consecutive appli-
cations of the operation not to P will leave the logical states of P
unchanged. For lingual reasons we let not not P = not{not P). In
tabular form the compound operation not nof is written as follows.

P | not P | not{not P)
T 1 F ‘ T

FL T F

Notice that if P is 7 then not P is F, and then not(not P) is T,
giving not(not P) the logical states of P. You know this as a double
negative from your English class.

EXAMPLE 1.1.2 1. If P is The sky is blue on earth, then the
double negative not{not P) is the awkward sentence It is False that
the sky is not blue on earth. Your language skills compel you to
avoid the double negative and just write The sky is blue on earth.

2. Suppose P is I think this is wrong. Then not P is [ think this
is not wrong, and not(not P) is the very awkward I don’t think that
this s not wrong. You would be advised by your language teacher
to avoid the double negative and just say [ think this is wrong. The
statements P and not(not P) are written with different words, but
logically they express the same meaning,

Thus, by applying the logic of the operator not to a lingual
double negative, we can avoid the double not.

Throughout this discussion, suppose that we are given state-
ments P, ). Several logical operations allow us to compare the
logical states of P, () by combining them.
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For instance, we can combine statements P, @ using the and
operation. This is the and that you use all of the time when you
write. When applied to P, @ the and operation yields the state-
ment “P apd ¢J". This is just the compound statement formed by
combing P, ¢} with the conjunction and from English.

EXAMPLE 1.1.3 1. If P is The sky is blue on Earth and if Q is
You are a man then “P and (J” is the statement The sky is blue on
Earth and you are a man.

2. If Pis This is wrong and if 0 is These are red then “P and Q"
is This is wrong and these are red.

The logical states of P and @ are closely related to the way
that the word and behaves in language. Thus the logical state of
P and @ is T (True) exactly when both P and @ are T. In every
other instance, “P and Q)" is F' (False}. Put ancther way, if one or
more of the logical states of P, ) are F' (False) then the statement
“P and Q" is a Falsehood, its logical value is F.

In the form of a Truth table the and operation is diagrammed
as follows:

P Q|PandQ
T T| 7T
T F| F
FT|l F
F F| F

The first row states that if both P, ¢ have logical state T then the
conjunction “P and ¢" also has logical state 7. Once we know that
the right hand entry of the first line in the table is T then the rest
of the rows follow as F.

EXAMPLE 1.1.4 1. If Pis I am ¢ human being and if @ is [
am sitting tn my chair then “P and @7 is T exactly when 7 am a
human being is T and I am sitting in my chair is T. Any other
combination of T’s and F’s for P, () will produce a logical state F'
for “P and Q".

2. If P is The sky is red over me and if ¢ is The ground is
dry beneath me then the logical value of “P and @” is F' if we are



1.1. FORMAL LOGIC 5

on Earthsince the sky is not red there. If we are on Mars then
the logical value of “P and (" is T because the sky is red and the
ground is dry on Mars.

Another way to combine statements is through the use of the
conjunction or. The use of or in logic is denoted by the operation
or. Thus, statements P, () are combined to form the conjunctive
statement “P or ()", which is read just like the or statements that
you read and write.

The compound statement “P or " has logical state T exactly
when one or more of the statements has logical state 7. But it
might be easier to remember how or behaves with False statements.
When the logical states of both P and () are F' then “P or ¢J” has
logical state F, and this is the only case in which the logical state
of “Por Q" is F.

We will always use the inclusive or here so that the statement
“P or " includes the case where both P, () have logical state T.
That is, we we read “P or ¢)" as P, J, or both P and ().

EXAMPLE 1.1.5 1. If P is The river is wide and if @ is The
water 15 cold then “P or (" is read as The river is wide or the
water s cold. Since “P or Q7 is T when either P, ¢} has logical
state T, the compound statement The river is wide or the water is
cold has logical state T if the river is wide.

2. The river s wide or the waler is cold is T if we are talking
about the Missouri River and its waters are cold. The river is wide
or the water is cold is T if we are talking about the Missouri River
and the water we are talking about is in my coffee.

3. Let P be the statement All is nothing and let ¢} be the
arithmetical statement 1 +1 = 3. Both P and ¢ have logical state
F, so that “P or Q7 has logical state F. Since both P, ¢ have
logical state F' then “P or )7 has logical state F.

The next logical operations, called DeMorgan’s laws, show us
how the logical operations and, or, not combine with each other.
Simply put, DeMorgan’s laws are lingual ways of simplifying a sen-
tence that uses and , or, and not is a more complex manner.
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Given statements P,  then DeMorgan’s laws are written as

not(P or ) = (not P) and (not Q)
not(P and @) = (not P) or (not Q).

Notice that in our use of DeMorgan’s Law, the distribution of the
not operator changes or to and, or it changes and to or. Compare
this to the following lingual examples of uses of DeMorgan’s laws.
When read properly, you will see that the symbolism we use here is
the same as our use of and, or, not above.

We will use parentheses to emphasize a statement’s meaning, so
that there is no confusion as to what word modifies what phrase.

EXAMPLE 1.1.6 1. The statement
{The river is not wide) or {the water is not cold)
is equivalent to the statement
It is not True that (The river is wide and the water is cold).

Complex to be sure, but that is the purpose behind DeMorgan’s
laws. It will take a complicated statement and make it easier to
read.

2. The statement

(This is not a king) and (this is not a queen),
is equivalent to the statement
This is not (a king or a queen).
3. The statement
This box does not contain {a red and a yellow crayon),
is equivalent to

(This box does not contain a red crayon) or
(it does not contain a yellow crayon).
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EXAMPLE 1.1.7 1. Let P be the statement that This is a king
and let @) be the statement that This is ¢ queen. The statement
“not(P or Q)" is also written as

It is False that (this is a king or a queen),
while “{not P) and (not )" is written as
(This is not a king} and (this is not a queen).

Which do vou prefer? Logically they both mean the same thing.

2. Let P be the statement that This box contains a red crayon
and let ) be This box contains a yellow crayon. Then “not{P and Q)"
is written as

It is False that {this box contains a red and yellow crayon),

while its equivalent formulation “(not P) or (not Q)" under De-
Morgan’s laws is

(This box does not contain a red crayon) or
(this box does not contain a yellow crayon).

1.2 Basic Logical Strategies

We will make exclusive use of logical arguments due to Aristotle
some 500 years B.C. They are the basis for every intelligent conver-
sation and every legal argument made since.

The first logical observation is that one statement always has a
logical state of F.

The statement “P and (not P)” is a universal Falsehood.

No matter what the logical state of P is, “F and {not P)" is a
Falsehood.

To see this, notice that because not changes logical states, at any
time either P or not P is F'. Thus the and statement “P and (not P)”
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has logical state F. The Truth table for “P and (not P)” is then
given as follows:

P | not P | P and (not P)
T| F F
F| T F

Observe that the right-hand column of the table is made up of Fs.
Thus, the statement “P and (not P}’ is a Falsehood.

EXAMPLE 1.2.1 1. Let P be The sky is blue. Then (the sky is
blue) and (the sky is not blue)} is a Falsehood.

2. Let P be This statement is True. Then “P and (not P)”
is the statement This statement is True and this statement is not
True, and this is a Falsehood.

3. Let P be There is a mountain. Then “P and (not P)" is
(There is a mountain) and (there is no mountain), which is a False-
hood. So is First there is @ mountain, then there is no mountain,
then there is.

We continue our discussion of logical arguments. Given state-
ments P, ¢}, the statement “P implies 7 is called an implication,
and it is symbolically written as

P=qQ.

The statement P is called the premise of the implication and @ is
called its conclusion.

The logical states of P = ¢ are determined by one line of ex-
planation.

If your argument is correct then Truth leads to Truth.

In other words, if your argument is T and if your premise P is T’
then your conclusion ¢ is 7. Every other logical state of P = Q
follows from this boxed statement.
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Note that line one of the following Truth table for “P = Q7 is
logically equivalent to the boxed statement above.

P Q|P=q
T T T
T F F
F T T
FF T

Let us fill in the remaining Truth values for this table. Let P and
@ be statements and consider “P = Q7. We will show how a few
simple Truths about argument discovered by Aristotle can be used
to fill in the Truth table for the implication.

EXAMPLE 1.2.2 We will continually refer to the Truth table for
“P # QJJ'
1. Because Truth implies Truth when the argument is correct,

If your argument is correct (T'), and if P is T then ¢} is T'.

P Q|P=>Q
T 1] T

2. Since Truth implies Truth when the argument is correct,

This is why line 1 is

Your argument is False if P is T and Q is F.

P @ | P=qQ
T F | F -

3. Sinece any argument begun with a False premise is correct, we
can write

This is why line 2 of the Truth table is

Your argument is 7" if P is F.
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P QlP=Q
This is why lines 3 and 4 of the Truth table are F T T
F F T

The columrn under @ is the list of all possible logical states for  in
the Truth table for “P = @”.

4. Since a False premise leads to either a True or False conclu-
gion,

Your conclusion is ambiguous if P is F.

P Q|P=Q
This is why lines 3 and 4 of the Truth table are F T T
F F T

The column under ¢ completely describes an ambiguous conclusion

@. The T’s under “P = Q" result from the part 3.

Let us put this implication to work in some elementary argu-
ments.

EXAMPLE 1.2.3 1. Hereis a Greek classic. We will use Example
1.2.2(1). Begin with P : Socrates is a moan. The conclusion will be
QQ : Socrates is mortal. The implication P = @ is If Socrates is
a man then Socrates is mortal. Since the implication P = @ is
correct, and since the Truth of the premise P implies the Truth of
the conclusion ¢, Socrates is mortal.

2. The premise is P : I stand on dry land on earth, and the
conclusion is Q : The sky above me is blue. The implication is If I
stand on dry land on Earth then the sky above me is blue is True.
Since P is True, and since Truth leads to Truth, ¢ is True.

3. The premise is P : Digital technology is like pockets, and
the conclusion is @ : We have had digital technology for hundreds
of years. The implication is “P = " We have had pockets for
hundreds of years. Let us assume that the premise P is True. Since
() is Falsehood, the implication “P = Q" has logical state F'. But
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if we assume that the premise P is False, then @} is still False, but
the implication “P = @Q” is True.

4. Under what conditions will P in part 3 lead us to a True
conclusion ()7 Have fun with this one.

1.3 The Direct Argument

This formal manipulation of statements is not exactly what we are
interested in for this chapter. It is good to know that an argument
has logical state T or F', but it is better to know how we can use
the implication to correctly deduce a conclusion.

The first line T,T,T of the Truth table for P = () can be
restated as If our argument is correct then Truth leads to Truth, or
in other words, If the premise is True and if the argument is correct
then the conclusion is True. This form of argument is called the
direct argument. It is not new to you since you unconsciously use
direct arguments in your everyday life.

EXAMPLE 1.3.1 1. The premise is P : The sky is not blue and
the conclusion is () : We are not on earth. A correct argument is

If the sky is not blue then we are not on earth.

Conclude that the conclusion ¢ is True.
2. Something more mathematical begins like this. The premise
is P: 14 1=2. Argue correctly as follows:

1+1=2

If weadd 1 to bothsidesof 1+1=2then1+14+1=2+41.
f2+1=3thenl+1+1=3.

The conclusion ¢ : 1+ 141 = 3 is then True.

A chain-like form of argument shows us the structure inherent in
longer arguments called transitive property. These longer arguments
are what people make when they logically move from one idea to
the next. Basically, the transitive property of implications is a way
to leap from two or more implications to one implication. Hence

If P= Q and if Q = R then P = R.
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A series of implications and the transitive property provide us with
a method for arguing efficiently with many implications. This series
of implications is called the {ransitive argument.

Assume the Truth of the premise P.
Show that P = Q is True
Show that @ = R is True
Conclude the Truth of R.

To justify that this column forms an argument that we can use to
deduce R from P, we will argue lingually.

Proof: Assume the Truth of P. If P = @ is True then by the
Direct Argument ¢} is True. If ¢ = R is True then by the Direct
Argument we conclude the Truth of R. Therefore, our transitive
argument concludes the Truth of R from the Truth of P.

Let us review what we just argued in terms of True statements.
We begin with a True statement P. The assumption is that P = Q
and @ = R are True, which allows us to make a correct transitive
argument

P = Q and @ = R implies P = R.

From the Truth of P and the Truth of P = R we usé the Direct
Argument to conclude the Truth of R.

In a later section we will argue as we did above and in greater
detail, thus producing three more argument forms.

EXAMPLE 1.3.2 This example shows how the above discussion
can be applied to longer arguments.

a) The premise is P: 10 < 2.

b) P = @: Because 10 < 2% = 1024 then 11 < 2%.
¢} @ = R: Because 11 < 2% then 11 < 2. 2% = 211,
d) Conclude R: 11 < 211

Using this iterated form of argument people form longer and
more complicated arguments, which allows them to perform more
complicated intellectual tasks. These tasks could be just a way
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of adding numbers, or it could be the design of your computer’s
software, or it could be that the arguments take the arguer to in-
tellectual places that no one had conceived before. The lesson to
learn here is that, while the tabular thinking of logic is good for
some tasks, there will always come a time in problem solving when
we must use argument and a more enlightened form of thinking if
we are to make progress on hard problems.

REMARK 1.3.3 When your computer operates it is working its
way through a very long and tedious argument based on the very
simple binary logic introduced in this section. The steps in the com-
puter’s argument are mechanical, a form of arithmetic completed by
a machine. The men and women who designed this computer had
to think through the binary logic during the implementation phase
of the software.

However, for the men and women who put the larger internal
logical parts of the computer together in the design phase, the prob-
lems encountered could not he solved with a simple manipulation
of binary logic. They had to think creatively through the problems
presented to them by the design phase. These solutions would of-
ten include a leap of the imagination that could not be anticipated
when the design for the computer was initially proposed. The logi-
cal problems yet to come will require those leaps of the imagination
before we can solve our problems.

1.4 More Argument Forms

Converse Statements

The implication P = € comes with what is called its converse.

The converse of P = Q is @ = P.
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Let us write down the Truth table for ) = P and compare it to
P=qQ.

P Q| P=Q P Q| Q=P
T T T T T T
T F F T F T
F T T F T F
F F T F F T

As you can see, the implication and its converse do not have the
same Truth table. The logical state of the implication P = ¢ in
the third row is T, while the logical state of the implication ¢ = P
in the third row is F. Thus the converse implication ) = P can
have logical state F even when P = () has logical state 7. For this
reason, the converse cannot be used as a True statement even when
the original implication is True. Hence all are forewarned to avoid
the classic error of using the converse of an implication to advance
an argument.

EXAMPLE 1.4.1 These examples show that we cannot inter-
change the implication with its converse. They will have different
logical states.

1. Let P be the T statement The sky is blue, and let @ be The
world is flat. Then “P = Q" is F.

The converse of “P = (" is the statement “Q) = P :” If the
world is flat then the sky is blue. Since its premise ) is F, “QQ = P”
is T'. Thus the implication is False while the converse is True, and
we cannot exchange them in arguments or conversation.

2. The implication is If today is Monday then my schedule is
clear and its converse is If my schedule is clear then today is Monday.
The implication may be True, but the converse is False since my
schedule is clear on Sunday.

Contrapositive Statements

Suppose that we consider the implication P = @), assuming that it
is T. If @ is F then the Truth table for P = () shows us that P is
also . Thus, a False premise ¢ implies a False conclusion P. This



1.4. MORE ARGUMENT FORMS 15

is an important implication known as the contrapositive.

not ¢} = not P.

When one writes out the Truth table for the implication and
its contrapositive, a curious thing occurs. This Truth table reveals
that the two arguments have identical Truth tables.

P Q|P=Q|not = not P
T T T T
T F F F
F T T T
FF T T

Notice that the rightmost two columns are identical lists of 77s
and F’s. This is completely different from what we found with the
converse. The table shows that

The implication and its converse are logically equivalent.
One can be substituted for the other without loss of Truth.

In other words, the statements “P = Q" and “not ¢ = not P” are
both True for the same logical values of P and .

EXAMPLE 1.4.2 1. The implication If the sky is not blue then
this is not earth has as contrapositive If this is earth then the sky is
blue. The implication and its contrapositive are making the same
logical statement about the sky.

2. The implication If my GPS is working then I am not lost
has contrapositive If I am lost then my GPS is not working. Notice
that both the implication and its contrapositive are making the
same logical statement, assuming I always use my GPS.

3. The implication If my spell-check program is running then
I do not misspell all the time has contrapositive If I misspell all
the time then my spell-check program is not running. Notice that
both the implication and its contrapositive make the same logical
statement about a man who cannot spell without technological help.
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Counterexamples

The next form of argument does not use 7”s and F’s. It is strictly
lingual.

Let P be a statement. A counterexample to P is an example
that is in logical conflict with the content of P. The existence of a
counterexample to P proves that P is False.

The idea behind the proof by counterexample is this. If [ claim
that P : All colors are white is True then you can disprove my claim
by producing some color that is not white. One non-white color will
do. 1 choose red. With the existence of the color red you have
refuted my claim. You have proved that All colors are white is a
Falsehood.

In the very same manner, we can disprove any statement that
asserts that all of the X’s in the world are short Y’s. All we need
do is find a counterexample X that is not a short Y.

The proof by counterexample can be summed up as follows:

The statement All X ’s have property Y is disproved by
a counterexample of an X that does not have property Y.

These proofs by counterexample all proceed in the same way. Pro-
ducing just one X that does not have quality Y is enough to kill the
claim that All X ’s have property Y.

EXAMPLE 1.4.3 1. The claim is P : All integers are even. To
refute the claim you produce counterexample 3, which is not even.
This counterexample refutes the claim that all integers are even.
You have thus disproved the claim that All integers are even. Hence
Some integer is odd.

2. The claim P : All people are Truth sayers claims that every
person tells the Truth at all times. Your counterexample to refute
the claim is the known Falsehood “f=0”. Having uttered a False
statement, the claim P is disproved.

3. The claim P : All people are liars claims that every person
will lie ot oll times. Your counterexample to refute the claim is
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the known Truth “1 # (7. Having uttered a Truth, the claim P is
disproved.

4. Your claim is P : All statements are False. 1 state that The
number line has no end. My stated Truth is a counterexample that
refutes or disproves the claim.

5. You claim P : There are no interesting positive integers. 1 ar-
gue thusly: in that case, there is a least or minimum non-interesting
integer, call it . I find it interesting that there exists such a number,
and so I find x interesting. This interest in z is a counterexample
to the claim.

6. Someone claims that Nothing in this world is interesting at all.
I argue that the lack of interesting facts in this world is interesting
to me. This shows that something is interesting to someone, which
is a counterexample to the claim.

1.5 Proof by Contradiction

In this section we will show that a certain kind of statement is al-
ways a Falsehood. These statements are common among amateur
mathematicians who do not fully understand the logical ideas that
we have been examining in this chapter. We will show that these
Falsehoods have similar proofs even though they do not look alike.
These proofs are so similar that one proof will be used on one state-
ment by simply replacing certain words in a previous proof. The
examples below will make this clear.

We begin with a logical problem that comes from ancient Greece
circa 600 B.C.

EPIMENIDES PARADOX 1.5.1 The Cretan Epimenides steps
onto a stage in Athenian College and proudly speaks his three lines.

All Cretans are liars.
All statements made by Cretans are False.
I am lying.

The Greek scholars proceed to determine the logical value of T am
lying in a manner that we will read promptly. They decide that I am
lying is neither a lie nor the Truth, an intolerable logical situation
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in any age. We ask for an explanation as to how I am lying could
lack a logical state.

It is traditional to state that All Cretans are liars rather than
All statements made by Cretan’s are False. We will consistently use
the longer version for now. To begin our modern approach to the
Epimenides Paradox, we will show that the premise for the scholar’s
discussion is a Falsehood.

THEOREM 1.5.2 All statements made by Cretan’s are False is
a Falsehood.

Proof: This is an obvious proof of the theorem. Because the
lying Cretan Epimenides speaks All statements made by Cretans
are False, the statement is itself a lie. This completes the proof.

One might also disprove All statements made by Cretans are
False with a counterexample. The first one that comes mind is the
Truth Crete is an island. Yet another proof that All statements
made by Cretans are False is False will be used as a template for
subsequent proofs in this section.

REMARK 1.5.3 Let R be a statement. Any argument that be-
gins by assuming something for the sake of contradiction, and that
then concludes both R and its logical negation not R, has concluded
a Falsehood called a contradiction. Because Truth leads to Truth
when the argument is correct, we have proved that the something
we assumed initially is a Falsehood. We will make extensive use of
this form of proof called proof by contradiction.

A self-referential statement is a sentence that refers to itself
in its lingual content. Statements like This statement is True, or
This statement is too long, or, my favorite, This statement is self-
referential. A statement labeled with a @ in this section is called
a J-statement. (J-statements are examples of self-referential state-
ments.

THEOREM 1.5.4 All statements made by Cretans are False is a
Falsehood.
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Proof: Assume for the sake of contradiction that All statements
made by Cretans are False, and consider the statement

(): This statement when spoken by a Cretan is not False.

The content of ¢ states that the statement @ is not False, so we have
deduced the statement @ is not Fulse. By hypothesis ), because
it is spoken by Epimenides, is False, so ) 4s False is deduced. But
R: @ is False and its logical negation not R: Q is not False form a
contradiction. Hence, our premise All statements made by Cretans
are False is itself a Falsehood, which completes the proof.

Returning to the ancient paradox, we proceed from the False
premise All statements made by Cretans are False. Thus we can
deduce many things, but we have no means of deciding the Truth
of those deductions.

Let us quickly review how we argued above. We assumed that
the statement P : All statements made by Cretan’s are Fualse is
True. We then deduced the two statements RB: () is False and its
logical negation not R: @) is not False, a contradiction. Since the
conclusion is False, we deduce that our premise All statements made
by Cretans are False is a Falsehood.

EXAMPLE 1.5.5 Let us give a logical analysis of I am lying in
the context of the Epimenides Paradox above.

We claim that we have deduced that [ am lying is True, but
the Truth is that we cannot identify the logical state of I am lying.
Beginning with a Falsehood the way we did makes any analysis
of the logical state of I am lying within the Epimenides Paradox
impossible. This illustrates just how badly facts can be distorted
when an argument proceeds from a False premise.

That was fun. I hope you derive many hours of pleasure from
thinking about the Epimenides Paradox. This logical puzzle demon-
strates that if you start with a Falsehood, as we did, then you can-
not decide the actual logical state of your conclusion. Now let us
consider variations on Epimenides.
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EXAMPLE 1.5.6 A Truth sayer is a person who says nothing but
the Truth. We will show that P: All people are Truth sayers is a
Falsehood.

Proof: The method of proof utilized here is the proof by coun-
terexample. One counterexample is produced when I speak the
Falsehood 1 = 0, which is contrary to the statement P. Just for the
fun of it, try one of your own counterexamples.

Here is a slight variation on the above example that again shows
how we can use a @) statement.

EXAMPLE 1.5.7 Assume for the sake of contradiction that All
people are Truth sayers, and assume that some person speaks the
-statement

Q: I am lying.

Since we are assuming that All people are Truth sayers, Q) is True.
But by its content @ is a lie, or equivalently () is not False. We have
thus deduced @ is True and its logical negation, a contradiction.
Hence All people are Truth sayers is a Falsehood.

EXAMPLE 1.5.8 P: All statements are True is shown to be a
Falsehood by the use of the counterexample and False statement
1=0.

What follows is an alternative proof that P: All statements are
True is False, by using the indirect argument and a @ statement.

THEQOREM 1.5.9 All statements are True is a2 Falsehood.

Proof: For the sake of contradiction assume the statement P :
All statements are True, and consider the statement

¢}: This statement is False.




1.5. PROOF BY CONTRADICTION 21

Since P is True it follows that @ is True. But the content of Q-
states that @ is False. We have deduced @ is True and its logical
negation @ is False, a contradiction. This contradiction proves that
our assumed statement P: All statements are True is a Falsehood.

Now let us examine several universal statements whose logical
state cannot be resolved with a simple counterexample.

THEOREM 1.5.10 All opinions are valid is a Falsehood.

Proof: For the sake of contradiction assume All opinions are
velid, and consider the statement

(): This opinion is not valid.

Because Q is an opinion, our assumption asserts that @ is valid.
But the content of () asserts that @ iz not valid. We have thus
deduced the statement €} is valid and its logical negation Q) is not
valid, a contradiction. Hence All opinions are valid is a Falsehood.
This completes the proof.

You might try to prove that All opinions are valid by counter-
example, but I do not suggest it. Here is the problem if you try this
method of attack in an argument about valid opinions.

EXAMPLE 1.5.11 Suppose you are in a debate about the logical
state of All opinions are valid. Your correct approach would be
to produce an opinion that you claim is not valid. Your debate
opponents would then claim that you have produced a valid opinion.

The difficulty with this argument by counterexample is that no
one knows a precise definition of the term wvalid No one knows
because walid is usually given several definitions. Some of these
are having enough vowels, having the right number of words, a pro-
fessional’s conclusion about a scientific argument, an irrational re-
sponse to the use of opinions. Therefore, no one knows a precise
definition of valid opinion.
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Without those definitions your debate opponents could claim
that every counterexample you put forth is actually a perfectly valid
opinion. Opinions claimed by your debate opponents to be valid
might include statements like 1 = 0, you do not exist, and there
ts no untverse. Since you do not know what walid means, anyone
arguing with you could legitimately claim that your statements are
perfectly valid opinions.

The proof in Theorem 1.5.10 avoids the definition of wvalid by
deducing the statement @) is valid and its logical negation ¢ is not
valid, a contradiction. Therefore, whatever the definition of valid
is, this contradiction proves that our premise All opinions are valid
is a Falsehood.

The following example considers the logical state of the state-
ment All is known. The statement itself has a problem, as no one
has ever written a convincing explanation of what known means in
this context. Does it mean that we know the logical states of ev-
erything, or does it mean that we know the meaning of everything?
As yet, no one has answered this question in a lingually professional
manner. Nor has anyone realized that this use of the word All cre-
ates a logical and temporal conflict. If Al is known then when did
you know what All means. Does it mean that All of everything is
known or did it mean that the word All is known? At present no
one has given a cogent explanation as to why any of these questions
can be ignored.

QOur next example demonstrates that we do not need to know
what All is known means.

THEOREM 1.5.12 All is known is a Falsehood.

Proof: The proof we use here is exactly the proof used in the
previous example where we proved that All opinions are valid is
False. We will simply replace opinion with statemeni and wvalid
with known. This is surprising physical evidence that All opinions
are valid and All is known are actually the same type of Falsehood.

For the sake of contradiction assume All s known, and consider
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the statement

@: This statement is not known.

We assumed that all is known, so we deduce @ s known. Moreover,
the content of ¢ asserts that ¢} is not known. We have thus deduced
the statement @) is known and its logical negation ¢} is not known,
a contradiction. Therefore, All is known is a Falsehood.

The above examples illustrate a general form of statement and
argument that can be used to prove that an abstract idea is ac-
tually a Falsehood. Let L be a list of qualities of statements that
contains and that is not restricted to the values True, known, valid,
complicated, assumed, hard to understand. Fix a quality Y € L of
statements.

Let X be a set of statements that include

¢2: This statement in X does not have quality Y.

Evidently, the assertion All statements in X hove quality Y and its
abbreviated form

Allin X are Y

are logically equivalent. Let us examine the logical state of All in
X are Y. Note that the proof of the following theorem depends
on the introduction of a (-statement in a manner identical to the
above proofs.

THEOREM 1.5.13 Let X be a set of statements that contains
Q. Then All in X are Y is a Falsehood.

Proof: By hypothesis, ¢ € X. For the sake of contradiction
assume All in X are Y. Because @ € X, our assumption implies
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that @ has gquolity Y. Moreover, the content of ¢ asserts that
Q) does not have quality Y. We have thus deduced the statement
Q has quality Y and its logical negation Q does not have quality
Y, a contradiction. Hence All in X are Y is a Falsehood, which
completes the proof.

A perfect logician is a person who knows all of logic. Let us use
our methods to deduce that perfect logicians do not exist.

THEOREM 1.5.14 There are no perfect logicians.

Proof: For the sake of contradiction assume that there is a per-
fect logician, and consider the statement

2: This statement is not known to some perfect logician.

The self-referential statement () is a statement of logic, so we deduce
the statement @ s know to every perfect logician. On the other
hand, the content of () states that ) is not known to some perfect
logician. We have thus deduced Q) ¢s known to every perfect logician
and its logical negation @@ is not known to some perfect logician,
a contradiction. Therefore, there are no perfect logicians, which
completes the proof.

Let us apply our work on perfect logicians to a logical puzzle
that some consider to be the hardest ever fashioned.

EXAMPLE 1.5.15 At the time of this writing, The World’s Hard-
est Logic Puzzle has been a popular stop for those who surf the web.
The puzzle begins with 200 perfect logicians on an island, 100 of
them are blue eyed, and 100 of them are brown eyed. The prob-
lem is that these perfect logicians must determine their eye color
through the use of logic alone. When they do, they can leave the
island, but not before.

That’s it. That is all that we assume in this version of the
puzzle. There are some Internet versions of this puzzle that include
much more detail than this version, but they and their solutions
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follow from our solution given below. In other words, once we solve
this problem then we can solve any other version of it. Indeed, the
manner in which we solved the puzzle makes any further logical
investigation unnecessary.

The solution is that the problem begins by assuming that there
are 200 perfect logicians, while we have proved that there are no
perfect logicians. Thus the problem proceeds from a False premise.
You can therefore deduce anything you want, but you have no way
of knowing which deduction is True. Thus you might deduce using
99 theorems that 200 people leave the island Friday, or you might
deduce in a few lines that 200 people leave the island instantly, or
you might, deduce that seven of them never leave the island.

But we cannot know the logical state of any of these deduc-
tions, because we proceed from the False premise that There are
200 perfect logicians.

This kind of indirect argument will appear often in the succeed-
ing chapters. The readers should familiarize themselves with it.

One fun example of lingual self-referential behavior is the fol-
lowing story that in the beginning and in the end refers to itself.

A SELF-RECURRING STORY 1.5.16 There once was a girl
who liked to travel from town to town, telling this story about her-
self. One day, while traveling in the dense forest, she entered a small
village in a small clearing. She told them that she was hungry and
tired, and then asked if she could exchange a telling of her story for
some food and a place to sleep. But the villagers knew that only
evil came from the dense forest, so they threw garbage at her, and
chased her in large numbers. She was so overcome by these people
that she stumbled and fell into a great blazing oven just outside
the village. There she went up in a black cloud of smoke. This is
always how her story ended, though, with her death in a fiery place.
It seems that the myth and the miss had this end in common.

Let us end this discussion with a different version of Epimenides.

EXAMPLE 1.5.17 Epimenides, a Cretan, steps into an Athenian
party and states that “All Cretans are Truth Sayers. It’s a reli-
gious thing. We speak only the Truth.” A young female student
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in the room says “Hey, Epimenides. Tell this bartender that I'm
old enough to drink.” Epimenides cannot tell this to the bartender
since he is a Truth Sayer. Not knowing what else to do, he hangs his
head and walks out of the party. We respect Epimenides because he
did not contradict his first statement by telling the bartender that
the lass was old enough for aleohol.

1.6 Exercises

1. Prove that All cats are bald is False.

2. Prove that All birds lack feathers is False.

3. Prove that All people are liars is False. Use a counterexample
and a proof by contradiction.

4. Prove that All statements are False is False. Use a counterex-
ample and a proof by contradiction.

5. Prove that Left alone things do not change is False. Use
a counterexample to show that there is something out there that
changes when left alone.

6. Prove that Math is finite is False by finding a counterexample.

7. Prove that Nothing is known is False. Use a counterexample
and a proof by contradiction.

8. Prove that No opinion is valid is False. Use a proof by
contradiction.

9. This is a hard one. Find the logical state of I am lying when
it exists outside of the Epimenides Paradox.

10. Refer to # 9. See Example 1.5.17 for the definition of Truth
Sayer If you are a Truth Sayer then can you speak I am lying?

11. Let P be a statement that has an unnamed logical state 5.
Does P have logical state S in every conversation that contains it?





