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Introduction

1.1 Assumption of Small Displacements

University courses often introduce the small displacement assumption in an implicit way, with-
out explaining to the students that it is applicable only in special cases. Take, for example, the
structural system shown in Figure 1.1. Point P is attached to the ground using two straight rods
that are pin-connected both to the ground and to each other. In a first-year stress analysis course
this problem would be solved using the solution procedure shown in Figure 1.2, thus yielding
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Note that in Equation (1.1) force f1 is a function of angle �θ, where �θ is 45�. However, with this
approach, one has ignored the fact that the rods can deform (shorten) under load, thus resulting
in a downward displacement of point P. This deformation, in turn changes the initial angle �θ
into ~θ, Figure 1.3.
In real life, the actual equilibrium of forces occurs not on the initial geometry, but on the

deformed geometry. The internal forces (forces between atoms) move with the geometry (chan-
ged position of atoms) – the internal forces f1 and f2 rotate with the corresponding rods and are
always parallel to their corresponding rods. The load f also moves with point P. Finally the state
of equilibrium shown in Figure 1.4 is reached, when

f1 = f2 =
1
2

f

sin~θ
>
1
2

f

sin45
: ð1:2Þ
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In other words, the internal forces obtained using Equation (1.1) are wrong and the correct
internal forces are obtained using Equation (1.2). The problem with Equation (1.2) is that the
geometry of the system is a function of the internal forces, which in turn are a function of the
geometry. This yields an implicit equilibrium formulation
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Figure 1.1 A two member truss

f

θ=45 θ=45

f2f1

Figure 1.2 Equilibrium of forces at point P
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Figure 1.3 The initial (dashed lines) and the current (solid lines) geometries
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The formulation shown in Equation (1.3) is obviously nonlinear. As such, it can be difficult
to resolve. For this reason, the formulation given by Equation (1.1) is often used instead, which
is fine only when:

a. the initial and the deformed geometry are nearly identical – this case occurs only when the
displacements are infinitesimally small or tolerably small in practical applications.

b. the displacements do not change progressively with the applied load – infinitesimally small
perturbations (inaccuracies) in the geometry will not lead to disproportionally large changes
in the internal forces, Figure 1.5.

The situation shown in Figure 1.5 is called instability of the equilibrium. Buckling of struts is
only one example of an unstable equilibrium. There exists an entire field of applied science
dedicated to the analysis of structural stability. It is often formulated in terms of modal analysis,
which students usually find difficult to understand, although the concept is relatively simple:

For a given load, there may exist a particular deformed shape in which the structure has in a sense
“escaped” from under the load: for example, in Figure 1.5 the load has stayed vertical, but the
strut has moved (escaped) sideways and, as such, it does not support the load any longer.

f

Figure 1.5 Instability of the equilibrium (buckling of struts)
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Figure 1.4 Equilibrium of the deformed system
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In order to solve the above problems, the second order formulation was developed. It is not a
general formulation, but rather a patchwork of application-specific formulations that address
either the problem of large displacements or structural stability. Some classical examples
are the deformation of a rope, the deformation of membranes, and the deformation of slender
structures used in civil engineering, aerospace engineering and naval architecture.
As an alternative, the theoretically exact generalized large displacements approach was intro-

duced in the late 1990s and early years of the 21st century and it has gained significant pop-
ularity. The idea is relatively simple:

Always consider equilibrium using the deformed geometry of the solid.

The resulting formulation is called the large displacement formulation, for it represents the
exact equilibrium of internal and external forces regardless of the size of the displacements. As
such, it captures: (a) equilibrium of systems with small displacements, (b) any instability of
equilibrium, and (c) equilibrium of systems with large displacements. In contrast to the 2nd
order theory, this is the exact theoretical formulation. It is, by default, nonlinear.

1.2 Assumption of Small Strains

In order to simplify how one solves solid deformation problems, the assumption of small strains
through the engineering strain is often introduced. Many times this approach is utilized without
any thought of explaining that it is only valid if the strains are infinitesimally small. For this
purpose, the strain is often defined as engineering strain

ε =
ΔL
�L

=
~L−�L
�L

, ð1:4Þ

where ΔL is the elongation of a rod of initial length �L and deformed length ~L. The assumption of
small strains is only valid in exceptional circumstances such as deformation of glass at room
temperature and similar materials.
When it comes to plastics, rubber, metals, clay, gels, granular materials, glass fibers, carbon

fibers, biological tissues, mechanics of cells (such as red blood cells), bitumen, kerogen, and
many other materials of modern technology, modern industry, modern science and modern
engineering, the assumption of small strains is simply not valid.
In order to rectify the problem for specific applications, various second order formulations

have been developed. These parallel the second order formulations for large displacements and
are in general applicable only to a specific narrowly defined problem.
In contrast, in this book the theoretically exact generalized large strain formulation is

explained.

1.3 Geometric Nonlinearity

The large strain formulation combines naturally with the large displacement formulation. The
result is a formulation that reproduces a theoretically exact solution (as opposed to the second
order formulation) for both large displacements and large strains.
As such, it addresses (in an exact manner) geometric nonlinearity. Geometric nonlinearity by

definition includes nonlinear aspects of deformation that arise from large displacements and/or
large strains.
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The theoretically exact formulation is based on the multiplicative decomposition of defor-
mation. The concept is relatively simple:
Write the current coordinates of the material points of the solid as

~x = ~x ξ, η, ζð Þ, ð1:5Þ

where (ξ, η, ζ) somehow uniquely define a given material point and as such do not change with
deformation. Now, Equation (1.5) can be written as

~x = ~xS ~xR ~xT ξ, η, ζð Þð Þð Þ, ð1:6Þ

where ~xT represents the material points’ translation. It is followed by the rotation ~xR and the
stretch ~xS. In other words, the function ~x is a composition of three functions

~x = ~xS ∘~xR ∘~xT, ð1:7Þ

where ~xS stretches the solid, ~xR rotates the solid and ~xT translates the solid. It is like one person
first comes and translates material point P. The second person comes and rotates the solid.
Finally the third person stretches the solid. Only the third stage causes internal forces in the
material and can, for example, break the material.
The function ~x describes the deformation of the solid body and is therefore called the

deformation function or simply, deformation. The deformation ~x is made from the composition
of translation, rotation and stretch in any order. Translation and rotation move the solid
as though it was rigid. As such, they do not stretch the solid. In contrast, stretch changes
the shape (the geometry) of the solid. In an infinitesimally close vicinity of a given material
point P, all these functions are de-facto linear functions of coordinates x, y and z, as shown
in Figure 1.6.
This leads to the multiplicative decomposition of rotation and stretch. First, the translation is

removed from the deformation and what is left is decomposed into a product of stretch and
rotation. In addition, stretch is expressed as a product of different types of stretches, such as
volumetric stretch, shear stretch, elastic stretch, plastic stretch, etc.
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Figure 1.6 Linearity of deformation in the infinitesimal vicinity of a given point P: Note that for
infinitesimally small dx any function f(x) reduces to f(x) = fP + αx
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1.4 Stretches

In large strain large displacements deformation, it is convenient to formulate the problem not in
terms of strains, but in terms of stretches. The reasons for this are as follows:

a. Stretch is well represented by a second order tensor.
b. Stretch is easily calculated from the deformation function.
c. Stretch is easily separated from rotation.
d. Stretch can be further decomposed into an elastic part, a plastic part, a volumetric part, etc.
e. Multiplicative decomposition of stretches comes naturally.
f. Any type of strains (strain measures) can be calculated from the stretches.
g. Stretches are applicable to nonlinear material formulations including nonlinear anisotropic

materials.

1.5 Some Examples of Large Displacement Large Strain Finite
Element Formulation

Biological Tissue. In Figure 1.7 a 3D finite element based simulation of blood plasma contain-
ing red blood cells is shown. It is evident that individual red blood cells stretch significantly and
consequently their shape is changing.
Membrane Structures. In Figure 1.8 a 2.5D finite element simulation of a membrane struc-

ture subject to an initial velocity is shown (such as a flag on a mast). In this case, the material of
the structure does not undergo large strains, i.e., it does not stretch a lot. However, despite this,
the displacements are extremely large. This problem can be categorized as a large displacement,
small strain type of problem. Nevertheless, the simulation results shown are obtained by using
the large displacement, large strains finite element formulation.
2D Solid Structures. In Figure 1.9 a problem similar to a rubber cylinder hitting the ground

is shown. This is a 2D solid problem consisting of large displacements and large strains. The
results shown are obtained using the finite element formulation described in detail in this book.

(a)

(b)

(c)

Figure 1.7 The flow of red blood cells accompanied by significant stretching, large translations and
large rotations, i.e. complete geometric nonlinearity

8 Large Strain Finite Element Method



(a) 

(b) 

Figure 1.8 (a) A deformation sequence of a flag-like membrane subject to large displacements but small
strains; (b) results of geometrically nonlinear analysis of a circular membrane

Figure 1.9 A sequence of deformation of a 2D rubber cylinder hitting the ground
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Large Displacements Large Strains Shells. Shells are usually termed as 2.5D problems.
The finite element formulation for shells, even for small strains and small displacements, is
complex. In this book it is demonstrated that the large strain large displacement formulation
can be relatively simple to understand, to implement and to use for shells. A typical dynamics
problem using shells is shown in Figure 1.10.
Nonlinear Materials. This book covers geometric (large strains large displacements)

nonlinearities in combination with arbitrary anisotropic material nonlinearity. As such, the
solid can undergo plastic deformation or damage based nonlinearity leading to localized
failure and fracture. For example, in Figure 1.11, the fracture of a glass panel is obtained
using the 2.5D large displacement, large strain, nonlinear material based finite element
formulation.
In a similar way, the damage based failure sequence of a 2.5D shell is shown in Figure 1.12.
3D Solids. In Figure 1.13 a problem similar to a tennis ball hitting a circular plate (shell) is

shown. This is a 3D solid problem consisting of large displacements and large strains. The
results shown are obtained using the finite element formulation described in detail in this book.
A cross-sectional view of the same problem is shown in Figure 1.14.

v v
(a)

(b)

Figure 1.10 (a) Impact of two shells. (b) Deformation sequence obtained using the shell formulation
described in detail in this book
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Figure 1.11 Damage based nonlinear material finite element simulation showing fracture of a window
screen

Figure 1.12 Damage based fracture of a spherical shell subject to a penny shaped impactor
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Figure 1.13 The deformation sequence for a tennis ball (3D solid) hitting a circular plate (2.5D shell).
Both the shell and the 3D solid deform considerably (large displacements combined with large strains)

Figure 1.14 A sequence of deformation (a cross section view) showing a tennis ball hitting a circular
plate (shell)
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1.6 The Scope and Layout of the Book

In this book, the theoretically exact formulation for large strain large displacements based simu-
lations using multiplicative decomposition is presented. This includes: 2D finite element
method, 3D finite element method, 2.5D finite element method (plates, shells and membranes),
static finite element analysis, transient dynamics finite element analysis, as well as a general-
ized nonlinear anisotropic material formulation including hyper-elastic, hypo-elastic and uni-
fied constitutive formulation. The book is written in such a manner that it is self-contained in
the sense that a reader is not required to have any previous knowledge of the subject.
In the first part of the book some essential mathematical tools are covered including a hands-

on approach to matrix algebra.
In the second part of the book some necessary physics concepts are introduced including

vectors, first order tensors and second order tensors. These are deliberately separated from
the first part of the book in order to emphasize that they are not mathematical constructs,
but physical realities. As a consequence, relatively easy-to-master approaches for tensorial cal-
culus in 2D, 3D, 4D and nD spaces are presented with an aim of familiarizing the reader with
the modern notion of tensorial algebra, thus demystifying tensorial calculus itself.
In the third part of the book deformation in 1D is explained (mainly for didactical reasons) in

order to help the reader to grasp the subject. Also in this part, 1D deformation kinematics is
extended to 2D. This is naturally followed by an extension to 3D. At the end of the third part
a unified approach to formulating constitutive laws for general anisotropic materials subject to
large displacements is presented.
In the fourth, fifth and sixth parts of the book deformation kinematics is presented using the

finite element method in 2D, 3D and 2.5D respectively. In this manner, the finite element for-
mulation is completely separated from the stress calculation (constitutive law), thus enabling
material modelers to work completely independent from any finite element developers. This is
especially important in modern industry wherein finite element packages are often off-the-shelf
commercial packages, while the material models employed may be proprietary and developed
completely independently from the finite element package itself.
Internal forces over finite elements are represented using stress tensors (obtained from the

material package that uses constitutive laws developed by the material modelers). From these,
the equivalent nodal forces are calculated using stress integration over either volume or bound-
aries of finite elements. These procedures are explained in Chapters 21, 25 and 26.
In this process, a special role is also given to selective stretch sampling, which is in essence a

generalization of both reduced and selective integration, Chapter 22.
The resulting nonlinear algebraic equations are solved using suitable algebraic equation sol-

vers. This explicit iterative approach to solving the equations is generally preferred. Some of these
are explained in Chapter 3, including the dynamic relaxation and conjugate directions methods.

1.7 Summary

In this chapter, an introduction to geometric and material nonlinearities in general has been
provided. This was followed by the scope and layout of the book.
Finally, examples obtained using the finite element formulation described in this book have

been shown. The main aim of these examples is to not only make the reader interested in the
subject but also to illustrate the power of the large strain large displacement finite element
method and its inherent advantages:

a. There are no restraints to the size of displacements.
b. There are no restraints to the size of the strains.
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c. Finite element-independent material formulations consisting of anisotropy by default,
plasticity, viscosity, etc. are implemented in a format friendly to a material model developer
who has no experience with finite elements.
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