
 Chapter 1

 All about Java
 In This Chapter
 ▶ What Java is

 ▶ Where Java came from

 ▶ Why Java is so cool

 ▶ How to orient yourself to object-oriented programming

 Say what you want about computers. As far as I’m concerned, computers
are good for just two simple reasons:

 ✓ When computers do work, they feel no resistance, no stress, no bore-
dom, and no fatigue. Computers are our electronic slaves. I have my
computer working 24/7 doing calculations for Cosmology@Home — a
distributed computing project to investigate models describing the
universe. Do I feel sorry for my computer because it’s working so hard?
Does the computer complain? Will the computer report me to the
National Labor Relations Board? No.

 I can make demands, give the computer its orders, and crack the whip.
Do I (or should I) feel the least bit guilty? Not at all.

 ✓ Computers move ideas, not paper. Not long ago, when you wanted to
send a message to someone, you hired a messenger. The messenger got
on his or her horse and delivered your message personally. The message
was on paper, parchment, a clay tablet, or whatever physical medium
was available at the time.

 This whole process seems wasteful now, but that’s only because you and
I are sitting comfortably in the electronic age. Messages are ideas, and
physical things like ink, paper, and horses have little or nothing to do
with real ideas; they’re just temporary carriers for ideas (even though
people used them to carry ideas for several centuries). Nevertheless,
the ideas themselves are paperless, horseless, and messengerless.

 The neat thing about computers is that they carry ideas efficiently. They
carry nothing but the ideas, a couple of photons, and a little electrical
power. They do this with no muss, no fuss, and no extra physical baggage.

05_9781118407806-ch01.indd 905_9781118407806-ch01.indd 9 3/4/2014 1:51:25 AM3/4/2014 1:51:25 AM

CO
PYRIG

HTED
 M

ATERIA
L

10 Part I: Getting Started with Java

 When you start dealing efficiently with ideas, something very nice happens.
Suddenly, all the overhead is gone. Instead of pushing paper and trees, you’re
pushing numbers and concepts. Without the overhead, you can do things
much faster and do things that are far more complex than ever before.

 What You Can Do with Java
 It would be so nice if all this complexity were free, but unfortunately, it isn’t.
Someone has to think hard and decide exactly what to ask the computer to
do. After that thinking, someone has to write a set of instructions for the
computer to follow.

 Given the current state of affairs, you can’t write these instructions in English
or any other language that people speak. Science fiction is filled with stories
about people who say simple things to robots and get back disastrous,
 unexpected results. English and other such languages are unsuitable for
 communication with computers for several reasons:

 ✓ An English sentence can be misinterpreted. “Chew one tablet three
times a day until finished.”

 ✓ It’s difficult to weave a very complicated command in English. “Join
flange A to protuberance B, making sure to connect only the outermost
lip of flange A to the larger end of the protuberance B, while joining the
middle and inner lips of flange A to grommet C.”

 ✓ An English sentence has lots of extra baggage. “Sentence has unneeded
words.”

 ✓ English is difficult to interpret. “As part of this Publishing Agreement
between John Wiley & Sons, Inc. (‘Wiley’) and the Author (‘Barry Burd’),
Wiley shall pay the sum of one-thousand-two-hundred-fifty-seven dollars
and sixty-three cents ($1,257.63) to the Author for partial submittal of
 Java For Dummies, 6th Edition (‘the Work’).”

 To tell a computer what to do, you have to use a special language to write terse,
unambiguous instructions. A special language of this kind is called a computer
programming language. A set of instructions written in such a language is called
a program. When looked at as a big blob, these instructions are called software
or code. Here’s what code looks like when it’s written in Java:

 public class PayBarry {
 public static void main(String args[]) {

 double checkAmount = 1257.63;
 System.out.print("Pay to the order of ");
 System.out.print("Dr. Barry Burd ");
 System.out.print("$");
 System.out.println(checkAmount);
 }
 }

05_9781118407806-ch01.indd 1005_9781118407806-ch01.indd 10 3/4/2014 1:51:25 AM3/4/2014 1:51:25 AM

11 Chapter 1: All about Java

 Why You Should Use Java
 It’s time to celebrate! You’ve just picked up a copy of Java For Dummies,
6th Edition, and you’re reading Chapter 1 . At this rate, you’ll be an expert
Java programmer in no time at all, so rejoice in your eventual success by
throwing a big party.

 To prepare for the party, I’ll bake a cake. I’m lazy, so I’ll use a ready-to-bake
cake mix. Let me see . . . add water to the mix and then add butter and
eggs . . . Hey, wait! I just looked at the list of ingredients. What’s MSG? And
what about propylene glycol? That’s used in antifreeze, isn’t it?

 I’ll change plans and make the cake from scratch. Sure, it’s a little harder, but
that way I get exactly what I want.

 Computer programs work the same way. You can use somebody else’s program
or write your own. If you use somebody else’s program, you use whatever you
get. When you write your own program, you can tailor the program especially
for your needs.

 Writing computer code is a big, worldwide industry. Companies do it, freelance
professionals do it, hobbyists do it — all kinds of people do it. A typical big
 company has teams, departments, and divisions that write programs for the
company. But you can write programs for yourself or someone else, for a living
or for fun. In a recent estimate, the number of lines of code written each day
by programmers in the United States alone exceeds the number of methane
molecules on the planet Jupiter. * Take almost anything that can be done with
a computer. With the right amount of time, you can write your own program
to do it. (Of course, the “right amount of time” may be very long, but that’s not
the point. Many interesting and useful programs can be written in hours or
even minutes.)

 Getting Perspective: Where Java Fits In
 Here’s a brief history of modern computer programming:

 ✓ 1954–1957: FORTRAN is developed .

 FORTRAN was the first modern computer programming language. For
scientific programming, FORTRAN is a real racehorse. Year after year,
FORTRAN is a leading language among computer programmers through-
out the world.

 * I made up this fact all by myself.

05_9781118407806-ch01.indd 1105_9781118407806-ch01.indd 11 3/4/2014 1:51:25 AM3/4/2014 1:51:25 AM

12 Part I: Getting Started with Java

 ✓ 1959: Grace Hopper at Remington Rand develops the COBOL
 programming language .

 The letter B in COBOL stands for Business, and business is just what
COBOL is all about. The language’s primary feature is the processing of
one record after another, one customer after another, or one employee
after another.

 Within a few years after its initial development, COBOL became the most
widely used language for business data processing. Even today, COBOL
represents a large part of the computer programming industry.

 ✓ 1972: Dennis Ritchie at AT&T Bell Labs develops the C programming
language .

 The “look and feel” that you see in this book’s examples comes from the
C programming language. Code written in C uses curly braces, if state-
ments, for statements, and so on.

 In terms of power, you can use C to solve the same problems that you
can solve by using FORTRAN, Java, or any other modern programming
language. (You can write a scientific calculator program in COBOL,
but doing that sort of thing would feel really strange.) The difference
between one programming language and another isn’t power. The differ-
ence is ease and appropriateness of use. That’s where the Java language
excels.

 ✓ 1986: Bjarne Stroustrup (again at AT&T Bell Labs) develops C++ .

 Unlike its C language ancestor, the language C++ supports object-oriented
programming. This support represents a huge step forward. (See the next
section in this chapter.)

 ✓ May 23, 1995: Sun Microsystems releases its first official version of the
Java programming language .

 Java improves upon the concepts in C++. Java’s “Write Once, Run
Anywhere” philosophy makes the language ideal for distributing code
across the Internet.

 Additionally, Java is a great general-purpose programming language.
With Java, you can write windowed applications, build and explore
databases, control handheld devices, and more. Within five short years,
the Java programming language had 2.5 million developers worldwide.
(I know. I have a commemorative T-shirt to prove it.)

 ✓ November 2000: The College Board announces that, starting in the
year 2003, the Computer Science Advanced Placement exams will be
based on Java .

 Wanna know what that snot-nosed kid living down the street is learning
in high school? You guessed it — Java.

 ✓ 2002: Microsoft introduces a new language named C# .

 Many of the C# language features come directly from features in Java.

05_9781118407806-ch01.indd 1205_9781118407806-ch01.indd 12 3/4/2014 1:51:25 AM3/4/2014 1:51:25 AM

13 Chapter 1: All about Java

 ✓ June 2004: Sys-Con Media reports that the demand for Java program-
mers tops the demand for C++ programmers by 50 percent (http://
java.sys-con.com/node/48507).

 And there’s more! The demand for Java programmers beats the combined
demand for C++ and C# programmers by 8 percent. Java programmers
are more employable than VB (Visual Basic) programmers by a whopping
190 percent.

 ✓ 2007: Google adopts Java as the primary language for creating apps
on Android mobile devices .

 ✓ January 2010: Oracle Corporation purchases Sun Microsystems,
 bringing Java technology into the Oracle family of products .

 ✓ June 2010: eWeek ranks Java first among its “Top 10 Programming
Languages to Keep You Employed” (www.eweek.com/c/a/
Application-Development/Top-10-Programming-Languages-
to-Keep-You-Employed-719257).

 ✓ August 2013: Java runs on more than 1.1 billion desktop computers
(http://java.com/en/about) and Android Java runs on 250 million
mobile phones (www.mobiledevicemanager.com/mobile-device-
statistics/250-million-android-devices-in-use).

 Additionally, Java technology provides interactive capabilities to all
Blu-ray devices and is the most popular programming language in the
TIOBE Programming Community Index (www.tiobe.com/index.php/
content/paperinfo/tpci), on PYPL: the PopularitY of Programming
Language Index (http://sites.google.com/site/pydatalog/
pypl/PyPL-PopularitY-of-Programming-Language), and on other
indexes.

 Well, I’m impressed.

 Object-Oriented Programming (OOP)
 It’s three in the morning. I’m dreaming about the history course that I failed in
high school. The teacher is yelling at me, “You have two days to study for the final
exam, but you won’t remember to study. You’ll forget and feel guilty, guilty, guilty.”

 Suddenly, the phone rings. I’m awakened abruptly from my deep sleep. (Sure,
I disliked dreaming about the history course, but I like being awakened even
less.) At first, I drop the telephone on the floor. After fumbling to pick it up,
I issue a grumpy, “Hello, who’s this?” A voice answers, “I’m a reporter from
 The New York Times. I’m writing an article about Java, and I need to know all
about the programming language in five words or less. Can you explain it?”

 My mind is too hazy. I can’t think. So I say the first thing that comes to my
mind and then go back to sleep.

05_9781118407806-ch01.indd 1305_9781118407806-ch01.indd 13 3/4/2014 1:51:25 AM3/4/2014 1:51:25 AM

14 Part I: Getting Started with Java

 Come morning, I hardly remember the conversation with the reporter. In fact,
I don’t remember how I answered the question. Did I tell the reporter where
he could put his article about Java?

 I put on my robe and rush to the front of my house’s driveway. As I pick up
the morning paper, I glance at the front page and see the two-inch headline:

 Burd Calls Java “A Great Object-Oriented Language”

 Object-oriented languages
 Java is object-oriented. What does that mean? Unlike languages, such as
FORTRAN, that focus on giving the computer imperative “Do this/Do that”
commands, object-oriented languages focus on data. Of course, object-oriented
programs still tell the computer what to do. They start, however, by organizing
the data, and the commands come later.

 Object-oriented languages are better than “Do this/Do that” languages because
they organize data in a way that helps people do all kinds of things with it. To
modify the data, you can build on what you already have rather than scrap
everything you’ve done and start over each time you need to do something new.
Although computer programmers are generally smart people, they took a while
to figure this out. For the full history lesson, see the sidebar “The winding road
from FORTRAN to Java” (but I won’t make you feel guilty if you don’t read it).

 Objects and their classes
 In an object-oriented language, you use objects and classes to organize
your data.

 Imagine that you’re writing a computer program to keep track of the houses
in a new condominium development (still under construction). The houses
differ only slightly from one another. Each house has a distinctive siding
color, an indoor paint color, a kitchen cabinet style, and so on. In your
object-oriented computer program, each house is an object.

 But objects aren’t the whole story. Although the houses differ slightly from
one another, all the houses share the same list of characteristics. For instance,
each house has a characteristic known as siding color. Each house has another
characteristic known as kitchen cabinet style. In your object-oriented program,
you need a master list containing all the characteristics that a house object
can possess. This master list of characteristics is called a class.

05_9781118407806-ch01.indd 1405_9781118407806-ch01.indd 14 3/4/2014 1:51:25 AM3/4/2014 1:51:25 AM

15 Chapter 1: All about Java

 The winding road from FORTRAN to Java
 In the mid-1950s, a team of people created a
programming language named FORTRAN. It
was a good language, but it was based on the
idea that you should issue direct, imperative
commands to the computer. “Do this, computer.
Then do that, computer.” (Of course, the com-
mands in a real FORTRAN program were much
more precise than “Do this” or “Do that.”)

 In the years that followed, teams developed
many new computer languages, and many of
the languages copied the FORTRAN “Do this/Do
that” model. One of the more popular “Do this/Do
that” languages went by the one-letter name C.
Of course, the “Do this/Do that” camp had some
renegades. In languages named SIMULA and
Smalltalk, programmers moved the imperative
“Do this” commands into the background and
concentrated on descriptions of data. In these lan-
guages, you didn’t come right out and say, “Print
a list of delinquent accounts.” Instead, you began
by saying, “This is what it means to be an account.
An account has a name and a balance.” Then you
said, “This is how you ask an account whether it’s
delinquent.” Suddenly, the data became king. An
account was a thing that had a name, a balance,
and a way of telling you whether it was delinquent.

 Languages that focus first on the data are
called object-oriented programming languages.
These object-oriented languages make excel-
lent programming tools. Here’s why:

 ✓ Thinking first about the data makes you a
good computer programmer.

 ✓ You can extend and reuse the descriptions
of data over and over again. When you
try to teach old FORTRAN programs new
tricks, however, the old programs show
how brittle they are. They break.

 In the 1970s, object-oriented languages, such
as SIMULA and Smalltalk, were buried in
the computer hobbyist magazine articles. In
the meantime, languages based on the old
FORTRAN model were multiplying like rabbits.

 So in 1986, a fellow named Bjarne Stroustrup
created a language named C++. The C++
language became very popular because it
mixed the old C language terminology with
the improved object-oriented structure. Many
companies turned their backs on the old
FORTRAN/C programming style and adopted
C++ as their standard.

 But C++ had a flaw. Using C++, you could bypass
all the object-oriented features and write a pro-
gram by using the old FORTRAN/C programming
style. When you started writing a C++ account-
ing program, you could take either fork in the
road:

 ✓ You could start by issuing direct “Do this”
commands to the computer, saying the
mathematical equivalent of “Print a list of
delinquent accounts, and make it snappy.”

 ✓ You could take the object-oriented
approach and begin by describing what it
means to be an account.

 Some people said that C++ offered the best
of both worlds, but others argued that the
first world (the world of FORTRAN and C)
shouldn’t be part of modern programming.
If you gave a programmer an opportunity
to write code either way, the programmer
would too often choose to write code the
wrong way.

 So in 1995, James Gosling of Sun Microsystems
created the language named Java. In creating
Java, Gosling borrowed the look and feel of
C++. But Gosling took most of the old “Do this/
Do that” features of C++ and threw them in
the trash. Then he added features that made
the development of objects smoother and
easier. All in all, Gosling created a language
whose object-oriented philosophy is pure and
clean. When you program in Java, you have no
choice but to work with objects. That’s the way
it should be.

05_9781118407806-ch01.indd 1505_9781118407806-ch01.indd 15 3/4/2014 1:51:25 AM3/4/2014 1:51:25 AM

16 Part I: Getting Started with Java

 So there you have it. Object-oriented programming is misnamed. It should
really be called “programming with classes and objects.”

 Now notice that I put the word classes first. How dare I do this! Well, maybe
I’m not so crazy. Think again about a housing development that’s under con-
struction. Somewhere on the lot, in a rickety trailer parked on bare dirt, is a
master list of characteristics known as a blueprint. An architect’s blueprint is
like an object-oriented programmer’s class. A blueprint is a list of characteris-
tics that each house will have. The blueprint says, “siding.” The actual house
object has gray siding. The blueprint says, “kitchen cabinet.” The actual
house object has Louis XIV kitchen cabinets.

 The analogy doesn’t end with lists of characteristics. Another important parallel
exists between blueprints and classes. A year after you create the blueprint,
you use it to build ten houses. It’s the same with classes and objects. First, the
programmer writes code to describe a class. Then when the program runs, the
computer creates objects from the (blueprint) class.

 So that’s the real relationship between classes and objects. The programmer
defines a class, and from the class definition, the computer makes individual
objects.

 What’s so good about an object-oriented
language?
 Based on the previous section’s story about home building, imagine that
you’ve already written a computer program to keep track of the building
instructions for houses in a new development. Then, the big boss decides on
a modified plan — a plan in which half the houses have three bedrooms and
the other half have four.

 If you use the old FORTRAN/C style of computer programming, your instructions
look like this:

 Dig a ditch for the basement.
 Lay concrete around the sides of the ditch.
 Put two-by-fours along the sides for the basement’s frame.
 . . .

 This would be like an architect creating a long list of instructions instead of
a blueprint. To modify the plan, you have to sort through the list to find the
instructions for building bedrooms. To make things worse, the instructions
could be scattered among pages 234, 394–410, 739, 10, and 2. If the builder
had to decipher other peoples’ complicated instructions, the task would be
ten times harder.

05_9781118407806-ch01.indd 1605_9781118407806-ch01.indd 16 3/4/2014 1:51:25 AM3/4/2014 1:51:25 AM

17 Chapter 1: All about Java

 Starting with a class, however, is like starting with a blueprint. If you decide
to have both three- and four-bedroom houses, you can start with a blueprint
called the house blueprint that has a ground floor and a second floor, but
has no indoor walls drawn on the second floor. Then you make two more
second-floor blueprints — one for the three-bedroom house and another for
the four-bedroom house. (You name these new blueprints the three-bedroom house
blueprint and the four-bedroom house blueprint.)

 Your builder colleagues are amazed with your sense of logic and organization,
but they have concerns. They pose a question. “You called one of the blueprints
the ‘three-bedroom house’ blueprint. How can you do this if it’s a blueprint for a
second floor and not for a whole house?”

 You smile knowingly and answer, “The three-bedroom house blueprint can say,
‘For info about the lower floors, see the original house blueprint.’ That way, the
three-bedroom house blueprint describes a whole house. The four-bedroom
house blueprint can say the same thing. With this setup, we can take advantage
of all the work we already did to create the original house blueprint and save
lots of money.”

 In the language of object-oriented programming, the three- and four-bedroom
house classes are inheriting the features of the original house class. You can
also say that the three- and four-bedroom house classes are extending the
original house class. (See Figure 1-1 .)

 Figure 1-1 :

 Terminology
in object-
oriented

programming.

05_9781118407806-ch01.indd 1705_9781118407806-ch01.indd 17 3/4/2014 1:51:25 AM3/4/2014 1:51:25 AM

18 Part I: Getting Started with Java

 The original house class is called the superclass of the three- and four-bedroom
house classes. In that vein, the three- and four-bedroom house classes are
 subclasses of the original house class. Put another way, the original house
class is called the parent class of three- and four-bedroom house classes. The
three- and four-bedroom house classes are child classes of the original house
class. (See Figure 1-1 .)

 Needless to say, your homebuilder colleagues are jealous. A crowd of home-
builders is mobbing around you to hear about your great ideas. So, at that
moment, you drop one more bombshell: “By creating a class with subclasses,
we can reuse the blueprint in the future. If someone comes along and wants
a five-bedroom house, we can extend our original house blueprint by making
a five-bedroom house blueprint. We’ll never have to spend money for an
original house blueprint again.”

 “But,” says a colleague in the back row, “what happens if someone wants a
different first-floor design? Do we trash the original house blueprint or start
scribbling all over the original blueprint? That’ll cost big bucks, won’t it?”

 In a confident tone, you reply, “We don’t have to mess with the original house
blueprint. If someone wants a Jacuzzi in his living room, we can make a
new, small blueprint describing only the new living room and call this the
 Jacuzzi-in-living-room house blueprint. Then, this new blueprint can refer to
the original house blueprint for info on the rest of the house (the part that’s
not in the living room).” In the language of object-oriented programming,
the Jacuzzi-in-living-room house blueprint still extends the original house
blueprint. The Jacuzzi blueprint is still a subclass of the original house
blueprint. In fact, all the terminology about superclass, parent class, and
child class still applies. The only thing that’s new is that the Jacuzzi blueprint
 overrides the living room features in the original house blueprint.

 In the days before object-oriented languages, the programming world experienced
a crisis in software development. Programmers wrote code, then discovered new
needs, and then had to trash their code and start from scratch. This problem
happened over and over again because the code that the programmers were
writing couldn’t be reused. Object-oriented programming changed all this for
the better (and, as Burd said, Java is “A Great Object-Oriented Language”).

 Refining your understanding
of classes and objects
 When you program in Java, you work constantly with classes and objects.
These two ideas are really important. That’s why, in this chapter, I hit you
over the head with one analogy after another about classes and objects.

05_9781118407806-ch01.indd 1805_9781118407806-ch01.indd 18 3/4/2014 1:51:26 AM3/4/2014 1:51:26 AM

19 Chapter 1: All about Java

 Close your eyes for a minute and think about what it means for something to
be a chair. . . .

 A chair has a seat, a back, and legs. Each seat has a shape, a color, a degree
of softness, and so on. These are the properties that a chair possesses. What
I describe is chairness — the notion of something being a chair. In object-
oriented terminology, I’m describing the Chair class.

 Now peek over the edge of this book’s margin and take a minute to look
around your room. (If you’re not sitting in a room right now, fake it.)

 Several chairs are in the room, and each chair is an object. Each of these
objects is an example of that ethereal thing called the Chair class. So that’s
how it works — the class is the idea of chairness, and each individual chair is
an object.

 A class isn’t quite a collection of things. Instead, a class is the idea behind
a certain kind of thing. When I talk about the class of chairs in your room,
I’m talking about the fact that each chair has legs, a seat, a color, and so on.
The colors may be different for different chairs in the room, but that doesn’t
matter. When you talk about a class of things, you’re focusing on the properties
that each of the things possesses.

 It makes sense to think of an object as being a concrete instance of a class.
In fact, the official terminology is consistent with this thinking. If you write a
Java program in which you define a Chair class, each actual chair (the chair
that you’re sitting on, the empty chair right next to you, and so on) is called
an instance of the Chair class.

 Here’s another way to think about a class. Imagine a table displaying all three
of your bank accounts. (See Table 1-1 .)

 Table 1-1 A Table of Accounts

 Account Number Type Balance
 16-13154-22864-7 Checking 174.87

 1011 1234 2122 0000 Credit –471.03

 16-17238-13344-7 Savings 247.38

 Think of the table’s column headings as a class, and think of each row of the
table as an object. The table’s column headings describe the Account class.

05_9781118407806-ch01.indd 1905_9781118407806-ch01.indd 19 3/4/2014 1:51:26 AM3/4/2014 1:51:26 AM

20 Part I: Getting Started with Java

 According to the table’s column headings, each account has an account
number, a type, and a balance. Rephrased in the terminology of object-oriented
programming, each object in the Account class (that is, each instance of the
 Account class) has an account number, a type, and a balance. So, the bottom
row of the table is an object with account number 16-17238-13344-7. This same
object has type Savings and a balance of 247.38. If you opened a new account,
you would have another object, and the table would grow an additional row.
The new object would be an instance of the same Account class.

 What’s Next?
 This chapter is filled with general descriptions of things. A general description
is good when you’re just getting started, but you don’t really understand things
until you get to know some specifics. That’s why the next several chapters deal
with specifics.

 So please, turn the page. The next chapter can’t wait for you to read it.

05_9781118407806-ch01.indd 2005_9781118407806-ch01.indd 20 3/4/2014 1:51:26 AM3/4/2014 1:51:26 AM

