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      Introduction to Multiscale 
Methods    

1.1    The Rationale for Multiscale Computations 

 Consider a textbook boundary value problem that consists of equilibrium, kinematical, and 
constitutive equations together with essential and natural boundary conditions. These equations 
can be classified into two categories: those that directly follow from physical laws and those 
that do not. A constitutive equation demonstrates a relation between two physical quantities 
that is specific to a material or substance and does not follow directly from physical laws. It 
can be combined with other equations (equilibrium and kinematical equations, which do 
 represent physical laws) to solve specific physical problems. 

 In other words, it is convenient to label all that we do not know about the boundary value 
problem as a  constitutive law   (a term originally coined by Walter Noll in 1954) and designate 
an experimentalist to quantify the constitutive law parameters. While this is a trivial exercise 
for linear elastic materials, this is not the case for anisotropic  history-dependent materials well 
into their nonlinear regime. In theory, if a material response is history-dependent, an infinite 
number of experiments would be needed to quantify its response. In practice, however, a hand-
ful of constitutive law parameters are believed to “capture” the various failure mechanisms 
that have been observed experimentally. This is known as  phenomenological    modeling , which 
relates several different empirical observations of phenomena to each other in a way that is 
consistent with fundamental theory but is not directly derived from it. 

 An alternative to phenomenological modeling is to derive constitutive equations (or directly, 
field quantities) from finer scale(s) where established laws of physics are believed to be better 
understood. The enormous gains that can be accrued by this so-called multiscale approach  
have been reported in numerous articles [   1 ,   2 ,   3 ,   4 ,   5 ,6]. Multiscale computations have been 
identified (see page 14 in [7]) as one of the areas critical to future nanotechnology advances. 
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2 Practical Multiscaling

For example, the FY2004 US$3.7 billion National Nanotechnology Bill (page 14 in [7]) states 
that “approaches that integrate more than one such technique (…molecular  simulations, 
continuum-based models, etc.) will play an important role in this effort.”

One of the main barriers to such a multiscale approach is the increased uncertainty and 
complexity introduced by finer scales, as illustrated in Figure 1.1. As a guiding principle for 
assessing the need for finer scales, it is appropriate to recall Einstein’s statement that “the 
model used should be the simplest one possible, but not simpler.” The use of any multiscale 
approach has to be carefully weighed on a case-by-case basis. For example, in the case of 
metal matrix composites (MMCs) with an almost periodic arrangement of fibers, introducing 
finer scales might be advantageous since the bulk material typically does not follow normality 
rules, and developing a phenomenological coarse-scale constitutive model might be challeng-
ing at best. The behavior of each phase is well understood, and obtaining the overall response 
of the material from its fine-scale constituents can be obtained using homogenization. On the 
other hand, in brittle ceramic matrix composites (CMCs), the microcracks are often randomly 
distributed and characterization of their interface properties is difficult. In this case, the use of 
a multiscale approach may not be the best choice.

1.2 The Hype and the Reality

Multiscale Science and Engineering is a relatively new field [8,9] and, as with most new tech-
nologies, began with a naive euphoria (Figure 1.2). During the euphoria stage of technology 
development, inventors can become immersed in the ideas themselves and may overpromise, 
in part to generate funds to continue their work. Hype is a natural handmaiden to overpromise, 
and most technologies build rapidly to a peak of hype [10].

For instance, early success in expert systems led to inflated claims and unrealistic expec-
tations. The field did not grow as rapidly as investors had been led to expect, and this trans-
lated into disillusionment. In 1981 Feigenbaum et al. [11] reckoned that although artificial 
intelligence (AI) was already 25 years old, it “was a gangly and arrogant youth, yearning for 

Correct but irrelevant
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Figure 1.1 Reduced precision due to increase in uncertainty and/or complexity. CMC, ceramic 
matrix composite; MMC, metal matrix composite
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Introduction to Multiscale Methods  3

a maturity that was nowhere evident.” Interestingly, today you can purchase the hardcover AI 
handbook [11] for as little as US$0.73 on Amazon. Multiscale  computations also had their 
share of overpromise, such as inflated claims of designing drugs atom by atom [12] or reli-
ably designing the Boeing 787 from first principles, just to mention a few.

Following this naive euphoria (Figure 1.2), there is almost always an overreaction to ideas 
that are not fully developed, and this inevitably leads to a crash, followed by a period of 
 wallowing in the depths of cynicism. Many new technologies evolve to this point and then 
fade away. The ones that survive do so because industry (or perhaps someone else) finds a 
“good use” (a true user benefit) for this new technology.

The author of this book believes that the state of the art today in multiscale science and engi-
neering is sufficiently mature to take on the more than 50-year-old challenge [13] posed by 
Nobel Prize Laureate Richard Feynman: “What would the properties of materials be if we 
could really arrange the atoms the way we want them?” However, progress toward fulfilling 
the promise of multiscale science and engineering hinges not only on its development as a 
discipline concerned with the understanding and integration of mathematical, computational, 
and domain expertise sciences, but more so with its ability to meet broader societal needs 
beyond those of interest to the academic community. After all, as compelling as a finite element 
theory is, the future of that field might have been in doubt if practitioners had not embraced it.

Thus, the primary objective of this book is to focus not only on theory but also on practical 
utilization of multiscale methods.

1.3 Examples and Qualification of Multiscale Methods

Nature and man-made products are replete with multiple scales. Consider, for instance, the 
Airbus A380 depicted in Figure 1.3. It is 53 m long with a wingspan of 80 m and height of 24 m. 
The A380 consists of hundreds of thousands of structural components and many more struc-
tural details. Just in the fuselage alone there are more than 750,000 holes and cutouts. In addition 
to various structural scales, there are numerous material scales. At the coarsest material scales, 
the composites portion of the fuselage consists of laminate and woven/textile composite scales; 
at the intermediate scale is a tow or yarn, which consists of a bundle of fibers; and finally, there 
are one or more discrete scales, including atomistic and ab initio (quantum) scales. The metal 
portion of the airplane consists of a polycrystalline scale, a single crystal scale that considers 
dislocation density, a discrete dislocation scale, and finally, atomistic and ab initio scales.
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Figure 1.2 Evolution of new technology
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4 Practical Multiscaling

It is tempting to start at the ab initio scale and to upscale, scale after scale, all the way to the 
product scale. This, unfortunately, is neither a realistic undertaking nor the goal of the present 
book. Our goal here is much more modest. We will focus on modeling and simulation 
approaches that can predict certain quantities of interest with significantly lower computa-
tional cost than solving the corresponding fine-scale system. The starting point for the 
 fine-scale system of choice is not necessarily the ab initio scale; instead, the computational 
resources available and the accuracy requirement determine the starting point.

A modeling and simulation approach will be considered multiscale if it is capable of 
resolving certain quantities of interest with significantly lower cost than solving the 
corresponding fine-scale system. Schematically, a multiscale method has to satisfy the 
so-called Accuracy and Cost Requirements (ACR) test:

1

Error in quantities of interest tol

Cost of multiscale solver

Cost of fine scale solver

<



In general, multiscale approaches fall into one of two categories: information-passing (or 
hierarchical) or concurrent. In the information-passing multiscale approach, which is the main 
focus of this book, the fine-scale response is idealized (approximated or unresolved) and its 
overall (average) response is infused into the coarse scale. In the concurrent approaches, fine- 
and coarse-scale resolutions are simultaneously employed in different portions of the problem 
domain, and the exchange of information occurs through the interface. The subdomains where 
different scale resolutions are employed can be either disjoint or overlapping.

Metal

Composites

Figure 1.3 Multiple scales in the Airbus A380
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Information-passing multiscale methods are typically used to model the overall response of 
the fine scale, except for the hot spots in the vicinity of cutouts and boundary layers where 
concurrent multiscale methods are more appropriate.

To this end, we will focus on the qualification of multiscale methods. Loosely speaking, the 
information-passing multiscale approach is likely to pass the ACR test provided that:

(i) quantities of interest are limited to or defined only on the coarse scale (provided that these 
quantities are computable from the fine scale); and

(ii) special features of the fine-scale problem, such as scale separation and self-similarity, are 
taken advantage of.

On the other hand, for the concurrent multiscale approach to pass the ACR test, the follow-
ing conditions must be satisfied:

(i) the interface (or interphase) between the fine and coarse scales should be properly 
engineered;

(ii) the fine-scale model should be limited to a small portion of the computational domain; and
(iii) the precise material microstructure should be known in the subdomain where the 

 fine-scale model is considered.

It is important to note that even though the concurrent approach may pass the first two 
 criteria in the ACR test, its computational cost will typically exceed that of the information-
passing methods. Furthermore, the main hurdle to successful utilization of concurrent methods 
in practice is a lack of knowledge of precise material microstructure in the hot spots. In these 
locations, fine-scale resolution is required, as opposed to the information-passing multiscale 
methods where material microstructure in small representative windows is reconstructed from 
various test coupons.

1.4 Nomenclature and definitions

Since various multiscale methods were conceived in different scientific communities, there has 
been a proliferation of definitions, some of which are contradictory or overlapping. For  instance, 
various information-passing multiscale methods have been labeled by different names, 
including upscaling methods, coarse-graining methods, homogenization methods, or simply 
multiscale methods. There are also subcategories of the above definitions, such as systematic 
upscaling (with obvious implications), operator upscaling, variational multiscale, computa-
tional homogenization, multigrid homogenization, numerical homogenization, numerical 
upscaling, and computational coarse-graining, just to mention a few.

Some authors draw a distinction between upscaling and multiscale methods. According to 
one such definition, upscaling forms a coarse-scale model with an a priori defined mathematical 
structure; once the model is conceived, the fine-scale information is discarded, whereas in mul-
tiscale methods, the fine-scale information is retained throughout the simulation and the coarse-
scale structure is generally not expressed analytically. However, there is no consensus on the 
above definition. For instance, the variational multiscale method (VMS) [14] is  considered to 
fall into the category of (operator) upscaling methods. Yet, for nonlinear problems, fine-scale 
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6 Practical Multiscaling

information is not discarded in VMS, suggesting that it belongs to the category of multiscale 
methods. Likewise, the homogenization method for linear problems provides  effective prop-
erties, and this is obviously an upscaling method based on the aforementioned definition; and 
yet, for nonlinear problems, fine- and coarse-scale problems are fully coupled throughout the 
analysis. Another misconception is the supposition that upscaling is a form of homogenization 
that is free of the periodicity assumption. Homogenization, like most of the upscaling methods, 
assumes some form of scale separation, but it can be used to homogenize random heterogeneous 
media with either periodic, weakly periodic, essential, natural, or hybrid boundary conditions.

Hereafter, upscaling and downscaling will be understood as two building blocks of the 
information-passing multiscale method. For nonlinear processes, upscaling is a history-
dependent process of constructing coarse-scale equations from well-defined fine-scale 
equations. History dependence means that the fine-scale information is retained and used 
throughout the simulation to update the coarse-scale problem. Downscaling, often called 
localization, is the second building block of the information-passing multiscale approach. 
Downscaling is a history-dependent process by which fine-scale information is continuously 
reconstructed in small windows using the information from the coarse-scale problem. The 
information-passing multiscale approach is a continuous process of upscaling and down-
scaling. The window in this information-passing process can be a point in the coarse-scale 
domain, in which case the information-passing multiscale approach is synonymous with non-
linear (computational) homogenization, a single coarse-scale element [14], or a patch of 
coarse-scale elements. In the former case, this small window is often referred to as a unit cell 
or representative volume element. For linear problems, the fine- and coarse-scale problems 
are one-way coupled, where upscaling provides coarse-scale (effective) properties, while 
downscaling plays the role of postprocessing of the fine-scale solution. Hereafter, the nested 
process of upscaling and downscaling will be termed as upscaling/downscaling.

Coarse-graining is a subclass of upscaling methods where a coarse-scale (or coarse-grained) 
model is constructed from the fine-scale information in the preprocessing stage prior to non-
linear analysis. Coarse-grained molecular dynamics is a typical example of such coarse-graining. 
The fact that fine-scale information is not revisited in these methods offers considerable 
computational advantages, but often at the expense of accuracy.

Different terminologies are used to indicate various scales. In the case of two scales, the fine 
scale is often referred to as a microscale, unresolvable scale, atomistic scale, or discrete scale; 
the coarse scale is often labeled as a macroscale, resolvable scale, component scale, or con-
tinuum scale. Here we will simply refer to the two scales as fine and coarse scales. For more 
than two scales, we will refer to the additional scales as mesoscales.

1.5 Notation

1.5.1 Index and matrix notation

Two types of notation will be used: (i) indicial notation; and (ii) matrix notation. All the deri-
vations will be made in the indicial notation. The equations pertaining to the finite element 
implementation will be given in indicial or matrix notation.

In the indicial notation, the components of tensors or matrices are explicitly specified. 
Thus a vector, which is a first-order tensor, is denoted in indicial notation by a

i 
where the 

range of the index is the number of spatial dimensions n
sd

. Indices repeated twice in a term 
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Introduction to Multiscale Methods  7

are summed, in conformance with the rules of Einstein notation. Spatial tensor  components 
are denoted by lowercase Latin subscripts, which are always on the right of the tensor. 
Spatial components of a second-order tensor are indicated by two Latin  subscripts, and 
they always refer to the Cartesian coordinate system. For example, small strain tensor 
components are denoted by e

ij
.

We will alternate between two notations for finite element nodes and degrees of freedom. 
Nodal indices will always be indicated by uppercase Latin letters positioned at the bottom 
right of the tensor, vector, or matrix. For example, v

iA
 is the velocity of node A in the direction i. 

Indices representing finite element degrees of freedom will always be indicated by lowercase 
Greek letters positioned at the bottom right of the tensor or vector. For example, va is the 
velocity of degree-of-freedom a. The degrees of freedom are related to nodes by

α = − +( 1) sdA n i

where n
sd

  denotes the number of spatial dimensions.
When nodal and degrees-of-freedom indices are repeated twice, they will be summed over 

their range, which depends on the context. When dealing with an element, the range is over 
the nodes or degrees of freedom of the element, whereas when dealing with a mesh, the range 
is over the nodes or degrees of freedom of the mesh.

In the finite element implementation, we will often use matrix notation. We will indicate 
matrices and vectors, which are the first-order matrices, in boldface. Second-order tensor 
components will often be converted to Voigt notation in the implementation phase. In Voigt 
notation, kinetic symmetric tensors, such as Cauchy stress s

ij
, and kinematic symmetric 

 tensors, such as small strain e
ij
, are written as column matrices:

11 11

22 22

33 33

23 23

13 13

12 12

;
2

2

2

ij ij

σ ε
σ ε
σ ε

σ ε
σ ε
σ ε
σ ε

   
   
   
   

→ = → =   
   
   
   
      

σ ε

Note that kinematic tensor components for which indices are not equal are multiplied by 2 
in Voigt notation. The Voigt rule is particularly useful for converting fourth-order tensors. For 
example, the linear elastic constitutive tensor components L

ijkl
 are written in Voigt notation as

 




→ = 



 

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1213 1212

ijkl

L L L L L L

L L L L L L

L L L L L L
L

L L L L L L

L L L L L L

L L L L L L

L










such that s  = Le in matrix notation.
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8 Practical Multiscaling

The fourth-order identity tensor in the indicial notation is given as

( )δ δ δ δ= +1

2ijkl ik jl il jkI

where d
ik
 is the Kronecker delta, which is equal to zero for i ≠ j and one for i = j. The nonzero 

components of I
ijkl

 are

= = =

= = = = = =

= = = = = =

1111 2222 3333

1212 1313 2323 2121 3131 3232

2112 3113 3223 1221 1331 2332

1

1

2
1

2

I I I

I I I I I I

I I I I I I

Let I be a 6 × 6 diagonal matrix and H be any 6 × n matrix. The identity matrix I is defined 
so that IH = H, which requires diagonal terms with unequal indices to be multiplied by two.

 
 
 
 

=  
 
 
 
  

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

I

1.5.2 multiple Spatial Scale Coordinates

The coordinates in the coarse-scale deformed (or current) and undeformed (initial) configu-
rations will be denoted by x and X, respectively. For small deformation problems, a single 
coarse-scale coordinate x will be used.

The focus of this book is on two-scale analysis. The fine-scale problems will be considered in a 
small representative window often referred to as a unit cell. The unit cell will be generally assumed 
to be much smaller than the coarse-scale domain, and therefore its deformed and undeformed 
coordinates, denoted by y and Y, respectively, will be rescaled by a small positive parameter z as

ζ ζ ζ= = < / ; / 0 1y x Y X

For three-scale problems, y and Y will denote the intermediate scale (or mesoscale) configu-
ration, whereas z and Z will denote the finest scale configuration, such that

ζ ζ= =/ ; /z y Z Y

For the general case of n
sc
 scales, the left uppercase superscript in the brackets will denote the 

scale, with 0 denoting the coarsest scale and n
sc
 − 1 the finest scale. The position vector at scale 

I, (I)x, will be related to the position vector at scale I–1, (I − 1)x, by

ζ
ζ

−

−

=
= … −

=

( ) ( 1)

( ) ( 1)

/
for 1, , 1

/

I I

scI I
I n

X X

x x
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1.5.3 Domains and boundaries

For two-scale problems, we will consider three types of problem domains: (i) the composite 
domain denoted by Ωz; (ii) the coarse-scale domain denoted by Ω; and (iii) the unit cell 
domain denoted by Θ. The corresponding boundaries are denoted by ∂Ωz, ∂Ω, and ∂Θ, respec-
tively. nz, nc, and nΘ denote unit normals to the boundaries ∂Ωz, ∂Ω, and ∂Θ,  respectively. The 
volumes of the three domains are denoted by |Ωz|, |Ω|, and |Θ|.

Throughout this book, the right superscript z will denote the existence of fine-scale  features. 
The source problem will be always stated on a domain that, in addition to heterogeneities, may 
include microstructural voids. The composite domain Ωz is defined as a solid part of the 
coarse-scale domain that does not contain voids in the material microstructure. Furthermore, 
the boundary of the composite domain ∂Ωz may be rough due to the intersection of voids with 
the external boundary. On the other hand, the coarse-scale domain Ω and its boundary ∂Ω are 
free of fine-scale material features. In the absence of information about  surface roughness, we 
will often assume that ∂Ωz = ∂Ω and nz = nc.

∂Ωuz, ∂Ωtz and ∂Ωu, ∂Ωt denote the essential (displacement) and natural (traction)  boundaries 
of the composite and coarse-scale domains, respectively, related by

ζ ζ ζ ζ ζ∂Ω ∂Ω = ∂Ω ∂Ω ∂Ω =

∂Ω ∂Ω = ∂Ω ∂Ω ∂Ω =

 

 

and 0

and 0

t u t u

t u t u

A unit cell may consist of two or more fine-scale phases. The internal boundary between 
the fine-scale phases will be denoted by S, with 



n being the unit normal to the boundary.
For three-scale problems, Θ

z
 will denote the unit cell domain at the finest scale, and ∂Θ

z
 will 

denote its boundary. For more than three scales, (I)Θ and ∂(I)Θ will be the unit cell domain and 
its boundary at scale I, with indices I = 1 and I = n

sc
 − 1 denoting the coarsest and finest scale 

unit cell domains, respectively.
For large deformation problems, we will distinguish between deformed and undeformed 

configurations. X
ζΩ  and Ω

X
 will denote initial (undeformed) composite and coarse-scale 

domains, whereas x
ζΩ  and Ω

x
 are the corresponding current (deformed) configurations. 

ζ ζ∂Ω ∂Ω,u t
X X  and ζ ζ∂Ω ∂Ω,u t

x x  will denote the essential and natural boundaries of the initial and 
current composite domains. Similarly, ∂Ω ∂Ω,u t

X X and ∂Ω ∂Ω,u t
x x are the essential and natural 

boundaries of the initial and current coarse-scale domains, respectively. Unit normals to 
the  initial and current composite, coarse-scale, and unit cell domains will be denoted by 
(Nz, Nc, NΘ) and (nz, nc, nΘ), respectively.

The unit cell domains Θ
Y
 and Θ

y
 will denote initial and current configurations, with ∂Θ

Y
 and 

∂Θ
y
 being the corresponding boundaries.

1.5.4 Spatial and Temporal Derivatives

Upscaling methods will be predominantly derived from either the Hill–Mandel macrohomo-
geneity condition [15] or by using multiple-scale asymptotic methods. For two-scale  problems, the 
various response fields f z(x) will be assumed to depend on the fine- and coarse-scale coordinates

ζ =( ) ( , )f fx x y
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10 Practical Multiscaling

Spatial derivatives of the response function f z(x) can be calculated by the chain rule as

ζ

ζ ζ
∂ ∂= + = +

∂ ∂ , ,
( , ) 1 ( , ) 1

,
i ii x y

i i

f f
f f f

x y

x y x y

where a comma followed by a subscript variable denotes a partial derivative with respect to the 
subscript variable. Symmetric spatial derivatives are denoted as

   ∂ ∂∂ ∂
= + = +      ∂ ∂ ∂ ∂   

( , ) ( , )
1 1

and
2 2j j

j ji i
i x i y

j i j i

f ff f
f f

x x y y

For problems involving multiple temporal scales, such as fatigue in Chapter 4 and lattice 
vibration in Chapter 3, various response fields f z(x, t) will be assumed to depend on multiple 
spatial and temporal coordinates

ζ τ=( , ) ( , , , )f t f tx x y

where t is the fast time coordinate related to the slow time coordinate t by

τ η
η

= < 0 1
t

Time differentiation of response fields with respect to multiple temporal scales is given by 
the chain rule

ζ τ τ τ τ
η τ η

∂ ∂ ′= + = +
∂ ∂



( , ) ( , , , ) 1 ( , , , ) 1
( , , , ) ( , , , )

df t f t f t
f t f t

dt t

x x y x y
x y x y

Most often, it will be assumed that spatial and temporal scaling parameters are identical, 
that is, z = h.

1.5.5 Special Symbols

Throughout this book, special notations will denote certain attributes, as follows:

ˆˆ,Xx  – coordinates of the unit cell centroid
,u t  – prescribed fields (displacements and tractions)

c – local Cartesian coordinate in the physical domain placed at the unit cell centroid
( )(k) – right Latin superscript in parentheses denotes kth term in asymptotic expansion
( ) f – right superscript f denotes fine-scale fields and properties
( )c – right superscript c denotes coarse-scale fields and properties
( )m – right superscript m denotes master (independent) nodes on the unit cell boundary
( )S – right superscript S denotes slave (dependent) nodes on the unit cell boundary
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Introduction to Multiscale Methods  11

( )T – right superscript T denotes transpose
( )− 1 – right superscript −1 denotes inverse

i( ) – left superscript denotes iteration count

k
( ) – left subscript denotes time increment or load parameter
( )(a) –  right Greek superscript in parentheses denotes phase or interface partition in the unit cell
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