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Introduction to Real-Time Digital
Signal Processing

Signals can be classified into three categories: continuous-time (analog) signals, discrete-time
signals, and digital signals. The signals that we encounter daily are mostly analog signals.
These signals are defined continuously in time, have infinite resolution of amplitude values,
and can be processed using analog electronics containing both active and passive circuit
elements. Discrete-time signals are defined only at a particular set of time instances, thus they
can be represented as a sequence of numbers that have a continuous range of values. Digital
signals have discrete values in both time and amplitude, thus they can be stored and processed
by computers or digital hardware. In this book, we focus on the design, implementation, and
applications of digital systems for processing digital signals [1-6]. However, the theoretical
analysis usually uses discrete-time signals and systems for mathematical convenience.
Therefore, we use the terms “discrete-time” and “digital” interchangeably.

Digital signal processing (DSP) is concerned with the digital representation of signals and
the use of digital systems to analyze, modify, store, transmit, or extract information from these
signals. In recent years, the rapid advancement in digital technologies has enabled the
implementation of sophisticated DSP algorithms for real-time applications. DSP is now used
not only in areas where analog methods were used previously, but also in areas where analog
techniques are very difficult or impossible to apply.

There are many advantages in using digital techniques for signal processing rather than
analog devices such as amplifiers, modulators, and filters. Some of the advantages of DSP
systems over analog circuitry are summarized as follows:

1. Flexibility. Functions of a DSP system can be easily modified and upgraded with software
that implements the specific operations. One can design a DSP system to perform a wide
variety of tasks by executing different software modules. A digital device can be easily
upgraded in the field through the on-board memory (e.g., flash memory) to meet new
requirements, add new features, or enhance its performance.
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2. Reproducibility. The functions of a DSP system can be repeated precisely from one unit to
another. In addition, by using DSP techniques, digital signals can be stored, transferred, or
reproduced many times without degrading the quality. By contrast, analog circuits will not
have the same characteristics even if they are built following identical specifications, due
to analog component tolerances.

3. Reliability. The memory and logic of DSP hardware do not deteriorate with age.
Therefore, the performance of DSP systems will not drift with changing environmental
conditions or aged electronic components as their analog counterparts do.

4. Complexity. DSP allows sophisticated applications such as speech recognition to be
implemented using low-power and lightweight portable devices. Furthermore, there are
some important signal processing algorithms such as image compression and recognition,
data transmission and storage, and audio compression, which can only be performed using
DSP systems.

With the rapid evolution in semiconductor technologies, DSP systems have lower overall cost
compared to analog systems for most applications. DSP algorithms can be developed, analyzed,
and simulated using high-level language software such as C and MATLAB™. The performance
of the algorithms can be verified using low-cost, general-purpose computers. Therefore, DSP
systems are relatively easy to design, develop, analyze, simulate, test, and maintain.

There are some limitations associated with DSP. For example, the bandwidth of a DSP
system is limited by the sampling rate. Also, most of the DSP algorithms are implemented
using a fixed number of bits with limited precision and dynamic range, resulting in undesired
quantization and arithmetic errors.

1.1 Basic Elements of Real-Time DSP Systems

There are two types of DSP applications: non-real-time and real-time. Non-real-time signal
processing involves manipulating signals that have already been stored in digital form. This
may or may not represent a current action, and the processing result is not a function of real
time. Real-time signal processing places stringent demands on DSP hardware and software
design to complete predefined tasks within a given timeframe. This section reviews the
fundamental functional blocks of real-time DSP systems.

The basic functional blocks of DSP systems are illustrated in Figure 1.1, where a real-world
analog signal is converted to a digital signal, processed by DSP hardware, and converted back
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Figure 1.1 Basic functional block diagram of a real-time DSP system
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to an analog signal. For some applications, the input signal may be already in digital form and/
or the output data may not need to be converted to an analog signal, for example, the processed
digital information may be stored in memory for later use. In other applications, DSP systems
may be required to generate signals digitally, such as speech synthesis and signal generators.

1.2 Analog Interface

In this book, a time-domain signal is denoted with a lowercase letter. For example, x(f) in
Figure 1.1 is used to name an analog signal of x which is a function of time . The time variable
t and the amplitude of x(f) take on a continuum of values between —oo and oo. For this reason
we say x(7) and y(f) are continuous-time (or analog) signals. The signals x(n) and y(n) in
Figure 1.1 depict digital signals which have values only at time instant (or index) . In this
section, we first discuss how to convert analog signals into digital signals. The process of
converting an analog signal to a digital signal is called the analog-to-digital (A/D) conversion,
usually performed by an A/D converter (ADC).

The purpose of A/D conversion is to convert the analog signal to digital form for processing
by digital hardware. As shown in Figure 1.1, the analog signal x/(¢) is picked up by an
appropriate electronic sensor that converts pressure, temperature, or sound into electrical
signals. For example, a microphone can be used to pick up speech signals. The sensor output
signal x'(¢) is amplified by an amplifier with a gain of value g to produce the amplified signal

x(t) = gx'(1). (1.1)

The gain value g is determined such that x(#) has a dynamic range that matches the ADC
used by the system. If the peak-to-peak voltage range of the ADC is 2 volts (V), then g may
be set so that the amplitude of signal x(#) to the ADC is within £2 V. In practice, it is very
difficult to set an appropriate fixed gain because the level of x'(¢) may be unknown and
changing with time, especially for signals with larger dynamic ranges such as human speech.
Therefore, many practical systems use digital automatic gain control algorithms to determine
and update the gain value g based on the statistics of the input signal x'(¢).

Once the digital signal has been processed by the DSP hardware, the result y(n) is still in
digital form. In many DSP applications, we have to convert the digital signal y(n) back to the
analog signal y(¢) before it can be applied to appropriate analog devices. This process is called
the digital-to-analog (D/A) conversion, typically performed by a D/A converter (DAC). One
example is a digital audio player, in which the audio music signals are stored in digital format.
An audio player reads the encoded digital audio data from the memory and reconstructs the
corresponding analog waveform for playback.

The system shown in Figure 1.1 is a real-time system if the signal to the ADC is continuously
sampled and processed by the DSP hardware at the same rate. In order to maintain real-time
processing, the DSP hardware must perform all required operations within the fixed time, and
present the output sample to the DAC before the arrival of the next sample from the ADC.

1.2.1 Sampling

As shown in Figure 1.1, the ADC converts the analog signal x(¢) into the digital signal x(n).
The A/D conversion, commonly referred to as digitization, consists of the sampling
(digitization in time) and quantization (digitization in amplitude) processes as illustrated
in Figure 1.2. The basic sampling function can be carried out with an ideal “sample-and-hold”
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Figure 1.2 Block diagram of an ADC

circuit, which maintains the sampled signal level until the next sample is taken. The
quantization process approximates the waveform by assigning a number to represent its
value for each sample. Therefore, the A/D conversion performs the following steps:

1. The signal x() is sampled at uniformly spaced time instants n7, where n is a positive integer
and T is the sampling period in seconds. This sampling process converts an analog signal
into a discrete-time signal x(nT) with continuous amplitude value.

2. The amplitude of each discrete-time sample x(nT) is quantized into one of 28 levels, where
B is the number of bits used to represent each sample. The discrete amplitude levels are
represented (or encoded) into binary words x(n) with the fixed wordlength B.

The reason for making this distinction is that these two processes introduce different distortions.
The sampling process causes aliasing or folding distortion, while the encoding process results in
quantization noise. As shown in Figure 1.2, the sampler and quantizer are integrated on the same
chip. However, a high-speed ADC typically requires an external sample-and-hold device.
An ideal sampler can be considered as a switch that periodically opens and closes every T
seconds. The sampling period is defined as
T= ! (1.2)
£ '
where f; is the sampling frequency in hertz (Hz) or sampling rate in samples per second. The
intermediate signal x(nT) is a discrete-time signal with continuous value (a number with
infinite precision) at discrete time n7, n=0, 1, ..., oo, as illustrated in Figure 1.3. The
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Figure 1.3 Sampling of analog signal x(¢) and the corresponding discrete-time signal x(nT)
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analog signal x(¥) is continuous in both time and amplitude. The sampled discrete-time signal
x(nT) is continuous in amplitude, but defined only at discrete sampling instants ¢ =nT.

In order to represent the analog signal x(f) accurately by the discrete-time signal x(nT), the
sampling frequency f, must be at least twice the maximum frequency component fy; in the
analog signal x(f). That is,

fs 2 2fws (1.3)

where f, is also called the bandwidth of the bandlimited signal x(). This is Shannon’s sampling
theorem, which states that when the sampling frequency is greater than or equal to twice the
highest frequency component contained in the analog signal, the original analog signal x(f) can
be perfectly reconstructed from the uniformly sampled discrete-time signal x(nT).

The minimum sampling rate, f, = 2fy;, is called the Nyquist rate. The frequency, fy = f./2, is
called the Nyquist frequency or folding frequency. The frequency interval, [—f,/2,f,/2], is
called the Nyquist interval. When the analog signal is sampled at f,, frequency components
higher than f, /2 will fold back into the frequency range [0, f,/2]. The folded back frequency
components overlap with the original frequency components in the same frequency range,
resulting in the corrupted signal. Therefore, the original analog signal cannot be recovered from
the folded digital samples. This undesired effect is known as aliasing.

Example 1.1

Consider two sine waves of frequencies f; = 1 Hz and f, = 5 Hz that are sampled at f, =
4 Hz, rather than at least 10 Hz according to the sampling theorem. The analog waveforms
and the digital samples are illustrated in Figure 1.4(a), while their digital samples and
reconstructed waveforms are illustrated in Figure 1.4(b). As shown in the figures, we can
reconstruct the original waveform from the digital samples for the sine wave of frequency
/1 = 1 Hz. However, for the original sine wave of frequency f, = 5 Hz, the resulting digital
samples are the same as f; = 1 Hz, thus the reconstructed signal is identical to the sine
wave of frequency 1 Hz. Therefore, f| and f, are said to be aliased to one another, that is,
they cannot be distinguished by their discrete-time samples.

Note that the sampling theorem assumes the signal is bandlimited by fy;. For many practical
applications, the analog signal x(f) may have significant frequency components outside the
highest frequency of interest, or may contain noise with a wider bandwidth. In some
applications, the sampling rate is predetermined by given specifications. For example,
most voice communication systems define the sampling rate of 8kHz (kilohertz).
Unfortunately, the frequency components in typical speech can be much higher than
4kHz. To guarantee that the sampling theorem is satisfied, we must eliminate the frequency
components above the Nyquist frequency. This can be done by using an antialiasing filter
which is an analog lowpass filter with the cutoff frequency bounded by

Je <75 (1.4)

Ideally, an antialiasing filter should remove all frequency components above the Nyquist
frequency. In many practical systems, a bandpass filter is preferred to remove frequency
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(b) Digital samples of f;=1 Hz and f, = 5 Hz and the reconstructed waveforms.

Figure 1.4 Example of the aliasing phenomenon

components above the Nyquist frequency, as well as to eliminate undesired DC offset, 60 Hz
hum, or other low-frequency noises. For example, a bandpass filter with a passband from 300
to 3400Hz is widely used in telecommunication systems to attenuate the signals whose
frequencies lie outside this passband.

Example 1.2

The frequency range of signals is large, from approximately gigahertz (GHz) in radar down
to fractions of hertz in instrumentation. For a specific application with given sampling rate,
the sampling period can be determined by (1.2). For example, some real-world applications
use the following sampling frequencies and periods:

1. In International Telecommunication Union (ITU) speech coding/decoding standards
ITU-T G.729 [7] and G.723.1 [8], the sampling rate is f; = 8 kHz, thus the sampling
period T= 1/8000seconds = 125 ws (microseconds). Note that 1 pus = 10" seconds.

2. Wideband telecommunication speech coding standards, such as ITU-T G.722 [9] and
G.722.2 [10], use the sampling rate of f;, = 16 kHz, thus 7= 1/16 000 seconds = 62.5 u.s.

3. High-fidelity audio compression standards, such as MPEG-2 (Moving Picture Experts
Group) [11], AAC (Advanced Audio Coding), MP3 (MPEG-1 layer 3) [12] audio, and
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Dolby AC-3, support the sampling rate of f, = 48 kHz, thus 7'= 1/48 000 seconds =
20.833 ws. The sampling rate for MPEG-2 AAC can be as high as 96 kHz.

The speech coding algorithms will be discussed in Chapter 9 and the audio coding
techniques will be introduced in Chapter 10.

1.2.2  Quantization and Encoding

In previous sections, we assumed that the sample values x(nT) are represented exactly
using an infinite number of bits (i.e., B— 00). We now discuss the quantization and
encoding processes for representing the sampled discrete-time signal x(n7) by a binary
number with a finite number of bits. If the wordlength of an ADC is B bits, there are 2B
different values (levels) that can be used to represent a digital sample x(n). If x(nT) lies in
between two quantization levels, it will either be rounded or truncated to produce x(n).
Rounding assigns to x(nT) the value of the nearest quantization level while truncation
replaces x(nT) by the value of the level below it. Since rounding produces a less biased
representation of the true value, it is widely used by ADCs. Therefore, quantization is a
process that represents a continuous-valued sample x(n7) with its nearest level that
corresponds to the digital signal x(n).

For example, 2 bits define four equally spaced levels (00, 01, 10, and 11), which can be used
to classify the signal into the four subranges illustrated in Figure 1.5. In this figure, the open
circles represent the discrete-time signal x(n7), and the solid circles the digital signal x(r). The
spacing between two consecutive quantization levels is called the quantization width, step, or
resolution. A uniform quantizer has the same spacing between these levels. For uniform
quantization, the resolution is determined by dividing the full-scale range by the total number
of quantization levels, 2B

In Figure 1.5, the difference between the quantized number and the original value is defined
as the quantization error, which appears as noise in the output of the converter. Thus, the
quantization error is also called the quantization noise, which is assumed to be a random noise.
If a B-bit quantizer is used, the signal-to-quantization-noise ratio (SQNR) is approximated by
the following equation (to be derived in Chapter 2):

SQNR = 6B dB. (1.5)
Quantization level
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Figure 1.5 Digital samples using 2-bit quantizer
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In practice, the achievable SQNR will be less than this theoretical value due to imper-
fections in the fabrication of converters. Nevertheless, Equation (1.5) provides a simple
guideline to determine the required bits for a given application. For each additional bit, a
digital signal will have about 6 dB gain in SQNR. The problems of quantization noise and their
solutions will be further discussed in Chapter 2.

Example 1.3

If the analog signal varies between 0 and 5V, we have the resolutions and SQNRs for the
following commonly used ADCs:

1. An 8-bit ADC with 256 (2%) levels can only provide 19.5mV resolution and 48 dB
SQNR.

2. A 12-bit ADC has 4096 (2'?) levels of 1.22 mV resolution, and provides 72 dB SQNR.

3. A 16-bit ADC has 65536 (2'°) levels, and thus provides 76.294 wV resolution with
96 dB SQNR.

Obviously, using more bits results in more quantization levels (or finer resolution) and
higher SQNR.

The dynamic range of speech signals is usually very large. If the uniform quantization
scheme is adjusted for loud sounds, most of the softer sounds may be pressed into the same
small values. This means that soft sounds may not be distinguishable. To solve this problem,
we can use a quantizer with quantization level varying according to the signal amplitude. For
example, if the signal has been compressed by a logarithm function, we can use a uniform
level quantizer to perform non-uniform quantization by quantizing the logarithm-scaled
signal. The compressed signal can be reconstructed by expanding it. The process of
compression and expansion is called companding (compressing and expanding). The ITU-
T G.711 p-law (used in North America and parts of Northeast Asia) and A-law (used in
Europe and most of the rest of the world) schemes [13] are examples of using companding
technology, which will be further discussed in Chapter 9.

As shown in Figure 1.1, the input signal to DSP hardware may be digital signals from other
digital systems that use different sampling rates. The signal processing techniques called
interpolation or decimation can be used to increase or decrease the sampling rates of the existing
digital signals. Sampling rate changes may be required in many multi-rate DSP systems, for
example, between the narrowband voice sampled at 8 kHz and wideband voice sampled at
16 kHz. The interpolation and decimation processes will be introduced in Chapter 3.

1.2.3 Smoothing Filters

Most commercial DACs are zero-order-hold devices, meaning they convert the input binary
number to the corresponding voltage level and then hold that level for T seconds. Therefore,
the DAC produces the staircase-shaped analog waveform y'(¢) as shown by the solid line in
Figure 1.6, which is a rectangular waveform with amplitude corresponding to the signal value
with a duration of T seconds. Obviously, this staircase output signal contains many high-
frequency components due to an abrupt change in signal levels. The reconstruction or
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Figure 1.6 Staircase waveform generated by DAC and the smoothed signal

smoothing filter shown in Figure 1.1 smoothes the staircase-like analog signal generated by
the DAC. This lowpass filtering has the effect of rounding off the corners (high-frequency
components) of the staircase signal and making it smoother, which is shown as the dotted line
in Figure 1.6. This analog lowpass filter may have the same specifications as the antialiasing
filter with cutoff frequency f, < f;/2. Some high-quality DSP applications, such as profes-
sional digital audio, require the use of reconstruction filters with very stringent specifications.
To reduce the cost of using high-quality analog filters, the oversampling technique can be
adopted to allow the use of low-cost filters with slower roll-off.

1.2.4 Data Converters

There are two methods of connecting an ADC and DAC to a digital signal processor: serial and
parallel. A parallel converter receives or transmits all B bits in one pass, while a serial
converter receives or transmits B bits in a serial of bit stream, 1 bit at a time. Parallel converters
are attached to the digital signal processor’s external address and data buses, which are also
attached to many different types of devices. Serial converters can be connected directly to the
built-in serial ports of digital signal processors. Since serial converters require a few signals
(pins) to connect with digital signal processors, many practical DSP systems use serial ADCs
and DACs.

Many applications use a single-chip device called an analog interface chip (AIC) or coder/
decoder (CODEC or codec), which integrates an antialiasing filter, ADC, DAC, and
reconstruction filter on a single chip. In this book, we will use Texas Instruments AIC3204
on the TMS320C5505 eZdsp USB (universal serial bus) stick for real-time experiments. Typical
applications using a CODEC include speech systems, audio systems, and industrial controllers.
Many standards that specify the nature of the CODEC have evolved for the purposes of switching
and transmission. Some CODECs use a logarithmic quantizer, that is, A-law or u-law, which
must be converted into linear format for processing. Digital signal processors implement the
required format conversion (compression or expansion) either by hardware or software.

The most popular commercially available ADCs are successive approximation, dual-slope,
flash, and sigma—delta. The successive-approximation type of ADC is generally accurate and
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Figure 1.7 A conceptual sigma—delta ADC block diagram

fast at a relatively low cost. However, its ability to follow changes in the input signal is limited
by its internal clock rate, so it may be slow to respond to sudden changes in the input signal.
The dual-slope ADC is very precise and can produce ADCs with high resolution. However,
they are very slow and generally cost more than successive-approximation ADCs. The major
advantage of a flash ADC is its speed of conversion; unfortunately, a B-bit ADC requires
(28 — 1) expensive comparators and laser-trimmed resistors. Therefore, commercially avail-
able flash ADCs usually have lower bits.

Sigma—delta ADCs use oversampling and quantization noise shaping to trade the quantizer
resolution with sampling rate. A block diagram of a sigma—delta ADC is illustrated in
Figure 1.7, which uses a 1-bit quantizer with a very high sampling rate. Thus, the requirements
for an antialiasing filter are significantly relaxed (i.e., a lower roll-off rate). A low-order
antialiasing filter requires simple low-cost analog circuitry and is much easier to build and
maintain. In the process of quantization, the resulting noise power is spread evenly over the
entire spectrum. The quantization noise beyond the required spectrum range can be attenuated
using a digital lowpass filter. As a result, the noise power within the frequency band of interest
is lower. In order to match the sampling frequency with the system and increase its resolution,
a decimator is used to reduce the sampling rate. The advantages of sigma—delta ADCs are high
resolution and good noise characteristics at a competitive price using digital decimation
filters.

In this book, as mentioned above, we use the AIC3204 stereo CODEC on the TMS320C5505
eZdsp for real-time experiments. The ADCs and DACs within the AIC3204 use a sigma—delta
technology with integrated digital lowpass filters. It supports a data wordlength of 16, 20, 24, and
32 bits, with sampling rates from 8 to 192 kHz. Integrated analog features consist of stereo-line
input amplifiers with programmable analog gains and stereo headphone amplifiers with
programmable analog volume control.

1.3 DSP Hardware

Most DSP systems are required to perform intensive arithmetic operations such as repeated
multiplications and additions. These operations may be implemented on digital hardware such
as microprocessors, microcontrollers, digital signal processors, or custom integrated circuits.
The selection of appropriate hardware can be determined by the given application based on the
performance, cost, and/or power consumption. In this section, we will introduce several
different digital hardware options for DSP applications.
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1.3.1 DSP Hardware Options

As shown in Figure 1.1, the processing of digital signal x(n) is performed using the DSP
hardware. Although it is possible to implement DSP algorithms on different digital hardware,
the given application determines the optimum hardware platform. The following hardware
options are widely used for DSP systems:

1. Special-purpose (custom) chips such as application-specific integrated circuit (ASICs).
2. Field-programmable gate arrays (FPGAs).

3. General-purpose microprocessors or microcontrollers (wP/nC).

4. General-purpose digital signal processors.

5. Digital signal processors with application-specific hardware (HW) accelerators.

The characteristics of these hardware options are summarized in Table 1.1.

ASIC devices are usually designed for specific tasks that require intensive computation such
as digital subscriber loop (DSL) modems, or high-volume products that use mature algorithms
such as fast Fourier transforms. These devices perform the required functions much faster
because their dedicated architecture is optimized for the required operations, but they lack
flexibility to modify the specific algorithms and functions for new applications. They are
suitable for implementing well-defined and popular DSP algorithms for high-volume products,
or applications demanding extremely high speeds that can only be achieved by ASICs. Recently,
the availability of core modules for some common DSP functions can simplify ASIC design
tasks, but the cost of prototyping ASIC devices, the longer design cycle, and the lack of standard
development tool support and reprogramming flexibility sometimes outweigh their benefits.

FPGAs have been used in DSP systems for years as glue logics, bus bridges, and peripherals for
reducing system costs and affording higher levels of system integration. Recently, FPGAs have
been gaining considerable attention in high-performance DSP applications, and are emerging as
coprocessors [14] for standard digital signal processors that need specific accelerators. In these
cases, FPGAs work in conjunction with digital signal processors for integrating pre- and post-
processing functions. These devices are hardware reconfigurable, and thus allow system
designers to optimize the hardware architecture for implementing algorithms that require higher
performance and lower production cost. In addition, designers can implement high-performance
complex DSP functions using a fraction of the device, and use the rest of the device to implement
system logic or interface functions, resulting in both lower costs and higher system integration.

Table 1.1 Summary of DSP hardware implementations

ASIC FPGA wP/nC Digital signal Digital signal
processor processors with
HW accelerators

Flexibility None  Limited High High Medium

Design time Long  Medium Short Short Short

Power consumption Low Low-medium  Medium-high Low-medium Low-medium

Performance High  High Low-medium  Medium-high  High

Development cost High  Medium Low Low Low

Production cost Low Low-medium  Medium-high Low-medium Medium
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General-purpose pwP/nC become faster and increasingly capable of handling some DSP
applications. Many electronics products such as automotive controllers use microcontrollers
for engine, brake, and suspension control and are often designed using these processors. If new
DSP functions are needed for an existing product based on wP/nC, it is preferable to
implement these functions in software than modify existing hardware.

General pP/pC architectures fall into two categories: Harvard architecture and von
Neumann architecture. As illustrated in Figure 1.8(a), Harvard architecture has separate
memory spaces for the program and the data, thus both memories can be accessed
simultaneously. The von Neumann architecture assumes that the program and data are stored
in the same memory as illustrated in Figure 1.8(b). Operations such as add, move, and subtract
are easy to perform on wP/wC. However, complex instructions such as multiplication and
division are slow since they need a series of conditional shift, addition, or subtraction
operations. These devices do not have the architecture or on-chip facilities required for
efficient DSP operations, and they are not cost effective or power efficient for many DSP
applications. It is important to note that some modern microprocessors, specifically for mobile
and portable devices, can run at high speed, consume low power, provide single-cycle
multiplication and arithmetic operations, have good memory bandwidth, and have many
supporting tools and software available for ease of development.

A digital signal processor is basically a microprocessor with architecture and instruction set
designed specifically for DSP applications [15-17]. The rapid growth and exploitation of
digital signal processor technology is not a surprise, considering the commercial advantages
in terms of the fast, flexible, low-power consumption, and potentially low-cost design
capabilities offered by these devices. In comparison to ASIC and FPGA solutions, digital
signal processors have advantages in ease of development and being reprogrammable in the
field to upgrade product features or fix bugs. They are often more cost effective than custom
hardware such as ASIC and FPGA, especially for low-volume applications. In comparison to
general-purpose wP/C, digital signal processors have better speed, better energy efficiency
or power consumption, and lower cost for many DSP applications.
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Today, digital signal processors have become the foundation of many new markets beyond
the traditional signal processing areas for technologies and innovations in motor and motion
control, automotive systems, home appliances, consumer electronics, medical and healthcare
devices, and a vast range of communication and broadcasting equipment and systems. These
general-purpose programmable digital signal processors are supported by integrated software
development tools including C compilers, assemblers, optimizers, linkers, debuggers, simu-
lators, and emulators. In this book, we use the TMS320C55xx for hands-on experiments.

1.3.2 Digital Signal Processors

In 1979, Intel introduced the 2920, a 25-bit integer processor with a 400 ns instruction cycle
and a 25-bit arithmetic logic unit (ALU) for DSP applications. In 1982, Texas Instruments
introduced the TMS32010, a 16-bit fixed-point processor with a 16 x 16 hardware multiplier
and a 32-bit ALU and accumulator. This first commercially successful digital signal processor
was followed by the development of faster products and floating-point processors. Their
performance and price range vary widely.

Conventional digital signal processors include hardware multipliers and shifters, execute
one instruction per clock cycle, and use the complex instructions that perform multiple
operations such as multiply, accumulate, and update address pointers. They provide good
performance with modest power consumption and memory usage, and thus are widely used
in automotive applications, appliances, hard disk drives, and consumer electronics. For
example, the TMS320C2000 family is optimized for control applications, such as motor
and automobile control, by integrating many microcontroller features and peripherals on
the chip.

The midrange processors achieve higher performance through the combination of increased
clock rates and more advanced architectures. These processors often include deeper pipelines,
instruction caches, complex instructions, multiple data buses (to access several data words per
clock cycle), additional hardware accelerators, and parallel execution units to allow more
operations to be executed in parallel. For example, the TMS320C55xx has two multiply and
accumulate (MAC) units. These midrange processors provide better performance with lower
power consumption, thus are typically found in portable applications such as medical and
healthcare devices like digital hearing aids.

These conventional and enhanced digital signal processors have the following features for
common DSP algorithms:

® Fast MAC units. The multiply—add or multiply—accumulate operation is required in most
DSP functions including filtering, fast Fourier transform, and correlation. To perform the
MAC operation efficiently, digital signal processors integrate the multiplier and accumu-
lator into the same data path to complete the MAC operation in a single instruction cycle.

®  Multiple memory accesses. Most DSP processors adopted modified Harvard architectures
that keep the program memory and data memory separate to allow simultaneous fetch of
instruction and data. In order to support simultaneous access of multiple data words, digital
signal processors provide multiple on-chip buses, independent memory banks, and on-chip
dual-access data memory.

® Special addressing modes. digital signal processors often incorporate dedicated data
address generation units for generating data addresses in parallel with the execution of
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instructions. These units usually support circular addressing and bit-reversed addressing
needed for some commonly used DSP algorithms.

® Special program control. Most digital signal processors provide zero-overhead looping,
which allows the implementation of loops and repeat operations without extra clock cycles
for updating and testing loop counters, or branching back to the top of the loop.

® Optimized instruction set. Digital signal processors provide special instructions that
support computationally intensive DSP algorithms.

® [Effective peripheral interface. Digital signal processors usually incorporate high-perform-
ance serial and parallel input/output (I/O) interfaces to other devices such as ADCs and
DACs. They provide streamlined I/O handling mechanisms such as buffered serial ports,
direct memory access (DMA) controllers, and low-overhead interrupt to transfer data with
little or no intervention from the processor’s computational units.

These digital signal processors use specialized hardware and complex instructions to
allow more operations to be executed in a single instruction cycle. However, they are
difficult to program using assembly language and it is difficult to design efficient C
compilers in terms of speed and memory usage for supporting these complex instruction
architectures.

With the goals of achieving high performance and creating architectures that support
efficient C compilers, some digital signal processors use very simple instructions. These
processors achieve a high level of parallelism by issuing and executing multiple simple
instructions in parallel at higher clock rates. For example, the TMS320C6000 uses the very
long instruction word (VLIW) architecture that provides eight execution units to execute four
to eight instructions per clock cycle. These instructions have few restrictions on register usage
and addressing modes, thus improving the efficiency of C compilers. However, the dis-
advantage of using simple instructions is that the VLIW processors need more instructions to
complete a given task, and thus require relatively high program memory space. These high-
performance digital signal processors are typically used in high-end video and radar systems,
communication infrastructures, wireless base stations, and high-quality real-time video
encoding systems.

1.3.3 Fixed- and Floating-Point Processors

A basic distinction between digital signal processors is the arithmetic format: fixed-point or
floating-point. This is the most important factor for system designers to determine the
suitability of the processor for the given application. The fixed-point representation of signals
and arithmetic will be discussed in Chapter 2. Fixed-point digital signal processors are either
16-bit or 24-bit devices, while floating-point processors are usually 32-bit devices. A typical
16-bit fixed-point processor, such as the TMS320C55xx, stores numbers as 16-bit integers.
Although coefficients and signals are stored only with 16-bit precision, intermediate values
(products) may be kept at 32-bit precision within the internal 40-bit accumulators in order to
reduce cumulative rounding errors. Fixed-point DSP devices are usually cheaper and faster
than their floating-point counterparts because they use less silicon, have lower power
consumption, and require fewer external pins. Most high-volume, low-cost embedded
applications such as appliances, hard disk drives, audio players and digital cameras use
fixed-point processors.
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Floating-point arithmetic greatly expands the dynamic range of numbers. A typical 32-
bit floating-point digital signal processor, such as the TMS320C67xx, represents numbers
with a 24-bit mantissa and 8-bit exponent. The mantissa represents a fraction in the range
—1.0 to +1.0, while the exponent is an integer that represents the number of binary points
that must be shifted left or right in order to obtain the true value. A 32-bit floating-point
format covers a large dynamic range, thus the data dynamic range restrictions may be
virtually ignored in the design using floating-point processors. This is in contrast to the
design of fixed-point systems, where the designer has to apply scaling factors and other
techniques to prevent arithmetic overflows, which are very difficult and time-consuming
processes. Therefore, floating-point digital signal processors are generally easy to program
and use with higher performance, but are usually more expensive and have higher power
consumption.

Example 1.4

The precision and dynamic ranges of 16-bit fixed-point processors are summarized in the
following table:

Precision Dynamic range
Unsigned integer 1 0<x<65535
Signed integer 1 —32768 <x<32767
Unsigned fraction 216 0<x<(- 2’16)
Signed fraction 2715 —1<x<(1-=27"9)

The precision of 32-bit floating-point processors is 27> since there are 24 mantissa bits.
The dynamic range is 1.18 x 1073% < x < 3.4 x 108,

System designers have to determine the dynamic range and precision needed for the
applications. Floating-point processors may be needed in applications where coefficients
vary in time and the signals and coefficients require large dynamic ranges and high
precision. Floating-point processors also support the efficient use of high-level C
compilers, thus reducing the cost of development and maintenance. The faster develop-
ment cycle for floating-point processors may easily outweigh the extra cost of the
processor itself for low-quantity products. Therefore, floating-point processors also
can be justified for applications where development costs are high and/or production
volumes are low.

1.3.4 Real-Time Constraints

A major limitation of DSP systems for real-time applications is the bandwidth of the system.
The processing speed determines the maximum rate at which the analog signal can be
sampled. For example, with sample-by-sample processing, one output sample is generated
before the new input sample is presented to the system. Therefore, the time delay between the
input and output for sample-by-sample processing must be less than one sampling interval
(T seconds). A real-time DSP system demands that the signal processing time, #,, must be less
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than the sampling period, 7, in order to complete the processing before the new sample comes
in. That is,

tht 1o < T, (1.6)

where ¢, is the overhead of I/O operations.

This hard real-time constraint limits the highest frequency signal that can be processed by
DSP systems using sample-by-sample processing approach. This limit on real-time bandwidth
Jfum 1s given as

1

m. (17)

m §%<

It is clear that the longer the processing time £, the lower the signal bandwidth that can be
handled by the system.

Although new and faster digital signal processors have been continuously introduced, there
is still a limit to the processing that can be done in real time. This limit becomes even more
apparent when system cost is taken into consideration. Generally, the real-time bandwidth can
be increased by using faster digital signal processors, simplified DSP algorithms, optimized
DSP programs, and multiple processors or multi-core processors, and so on. However, there is
still a trade-off between system cost and performance.

Equation (1.7) also shows that the real-time bandwidth can be increased by reducing the
overhead of I/O operations. This can be achieved by using a block-by-block processing
approach. With block processing methods, the I/O operations are usually handled by DMA
controllers, which place data samples in memory buffers. The DMA controller interrupts the
processor when the input buffer is full and the block of signal samples are available for
processing. For example, for real-time N-point fast Fourier transforms (to be discussed in
Chapter 5), the N input samples have to be buffered by the DMA controller. The block
computation must be completed before the next block of N samples arrives. Therefore, the
time delay between input and output in block processing is dependent on the block size N, and
this may cause a problem for some applications.

1.4 DSP System Design

A generalized DSP system design process is illustrated in Figure 1.9. For a given application,
signal analysis, resource analysis, and configuration analysis are first performed to define the
system specifications.

1.4.1 Algorithm Development

A DSP system is often characterized by the embedded algorithm, which specifies the
arithmetic operations to be performed. The algorithm for a given application is initially
described using difference equations and/or signal-flow block diagrams with symbolic names
for the inputs and outputs. The next stage of the development process is to provide more
details on the sequence of operations that must be performed in order to derive the output.
There are two methods of characterizing the sequence of operations in a program: flowcharts
or structured descriptions.
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At the algorithm development stage, it is easier to use high-level language tools (such as
MATLAB® or C/C++) for the algorithmic-level simulations. A DSP algorithm can be
simulated using a general-purpose computer to test and analyze its performance. A block
diagram of software development using a general-purpose computer is illustrated in
Figure 1.10. The testing signals may be internally generated by signal generators, digitized
from the experimental setup or real environment based on the given application, or received
from other computers via the networks. The simulation program uses the signal samples
stored in data file(s) as input(s) to produce output signal(s) that will be saved as data file(s) for

further analysis.

DSP
algorithms
MATLAB® or C/C++
ADC DAC
Data DSP Data
files software files
Other Other
computers T 1 computers
Signal generators Analysis
Figure 1.10 DSP software developments using a general-purpose computer
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The advantages of developing DSP algorithms using a general-purpose computer are:

1. Using high-level languages such as MATLAB™, C/C-++, or other DSP software packages
on computers can significantly save algorithm development time. In addition, the proto-
type C programs used for algorithm evaluation can be ported to different DSP hardware
platforms.

2. It is easier to debug and modify high-level language programs on computers using
integrated software development tools.

3. I/O operations based on disk files are easy to implement and the behaviors of the system are
easy to analyze.

4. Floating-point data formats and arithmetic can be used for computer simulations, thus ease
of development.

5. Bit-true simulations of the developed algorithms can be performed using MATLAB® or
C/C++ for fixed-point DSP implementation.

1.4.2 Selection of DSP Hardware

As discussed earlier, digital signal processors are used in a wide range of applications from
high-performance radar systems to low-cost consumer electronics. DSP system designers
require a full understanding of the application requirements in order to select the right DSP
hardware for the given application. The objective is to choose the processor that meets the
project’s requirements with the most cost-effective solution [18]. Some decisions can be made
at an early stage based on arithmetic format, performance, price, power consumption, ease of
development and integration, and so on. For real-time DSP applications, the efficiency of data
flow into and out of the processor is also critical.

Example 1.5
There are a number of ways to measure a processor’s execution speed, as follows:

. MIPS — Millions of instructions per second.

. MOPS — Millions of operations per second.

. MFLOPS - Millions of floating-point operations per second.
. MHz — clock rate in mega hertz.

5. MMACS - Millions of multiply—accumulate operations.

AW N =

In addition, there are other metrics to be considered such as milliwatts (mW) for measuring
power consumption, MIPS per mW, or MIPS per dollar. These numbers provide a simple
indication of performance, power, and price for the given application.

As discussed earlier, hardware cost and product manufacture integration are important
factors for high-volume applications. For portable, battery-powered products, power con-
sumption is more critical. For low- to medium-volume applications, there will be trade-offs
among development time, cost of development tools, and the cost of the hardware itself. The
likelihood of having higher performance processors with upwards-compatible software is also
an important factor. For high-performance, low-volume applications such as communication
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infrastructures and wireless base stations, the performance, ease of development, and
multiprocessor configurations are paramount.

Example 1.6

A number of DSP applications along with the relative importance for performance, price,
and power consumption are listed in Table 1.2. This table shows, for handheld devices, that
the primary concern is power efficiency; however, the main criterion for the communica-
tion infrastructures is performance.

When processing speed is at a premium, the only valid comparison between processors is on an
algorithm implementation basis. Optimum code must be written for all candidates and then the
execution time must be compared. Other important factors are memory usage and on-chip
peripheral devices, such as on-chip converters and I/O interfaces. In addition, a full set of
development tools and support listed as follows are important for digital signal processor selection:

1. Software development tools such as C compilers, assemblers, linkers, debuggers, and
simulators.
2. Commercially available DSP boards for software development and testing before the target
DSP hardware is available.
. Hardware testing tools such as in-circuit emulators and logic analyzers.
4. Development assistance such as application notes, DSP function libraries, application
libraries, data books, low-cost prototyping, and so on.

W

1.4.3 Software Development

There are four common measures of good DSP software: reliability, maintainability,
extensibility, and efficiency. A reliable program is one that seldom (or never) fails. Since
most programs will occasionally fail, a maintainable program is one that is easy to correct. A
truly maintainable program is one that can be fixed by someone other than the original
programmers. An extensible program is one that can be easily modified when the require-
ments change. A good DSP program often contains many small functions with only one
purpose, which can be easily reused by other programs for different purposes.

Table 1.2 Some DSP applications with the relative importance rating (adapted from [19])

Application Performance Price Power
consumption
Audio receiver 1 2 3
DSP hearing aid 2 3 1
MP3 player 3 1 2
Portable video recorder 2 1 3
Desktop computer 1 2 3
Notebook computer 3 2 1
Cell phone handset 3 1 2
Cellular base station 1 2 3

Rating: 1 to 3 with 1 being the most important
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As shown in Figure 1.9, hardware and software design can be conducted at the same time for a
given DSP application. Since there are many interdependent factors between hardware and
software, an ideal DSP designer will be a true “system” engineer, capable of understanding
issues with both hardware and software. The cost of hardware has gone down dramatically in
recent years, thus the major cost of DSP solutions now resides in software development.

The software life cycle involves the completion of the software project: namely, project
definition, detailed specifications, coding and modular testing, system integration and testing,
and product software maintenance. Software maintenance is a significant part of the cost for
DSP systems. Maintenance includes enhancing the software functions, fixing errors identified
as the software is used, and modifying the software to work with new hardware and software.
It is important to use meaningful variable names in source code, and to document programs
thoroughly with titles and comment statements because this greatly simplifies the task of
software maintenance. Programming tricks should be avoided at all costs, as they will not be
reliable and will be difficult for someone else to understand even with lots of comments.

As discussed earlier, good programming techniques play an essential role in successful DSP
applications. A structured and well-documented approach to programming should be initiated
from the beginning. It is important to develop overall specifications for signal processing tasks
prior to writing any program. The specifications include the basic algorithm and task
description, memory requirements, constraints on the program size, execution time, and
so on. The thoroughly reviewed specifications can catch mistakes even before the code has
been written and prevent potential code changes at system integration stage. A flow diagram
would be a very helpful design tool to adopt at this stage.

Writing and testing DSP code is a highly interactive process. With the use of integrated
software development tools that include simulators or evaluation boards, code may be tested
regularly as it is written. Writing code in modules or sections can help this process, as each
module can be tested individually, thus increasing the chance of the entire system working at
system integration stage.

There are two commonly used programming languages in developing DSP software:
assembly language and C. Assembly language is similar to the machine code actually used by
the processor. Programming in assembly language gives engineers full control of processor
functions and resources, thus resulting in the most efficient program for mapping the
algorithm by hand. However, this is a very time-consuming and laborious task, especially
for today’s highly parallel processor architectures and complicated DSP algorithms.
C language, on the other hand, is easier for software development, upgrading, and mainte-
nance. However, the machine code generated by the C compiler is often inefficient in both
processing speed and memory usage.

Often the best solution is to use a mixture of C and assembly code. The overall program is
written using C, but the runtime critical inner loops and modules are replaced by assembly
code. In a mixed programming environment, an assembly routine may be called as a function
or intrinsics, or in-line coded into the C program. A library of hand-optimized functions may
be built up and brought into the code when required.

1.4.4 Software Development Tools

Most DSP operations can be categorized as being either signal analysis or filtering. Signal
analysis deals with the measurement of signal properties. MATLAB™ is a powerful tool for
signal analysis and visualization, which are critical components in understanding and
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Figure 1.11 Program compilation, linking, and execution flow

developing DSP systems. C is an efficient tool for performing signal processing and is
portable over different DSP platforms.

MATLAB® is an interactive, technical computing environment for scientific and engineering
numerical analysis, computation, and visualization. Its strength lies in the fact that complex
numerical problems can be solved easily in a fraction of the time required by programming
languages such as C/C++. By using its relatively simple programming capability, MATLAB®™
can be easily extended to create new functions, and is further enhanced by numerous toolboxes.
In addition, MATLAB® provides many graphical user interface (GUI) tools such as the Signal
Processing Tool (SPTool) and Filter Design and Analysis Tool (FDATool).

The purpose of programming languages is to solve problems involving the manipulation of
information. The purpose of DSP programs is to manipulate signals to solve specific signal
processing problems. High-level languages such as C/C++ are usually portable, so they can
be recompiled and run on many different computer platforms. Although C/C++ is catego-
rized as a high-level language, it can also be used for low-level device drivers. In addition, C
compilers are available for most modern digital signal processors. Thus, C programming is the
most commonly used high-level language for DSP applications.

C has become the language of choice for many DSP software development engineers, not
only because it has powerful commands and data structures, but also because it can easily be
ported to different digital signal processors and platforms. C compilers are available for a wide
range of computers and processors, thus making the C program the most portable software for
DSP applications. The processes of compilation, linking/loading, and execution are outlined
in Figure 1.11. The C programming environment includes the GUI debugger, which is useful
in identifying errors in source programs. The debugger can display values stored in variables
at different points in the program, and step through the program line by line.

1.5 Experiments and Program Examples

The Code Composer Studio (CCS) is an integrated development environment for DSP
applications. CCS has several built-in tools for software development including project build
environment, source code editor, C/C++4- compiler, debugger, profiler, simulator, and real-time
operating system. CCS allows users to create, edit, build, debug, and analyze software programs.
It also provides a project manager to handle multiple programming projects for building large
applications. For software debugging, CCS supports breakpoints, watch windows for monitor-
ing variables, memory, and registers, graphical display and analysis, program execution
profiling, and display assembly and C instructions for single-step instruction traces.

This section uses experiments to introduce several key CCS features including basic
editing, memory configuration, and compiler and linker settings for building programs. We
will demonstrate DSP software development and debugging processes using CCS with the
low-cost TMS320C5505 eZdsp USB stick. Finally, we will present real-time audio experi-
ments using eZdsp, which will be used as prototypes for building real-time experiments
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throughout the book. To conduct these real-time experiments, we have to connect the eZdsp to
a USB port of a computer with CCS installed.

1.5.1 Get Started with CCS and eZdsp

In this book, we use the C5505 eZdsp with CCS version 5.x for all experiments. To learn some
basic features of CCS, perform the following steps to complete the experiment Expl.1.
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Figure 1.12 Create a CCS project
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Figure 1.13 C program for the experiment Expl.1

Step 1, start CCS from the host computer and create the C5505 CCS project as shown in
Figure 1.12. In this experiment, we use CCS_eZdsp as the project name, select executable
output type, and use rts55x runtime support library.

Step 2, create a C program under the CCS project and name the C file as main.c via
File—New—Source File. Then, use the CCS text editor to write the C program to display
“Hello World” as shown in Figure 1.13.

Step 3, create the target configuration file for the C5505 eZdsp. Start from
File—New—Target Configuration File, select XDS100v2 USB Emulator and
USBSTK5505 as the target configuration and save the changes, see Figure 1.14.
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Figure 1.14 Create the target configuration
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Step 4, set up the CCS environment. Open the property of the C5505 project we have
created by right-clicking on the project, CCS_eZdsp—Properties, under the Resource
window, select and open the C/C+-+ Build—Settings— Runtime Model Options, then set
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Figure 1.15 Setting the CCS project runtime environment

up for large memory model and 16-bit pointer math as shown in Figure 1.15.

Step 5, add the C5505 linker command file. Use the text editor to create the linker command
file c5505. cmd as listed in Table 1.3, which will be discussed later. This file is available in the

companion software package.

Step 6, connect the CCS to the target device. Go to View—Target Configurations to open
the Target Configuration window, select the experiment target, right-click on it to launch the

Table 1.3 Linker command file, c5505.cmd

-stack

—heap
=€

-u _Reset

MEMORY

{
MMR
DARAM
SARAM

SAROM_0 (RX
SAROM_1 (RX
SAROM_2 (RX
SAROM_3 (RX

0x2000
-sysstack 0x1000

0x2000

(RW)
(RW) :
(RW) :

)
)
)
)

/* Primary stack size */
/* Secondary stack size */
/* Heap area size %/

/* Use C linking conventions: auto-init vars at

runtime */
/* Force load of reset interrupt handler */

:0origin=0000000h length =0000cOh /* MMRs */
origin =00000c0h length =00£f£f40h /* On-chip DARAM */
origin =0030000h length =01e000h /* On-chip SARAM */

: origin=0£fe0000h length =008000h /* On-chip ROM 0 */
: origin =0£fe8000h length =008000h /* On-chip ROM 1 */
: origin=0££0000h length = 008000h /* On-chip ROM 2 */
:0origin=0£f£f8000h length =008000h /* On-chip ROM 3 */
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Table 1.3 (Continued)

SECTIONS
{
vectors (NOLOAD)
.bss : > DARAM /X BN = 08 *
vector : > DARAM ALIGN =256
.stack : > DARAM
.sysstack : > DARAM
. sysmem : > DARAM
.text : > SARAM
.data : > DARAM
.cinit : > DARAM
.const : > DARAM
.cio : > DARAM
.usect : > DARAM
.switch : > DARAM
}

target configuration, then right-click on the USB Emulator 0/C55xx and select Connect
Target, see Figure 1.16.

Step 7, build, load, and run the experiment. From Project—Build All, after the build is
completed without error, load the executable program from Run—Load—Load Program,
see Figure 1.17. When CCS prompts for the program to be loaded, navigate to the project
folder and load the C5505 executable file (e.g., CCS_eZdsp.out) from the Debug folder.

As shown in Table 1.3, the linker command file, c5505.cmd, defines the C55xx system
memory for the target device and specifies the locations of program memory, data memory, and
I/O memory. The linker command file also describes the starting locations of memory blocks and
the length of each block. More information on the hardware specific linker command file can be
found in the C5505 data sheet [20]. Table 1.4 lists the files used for the experiment Expl.1.

Procedures of the experiment are listed as follows:

1. Follow the experiment steps presented in this section to create a CCS workspace for Expl.1.

2. Remove the linker command file c5505. com from the project. Rebuild the experiment.
There will be warning messages displayed. CCS generates these warnings because it uses
default settings to map the program and data to the processor’s memory spaces when the
linker command file is missing.

3. Load cCcs_ezdsp.out, and use Step Over (F6) through the program. Then, use CCS
Reload Program to load the program again. Where is the program counter (cursor)
location?

Table 1.4 File listing for the experiment Expl.1

Files Description

main.c C source file for experiment
c5505.cmd Linker command file
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(b) Connect the CCS to target device.

Figure 1.16 Connect CCS with the target device, C5505 eZdsp

. Use Resume (F8) instead of Step Over (F6) to run the program again. What will be
showing on the console display window? Observe the differences from step 3.

. After running the program, use Restart and Resume (F8) to run the program again. What
will be showing on the console display window?

1.5.2 C File I/O Functions

We can use C file I/O functions to access the ASCII formatted or binary formatted data files
that contain input signals to simulate DSP applications. The binary data file is more efficient
for storage and access, while the ASCII data format is easy for the user to read and check. In
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(b) Load the executable file to eZdsp.

Figure 1.17

Build, load, and run the experiment using CCS

practical applications, digitized data files are often stored in binary format to reduce memory
requirements. In this section, we will introduce the C file I/O functions provided by CCS

libraries.

CCS supports standard C library functions such as fopen, fclose, fread, fwrite for file
I/O operations. These C file I/O functions are portable to other development environments.
The C language supports different data types. To improve program portability, we use the
unique type definition header file, tistdtypes.h, to specify the data types to avoid any

ambiguity.

Table 1.5 lists the C program that uses fopen, fclose, fread, and fwrite functions. The
input data is a linear PCM (Pulse Code Modulation) audio signal stored in a binary file. Since
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Table 1.5 C program using file I/O functions, fielIO.c

#include <stdio.h>
#include <stdlib.h>
#include "tistdtypes.h"

Uint8 waveHeader [44]={ /* 44 bytes for WAV file

header */
0x52, 0x49, 0x46, 0Ox46, 0x00, 0x00, 0x00, 0x00,
0x57, 0x41, 0x56, 0x45, 0x66, 0x6D, 0x74, 0x20,
0x10, O0x00, O0x00, 0x00, Ox01, 0x00, 0x01, 0x00,
0x40, Ox1F, 0x00, 0x00, 0x80, Ox3E, 0x00, 0x00,
0x02, 0x00, 0x10, 0x00, 0x64, 0Ox61, 0x74, 0x61,
0x00, 0x00, 0x00, 0x00};

#define SIZE 1024
Uint8 ch[SIZE]; /* Declare achar[1024]
array for experiment */

voidmain ()

{

FILE *fpl, *fp2; /* File pointers */
Uint32 i; /* Unsigned long integer
used as a counter */

printf ("Exp. 1.2 -——-file IO\n") ;
fpl = fopen ("..\\data\\C55DSPUSBStickAudioTest.pcm", "rb") ;

/* Open input file */
fp2 = fopen ("..\\data\\C55DSPUSBStickAudioTest.wav", "wb") ;

/* Open output file */
if (fpl == NULL) /* Check if the input file

exists */

printf ("Failed to open input file ' C55DSPUSBStickAudioTest.

pcm’ \n") ;
exit (0) ;
}
fseek (fp2, 44, 0) ; /* Advance output file
point 44 bytes */
i=0;
while (fread(ch, sizeof (Uint8), SIZE, fpl) == SIZE)

/* Read in SIZE of input
data bytes */

fwrite (ch, sizeof (Uint8), SIZE, fp2); /* Write SIZE of data bytes
to output file */
A =—"SINZE};
printf ("$1ldbytes processed\n", i); /* Show the number of data
is processed */
}
waveHeader[40] = (Uint8) (1&0xff) ; /* Update the size
parameter into WAV
header */
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Table 1.5 (Continued)

waveHeader[41] = (Uint8) (1i>>8) &0xff;

[

waveHeader[42] = (Uint8) (1i>>16) &0xff;

waveHeader[43] = (Uint8) (1>>24) &0xff;

waveHeader[4] =waveHeader [40];

waveHeader [5] = waveHeader[41];

waveHeader [6] =waveHeader[42];

waveHeader[7] =waveHeader[43];

rewind (fp2) ; /* Adjust output file

point tobeginning */
fwrite (waveHeader, sizeof (Uint8), 44, fp2); /* Write 44 bytes of WAV
header to output

file */
fclose (fpl) ; /* Close input file */
fclose (fp2) ; /* Close output file */

printf ("\nExp. completed\n") ;

the C55xx CCS file I/O libraries support only byte formatted binary data (char, 8-bit), the 16-
bit PCM data file can be read using sizeof (char), and the output wave (WAV) data file can
be written by CCS in byte format [21-23]. For 16-bit short-integer data types, each data read
or data write requires two memory accesses. As shown in Table 1.5, the program reads and
writes 16-bit binary data in byte units. To run this program on a computer, the data access can
be changed to its native data type sizeof (short). The output file of this experiment is a
WAV file that can be played by many audio players. Note that the WAV file format supports
several different file types and sampling rates. The files used for the experiment are listed in
Table 1.6.
Procedures of the experiment are listed as follows:

1. Create CCS workspace for the experiment Expl.2.

2. Create a C5505 project using £ileIO as the project name.

3. Copy fileIOTest.c, tistdtypes.h, and c5505.cmd from the companion software
package to the experiment folder.

4. Create a data folder under the experiment folder and place the input file C55DSPUSB-
StickAudioTest.pcm into the data folder.

Table 1.6 File listing for the experiment Exp1.2

Files Description
fileIOTest.c Program file for testing C file I/O
tistdtypes.h Data type definition header file
c5505.cmd Linker command file

C55DSPUSBStickAudioTest.pcm Audio data file for experiment
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5. Set up the CCS project build and debug environment using the 16-bit data format and large
runtime support library rts55x.11ib.

6. Set up the target configuration file £i1eI0.ccxml for using the eZdsp.

7. Build and load the experiment executable file. Run the experiment to generate the output
audio file, C55DSPUSBStickAudioTest.wav, saved in the data folder. Listen to the
audio file using an audio player.

8. Modify the experiment such that it can achieve the following tasks:

(a) Read the input data file C55DSPUSBStickAudioTest.pcm and write an output file in
ASCII integer format in C55DSPUSBStickAudioTest.x1ls (or another file format
instead of .x1s). (Hint: replace the fwrite function with fprintf.)

(b) Use Microsoft Excel (or other software such as MATLAB®) to open the file
C55DSPUSBStickAudioTest.x1ls, select the data column, and plot the waveform
of the audio.

9. Modify the experiment to read “C55DSPUSBStickAudioTest.xls” created in the
previous step as the input file and write it out in a WAV file. Listen to the WAV file to
verify it is correct.

2

1.5.3 User Interface for eZdsp

An interactive user interface is very useful for developing real-time DSP applications. It
provides the flexibility to change runtime parameters without the need to stop execution,
modify, recompile, and rerun the program. This feature becomes more important for large-
scale projects that consist of many C programs and prebuilt libraries. In this experiment, we
use the scanf function to get interactive input parameters through the CCS console window.
We also introduce some commonly used CCS debugging methods including software
breakpoints, viewing processor’s memory and program variables, and graphical plots.

Table 1.7 lists the C program that uses £scan function to read user parameters via the CCS
console window. This program reads the parameters and verifies their values. The program
will replace any invalid value with the default value. This experiment has three user-defined
parameters: gain g, sampling frequency sf, and playtime duration p. The files used for the
experiment are listed in Table 1.8.

Table 1.7 C program with interactive user interface, UITest.c

#include <stdio.h>
#include "tistdtypes.h"

#define SIZE 48
Intl6 dataTable[SIZE];

voidmain ()
{
/* Pre—-generated sine wave data, 16-bit signed samples */
Intl6 table[SIZE] = {
0x0000, O0x10b4, 0x2120, 0x30fb, Ox3fff, Ox4dea, 0x5a81, 0x658b,
Ox6ed8, 0x763f, 0x7bal, O0x7ee5, O0x7ffd, O0x7eeb5, O0x7bal, O0x76ef,
Ox6ed8, 0x658b, 0x5a81, Ox4dea, 0x3fff, 0x30fb, 0x2120, 0x10b4,
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Table 1.7 (Continued)

0x0000, Oxefdc, OxdeeO, Oxcf06, 0xc002, O0xb216, O0xa57f, 0x9a75,

0x9128, 0x89cl, 0x845f, 0x811b, 0x8002, 0x811b, 0x845f, 0x89cl,

0x9128, 0x9%9a76, 0xa57f, 0xb216, 0xc002, Oxcf06, Oxdeel, Oxefdc
b

Intl6g,p,1i,J,k,n,m;
Uint32 sf;

printf ("Exp. 1.3 -——=UI\n");

printf ("Enter an integer number for gain between (-6 and 29)\n") ;
scanf ("%d", &9);

printf ("Enter the sampling frequency, select one: 8000, 12000,
16000, 24000 or 48000\n") ;
scanf ("%1d", &sf);

printf ("Enter the playing time duration (5 to 60)\n") ;
scanf ("%1i", &p);

if ((g<-6)][(g>29))
{
printf ("You have entered an invalid gain\n") ;
printf ("Use default gain = 0dB\n") ;
g=0;
}
else
{
printf ("Gain is set to $ddB\n", g) ;
}
if ( (s£==28000)||(s£==12000) || (sf ==16000)|| (s£==24000) || (sf ==
48000) )
{
printf ("Sampling frequency is set to $1dHz\n", sf) ;
}
else
{
printf ("You have entered an invalid sampling frequency\n") ;
printf ("Use default sampling frequency = 48000 Hz\n") ;
sf =48000;
}
if ((p<5)|(p>60))
{
printf ("You have entered an invalidplaying time\n") ;
printf ("Use default duration=10s\n") ;
p=10;

(continued)
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Table 1.7 (Continued)

else

{

printf ("Playing time is set to %ds\n", p) ;

}
for (1i=0; i<SIZE; i++)
dataTable[1i] =0;

switch (sf)
{
case 8000:
m=6;
break;
case 12000:
m=24;
break;
case 16000:
m=3;
break;
case 24000:
=
break;
case 48000:
default:
= 1 3
break;

for (n=k=0, 1i=0; i<m; i++) // Fill in the data table
{
for (j=k; J<SIZE; j+=m)
{
dataTable[n++] = table[]j];
}
k++;

printf ("\nExp. completed\n") ;

Table 1.8 File listing for the experiment Exp1.3

Files Description
UITest.c Program file for testing user interface
tistdtypes.h Data type definition header file

c5505.cmd Linker command file
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105 dataTable[n++] = table[]j];

: }
! k++;

108 }

@'. printf ("\nExp. completed\n®);
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Figure 1.18 Setting a software breakpoint

CCS has many built-in tools including software breakpoints, watch windows, and graphic
plots for debugging, testing, and evaluating programs. When the program reaches a software
breakpoint, it will halt program execution at that location. CCS will preserve the processor’s
register and system memory values at that instant for users to validate the results. The software
breakpoint can be set by double-clicking on the left sidebar of an instruction. Figure 1.18 shows
the breakpoint is set on line number 110. Once the program runs to the breakpoint, it stops, then
the user can step over the program statements, or step into the function if this line contains
another function. The breakpoint can be removed by double-clicking on the breakpoint itself.

Once the program hits the breakpoint, we can use watch windows to examine registers and
data variables. For example, we can use the CCS viewing feature to display data variables such
as g and sf from the CCS menu View— Variables, see Figure 1.19.

We can also view data values stored in memory. To view memory, we open the memory watch
window from View—Memory Browser. Figure 1.20 shows the CCS memory watch window
that contains the data values stored in dataTable [SIZE] at data memory address 0x2E9D.

We can also use the CCS graphical tools to plot the data for visual examination. For this
experiment, we activate the plot tools from Tool—Graph—Single Time. Open the graph
properties setting dialog window, set Acquisition Buffer to 48 (table size), select Data Type
as 16-bit signed integer (based on the data type), set the data Start Address to dataTable
(data memory address), and finally set Display Data Size to 48. Figure 1.21 displays the graph
of the sinusoidal data stored in the 16-bit integer array dataTable [SIZE].

= Variables 2 ok ) | €2 i )
Name Type Value A
td= g short 0
™= i short B
0= j short 51 L
0= k short 3
6= m short 4
6= n short 48
- p short 5
6= sf unsigned long 12000 -

Figure 1.19 Variable watch window
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Perform single-step operation to check the program.

5. Set some software breakpoints in UTTest . c, and step through the program to observe the
variable values of g, sf, and p.

6. Rerun the experiment and use the CCS graphical tool to plot the data stored in the array
dataTable[] for different sampling frequencies at 8000, 12000, 16 000, 32 000, and
48 000 Hz. Show these plots and compare their differences.

7. Set up the CCS variable watch window and examine what other data types can be
supported by the watch window. Change the data type and observe how the watch window
displays different data types.
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(a) Add x—y axis labels to the plot.
(b) Add a grid to the graph plot.
(c) Change the display from line to large square.

1.5.4 Audio Playback Using eZdsp

The C programs presented in previous experiments can be executed on the C55xx simulator
which comes with the CCS or hardware devices such as the C5505 eZdsp. In this experiment,
we use the eZdsp for real-time experiments. The C5505 eZdsp has a standard USB interface to
connect with the host computer for program development, debugging, algorithm evaluation
and analysis, and real-time demonstration.

CCS comes with many useful supporting functions and programs including device drivers
specifically written for C55xx processors and the eZdsp. The latter comes with an installation
CD which includes the C55xx_cs1 folder containing files for the C55xx chip support libraries
and the USBSTK_bsl folder containing files for the eZdsp board support libraries. The
experiments given in Appendix C provide detailed descriptions of the chip support libraries
and board support libraries. In this experiment, we modify the user interface experiment
presented in Exp1.3 to control audio playback using the C55xx board support library and chip
support library. This experiment plays audible tones using the eZdsp, and allows the user to
control the output volume, sampling frequency, and play time from the CCS console window.
The user interface C program, playToneTest. c, asks the user to enter three parameters for
the experiment: gain (gain), sampling frequency (s £), and time duration (playtime). After
receiving the user parameters, the program generates a tone table, and calls the function tone
to play the tone in real time using the eZdsp.

After the user parameters are passed to the function tone listed in Table 1.9, it calls the
function USBSTK5505_ini t to initialize the eZdsp and the function ATC3204 to initialize the
analog interface chip AIC3204. Once enabled, AIC3204 will operate at the user-specified

Table 1.9 C program for real-time tone playback, tone.c

#define AIC3204_I2C_ADDR 0x18
#include "usbstk5505.h"
#include "usbstk5505_gpio.h"
#include "usbstk5505_i2c.h"
#include <stdio.h>

externvoid aic3204_tone_headphone () ;
extern void tone (Uint32, Intl6, Intl6, Uintl6, Intl6*) ;
externvoid Init_AIC3204 (Uint32 sf, Intl6 gDAC, Uintl6 gADC) ;

void tone (Uint32 sf, Intl6 playtime, Intl6 gDAC, Uintl6 gADC, Intl6
*sinetable)
{

Intl6 sec, msec;

Intl6 sample, len;
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Table 1.9 (Continued)

/* Initialize BSL */
USBSTK5505_init () ;

/* Set A20_MODE for GPIO mode */
CSL_FINST (CSL_SYSCTRL_REGS->EBSR, SYS_EBSR_A20_MODE, MODE1) ;

/* Use GPIO to enable ATIC3204 chip */

USBSTK5505_GPIO_init () ;

USBSTK5505_GPIO_setDirection (GPIO26, GPIO_OUT) ;

USBSTK5505_GPIO_setOutput (GPIO26, 1) ; /*Take AIC3204 chip out
of reset */

/* Initialize I2C */
USBSTK5505_TI2C_init () ;

/* Initialized AIC3204 */
Init_AIC3204 (sf, gDAC, gADC) ;

/* Initialize I2S */
USBSTK5505_I2S_init();

switch (sf)
{
case 8000:
len=28;
break;
case 12000:
len=12;
break;
case 16000:
len=16;
break;
case 24000:
len=24;
break;
case 48000:
default:
len=48;
break;
}
/* Play tone */
for (sec=0; sec <playtime; sec++)
{
for (msec=0; msec <1000; msec++)
{
for ( sample = 0; sample < len; sample++)
{




Introduction to Real-Time Digital Signal Processing 37

Table 1.9 (Continued)

/*Write 16-bit left channel data */
USBSTK5505_I2S_writeLeft( sinetable[sample]) ;

/*Write 16-bit right channel data */
USBSTK5505_TI2S_writeRight (sinetable[sample]) ;

USBSTK5505_I2S_close(); // Disable I2S
AIC3204_rset (1, 1); // Reset codec

USBSTK5505_GPIO_setOutput ( GPIO26, 0); // Disable AIC3204

sampling frequency to convert the digital signal to analog form and send out the stereo tone to
the connected headphone or loudspeaker at the user-specified output volume. Table 1.10 lists
the files used for the experiment.

The eZdsp uses the TLV320AIC3204 analog interface chip for the A/D and D/A conversions.
This experiment uses the function initA1C3204 () to set up AIC3204 registers for the sampling
frequency and gain values entered by the user. The sampling frequency is calculated by

B MCLK x JD x R
" P x NDAC x MDAC x DOSR’

s (1.8)

where the master clock MCLK =12 MHz and JD =7.168 (J and D are two registers of the
AIC3204, we set register J with integer 7 and register D with fraction number 168). If we preset
the rest of the registers as R=1, NDAC =2, MDAC =7, and DOSR = 128, we can change the
value of P to set different sampling rates. For example, by changing P from 1, 2, 3,4, and 6, we
can configure AIC3204 to operate at different sampling frequencies at 48, 24, 16, 12, and
8 kHz, respectively. The TLV320AIC3204 data sheet [24] provides some examples for setting
these parameters for different sampling rates.

Table 1.10 File listing for the experiment Expl.4

Files Description

playToneTest.c Program file for testing eZdsp real-time tone generation
tone.c C source file for tone generation

initAIC3204.c C source file to initialize AIC3204

tistdtypes.h Data type definition header file

c5505. cmd Linker command file

C55xx_csl.lib C55xx chip support library

USBSTK_bsl.lib eZdsp board support library
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The experiment procedures are listed as follows:

1. Create the experiment folder, Exp1l .4, and copy the experiment software to the working
directory including all the files in the folder playTone, and subfolders src, lib,
C55x_csl, and USBSTK_bsl.

2. Start CCS and import the existing project workspace for the experiment to CCS.

3. Open the property of the playTone project and check C/C ++ Build Settings. The
Include Options should include the paths for C55x_csl ..\C55xx_csl\inc and
USBSTK_bsl ..\USBSTK_bsl\inc, and the Runtime Model Options should be set
for the 16-bit and large-memory model.

4. Connect the eZdsp to the host computer and connect a loudspeaker or headphone to the
eZdsp.

5. Use the Build All command to rebuild the program, load the program, and run the
experiment with user parameters: gain, sampling frequency, and tone playtime duration.
Redo the experiment using different values of these three parameters and observe the
differences.

1.5.5 Audio Loopback Using eZdsp

The previous audio tone playback experiment is written for sample-by-sample processing,
which processes digital signals one sample at a time. On the other hand, data samples can be
processed in groups using block-by-block processing. When a processor processes data using
the sample-by-sample scheme, the processor may often be in an idle state waiting for the next
available sample. That is, after processing one sample, the processor must wait for the next
input sample. The idle time depends upon the sampling frequency and the time needed to
process each sample. The advantage of sample-by-sample processing is its short processing
delay. However, sample-by-sample processing is not very efficient in terms of data I/O
overhead due to the waiting time for input samples. In contrast, block-by-block signal
processing uses direct memory access (DMA) for data transfer that is performed in parallel
with signal processing operations. Such a system can greatly reduce the I/O overhead to
achieve the maximum processing efficiency. The trade-off between sample-by-sample
processing and block-by-block processing is the minimized processing delay vs. the maxi-
mized processing efficiency. Many DSP systems use multithread operating systems so the
applications are often programmed using block processing.

This experiment uses the eZdsp for real-time audio playback using block-by-block
processing. The signal buffer size is xMIT_BUFF_SIZE and this can be adjusted to different
sizes for different applications. The audio source can be a microphone or an audio player. The
audio source is connected to the eZdsp’s audio input STEREO IN jack (J2) using a stereo
cable. The processed audio samples are played via a headphone or loudspeaker connected to
the eZdsp’s audio output HP OUT jack (J3). To use block-by-block processing, we use DMA
to transfer input and output audio data samples. The sampling rate is set using the AIC3204.
The C5505 DMA manages the data transfer between the C5505 and AIC3204.

Table 1.11 lists the main program for the experiment. It begins by setting the DMA and
AIC3204, and then starts looping audio input to the output. The audio path is set for stereo
with left and right audio channels. The program uses flags to identify which channel (left or
right) of signal is coming from the AIC3204. Each channel uses two DMA data buffers of
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Table 1.11 Real-time audio loopback program, audioLoopTest.c

#include <stdio.h>
#include "tistdtypes.h"
#include "i2s.h"
#include "dma.h"
#include "dmaBuff.h"

#define XMIT_BUFF_SIZE 256

Intl6 XmitLl [XMIT_BUFF_SIZE]; /* DMA uses the same buffer names, donot
rename */

Intl6 XmitR1 [XMIT_BUFF_SIZE];

Intl6 XmitL2 [XMIT_BUFF_SIZE];

Intl6 XmitR2 [XMIT_BUFF_SIZE];

Intl16 RcvLl [XMIT BUFF_SIZE];
Intl6 RcvR1 [XMIT BUFF SIZE];
Intl6 RcvL2 [XMIT_BUFF_SIZE];
Int16 RcvR2 [XMIT_BUFF_SIZE];

Intl6 dsp_process (Intl6 *input, Intl6 *output, Intl6 size);

extern void AIC3204_1init (Uint32, Intl6, Intlo6) ;

#define IERO * (volatile unsigned *) 0x0000
#define SF48KHz 48000

#define SF24KHz 24000

#define SF16KHz 16000

#define SF12KHz 12000

#define SF8KHz 8000

#define DAC_GAIN 3 // 3dB range: -6 dB to 29 dB
#define ADC_GAIN 0 // 0dB range: 0 dB to 46 dB

voidmain (void)
{
Intl6 status, i;

// Clean output buffers before running the experiment
for (1=0; i<XMIT_ BUFF_SIZE; i++)
{

XmitLl[1i]=XmitL2 [i]=XmitR1[1i]=XmitR2[i]=0;

RcvLl[i]=RcvL2[i]=RcvR1l[i]=RcvR2[1]=0;

setDMA_address () ; // DMA address setup for each buffer
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Table 1.11 (Continued)

asm (" BCLR ST1_INTM"); //Disableall interrupts
IERO =0x0110; // Enable DMA interrupt

set_12s0_slave () ; // Set 128
AIC3204_init (SF48KHz, DAC_GAIN, (Uintl6)ADC_GAIN); // Set AIC3204
enable_1i2s0 () ;

enable_dma_int () ; // Set up and enable DMA
set_dmaO_chO0_12s0_Lout (XMIT_BUFF_SIZE);
set_dmalO_chl_i2s0_Rout (XMIT_BUFF_SIZE) ;
set_dmaO_ch2 12s0_Lin (XMIT_BUFF_SIZE) ;
set_dmaO_ch3_12s0_Rin (XMIT_BUFF_SIZE) ;

status=1;
while (status) // Forever loop for the demo if status is set
{
if ((leftChannel ==1)||(rightChannel ==1))
{
leftChannel =0;
rightChannel=0;
if ((CurrentRxL_DMAChannel == 2) || (CurrentRxR_DMAChannel == 2))
{
status =dsp_process (RcvLl, XmitLl, XMIT_BUFF_SIZE) ;
status =dsp_process (RcvRl, XmitR1l, XMIT_BUFF_SIZE) ;
}
else
{
status =dsp_process (RcvL2, XmitL2, XMIT_BUFF_SIZE) ;
status = dsp_process (RcvR2, XmitR2, XMIT_BUFF_SIZE) ;

// Simulated a DSP function
Intl6 dsp_process (Intl6 *input, Intl6 *output, Intl6 size)

{
Intlo6 i;

for (1i=0; i<size; i++)
{

* (output + i) = * (input + 1) ;
}

returnl;
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Table 1.12 File listing for the experiment Expl.5

Files Description

audioLoopTest.c Program file for testing real-time audio loopback
vector.asm Assembly source file for interrupt vectors

c5505.cmd Linker command file

tistdtypes.h Data type definition header file

dma.h C header file for DMA function and variable definition
dmaBuff.h C header file for DMA buffer definition

i2s.h C header file for I12S function and variable definition
1pva200.inc C55xx assembly include file

myC55xUtil.1lib Experiment support library: DMA and I2S functions

equal length. This double-buffer method is often used for block signal processing. While the
AIC3204 is filling one of the DMA data buffers, the C5505 process the data available in
the other buffer. Once the process is complete, the DMA controller will switch the buffers for
the next DMA transfer. The DMA channel identifier is used to manage which DMA buffer will
be used. This ping-pong buffering scheme can avoid memory read and write collisions. The
ping-pong buffer mechanism will introduce a certain buffering delay. The delay time equals
the number of data samples in the buffer multiplied by the sampling period. If the data buffer
contains 48 samples, and the sampling frequency is 48 000 Hz, the buffer introduces a time
delay of 0.01 seconds.

In this experiment, we include the function dsp_process which simply copies the data
from the input buffer to the output buffer. In subsequent experiments, we will replace this
function by other DSP functions such as digital filters for real-time experiments. The assem-
bly program vector.asm handles real-time interrupts for the C5505 system. The
TMS320C5505 architecture and assembly language programming are introduced in
Appendix C. The files used for the experiment are listed in Table 1.12.

The experiment procedures are listed as follows:

1. Copy the experiment software from the companion software package to the working
directory and import the existing project.

2. Connect the eZdsp to the host computer. Connect a loudspeaker or headphone to the eZdsp
HP OUT jack. Connect an audio source such as an MP3 player to the eZdsp STEREO IN
jack.

. Use CCS to build the project, load the executable program, and run the experiment.

4. Modify the experiment such that the left audio output channel will output the sum of input
signals from both left and right channels, while the right audio output channel will be
output the difference of input signals from the left and right channels. (Hint: modify the
function dsp_process.)

5. Modify the audio loopback experiment such that it runs at 8000 Hz or other sampling
frequencies.

6. Write a new function to generate a 1000 Hz tone. Modify the experiment such that it will
loop the input audio on the left output channel and output the 1000 Hz tone on the right
output channel.

w
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Exercises

1.1.

1.2.

1.3.

1.4.

1.5.

Given an analog audio signal that is bandlimited by 10 kHz:

(a) What is the minimum sampling frequency that allows a perfect reconstruction of
the analog signal from its discrete-time samples?

(b) What will happen if a sampling frequency of 8 kHz is used?

(c) What will happen if the sampling frequency is 50 kHz?

(d) When the sampling rate is 50 kHz, and taking only every other sample (this is
decimation by 2), what is the sampling frequency of the new signal? Is this causing
aliasing?

Refer to Example 1.1. Assuming that we have to store 50 ms (milliseconds, 1 ms =
10735s) of digitized signals, how many samples are needed for (a) narrowband
telecommunication systems with f, = 8 kHz, (b) wideband telecommunication systems
withf, = 16 kHz, (c) audio CDs with f, = 44.1 kHz, and (d) professional audio systems
with f, = 48 kHz?

Assume the dynamic range of the human ear is about 100 dB, and the highest frequency
a human can hear is 20 kHz. For a high-end digital audio system designer, what size of
converters and sampling rate are needed? When the design uses a 16-bit converter at
44.1 kHz sampling rate, how many bits are needed to store one minute of music?

A speech file (timit_1.asc) was digitized using a 16-bit ADC with one of the
following sampling rates: 8, 12, 16, 24, or 32 kHz. Use MATLAB™ to play it and find
the correct sampling rate. This can be done by running the MATLAB® program
exercise_4.munder the Exercises directory. This script plays the file at 8, 12, 16, 24,
and 32 kHz. Press the Enter key to continue after the program is paused. What is the
correct sampling rate?

Aliasing is caused by using an incorrect sampling rate that violates the sampling
theorem. The MATLAB™ script below generates a chirp signal, where £1 and fh are
the lower and upper frequencies of the chirp signal respectively, and the sampling
frequency £s is 800 Hz. Edit and run the MATLAB™ script, and listen and plot the
signal. If we change fs to 200 Hz, what will happen and why?

£f1=0; % Low frequency
fh=200; % High frequency
fs=800; % Sampling frequency
n=0:1/fs:1; % 1 second of data

phi=2*pi* (fl*n+ (fh-fl)*n.*n/2);
y=0.5*sin(phi) ;

sound (y, fs);

plot(y)
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