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1
The electron structure of atoms

� What is a wavefunction?

� What is an atomic term?

� How are the energy levels of atoms labelled?

An atom of any element is made up of a small

massive nucleus, in which almost all of the mass

resides, surrounded by an electron cloud. Each ele-

ment is differentiated from all others by the amount

of positive charge on the nucleus, called the proton

number or atomic number, Z. The proton number is

an integer specifying the number of protons in the

nucleus, each of which carries one unit of positive

charge. In a neutral atom, the nuclear charge is

exactly balanced by Z electrons in the outer electron

cloud, each of which carries one unit of negative

charge. Variants of atoms that have slightly more or

fewer electrons than are required for charge neutral-

ity are called ions; those which have lost electrons

have an overall positive charge and those that have

gained electrons have an overall negative charge.

Positively charged ions are sometimes called cat-

ions and negatively charged ions are sometimes

called anions.

The electrons associated with the chemical ele-

ments in a material (whether in the form of a gas,

liquid or solid) control the chemical and physical

properties of the atoms. The energies and regions of

space occupied by electrons in an atom may be cal-

culated using quantum theory.

1.1 The hydrogen atom

1.1.1 The quantum mechanical description

A hydrogen atom is the simplest of atoms. It con-

sists of a nucleus consisting of a single proton carry-

ing one unit of positive charge, together with a

single bound electron carrying one unit of negative

charge. Hydrogenic or hydrogen-like atoms or ions

are very similar, in that they can be analysed in

terms of a single electron bound to a nucleus with

an apparent charge different from unity. Information

about the electron can be obtained by solving the

Schr€odinger equation, in which the electron is rep-

resented as a wave. The permitted solutions to this

equation, called wavefunctions, describe the energy

and probability of location of the electron in any

region around the nucleus. Each of the solutions

contains three integer terms called quantum num-

bers. They are n, the principal quantum number, l,

the orbital angular momentum quantum number,

and ml, the magnetic quantum number. The names

of the last two quantum numbers pre-date modern
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quantum chemistry. They are best regarded as labels

rather than representing classical concepts such as

the angular momentum of a solid body. The quan-

tum numbers define the state of a system.

1.1.2 The energy of the electron

The principal quantum number, n, defines the

energy of the electron. It can take integer values

1, 2, 3 . . . to infinity. The energy of the elec-

tron is lowest for n¼ 1 and this represents the

most stable or ground state of the hydrogen

atom. The next lowest energy is given by n¼ 2,

then by n¼ 3, and so on. The energy of each

state is given by the simple formula:

E ¼ �A

n2
ð1:1Þ

where A is a constant equal to 2.179� 10�18 J

(13.6 eV),1 and E is the energy of the level with prin-

cipal quantum number n. The negative sign in the

equation indicates that the energy of the electron is

chosen as zero when n is infinite, that is to say,

when the electron is no longer bound to the nucleus.

There is only one wavefunction for the lowest

energy, n¼ 1, state. The states of higher energy

each have n2 different wavefunctions, all of which

have the same energy, that is, there are four different

wavefunctions corresponding to n¼ 2, nine differ-

ent wavefunctions for n¼ 3, and so on. These wave-

functions are differentiated from each other by

different values of the quantum numbers l and ml, as

explained below. Wavefunctions with the same

energy are said to be degenerate.

It is often convenient to represent the energy

associated with each value of the principal quantum

number, n, as a series of steps or energy levels

(Figure 1.1). It is important to be aware of the fact

that the electron can only take the exact energy val-

ues given by equation (1.1). When an electron gains

energy, it jumps from an energy level with a lower

value of n to a level with a higher value of n. When

an electron loses energy, it drops from an energy

level with a higher value of n to an energy level

with a lower value. The discrete packets of energy

given out or taken up in this way are photons of elec-

tromagnetic radiation (Chapter 14). The energy of

a photon needed to excite an electron from energy

E1, corresponding to an energy level n1, to energy

E2, corresponding to an energy level n2, is given by:

E ¼ E1 � E2 ¼ �2:179� 10�18 1

n21
� 1

n22

� �
J

¼ �13:6
1

n21
� 1

n22

� �
eV ð1:2Þ

The energy of the photon emitted when the elec-

tron falls back from E2 to E1 is the same. The fre-

quency, n (or the equivalent wavelength, l), of the

photons that are either emitted or absorbed during

these energy changes is given by the equation:

E ¼ hn ¼ hc

l
ð1:3Þ

where h is the Planck constant. (Note that this equa-

tion applies to the transition between any two
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Figure 1.1 The energy levels available to an electron in

a hydrogen atom.

1 The unit of energy, electron volt, eV, is frequently used for

atomic processes. 1 eV¼ 1.602� 10�19 J.
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energy levels on any atom, not just between energy

levels on hydrogen or a hydrogenic atom.) The

energy needed to free the electron completely from

the proton, which is called the ionisation energy of

the hydrogen atom, is given by putting n1¼ 1 and

n2¼1 in equation (1.2). The ionisation energy is

13.6 eV (2.179� 10�18 J).

In the case of a single electron attracted to a

nucleus of chargeþZe, the energy levels are given by:

E ¼ �AZ2

n2
ð1:4Þ

This shows that the energy levels are much lower than

in hydrogen, and that the ionisation energy of such

atoms is considerably higher.

1.1.3 Electron orbitals

The principal quantum number is not sufficient to

determine the location of the electron in a hydrogen

atom. In addition, the two other interdependent

quantum numbers, l and ml, are needed.

� l takes values of 0, 1, 2 . . . (n� 1)

� ml takes values of 0, �1, �2 . . . �l

Each set of quantum numbers defines the state of

the system and is associated with a wavefunction.

For a value of n¼ 1, there is only one wavefunction,

corresponding to n¼ 1, l¼ 0 and ml¼ 0. For n¼ 2, l

can take values of 0 and 1, and ml can then take val-

ues of 0, associated with l¼ 0, and �1, 0 and þ1,

associated with l¼ 1. For n¼ 3, l can take values of

0, 1 and 2, and ml then can take values of 0, associ-

ated with l¼ 0, �1, 0 and þ1, associated with l¼ 1,

and �2, �1, 0, þ1, þ2, associated with l¼ 2. These

states are referred to as orbitals and for historical

reasons they are given letter symbols. Orbitals with

l¼ 0 are called s orbitals, those with l¼ 1 are called

p orbitals, those with l¼ 2 are called d orbitals, and

those with l¼ 3 are called f orbitals (Table 1.1).

The set of orbitals derived from a single value of

the principal quantum number form a shell. The low-

est energy shell is called the K shell, and corresponds

to n¼ 1. The other shells are labelled alphabetically

(Table 1.1). For example, the L shell corresponds to

the four orbitals associated with n¼ 2.

There is only one s orbital in any shell, labelled

1s, 2s and so on. There are three p orbitals in all

shells from n¼ 2 upwards, collectively called 3p, 4p

and so on. There are five d orbitals in the shells from

n¼ 3 upwards, collectively called 3d, 4d, 5d and so

on. There are seven f orbitals in the shells from n¼ 4

upwards, collectively called 4f, 5f and so on.

1.1.4 Orbital shapes

The probability of encountering the electron in a

certain small volume of space surrounding a point

with coordinates x, y and z is proportional to the

square of the wavefunction at that point. With this

information, it is possible to map out regions around

the nucleus where the electron density is greatest.

The probability of encountering an electron in an s

orbital does not depend upon direction but does vary

with distance from the nucleus (Figure 1.2a,b,c). This

probability peaks at a radial distance of 0.05292 nm

for a 1s orbital – equal to the distance calculated by

Bohr as the minimum allowed radius of an orbiting

‘planetary’ electron around a proton, and called the

Bohr radius. As the electron is promoted to the 2s, 3s,

4s orbitals, the maximum probability peaks further

and further from the nucleus. Thus a high-energy

electron is most likely to be found far from the

Table 1.1 Quantum numbers and orbitals for the

hydrogen atom

n l ml Orbital Shell

1 0 0 1s K

2 0 0 2s L

1 �1, 0 þ1 2p (3 orbitals)

3 0 0 3s M

1 �1, 0 þ1 3p (3 orbitals)

2 �2, �1, 0 þ1, þ2 3d (5 orbitals)

4 0 0 4s N

1 �1, 0 þ1 4p (3 orbitals)

2 �2, �1, 0 þ1, þ2 4d (5 orbitals)

3 �3, �2, �1,0, þ1,

þ2, þ3

4f (7 orbitals)
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nucleus. Generally, s orbitals are drawn as spherical

boundary surfaces that enclose an arbitrary volume in

which there is a high probability, say 95%, that the

electron will be found (Figure 1.2d,e).

All other wavefunctions are specified by three

quantum numbers and can be divided into two parts:

a radial part, with similar probability shapes to those

shown in Figure 1.2, multiplied by an angular part.

The maximum probability of finding the electron

depends upon both the radial and angular parts of

the wavefunction, and the resulting boundary sur-

faces have complex shapes. For many purposes,

however, it is sufficient to describe only the angular

part of the wavefunction.

The boundary surfaces of the angular parts of the

three p orbitals are approximately dumbbell-shaped,

each consisting of two lobes. These lie along three

mutually perpendicular directions, which it is natu-

ral to equate to x, y and z-axes (Figure 1.3). The cor-

responding orbitals are labelled npx, npy and npz, for
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Figure 1.2 The probability of finding an electron at a

distance r from the nucleus: (a) 1s; (b) 2s; (c) 3s. The

boundary surfaces of the orbitals: (d) 1s; (e) 2s.
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Figure 1.3 The boundary surfaces of the p orbitals: (a)

px; (b) py; (c) pz.
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example, 2px, 2py and 2pz. Note that the electron

occupies both lobes of the p orbital. The probability

of encountering a p electron on the perpendicular

plane that separates the two halves of the dumbbell

is zero, and this plane is called a nodal plane. The

sign of the wavefunction is of importance when

orbitals overlap to form bonds. The two lobes of

each p orbital are labelled as þ and �, and the sign

changes as a nodal plane is crossed. The radial prob-

ability of encountering an electron in a p orbital is

zero at the nucleus, and increases with distance

from the nucleus. The maximum probability is fur-

ther from the nucleus for an electron in a 3p orbital

than a 2p orbital, and so on, so that 3p orbitals have

a greater extension in space than 2p orbitals.

The distribution of the electron in either the d or f

orbitals is more complicated than those of the p

orbitals. There are five d orbitals, and seven f orbi-

tals. Three of the 3d set of wavefunctions have lobes

lying between pairs of axes, dxy, between the x- and

y-axes, dxz between the x- and z-axes, and dyz
between the y- and z-axes. The other two orbitals

have lobes along the axes, dx2-y2 pointing along x

and y, and dz2 pointing along the z-axis (Figure 1.4).

Except for the dz2 orbital, two perpendicular planar

nodes separate the lobes and intersect at the nucleus.

In the dz2 orbital, the nodes are conical surfaces.

1.2 Many-electron atoms

1.2.1 The orbital approximation

If we want to know the energy levels and electron

distribution of an atom with a nuclear charge of þZ

surrounded by Z electrons, it is necessary to write

out a more extended form of the Schr€odinger equa-
tion that takes into account not only the attraction of

the nucleus for each electron, but also the repulsive

interactions between the electrons themselves. The

resulting equation has proved impossible to solve

analytically, but increasingly accurate numerical

solutions have been available for many years.

The simplest level of approximation, called the

orbital approximation, supposes that an electron

moves in a potential due to the nucleus and the aver-

age field of all the other electrons present in the

atom. This means that the electron experiences an

effective nuclear charge, Zeff, which is considered to

be located as a point charge at the nucleus of the

atom. In this approximation the orbital shapes are

the same as for hydrogen, but the energy levels

of all of the orbitals drop sharply as Zeff increases

(Figure 1.5). When one reaches lithium, Z¼ 3, the

1s orbital energy has already decreased so much

that it forms a chemically unreactive shell. This is

translated into the concept of an atom as consisting

of unreactive core electrons, surrounded by a small

number of outermost valence electrons, which are of

chemical significance. Moreover, the change of

energy as Z increases justifies the approximation

that the valence electrons of all atoms are at similar

energies.

Although shapes of the orbitals are not

changed from the shapes found for hydrogen, the

radial part of the wave function is altered, and

the extension of the orbitals increases as the

effective nuclear charge increases. This corre-

sponds to the idea that heavy atoms are larger

than light atoms. In addition, a different effective

nuclear charge is experienced by electrons in dif-

fering orbitals. This has the effect of separating

the energy of the ns, np, nd and nf orbitals that

are identical in hydrogen. It is found that for any

value of n, the s orbitals have lowest energy, the

three p orbitals have equal and slightly higher

energy, the five d orbitals have equal and slightly

higher energy again, and the seven f orbitals

have equal and slightly higher energy again

(Figure 1.6). However, the energy differences

between the higher energy orbitals are very

small, and this simple ordering is not followed

exactly for heavier atoms.

1.2.2 Electron spin and electron configuration

The results presented so far, derived from solutions

to the simplest form of the Schr€odinger equation, do
not explain the observed properties of atoms exactly.

In order to account for the discrepancy the electron

is allocated a fourth quantum number called the spin

quantum number, s. The spin quantum number has

a value of 1/2. The spin of an electron on an atom

MANY-ELECTRON ATOMS 7



can adopt one of two different directions, repre-

sented by a quantum number, ms, which takes val-

ues of þ1/2 or �1/2. These two spin directions have

considerable significance in chemistry and physics

and are frequently represented by ", spin up, or a,
and #, spin down or b. Although the spin quantum

number was originally postulated to account for cer-

tain experimental observations, it arises naturally in

more sophisticated formulations of the Schr€odinger
equation that take into account the effects of

relativity.

The electron configuration of an atom is the

description of the number of electrons in each

orbital, based upon the orbital model. This is usually

given for the lowest energy possible, called the

ground state. To obtain the electron configuration

xy

x

xx

yz

z

zy

dxy
dxz

dyz dx2-y2

dz2

Figure 1.4 The boundary surfaces of the d orbitals: (a) dxy; (b) dxz; (c) dyz; (d) dx2-y2; (e) dz2.
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of an atom, the electrons are fed into the orbitals,

starting with the lowest energy orbital, 1s, and then

continuing to the higher energy orbitals so as

fill them systematically from the bottom up

(Figure 1.6). This is called the Aufbau (or building

up) principle. Before the configurations can be con-

structed, it is vital to know that each orbital can hold

a maximum of two electrons, which must have

opposite values of ms, either þ1/2 or �1/2. This fun-

damental feature of quantum mechanics is due to

the Pauli Exclusion Principle: no more than two

electrons can occupy a single orbital, and if they

do, the spins must be different, that is, spin up and

spin down. Two electrons in a single orbital are said

to be spin paired.

The electron configurations of the elements can

now be described. Each orbital can hold a maximum

of two electrons, so that s orbitals can hold two elec-

trons, the three p orbitals can hold a total of six elec-

trons, the five d orbitals can hold a total of ten

electrons and the seven f orbitals a total of 14 elec-

trons. When electrons are allocated to the p, d and f

orbitals, the lowest energy situation is that in which

the electrons go into an unoccupied orbital if possi-

ble. This situation is expressed in Hund’s first rule:

when electrons have a choice of several orbitals of

equal energy, the lowest energy, or ground state,

configuration corresponds to the occupation of sep-

arate orbitals with parallel spins rather than fewer

orbitals with paired spins.

Hydrogen has only one electron, and it will go

into the orbital of lowest energy, the 1s orbital. The

electron configuration is written as 1s1. Helium has

two electrons and both can be placed in the 1s

orbital to give an electron configuration 1s2. There

is only one orbital associated with the n¼ 1 quan-

tum number, hence the corresponding shell (K) is

now filled. Further electrons must now be added to

the L shell, corresponding to the 2s and 2p orbitals.

Proceeding as before, the electron configuration of

the next few elements are Li, 1s2 2s1 or, in a com-

pact notation [He] 2s1; Be, [He] 2s2; B, [He] 2s2

2p1; C, [He] 2s2 2p2 and so on. Note that it is normal

practice to replace the configuration of filled inner

shells corresponding to a noble gas by a contraction:

[He] for helium, [Ne] for neon, [Ar] for argon, [Kr]

for krypton, [Xe] for xenon and [Rn] for radon.

Thus the electron configuration of Rb is written [Kr]

5s1, signifying a single electron outside of the K, L,

M and N closed shells that make up the configura-

tion of the noble gas krypton.

1.2.3 The periodic table

The periodic table (Figure 1.7 and front endpaper),

originally an empirical arrangement of the elements

in terms of chemical properties, is understandable in
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Figure 1.5 The decrease in energy of the orbitals of the

first three elements in the periodic table, hydrogen, helium

and lithium, as the charge on the nucleus increases.
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terms of the electron configurations just discus-

sed. The chemical and many physical properties

of the elements are simply controlled by the

outer (valence) electrons. The valence electron

configuration varies in a systematic and repetitive

way as the various shells are filled. This leads natu-

rally to the periodicity displayed in the periodic

table. For example, the filled shells are very stable
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Figure 1.6 The schematic energy levels for a light, many-electron atom.
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configurations and only take part in chemical

reactions under extreme conditions. The atoms with

this configuration, the noble gases, are placed in

group 18 of the periodic table. A new noble gas

appears each time a shell is filled. Following any

noble gas is an element with one electron in the out-

ermost s orbital, lithium, sodium, potassium, and so

on. These are the alkali metals, found in Group 1,

and once again, a new alkali metal is found after

each filled shell. Similarly, the alkaline earth ele-

ments, typified by magnesium, calcium and stron-

tium, listed in Group 2 of the periodic table, all have

two valence electrons, both in the outermost s

orbital. Thus, the periodic table simply expresses

the Aufbau principle in a chart format.

The outermost electrons take part in chemical

bonding. The main group elements are those with

electrons in outer s and p orbitals giving rise to

strong chemical bonds (Chapter 2). The valence elec-

tron configuration of all the elements in any group is

identical, indicating that the chemical and physical

properties of these elements will be very similar.

The d and f orbitals are shielded by s and p orbitals

from strong interactions with surrounding atoms and

do not take part in strong chemical bonding. Those

elements with partly filled d orbitals are called tran-

sition metals, typified by iron and nickel, while those

with partly filled f orbitals are called the lanthanoids

(4f) or actinoids (5f). The electrons in these orbitals

are responsible for many of the interesting electronic,

magnetic and optical properties of solids.

1.3 Atomic energy levels

1.3.1 Spectra and energy levels

Spectra are a record of transitions between electron

energy levels. Each spectral line can be related to

the switch from one energy level to another. The fre-

quency n (or the equivalent wavelength, l) of the

spectral line is related to the energy separation of

the two energy levels, DE, by equation (1.3):

DE ¼ hn ¼ hc

l

where h is Planck’s constant.

The electron configurations described above,

which essentially apply to a single electron moving

under the combined electrostatic field of the nucleus

and all of the other electrons, are not able to account

for the observed transitions. A more complex model

of the atom is required to derive the possible energy

levels appropriate to any electron configuration.

There are a number of ways of deriving these many-

electron quantum numbers and the associated

many-electron states of the atom.

The approach most frequently encountered,

called Russell-Saunders coupling, makes the

approximation that the electrostatic repulsion

between electrons is the most important energy

term. To obtain revised configurations, all of the

individual s values of the electrons are summed to

yield a total spin angular momentum quantum num-

ber S. (Note that one-electron quantum numbers are

written in lower case, while many-electron quantum

numbers are written in upper case.) Similarly, all of

the individual l values for the electrons present are

summed to give a total orbital angular momentum

quantum number L. The values of S and L can also

be summed to give a total angular momentum quan-

tum number J.

An alternative approach to Russell-Saunders cou-

pling is to assume that the interaction between the

orbital angular momentum and the spin angular

momentum is the most important. This interaction is

called spin–orbit coupling. In this case, the s and l

quantum numbers for an individual electron are added

to give a total angular momentum number j for a sin-

gle electron. These values of j are then added to give

the total angular momentum quantum number J, for

the whole atom. The technique of adding j values to

obtain energy levels is called j-j coupling.

Broadly speaking, Russell-Saunders coupling

works well for lighter atoms and j-j coupling for

heavier atoms. Other coupling schemes have also

been worked out which find use for medium and

heavy atoms.

1.3.2 Terms and term symbols

In the Russell-Saunders coupling scheme, the total

spin angular momentum quantum number, S(2), for

two electrons is obtained by combining the

ATOMIC ENERGY LEVELS 11



individual quantum numbers s1 and s1 in the follow-

ing way:

Sð2Þ ¼ ðs1 þ s2Þ; ðs1 þ s2 � 1Þ; . . . js1 � s2j

where js1� s2j is the modulus (absolute value, taken

as positive) of s1� s2. As s1 and s2 are equal to 1/2,

then S(2)¼ 1 or 0.

In order to obtain the value of S for three elec-

trons, S(3), the value for two electrons, S(2), is com-

bined with the spin quantum number (s3¼ 1/2) of the

third electron, in the same way:

Sð3Þ ¼ðSð2Þ þ1=2Þ; ðSð2Þ þ1=2 � 1Þ; . . .
jSð2Þ �1=2j

Both of the values for S(2), 1 and 0, are permitted,

so we obtain:

� S(3)¼ 1þ 1/2, 1þ 1/2� 1¼ 3/2,
1/2

� S(3)¼ 0þ 1/2¼ 1/2

Thus S(3) can take values of 3/2 or
1/2.

The same procedure, called the Clebsch-Gordon

rule, is used to obtain the S values for four electrons,

by combining s4 with S(3), and so on. It will be

found that for an even number of electrons, S values

are integers, and for an odd number of electrons, S

values are half-integers. As all electrons in filled

shells are spin-paired, it is only necessary to count

the spins in the outer unfilled orbitals to obtain val-

ues of S for the atom as a whole.

The total angular momentum quantum number, L,

is obtained in a similar fashion. For two electrons

with individual angular momentum quantum num-

bers l1 and l2, the total angular momentum quantum

number, L(2) is:

Lð2Þ ¼ ðl1 þ l2Þ; ðl1 þ l2 � 1Þ; . . . jl1 � l2j

In the case of three electrons, the Clebsch-Gordon

rule is applied thus:

Lð3Þ ¼ ðLð2Þ þ l3Þ; ðLð2Þ þ l3 � 1Þ; . . . jLð2Þ � l3j

using every value of L(2) obtained previously.

As before, all closed shells have zero angular

momentum, so in deciding L, only outer electrons in

unfilled shells need to be counted.

The value of S is not used directly, but is replaced

by the spin multiplicity, 2Sþ 1. Similarly, the total

angular momentum quantum number, L, is replaced

by a letter symbol similar to that used for the single

electron quantum number l. The correspondence is:

L 0 1 2 3 4 5 6

Letter S P D F G H I

After L¼ 3, F, the sequence of letters is alpha-

betic, omitting J. Be aware that the symbol S has

two interpretations, as the value of L (S Roman) and

as the value of total spin (S italic).

The compatible combinations of S and L are writ-

ten in the form 2Sþ1L, called a term symbol. It repre-

sents a set of energy levels, called a term in

spectroscopic parlance. States with a multiplicity of 1

are called singlet states, states with a multiplicity of 2

are called doublet states, with multiplicity of three,

triplets, with multiplicity 4, quartets, and so on.

Hence, 1S is called singlet S, and 3P is called triplet P.

For example, the terms arising from the two p

electrons on carbon, C, with l1¼ l2¼ 1, are obtained

in the following way:

S ¼1=2 þ1=2;
1=2 �1=2 ¼ 1; 0:

2Sþ 1 ¼ 3 or 1:

L ¼ ð1þ 1Þ; ð1þ 1� 1Þ; j1� 1j ¼ 2; 1; 0ðD; P; SÞ

The total number of possible terms for the two p

electrons is given by combining these values:

3D; 3P; 3S; 1D; 1P; 1S

Note that not all of these possibilities are allowed

for any particular configuration, because the Pauli

Exclusion Principle limits the number of electrons

in each orbital to two with opposed spins. When this

is taken into account (the method is straightforward

but time-consuming and is not described here) the

allowed terms are:

3P; 1D; 1S
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In general the energies of the terms are difficult

to obtain and must be calculated using quantum

mechanical procedures. Fortunately the lowest

energy (ground state) term is easily found, using

Hund’s second rule: (a) The term with the lowest

energy has the highest multiplicity; (b) For

terms with the same value of multiplicity, the

term with the highest value of L is lowest in

energy.

There is a simple method for determining the

ground state of any atom or ion. The procedure is:

1. Draw a set of boxes corresponding to the number

of orbitals available. For a p electron, this is three

(Figure 1.8).

2. Label each box with the value of ml, highest on

the left and lowest on the right.

3. Fill the boxes with unpaired electrons, from left

to right. When each box contains one electron,

start again at the left.

4. Sum the ms values of each electron, þ 1/2 or �1/2,

to give the maximum value of S.

5. Sum the ml values of each electron to give a max-

imum value of L.

6. Write the ground term 2Sþ1L.

Using this technique (Figure 1.8), the ground

term of both the 2p2 and 2p4 configurations is 3P.

1.3.3 Levels

The term symbol does not account for the true

energy level complexity found in atoms. For exam-

ple, the spectrum of an atom in a magnetic field has

more lines present than the same atom in the

absence of the magnetic field, a feature called the

Zeeman effect. A similar, but different, change,

called the Stark effect, arises in the presence of a

strong electric field.

These result from the interaction between the spin

and the orbital momentum (spin–orbit coupling)

that is ignored in Russell-Saunders coupling. A new

quantum number, J, is needed. It is given by:

J ¼ ðLþ SÞ; ðLþ S� 1Þ; . . . jL� Sj

where jL� Sj is the modulus (absolute value, taken

as positive) of L minus S. Thus the term 3P has J

values given by:

J ¼ ð1þ 1Þ; ð1þ 1� 1Þ; . . . j1� 1j ¼ 2; 1; 0

The new quantum number is incorporated as a sub-

script to the term, now written 2Sþ1LJ , and this is no

longer called a term symbol, but a level. Each value

of J represents a different energy level. It is found

that a singlet term always gives one level, a doublet,

two, a triplet three, and so on. Thus, ground state

term 3P is composed of three levels: 3P0,
3P1 and

3P2. The magnitude of the energy difference

between these levels depends upon the strength of

the interaction between L and S.

In a magnetic field, each of the 2Sþ1LJ levels splits

into (2Jþ 1) separated energy levels. The spacing

between the levels is given by gJ mBB, where gJ is

the Land�e g-value:

gJ ¼ 1þ JðJþ 1Þ � LðLþ 1Þ þ SðSþ 1Þð Þ
2JðJþ 1Þ

mB is a fundamental physical constant, the Bohr

magneton, and B is the magnetic induction. (For

more information, see section 12.1.3.) Hund’s third

rule allows the values of J to be sorted in order of

energy: The level with the lowest energy is that with

lowest J value if the valence shell is up to half full,

ml

ml

1

1

0

0

–1

–1

p 2

p 4

S = ½ + ½ = 1

L = 1 + 0 = 1
2S+1 = 3

term scheme P3

S = ½ + ½+ ½ – ½  = 1

L = 1 + 0 + 1 + –1 = 1
2S+1 = 3

term scheme P3

Figure 1.8 The derivation of ground state term symbols

for p2 and p4 electron configurations.
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and that with the highest J value if the valence shell

is more than half full.

These increasing degrees of complexity are illus-

trated for a 3d2 transition metal atom in Figure 1.9.

At the far left of the figure, the electron configura-

tion is shown. This is useful chemically, but is

unable to account for the spectra of the atom. The

Russell-Saunders terms that arise from this arrange-

ment are given to the right of the configuration. In

Russell-Saunders coupling the electron–electron

repulsion is considered to dominate the interactions.

The terms are spilt further if spin–orbit coupling (j-j

coupling), is introduced. The number of levels that

arise is the same as the multiplicity of the term,

2Sþ 1. Finally, the levels are split further in a mag-

netic field to give 2Jþ 1 levels. The magnitude of

the splitting is proportional to the magnetic field,

and the separation of each of the new energy levels

is the same.

Note that in a heavy atom it might be preferable

to go from the electron configuration to levels

derived by j-j coupling, and then add on a smaller

effect due to electron–electron repulsion (Russell-

Saunders coupling) before finally including the

magnetic field splitting. In real atoms, the energy

levels determined experimentally are often best

described by an intermediate model between the

two extremes of Russell-Saunders and j-j coupling.

1.3.4 Electronic energy level calculations

The allowed energies of the electrons in an atom are

found by solving the Schr€odinger equation. The

3P0

1D2

3F4

3F3

3F2
3F3d2

1D

3P

3P1

3P2

1G4
1G

1S0
1S

–2
+2

–3
+3

–4

+4

–2
+2

0

–1
+1
–2
+2
–4

+4

0

no interaction

electron-electron repulsion
(R

ussell-S
aunders term

s)

spin-orbit in teraction
(

levels)
j-j

m
agnetic field

2
+

1 levels
J

Figure 1.9 The evolution of the energy levels of an atom with a 3d2 electron configuration, taking into account

increasing interactions. The energy scales are schematic.
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solution of this equation is possible for hydrogen,

but is impossible even for the next atom, helium,

with two electrons attached to a single nucleus. The

reason for this is that each electron is attracted to

the nucleus and repelled by the other electron. Thus

the electrons do not move independently of one

another, but their motion is correlated. This correla-

tion term, which must be included in the calculation,

is the central problem.

There are a number of ways of approximately cal-

culating the electron energy levels. One will be

described here, the Hartree-Fock procedure,

because it provides a simple picture of atomic struc-

ture, and leads naturally to estimates of the elec-

tronic energies of molecules and non-molecular

solids (Chapter 2). Take helium as the simplest

example. In this case the wavefunction describing

the two-electron atom, c(r1, r2), which is a function

of the position of the electrons, r1 and r2, is the

product of (say), two hydrogenic 1s orbitals:

cðr1; r2Þ ¼ f1sðr1Þa f1sðr2Þb� f1sðr1Þb f1sðr2Þa

where f1s(r1)a means that electron 1 is in the 1s

orbital with spin a, and f1s(r2)b means that elec-

tron 2 is in the 1s orbital with spin b, and so on.

(Note that any orbital functions can be chosen, not

just hydrogenic orbitals, if they make computation

easier.) Now electrons are indistinguishable and

they have a spin, " or #. Moreover, two electrons

with the same spin cannot occupy the same orbital.

To take this into account, the wavefunction of the

system must change sign when any two electrons

are exchanged, called exchange symmetry. This

restriction on swapping electron positions lowers

the energy by an amount called the exchange

energy.

To solve the equation, electron 1 is supposed

to experience an effective potential due to the

nucleus and the charge density contributed by

electron 2. The function f(r2) is chosen and the

effective potential is calculated. The Schr€odinger
equation written using the effective potentials is

the Hartree-Fock equation for He. This approxi-

mate Schr€odinger equation is used to calculate

f(r1) and the energy e1. In general the new f(r1)
will be different than the original choice because

that was a hydrogenic function that ignored the

potential due to the other electron. The process

is now repeated for the orbital of electron 2 using

the revised orbital of electron 1. This is contin-

ued until the revised input does not lead to any

further change in the output orbitals, at which

point the orbitals are self-consistent. The orbitals

and energies are called Hartree-Fock self-con-

sistent field (HF-SCF) orbitals and energies.

The main shortcoming of the method is that elec-

tronic correlation has been completely ignored and

the results lack an important energy term. When

energies are known experimentally from, for exam-

ple, spectra, the correlation energy can be derived

by subtracting the Hartree-Fock energy:

Correlation energy ¼ Eexp � EHF

Further reading

Elementary chemical concepts and an introduction

to the periodic table are clearly explained in the

early chapters of:

Atkins, P. and Jones, L. (1997) Chemistry, 3rd edn. W.H.

Freeman, New York.

McQuarrie, D.A. and Rock, P.A. (1991) General Chemis-

try, 3rd edn. W.H. Freeman, New York.

The outer electron structure of atoms is described

in the same books, and in greater detail in:

Atkins, P., de Paula, J. and Friedman, R. (2009) Chapter 4,

Quanta, Matter, and Change. Oxford University Press,

Oxford.

Shriver, D.F., Atkins, P.W. and Langford, C.H. (1994)

Chapter 1, Inorganic Chemistry, 2nd edn. Oxford Uni-

versity Press, Oxford.

The quantum mechanics of atoms is described

lucidly by:

McQuarrie, D.A. (1983) Quantum Chemistry. University

Science Books, Mill Valley, CA.

An invaluable dictionary of quantum mechanical

language and expressions is:

Atkins, P.W. (1991) Quanta, 2nd edn. Oxford University

Press, Oxford.

ATOMIC ENERGY LEVELS 15



Problems and exercises

Quick quiz

1 Awavefunction is

(a) A description of an electron.

(b) An atomic energy level.

(c) A solution to the Schr€odinger equation

2 An orbital is

(a) A bond between an electron and a nucleus.

(b) A region where the probability of finding

an electron is high.

(c) An electron orbit around an atomic nucleus.

3 The Pauli Exclusion principle leads to the con-

clusion that

(a) The position of an electron cannot be speci-

fied with limitless precision.

(b) Only two electrons of opposite spin can

occupy a single orbital

(c) No two electrons can occupy the same

orbital.

4 The configuration of an atom is

(a) The number of electrons around the

nucleus.

(b) The electron orbitals around the nucleus.

(c) The arrangement of electrons in the various

orbitals.

5 The outer electron configuration of the noble

gases is

(a) ns2np6.

(b) ns2np6(nþ 1)s1.

(c) ns2np5.

6 The valence electron configuration of the alkali

metals is

(a) ns2.

(b) np1.

(c) ns1.

7 The valence electron configuration of carbon is

(a) 1s22p2.

(b) 2s22p2.

(c) 2s22p4.

8 The valence electron configuration of calcium,

strontium and barium is

(a) ns2np2.

(b) ns2.

(c) (n� 1)d1ns2.

9 What atom has filled K, L, M and N shells?

(a) Argon.

(b) Krypton.

(c) Xenon.

10 How many electrons can occupy orbitals with

n¼ 3, l¼ 2?

(a) 6 electrons.

(b) 10 electrons.

(c) 14 electrons.

11 How many permitted l values are there for

n¼ 4?

(a) One.

(b) Two.

(c) Three.

12 How many electrons can occupy the 4f

orbitals?

(a) 14.

(b) 10.

(c) 7.

13 Russell-Saunders coupling is

(a) A procedure to obtain the energy of many-

electron atoms.

(b) A description of atomic energy levels.

(c) A procedure to obtain many-electron quan-

tum numbers.

14 A term symbol is

(a) A label for an atomic energy level.

(b) A label for an orbital.

(c) A description of a configuration.

15 The many-electron quantum number symbol D

represents

(a) L¼ 1.

(b) L¼ 2.

(c) L¼ 3.
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16 An atom has a term 1S. What is the value of the

spin quantum number, S?

(a) 1/2.

(b) 0.

(c) 1.

17 An atom has a term 1S. What is the value of the

orbital quantum number, L?

(a) 2.

(b) 1.

(c) 0.

Calculations and questions

1.1 What energy is required to liberate an elec-

tron in the n¼ 3 orbital of a hydrogen atom?

1.2 What is the energy change when an electron

moves from the n¼ 2 orbital to the n¼ 6

orbital in a hydrogen atom?

1.3 Calculate the energy of the lowest orbital (the

ground state) of the single-electron hydrogen-

like atoms with Z¼ 2, (Heþ) and 3, (Li2þ).

1.4 What are the frequencies and wavelengths of

the photons emitted from a hydrogen atom

when an electron makes a transition from

n¼ 4 to the lower levels n¼ 1, 2 and 3?

1.5 What are the frequencies and wavelengths of

the photons emitted from a hydrogen atom

when an electron makes a transition from

n¼ 5 to the lower levels n¼ 1, 2 and 3?

1.6 What are the frequencies and wavelengths of

photons emitted when an electron on a Li2þ

ion makes a transition from n¼ 3 to the lower

levels n¼ 1 and 2?

1.7 What are the frequencies and wavelengths of

photons emitted when an electron on a Heþ

ion makes a transition from n¼ 4 to the lower

levels n¼ 1, 2 and 3?

1.8 Sodium lights emit yellow colour, with pho-

tons of wavelength 589 nm. What is the

energy of these photons?

1.9 Mercury lights emit photons with a wave-

length 435.8 nm. What is the energy of the

photons?

1.10 What are the possible quantum numbers for

an electron in a 2p orbital?

1.11 Titanium has the term symbol 3F. What are

the possible values of J? What is the ground

state level?

1.12 Phosphorus has the term symbol 4S. What are

the possible values of J? What is the ground

state level?

1.13 Scandium has a term symbol 2D. What are

the possible values of J? What is the ground

state level?

1.14 Boron has a term symbol 2P. What are the

possible values of J? What is the ground state

level?

1.15 What is the splitting gJ, for sulphur, with

ground state 3P2?

1.16 What is the splitting gJ, for iron, with a

ground state 5D4?

1.17 Draw a diagram equivalent to Figure 1.9, for

the ground state of a chlorine atom, with a

ground state 2P3=2.
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