
Chapter 1

HTML, Say Hello to JavaScript

In This Chapter
▶ Understanding what JavaScript is

▶ Understanding how JavaScript fits in with HTML5

JavaScript is a text-based scripting language that’s interpreted by a client

system to perform tasks in various settings. The most common setting is

within browsers. A developer wants to do something special, such as accept

input from a form, and JavaScript makes it possible.

JavaScript appears in many other places. For example, Windows has long

allowed the use of JavaScript to create applications, and now it has an

even bigger role with Windows 8. (See http://msdn.microsoft.com/
library/windows/apps/br211385.aspx for details.) Special versions

of JavaScript also support application development on the Macintosh. (See

www.latenightsw.com/freeware/JavaScriptOSA as an example.) In

fact, you can even run Linux in a browser by using a JavaScript emulator.

(See www.webmonkey.com/2011/05/yes-virginia-that-is-linux-
running-on-javascript for details.) The point is that JavaScript is a lan-

guage that appears in all sorts of places on many different operating systems.

When you discover JavaScript, you open an exciting new world of program-

ming that works on myriad platforms — a dream that developers have had

for a very long time.

This book doesn’t explore all of the possible environments in which you can

use JavaScript. I doubt very much that you could examine the topic in any

detail with an entire shelf of books. What you’ll encounter is how JavaScript

is used with HTML5, the newest version of the HyperText Markup Language

(HTML). HTML5 and JavaScript are made for each other. By combining

these two languages, you create a robust environment for Web applications.

Modern Web applications can perform an amazing array of tasks —

05_9781118431665-ch01.indd 1105_9781118431665-ch01.indd 11 3/26/13 11:02 AM3/26/13 11:02 AM

CO
PYRIG

HTED
 M

ATERIA
L

12 Part I: Understanding the Basics of JavaScript

everything from word processing to database entry. The use of HTML5 and

JavaScript together makes it possible for anyone or any organization to

move applications from the desktop to the cloud (a special location on the

Internet used to store applications and data), where any device capable of

running JavaScript can access and use them. In short, combining HTML5 with

JavaScript can free users from using a specific device to interact with any

application you can imagine.

Of course, any book on a programming language must begin with some

basics and present some ground rules, which is precisely what you find in

this chapter. You discover a little more about what JavaScript is and how it

can help you create interesting applications. You’ll also begin creating some

basic JavaScript applications in this chapter. They won’t do too much at

first; you’ll gain a sense of what JavaScript can do after you’ve worked with it

some more.

 JavaScript can work on any platform that supports it and in any browser that

supports HTML5. To see what level of support your browser provides, go to

http://html5test.com and enable JavaScript support (if asked). This site

tells what your browser can and can’t do with JavaScript so that you know

whether your browser can use specific features in this book. (You may want

to print the results so that you have a reference to them as you progress

through the book.) For the purpose of making things easier for everyone, the

scripts in this book were tested with the latest version of Firefox available at

the time of writing on a Windows 7 system. (See Chapter 2 for more on the

many benefits to using Firefox for developing browser-based applications.)

You may see slight variations in screen output and functionality when you use

a different browser or operating system.

Introducing JavaScript
Originally, the Internet allowed only static pages — pages that presented fixed

content that couldn’t change. Yes, there were links and other features that let

you move to other pages, but the content on them didn’t change. JavaScript

was originally conceived as a means for making Web pages dynamic —

making it possible for users to interact with them and receive something in

return. In fact, that’s the basic idea behind JavaScript today, but the interac-

tions have become complex enough that you can call them applications. The

following sections introduce you to what JavaScript is all about and why you

need to add this language to your programming toolbox.

05_9781118431665-ch01.indd 1205_9781118431665-ch01.indd 12 3/26/13 11:02 AM3/26/13 11:02 AM

13 Chapter 1: HTML, Say Hello to JavaScript

Java and JavaScript aren’t
long-lost relatives
Some programmers have confused Java and JavaScript over the years, partly

because of the naming similarities. It turns out that JavaScript was originally

named LiveScript. Netscape saw how popular Java had become and decided

to rename LiveScript to JavaScript to play off that popularity. In reality,

Java and JavaScript are completely different languages, and you shouldn’t

confuse the two. There’s nothing similar between Java and JavaScript. For

example, whereas Java is a compiled language (one that’s turned into a native

executable using a special application) that requires a plug-in to run in your

browser, JavaScript is an interpreted language (a text description of what to

do that requires an interpreter, another sort of special application, to exe-

cute) that requires no special plug-in because the browser provides native

support for it.

 There’s nothing unusual about the similarity in naming between Java and

JavaScript. Vendors have used naming similarities for many products in order

to obtain some sort of benefit from the popularity of similarly named prod-

ucts. The most important thing to remember is that you can’t use any Java

functionality, documentation, or tools to create your JavaScript applications.

The two languages are quite different.

Recognizing the benefits of JavaScript
JavaScript is an amazing language that can perform a wide variety of tasks

when you know how to use it. In fact, in many respects, JavaScript is unique

in the programming world because you don’t have to perform any special

Discovering the history of JavaScript
You won’t find a complete history of JavaScript
in this book because so many people have
already written about it. There are many his-
tories of JavaScript on the Internet. One of
the better histories is at http://java
script.about.com/od/reference/

a/history.htm. This short history will
provide you with a good overview of the
most important facts about the creation of
JavaScript. You can find a more detailed his-
tory of JavaScript at http://www.howto
create.co.uk/jshistory.html.

05_9781118431665-ch01.indd 1305_9781118431665-ch01.indd 13 3/26/13 11:02 AM3/26/13 11:02 AM

14 Part I: Understanding the Basics of JavaScript

tricks to get it to work in most environments. Not every environment is com-

pletely compatible with JavaScript, but you can usually get essential features

of an application to work no matter which environment runs the application

you create. With this in mind, you want to know what JavaScript can do for

you as a developer because having this information makes it easier for you to

convince management and other developers to work with you on JavaScript

solutions.

The following sections discuss the most commonly cited benefits of JavaScript

(although you’ll almost certainly find other benefits in online articles such

as the ones described at http://ezinearticles.com/?What-Are-the-
Benefits-of-JavaScript?&id=4743036).

Using JavaScript in any browser
JavaScript is quite flexible because it’s an interpreted language. Interpreted

languages are distributed as plain text. Every computer platform ever created

can understand plain text. Even old mainframes can understand plain text, at

some level, which means that plain text is the most common form of computer

communication ever created. A special browser feature, the interpreter, reads

the text description of what to do and then performs those tasks within the

browser environment. Every browser has this special feature built-in so you

never need to download a special plug-in when working with JavaScript — the

support you need is already available. Because the JavaScript language is

essentially the same in every browser, the same text description of what tasks

to perform works everywhere. This text description is the JavaScript language

that you use throughout the book to create the example applications.

 It’s important to realize that the browser’s interpreter must recognize all of

the JavaScript key words and programming constructs. As JavaScript has

improved, it has added new features that older interpreters don’t understand.

Consequently, you can’t expect a really old interpreter to completely under-

stand a JavaScript application that uses all of the latest features. In many

cases, the application may still run, but with reduced functionality. In other

cases, the program may crash simply because the interpreter doesn’t know

what to do. This is why you need to know which platforms support the com-

bination of HTML and JavaScript you want to use in your Web pages and why

you need to test your browser at http://html5test.com to ensure the

examples in this book will work for you.

Using JavaScript with any operating system
Many programming languages rely on special operating system features.

Native code programs — those that speak the operating system’s special lan-

guage — are especially attached to a particular operating system because the

language relies on the special operating system features. JavaScript has no

such reliance. All JavaScript cares about is the browser in which it runs. The

browser interacts with the operating system and takes care of all of those

low-level tasks so JavaScript can be generalized to work with any operating

system.

05_9781118431665-ch01.indd 1405_9781118431665-ch01.indd 14 3/26/13 11:02 AM3/26/13 11:02 AM

15 Chapter 1: HTML, Say Hello to JavaScript

Using JavaScript with any device
Some developers are used to the idea that their applications will work only

on certain devices. In fact, most developers are happy when they can get an

application to work on just one platform (the combination of a specific device

matched with a specific operating system) successfully. JavaScript has no

such limits.

If you have a device that has an HTML5-compatible browser with JavaScript

support, it’s quite likely that the applications in this book will work. (That

said, I’ve tested the applications only on the systems specified in the book’s

introduction, so your results will vary depending on device and browser

compatibility.) Even mobile devices will use JavaScript without problems.

For example, if you have a Blackberry, it’s quite likely that the examples in

this book will work on it without problem. (See http://www.sencha.com/
blog/html5-scorecard-rim-blackberry-playbook-2 for details on

Blackberry support for HTML5.)

Most developers will find it quite amazing that the application created with

JavaScript could potentially work on platforms that didn’t even exist at the

time the application was written! The idea that JavaScript is everywhere will

surprise many people. Don’t be surprised when the Android user sitting next

to you in the doctor’s office is using the application you wrote in JavaScript

for the PC. JavaScript doesn’t care where it runs.

Accessing common platform features
As previously mentioned in this chapter, JavaScript requires an interpreter,

and that interpreter translates JavaScript key words into something the

underlying platform can understand. Unlike some other languages, JavaScript

doesn’t exist within a sandbox — a special programming environment that

limits access to operating system features to reduce potential security prob-

lems. This means that JavaScript can tell the interpreter that it wants to save

a file somewhere, and then the interpreter will do its best to satisfy that need

using platform-specific functionality. JavaScript doesn’t care how or where

the file is saved — it simply cares that the file is saved. In short, JavaScript

insulates your application from the platform in a way that makes it possible

to create truly amazing applications.

 There’s never a free lunch when it comes to applications, however. JavaScript

can perform simple tasks, such as saving a file. The catch is that you can’t

depend on it to use unique operating system features. For example, Windows

supports file encryption, but you can’t access that feature from JavaScript. As

a consequence, the file you save to disk isn’t encrypted unless the encryption

is part of the standard platform method for doing things. Never assume that

you can perform special platform tasks with JavaScript. Even so, you probably

won’t even miss these special features, because JavaScript works fine without

them.

05_9781118431665-ch01.indd 1505_9781118431665-ch01.indd 15 3/26/13 11:02 AM3/26/13 11:02 AM

16 Part I: Understanding the Basics of JavaScript

Seeing How JavaScript Fits
into an HTML Document

Now that you know a little more about JavaScript, it’s time to see JavaScript

in action. The following sections guide you through the process of creating

a simple HTML5 document and adding some JavaScript code to it. You don’t

need to understand the underlying theory of why this application works yet.

In addition, you don’t need to fully understand the JavaScript language con-
structs (keywords used to build a Java application) yet — just follow along

with the simple example to see what JavaScript can do.

 This section is a lot more fun when you try the example in a number of brows-

ers. Yes, you can get the gist of what’s happening by using a single browser,

but it will amaze you to see the application perform the same way no matter

which browser you use. To get the most out of the following sections, try the

example in two or more of your favorite HTML5-compatible browsers that

include JavaScript support.

Starting an HTML5 document
HTML has gone through a lot of changes over the years. In order to identify

the various kinds of HTML, the World Wide Web Consortium (W3C) has cre-

ated a number of specifications that define precisely what an HTML docu-

ment of a particular type should look like. These standards are publicly

available — although no one but a computer scientist can really understand

them. You can see the HTML5 standard at http://www.w3.org/TR/2011/
WD-html5-20110525/.

 Make sure you get the full benefit of using this book by downloading the

companion source code from http://www.dummies.com/go/html5
programmingwithjavascript. The companion source code will greatly

enhance your experience with the book and make working with JavaScript

considerably easier. Make sure you also check the blog entries for this book

at http://blog.johnmuellerbooks.com/categories/263/html5-
programming-with-javascript-for-dummies.aspx. The blog entries

answer commonly asked questions, provide additional examples, and help

you better use the book content to perform tasks.

For the purposes of this book, you can start any HTML5 document like

this (you can access this entire example in the Test.HTML file found in the

\Chapter 01\Simple JavaScript Example folder of the downloadable

source code for this book):

05_9781118431665-ch01.indd 1605_9781118431665-ch01.indd 16 3/26/13 11:02 AM3/26/13 11:02 AM

17 Chapter 1: HTML, Say Hello to JavaScript

<!DOCTYPE html>
<html>
 <head>
 <title>JavaScript Example</title>
 </head>
 <body>
 <h1>My First JavaScript Example</h1>
 <p>This is a JavaScript test.</p>
 </body>
</html>

Each section of this example performs a specific task. For example, the

<!DOCTYPE html> declaration tells you that this is an HTML5 document.

Other sorts of HTML documents have other declarations. When a browser

that understands HTML5 sees this declaration, it treats the rest of the docu-

ment as an HTML5 document and allows use of HTML5 features.

The <html> tag begins and ends the document as a whole. Every HTML doc-

ument also includes two other tags: a <head> tag where you place heading

information (such as the page’s title), and a <body> tag where you place the

content you want displayed to the end user. This document includes a <h1>

tag (first-level heading) and a <p> tag (paragraph). Figure 1-1 shows how this

document looks in Firefox on a Windows 7 system. (Your screen may look a

little different.)

Figure 1-1:
A typical

view of
a simple

HTML5
document.

Understanding the alert() function
The first bit of JavaScript code you discover in this book is the alert()

function. All that this function does is display a message box. You probably

see the alert() function used on sites you visit several times a day because

most developers use it relatively often to display updates and other informa-

tion. Given the utility of the alert() function, it’s a good addition to your

JavaScript toolbox. The alert() function takes a message as input.

05_9781118431665-ch01.indd 1705_9781118431665-ch01.indd 17 3/26/13 11:02 AM3/26/13 11:02 AM

18 Part I: Understanding the Basics of JavaScript

Using the <script> tag
It’s time to try the alert() function out. Type the following line of code after

the <p>This is a JavaScript test.</p> line of code in your initial

Web page:

<script language=”JavaScript”>
 alert(“Hello World”);
</script>

The <script> tag tells the browser to treat the text that follows as a script,

rather than as text for display. The language attribute tells the browser that

the code is in JavaScript and not some other language. When you display the

page in a browser, the user sees a dialog box like the one shown in Figure 1-2.

Figure 1-2:
The alert()

function
displays a

simple mes-
sage box.

To dismiss the message box, the user simply clicks OK. There’s nothing fancy

about the alert() function, but it can convey simple messages, and it’s so

standard that any browser can display it, even if the browser wouldn’t ordi-

narily work well with newer versions of JavaScript. Use the alert() function

when you need to tell the user something and don’t need to obtain any input

in return.

Creating the JavaScript examples
This book contains a lot of JavaScript exam-
ples. You can type them if you want using any
text editor or an editor designed specifically
for working with JavaScript such as Komodo
Edit (http://www.activestate.com/
komodo-edit). The important thing is that
the editor creates text without any formatting. If
the editor adds formatting, then the JavaScript
interpreter won’t be able to read the file. Each
example will include a suggested filename that

you should use for your example. Simply save
the file to a location you can easily find on your
hard drive and then open it using your browser.
Opening the file in your browser will cause the
JavaScript to run automatically so that you can
see how your code works. Chapter 2 provides
more information on tools you can use to make
your experience working with JavaScript a lot
easier.

05_9781118431665-ch01.indd 1805_9781118431665-ch01.indd 18 3/26/13 11:02 AM3/26/13 11:02 AM

19 Chapter 1: HTML, Say Hello to JavaScript

Placing the code in the page heading
Creating a script that runs immediately when you display the page probably

works in some cases, but not in others. For example, you may not have any-

thing to say to the user until the user performs some action. In this case, you

place the script between the beginning and ending of the <head> tag. You

also give the script a name so that you can access it at any time. Add this

code under the <title> tag in the page you created earlier:

<script language=”JavaScript”>
 function SayHello()
 {
 alert(“This is the SayHello() function!”);
 }
</script>

As in the preceding section, you place the script within a <script> tag

and tell the browser what language you’re using to create the script. The

function keyword tells the browser that this is a particular section of

named code, which has a name of SayHello in this case. The curly braces

({}) tell the browser where the script code begins and ends. In this case, the

script consists of a single line of code that contains the alert() function.

You could save the page at this point, and it would load just fine, but you

can’t access the SayHello() function. To access the SayHello() function,

you must provide content that tells the browser to perform the tasks that are

contained within the function. To make this happen, add the following lines

of code after the <p> tag in <body> section of the page:

<input type=”button”
 value=”Click Me”
 onclick=”SayHello()” />

This form of the <input> tag creates a button (specified by the type attri-

bute). The button has Click Me as a caption as specified by the value attri-

bute. When the user clicks the button, the browser performs the task defined

by the SayHello() function as specified by the onclick attribute. Load the

page in your browser and dismiss the initial message box. You see the button

added to the page, as shown in Figure 1-3.

 The <input> tag can create a number of controls on a page — buttons are

only one such control. You change the kind of control that <input> creates

through the type attribute. Later chapters show more of the <input> tag

options at your disposal. For now, all you need to know is that <input> is a

handy tag type to know about.

05_9781118431665-ch01.indd 1905_9781118431665-ch01.indd 19 3/26/13 11:02 AM3/26/13 11:02 AM

20 Part I: Understanding the Basics of JavaScript

Figure 1-3:
The <input>
tag lets you

add a button
to the page.

The advantage of using named code and a button is that you can access the

message box as often as needed. Whenever the user clicks Click Me, the

browser displays the message box shown in Figure 1-4. Try it now. You must

dismiss the dialog box before the browser returns control to the page, but

you can display the dialog box as many times as desired.

Figure 1-4:
You can

display this
dialog box

as often
as desired

without
reloading
the page.

Relying on external files
When you use a particular script regularly, you can do one of two things:

 ✓ Use cut and paste techniques to place the script everywhere you need it.

 ✓ Place the script in an external file.

The problem with cutting and pasting is that you end up with lots of copies

of the same script. If you need to make a change to the script, you have to

change every copy you create, which is error prone and time consuming.

Using an external file means that you create the script only once and then

use it everywhere. The script is easy to change because you change it in only

one location.

05_9781118431665-ch01.indd 2005_9781118431665-ch01.indd 20 3/26/13 11:02 AM3/26/13 11:02 AM

21 Chapter 1: HTML, Say Hello to JavaScript

Begin this part of the example by creating a new file using any means you like

(such as a favorite text editor or an application specially designed for work-

ing with JavaScript). Name it External.JS. JavaScript files normally have a

.JS file extension. Place this code inside the External.JS file:

function ExternalSayHello()
{
 alert(“This is the ExternalSayHello() function!”);
}

 This code functions exactly like the code that appears in the <head> tag of

the example page. It displays a message box using the alert() function.

However, the functions you create in External.JS must have unique names.

You can’t have two functions with the same name in the same page. Notice

that this function has a name of ExternalSayHello to differentiate it from

the SayHello() function you created earlier in the chapter.

You have to tell the page where to access this code. To do this, you create a

different sort of <script> tag entry in the <head> tag area of the page. This

<script> tag looks like this:

<script src=”External.JS”>
</script>

The src attribute tells the browser to load all of the code found in

External.JS. You access any function that appears in External.JS pre-

cisely the same way you would any code that appears in the <head> tag. To

see how this works, add a new button directly after the first button you cre-

ated in the preceding section using the following code:

<input type=”button”
 value=”Test External”
 onclick=”ExternalSayHello()” />

This button works and acts precisely the same as the other button you cre-

ated. The only difference is that it calls ExternalSayHello() instead of

SayHello() when the user clicks the button. Figure 1-5 shows how the page

looks with the additional button on it.

Figure 1-5:
The page

has two
buttons on

it now.

05_9781118431665-ch01.indd 2105_9781118431665-ch01.indd 21 3/26/13 11:02 AM3/26/13 11:02 AM

22 Part I: Understanding the Basics of JavaScript

Unless you provide additional formatting, the browser simply places the but-

tons side by side on the page as shown. When the user clicks Test External,

the browser displays the message box shown in Figure 1-6. As with the Click

Me button, you can display this message box as often as needed.

Figure 1-6:
Click Test

External
to see this

message
box.

05_9781118431665-ch01.indd 2205_9781118431665-ch01.indd 22 3/26/13 11:02 AM3/26/13 11:02 AM

