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Propagation of Waves in Ducts

Exhaust noise of internal combustion engines is known to be the biggest pollutant of the
present-day urban environment. Fortunately, however, this noise can be reduced sufficiently
(to the level of the noise from other automotive sources, or even lower) by means of a well-
designed muffler (also called a silencer). Mufflers are conventionally classified as dissipative
or reflective, depending on whether the acoustic energy is dissipated into heat or is reflected
back by area discontinuities.

However, no practical muffler or silencer is completely reactive or completely dissipative.
Every muffler contains some elements with impedance mismatch and some with acoustic
dissipation. In fact, combination mufflers are getting increasingly popular with designers.

Dissipative mufflers consist of ducts lined on the inside with an acoustically absorptive
material. When used on an engine, such mufflers lose their performance with time because the
acoustic lining gets clogged with unburnt carbon particles or undergoes thermal cracking.
Recently, however, better fibrous materials such as sintered metal composites have been
developed that resist clogging and thermal cracking and are not so costly. Besides, long strand
unglued glass fibers can stand high temperatures. Nevertheless, no such problems are
encountered in ventilation ducts, which conduct clean and cool air. The fan noise that would
propagate through these ducts can well be reduced during propagation if the walls of the
conducting duct are acoustically treated. For these reasons the use of dissipative mufflers is
much more common in air-conditioning systems.

Reflective mufflers, being nondissipative, are also called reactive mufflers. A reflective
muffler consists of a number of tubular elements of different transverse dimensions joined
together so as to cause, at every junction, impedance mismatch and hence reflection of a
substantial part of the incident acoustic energy back to the source. Most of the mufflers
currently used on internal combustion engines, where the exhaust mass flux varies strongly,
though periodically, with time, are of the reflective or reactive type. In fact, even the muffler
of an air-conditioning system is generally provided with a couple of reflective elements at one
or both ends of the acoustically dissipative duct.

Clearly, a tube or pipe or duct is the most basic and essential element of either type of
muffler. A study of the propagation of waves in ducts is therefore central to the analysis of a
muffler for its acoustic performance (transmission characteristics). This chapter is devoted to
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the derivation and solution of equations for plane waves and three-dimensional waves along
rectangular ducts, circular tubes and elliptical shells without and with mean flow, without and
with viscous friction, with rigid unlined walls and compliant or acoustically lined walls. We
start with the simplest case and move gradually to the more general and involved cases.

1.1 Plane Waves in an Inviscid Stationary Medium

In the ideal case of a rigid-walled tube with sufficiently small cross dimensions* filled with a
stationary ideal (nonviscous) fluid, small-amplitude waves travel as plane waves. The acoustic
pressure perturbation (on the ambient static pressure) p and particle velocity u at all points of a
cross-section are the same. The wave front or phase surface, defined as a surface at all points
of which p and u have the same amplitude and phase, is a plane normal to the direction of
wave propagation, which in the case of a tube is the longitudinal axis.

The basic linearized equations for the case are:
Mass continuity

ro
∂u
∂z �

∂r
∂t � 0; (1.1)

Dynamical equilibrium

ro
∂u
∂t �

∂p
∂z � 0; (1.2)

Energy equation (isentropicity)

∂p
∂r

� �
s

� g po � p� �
ro � r

≅
gpo
ro

� c2o(say) (1.3)

where

z is the axial or longitudinal coordinate,
p and r are acoustic perturbations on pressure and density,
po and ro are ambient pressure and density of the medium,
s is the entropy,
p/po ¿ 1; r/ro ¿ 1

Equation 1.3 implies that

dr � dp

c2o
;

∂r
∂t �

1
c2o

∂p
∂t ;

∂r
∂z �

1
c2o

∂p
∂z . (1.4)

The equation of dynamical equilibrium is also referred to as momentum balance equation,
or simply, momentum equation. Similarly, the equation for mass continuity is commonly
called continuity equation.

*The specific limits on the cross dimensions as a function of wave length are given in the next section.
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Substituting Equation 1.4 in Equation 1.1 and eliminating u from Equations 1.1 and 1.2 by
differentiating the first with respect to (w.r.t.) t, the second with respect to z, and subtracting,
yields

∂2

∂t2 � c2o
∂2

∂z2

� �
p � 0. (1.5)

This linear, one-dimensional (that is, involving one space coordinate), homogeneous partial
differential equation with constant coefficients (co is independent of z and t) admits a general
solution:

p z; t� � � C1f z� cot� � � C2g z� cot� �. (1.6)

If the time dependence is assumed to be of the exponential form e jwt, then the solution (1.6)
becomes

p z; t� � � C1e
jw t�z/co
� �

� C2e
jw t�z/co
� �

. (1.7)

The first part of this solution equals C1 at z � t � 0 and also at z � cot. Therefore, it
represents a progressive wave moving forward unattenuated and unaugmented with a velocity
co. Similarly, it can be readily observed that the second part of the solution represents a
progressive wave moving in the opposite direction with the same velocity, co.

Thus, co is the velocity of wave propagation, Equation 1.5 is a wave equation, and
solution (1.7) represents a standing wave defined as superposition of two progressive waves
with amplitudes C1 and C2 moving in opposite directions.

Equation 1.5 is called the classical one-dimensional wave equation, and the velocity of
wave propagation co is also called phase velocity or sound speed. As acoustic pressure p is
linearly related to particle velocity u or, for that matter, velocity potential f defined by the
relations

u � ∂f
∂z ; p � �ro

∂f
∂t ; (1.8)

the dependent variable in Equation 1.5 could as well be u or f. In view of this generality, the
wave character of Equation 1.5 lies in the differential operator

L � ∂2

∂t2 � c2o
∂2

∂z2 ; (1.9)

which is called the classical one-dimensional wave operator.
Upon factorizing this wave operator as

∂2

∂t2 � c2o
∂2

∂z2 �
∂
∂t � co

∂
∂z

� �
∂
∂t � co

∂
∂z

� �
; (1.10)

one may realize that the forward-moving wave [the first part of solution (1.6) or (1.7)] is the
solution of the equation

∂p
∂t � co

∂p
∂z � 0; (1.11)
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and the backward-moving wave [the second part of solution (1.6) or (1.7)] is the solution of
the equation

∂p
∂t � co

∂p
∂z � 0; (1.12)

Equation 1.7 can be rearranged as

p z; t� � � C1e
�jkz � C2e

�jkz
� 	

e jwt; (1.13)

where

k � w/co � 2p/l;
k is called the wave number or propagation constant, and l is the wavelength.

As particle velocity u also satisfies the same wave equation, one can write

u z; t� � � C3e
�jkz � C4e

�jkz
� 	

e jwt. (1.14)

Substituting Equations 1.13 and 1.14 in the dynamical equilibrium equation (1.2) yields

C3 � C1/roco; C4 � �C2/roco ;

and therefore

u z; t� � � 1
Zo

C1e
�jkz � C2e

�jkz
� �

e jwt; (1.15)

where Zo � roco is the characteristic impedance of the medium, defined as the ratio of the
acoustic pressure and particle velocity of a plane progressive wave.

For a plane wave moving along a tube, one could also define a volume velocity vv (� Su)
and mass velocity

v � roSu; (1.16)

where S is the area of cross-section of the tube. The corresponding values of characteristic
impedance (defined now as the ratio of the acoustic pressure and the said velocity of a plane
progressive wave) would then be as follows:

For particle velocity u; characteristic impedance � p/u � roco; (1.17a)

For volume velocity vv; characteristic impedance � p/vv � roco/S; (1.17b)

For mass velocity v; characteristic impedance � p/v � co/S. (1.17c)

For the latter two cases, the characteristic impedance involves the tube area S. As it is not a
property of the medium alone, it would be more appropriate to call it characteristic impedance
of the tube. For tubes conducting hot exhaust gases, it is more appropriate to deal with
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acoustic mass velocity v. The corresponding characteristic impedance is denoted in these
pages by the symbol Y for convenience:

Yo � co/S. (1.18)

Equations 1.15, 1.16 and 1.18 yield the following expression for acoustic mass velocity:

v z; t� � � 1
Yo

C1e
�jkz � C2e

�jkz
� �

e jwt (1.19)

Subscript 0 with Y and k indicates nonviscous conditions. Constants C1 and C2 in
Equations 1.13 and 1.19 are to be determined by the boundary conditions imposed by the
elements that precede and follow the particular tubular element under investigation. This has to
be deferred to the next chapter, where we deal with a system of elements or an acoustic filter.

1.2 Three-Dimensional Waves in an Inviscid Stationary Medium

In order to appreciate the limitations of the plane wave theory, it is necessary to consider the
general 3D (three-dimensional) wave propagation in tubes. The basic linearized equations
corresponding to Equations 1.1 and 1.2 for waves in stationary nonviscous medium are
obtained by replacing ∂/∂z with the 3D gradient operatorr. Thus,

Mass continuity: ror ? u� ∂r
∂t � 0; (1.20)

Dynamical equilibrium: ro
∂u
∂t �rp � 0. (1.21)

The third equation is the same as Equations 1.3 or 1.4. On making use of this equation in
Equation 1.20, differentiating Equation 1.20 w.r.t. to t, taking divergence of Equation 1.21
and subtracting, one gets the required 3D wave equation,

∂2

∂t2 � c2or2

� �
p � 0; (1.22)

where the Laplacianr2 is given as follows.
Cartesian coordinate system (for rectangular ducts)

r2 � ∂2

∂x2 �
∂2

∂y2 �
∂2

∂z2 ; (1.23)

Cylindrical polar coordinate system (for circular tubes)

r2 � ∂2

∂r2 �
1
r

∂
∂r �

1
r2

∂2

∂q2
� ∂2

∂z2 . (1.24)

1.2.1 Rectangular Ducts

For harmonic time dependence, making use of separation of variables, the general solution of
the 3D wave equation (1.22) with the Laplacian given by Equation 1.23 can be seen to be
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p x; y; z; t� � � C1e
�jkzz � C2e

�jkzz
� �

e�jkxx � C3e
�jkxx

� �
e�jkyy � C4e

�jkyy
� �

e jwt; (1.25)

with the compatibility condition

k2x � k2y � k2z � k2o. (1.26)

Here, kx; ky and kz are wave numbers in the x, y and z direction, respectively. In the limiting
case of plane waves, kx � ky � o. Then, Equation 1.26 yields kz � ko and Equation 1.25
reduces to Equation 1.13.

It may be noted from Equation 1.25 that x-dependent factor involves two unknowns
kx and c3, and the y-dependent factor involves the unknowns ky and C4. These may be
evaluated from the relevant boundary conditions as follows.

For a rigid-walled duct of breadth b and height h (Figure 1.1), the boundary conditions are

∂p
∂x � 0 at x � 0 and x � b (1.27a)

and

∂p
∂y � 0 at y � 0 and y � h. (1.27b)

Substituting these boundary conditions in Equation 1.25 yields, respectively,

C3 � 1; kx � mp
b

; m � 0; 1; 2; . . . . . . . (1.28a)

and

C4 � 1; ky � np
h
; n � 0; 1; 2; . . . . . . .; (1.28b)

and Equation 1.25 then becomes

p x; y; z; t� � �X∞
m�0

X∞
n�0

cos
mpx
b


 �
cos

npy
h


 �
C1;m;ne

�jkz;m;nz � C2;m;ne
�jkz;m;nz

� �
e jwt; (1.29)

z

h

y

b

x

Figure 1.1 A rectangular duct and the Cartesian coordinate system (x, y, z)
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where, as per Equation 1.26, the transmission wave number for the (m, n) mode, kz;m;n is given
by the relation

kz;m;n � k2o � mp/b� �2 � np/h� �2
h i1/2

. (1.30)

In order to evaluate axial particle velocity corresponding to the (m, n) mode, we make use
of the z-component of the momentum equation (1.21)

ro
∂uz;m;n
∂t � ∂p

∂z � 0; (1.31)

which yields

uz;m;n��∂p/∂z
jwro

� kz;m;n
koroco

C1;m.ne
�jkz;m;nz � C2;m;ne

�jkz;m;nz
� 

cos
mpx
b


 �
cos

npy
h


 �
e jwt.

(1.32)

Now, mass velocity can be evaluated by integration over the area of cross-section in
Figure 1.1:

vz;m;n� ro

Z h

o

Z b

o
uz;m;ndxdy

�
Z b

o
cos

mpx
b


 �
dx

Z h

o
cos

npy
h


 �
dy

kz;m;n
w

C1;m;ne
�jkz;m;nz � C2;m;ne

�jkz;m;nz
� 

e jwt;

(1.33)

which yields

vz;m;n�0 for m ≠ 0 and=or n ≠ 0

� bh

co
C1e

�jkoz � C2e
�jkoz

� 
e jwt for m � n � 0.

(1.34)

Thus, acoustic mass velocity is nonzero only for the plane wave or (0, 0) mode for which
Equation 1.19 is recovered. Incidentally, it shows that the concept of acoustic volume velocity
or mass velocity does not have any significance for higher-order modes. Equation 1.32 shows
that for the same acoustic pressure, amplitude of the particle velocity for the (m, n) mode is
less than kz;m;n/ko times

� �
that for the plane wave. It can be noted that for the (0, 0) mode,

kz;m;n � ko and Equation 1.29 reduces to Equation 1.13. Thus, plane wave corresponds to the
(0, 0) mode solution in Equation 1.29.

Any particular mode (m, n) would propagate unattenuated if kz;m;n is greater than zero.
Then, use of Equation 1.30 yields

k2o �
mp
b


 �2 � np
h


 �2
> 0 (1.35a)
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or

l <
2

m

b


 �2 � n

h


 �2� �1/2
(1.35b)

Obviously, a plane wave of any wavelength can propagate unattenuated, whereas a higher
mode can propagate only insofar as inequality (1.35b) is satisfied. Thus, if h > b, the first
higher mode (0, 1) would get cut-on (that is, it would start propagating) if

l < 2h or f >
co
2h

. (1.36)

In other words, only a plane wave would propagate (all higher modes, even if present,
being cut-off, that is, attenuated exponentially) if the frequency is small enough so that

l > 2h or f <
co
2h

; (1.37)

Thus, the cut-off frequency of a rectangular duct (Figure 1.1) is given by

f co � co
2h

; (1.38)

where h is the larger of the two transverse dimensions of the rectangular duct.

1.2.2 Circular Ducts

The wave equation (1.22), with the Laplacian given by Equation 1.24 governs wave
propagation in circular tubes (see Figure 1.2). Upon making use of the method of separation
of variables, and writing time dependence as e jwt and q dependence as e jmq, one gets

p r; q; z; t� � �
X

m
Rm r� �e jmqZ z� �e jwt. (1.39)

z

θ

y

x

r

P

Figure 1.2 A cylindrical duct/tube and the cylindrical polar coordinate system (r, q, z)
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Assuming the z-dependence function Z(z) as in Equation 1.25 with

d2Z

dz2
� �k2z Z (1.40)

and substituting Equations 1.39 and 1.40 in the wave equation, one gets a Bessel equation for
R(r):

d2Rm

dr2
� 1

r

dRm

dr
� k2o � k2z �

m2

r2

� �
Rm � 0. (1.41)

As indicated in Appendix A, Equation 1.41 has a general solution

Rm � C3Jm krr� � � C4Nm krr� �; (1.42)

where the radial wave number kr is given by

k2r � k2o � k2z ; (1.43)

and Jm( ? ) and Nm( ? ) are Bessel function and Neumann function, respectively.
Nm krr� � tends to infinity at r � 0 (the axis). But acoustic pressure everywhere has got to be

finite. Therefore, the constant C4 must be zero.
Again, the radial velocity at the walls r � ro� � must be zero. Therefore,

dJm krr� �
dr

� 0 at r � ro. (1.44)

Thus, kr takes only such discrete values as satisfy the equation

J 0m krro� � � 0. (1.45)

Upon denoting the value of kr corresponding to the nth root of this equation as kr;m;n; one
gets

p r; q; t� � �X∞
m�0

X∞
n�1

Jm kr;m;nr
� �

e jmqe jwt � C1;m;ne
�jkz;m;nz � C2;m;ne

�jkz;m;nz
� �

; (1.46)

where

kz;m;n � k2o � k2r;m;n


 �1/2
. (cf: Eq: 1.30) (1.47)

As the first zero of J 0o (or that of J1) is zero, kr;0;1 � 0 and kz;0;1 � ko. Thus, for the (0, 1)
mode, Equation 1.46 reduces to Equation 1.13, the equation for the plane wave propagation.
Hence, the plane wave corresponds to the (0, 1) mode of Equation 1.40 and propagates
unattenuated.
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In most of the literature [1–3], n represents the number of the zero of the derivative
J 0m krro� � as per Equation 1.45. This introduces a dissimilarity between the notation for
rectangular ducts and circular ducts. In rectangular ducts, m and n represent the number of
nodes in the transverse pressure distribution as shown in Figure 1.3. A similar picture could
emerge for circular ducts if n were to denote the number of circular nodes in the transverse
pressure distribution. This is shown in Figure 1.4. With this notation [4,5], the plane mode
would have the (0, 0) label in circular as well as rectangular ducts, and m and n would have
the same connotation, that is, the number of nodes (in respective directions) in the transverse
pressure distribution.

This new notation is adopted here henceforth. According to this, n� 0 would
represent the first root of Equation 1.45 and n would represent the (n� 1)st root thereof.
In Equation 1.46, the summation n � 1 to ∞ would read n � 0 to ∞ as in Equation 1.29
for rectangular ducts.

The first two higher-order modes (1, 0) and (0, 1) will get cut-on if kz;1;0 and kz;0;1 are real,
that is, if ko > kr;1;0 and kr;0;1. The first zero of J 01 occurs at 1.84 and the second zero of J 0o
occurs at 3.83. Thus, the cut-on wave numbers would be 1.84/ro and 3.83/ro, respectively. In
other words, the first azimuthal or diametral mode starts propagating at koro� 1.84 and the
first axisymmetric mode at koro� 3.83. If the frequency is small enough (or wave length is
large enough) such that

koro < 1.84; or l >
p

1.84
D; or f <

1.84
pD

co; (1.48)

2

1n

0

0 1

m

2

+ + + +

+ +

+

+ +

+

_ _

_

_ __

_

_

+

+ +

+

+

+

+

+

++

_ _

_

_

_ _

_

_

Figure 1.3 Nodal lines for transverse pressure distribution in a rectangular duct up to m� 2, n� 2
(Reproduced with permission from [5])
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where D is the diameter 2ro, then only the plane waves would propagate. Thus the cut-off
frequency of a circular tube is given by

f co � 1.84
p

co
D

� 0.5857
co
D

(cf: Eq: 1.38) (1.49)

Fortunately, the frequencies of interest in exhaust noise of internal combustion engines are
low enough so that for typical maximum transverse dimensions of exhaust mufflers Equation
1.49 is generally satisfied. Therefore, plane wave analysis has proved generally adequate. In
the following pages, as indeed in most of the current literature on exhaust mufflers, one-
dimensional wave propagation has been used throughout, with only a passing reference to the
existence of higher modes or three-dimensional effects. In practice, muffler configurations are
designed making use of the 1D analysis, and 3D analysis is used for a final check.

Substituting the m; n� � mode component of Equation 1.46 in the equation of dynamical
equilibrium for the axial direction, that is,

ro
∂uz
∂t � ∂p

∂z � 0; (1.50)

yields

uz;m;n � �∂p/∂z
jwro

m

0 1.84 3.05

0 1 2

0

1

2

6.715.333.83

9.978.547.02

+
+

+

+

_
_

_

_
+ +

_ _ +
_

+_

+ _ _+

+ +_ + _ + _ + _ ___ ++ +
+

_
+ +__

n

Figure1.4 Nodal lines for transversepressuredistribution inacircularductup tom� 2,n� 2 (Reproduced
with permission from [5])
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or

uz;m;n � Jm kr;m;nr
� �

e jmqe jwt
kz;m;n
koroco

� C1;m;ne
�jkz;m;nz � C2;m;ne

�jkz;m;nz
� 

. (1.51)

Thus, as compared to the plane wave, acoustic particle velocity for the (m, n) mode is
kz;m;n/ko times, for the same acoustic pressure. Of course, as just shown for rectangular ducts,
volume or mass velocity does not have a meaning for higher order modes.

1.3 Waves in a Viscous Stationary Medium

The analysis of wave propagation in a real (viscous) fluid with heat conduction from the walls
of the tube is originally due to Kirchhoff [6,7]. The presence of viscosity brings into play a
coupling between the axial and radial motions of the particle in a circular tube. Even if one
were to assume axisymmetry (freedom from q dependence), the wave propagation in a
circular tube would be two-dimensional.

Neglecting heat conduction in the first instance, the basic equations governing axisym-
metric wave propagation in stationary medium are [8]:

Mass continuity

∂r
∂t � r0

ur
r
� ∂ur

∂r � ∂uz
∂z

� �
� 0; (1.52)

Dynamical equilibrium (Navier–Stokes equations)

r0
∂uz
∂t � ∂p

∂z � m
∂2uz
∂r2 � 1

r

∂uz
∂r � ∂2uz

∂z2

� �
� m

3
∂2ur
∂r∂z�

1
r

∂ur
∂z � ∂2uz

∂z2

� �
; (1.53)

r0
∂ur
∂t � ∂p

∂r � m
∂2uz
∂r2 � 1

r

∂ur
∂r � ur

r2
� ∂2ur

∂z2

� �
� m

3
∂2ur
∂r2 � 1

r

∂ur
∂r � ur

r2
� ∂2uz
∂z∂r

� �
. (1.54)

The thermodynamic process being isentropic for small-amplitude waves, Equation 1.3 is
the third equation.

Eliminating r from Equation 1.52 with the help of Equation 1.3, and using the resulting
equation to eliminate p from Equations 1.53 and 1.54 yields

∂2uz
∂t2 � c20

∂2uz
∂z2 � 1

r

∂ur
∂z � ∂2ur

∂z∂r

� �
� ∂
∂t

m
r0

∂2uz
∂r2 � 1

r

∂uz
∂r � 1

3
∂2ur
∂r∂z�

1
3
1
r

∂ur
∂z � 4

3
∂2uz
∂z2

� �� �
;

(1.55)

∂2ur
∂t2 � c20

∂2ur
∂r2 � 1

r

∂ur
∂r � ur

r2
� ∂2uz
∂r∂z

� �
� ∂
∂t

m
r0

∂2ur
∂z2 � 1

3
∂2uz
∂z∂r�

4
3
∂2ur
∂r2 � 4

3r
∂ur
∂r � 4

3
ur
r2

� �� �
.

(1.56)
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For a sinusoidal forward progressive wave, if the input is only axial, the steady-state
solution would be of the form

uz � Uz r� �e jwte�jbz; (1.57)

ur � Ur r� �e jwte�jbz. (1.58)

Upon substituting these in Equations 1.55 and 1.56, decoupling the equations for
Uz andUr, using the order-of-magnitude relation

mw
r0c20

¿ 1; (1.59)

which is true for most of the gases (and liquids), and applying the rigid-wall boundary
condition, one gets, after considerable algebra [9],

Uz r� � � A J0 Cr� � � J0 Cr0� �f g; (1.60)

Uz r� � � jbA
C

J1 Cr� �; (1.61)

where amplitude A is a constant, and

C � � 1
1� j

2r0w
m

� �1/2
� �1� j� � r0w

2m

� �1/2
(1.62)

Substituting Equations 1.57, 1.58 and 1.62 in the continuity equation (1.52) gives

p � � r0c20b
w

A1J0 Cro� �e jwte�jbz; (1.63)

which indicates that acoustic pressure p is independent of the radius, where Ur andUz are not.
Figure 1.5 shows typical profiles of the axial velocity vz, radial velocity ur and pressure p.

Upon integrating uz over the cross-section of the tube to calculate volume velocity,
multiplying it with r0 to get mass velocity v, dividing p by v, and noting that

J1 Cr0� �
J0 Cr0� � � �j for Cr0j j > 10; (1.64)

one gets for characteristic impedance Y:

Y � p

v
� � c0

pr20
1� 1

r0

m
2r0w

� �1/2
� j

r0

m
2r0w

� �1/2
( )

. (1.65)
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Writing Y as c/S [cf. Equation 1.18] gives the velocity of wave propagation in the tube c:

c � �c0 1� 1
r0

m
2r0w

� �1/2
� j

r0

m
2r0w

� �1/2
� �c0 1� a

k0
� j

a
k0

� �( )
. (1.66)

The corresponding expressions for b become

b � �k0 1� 1
r0

m
2r0w

� �1/2
� j

r0

m
2r0w

� �1/2
( )

� � k0 � a� � � jaf g

� �k0 1� a
k0

� j
a
k0

� �
(1.67)

where a is the attenuation constant

a � 1
r0c0

wm
2r0

� �1/2
. (1.68)

Thus, wave number k for a progressive wave in the tube is

k � k0 � a � k0 1� a
k0

� �
. (1.69)

Notably, k is slightly higher than k0, the wave number in the free medium.
The standing wave solution (1.13) becomes

p z; t� � � C1e
�az�jkz � C2e

az�jkz
� 

e jwt. (1.70)

(a) (b) (c)

r
ro

z

Figure1.5 Profilesof (a) axial velocity, (b) radialvelocityand (c)pressure, at somecross-sectionof thepipe
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The acoustic mass velocity v can be got from Equations 1.70 and 1.65:

v z; t� � � 1
Y

C1e
�az�jkz � C2e

az�jkz
� 

e jwt; (1.71)

where Y is the characteristic impedance for the forward wave, corresponding to the positive
sign of Equation 1.65; that is,

Y � Y0 1� a
k0

� j
a
k0

� �
; (1.72)

Y0 being the characteristic impedance for the inviscid medium, given by Equation 1.18:

Y0 � c0
S
; S � pr20.

Kirchhoff [6,7] takes into account heat conduction as well. Following a slightly different
but more general analysis, he gets expressions that are identical to Equations 1.67 and 1.68
with m being replaced by me, an effective coefficient of viscothermal friction, given by

me � m 1� g1/2 � 1

g1/2

 !
K

mCp

� �1/2
( )2

; (1.73)

where Cp is the specific heat at constant pressure, and K is the coefficient of thermal
conductivity. It may be noted that mCp/K is the Prandtl number. Incidentally, for air at normal
temperature and pressure (NTP), Prandtl number is 0.7 and the specific heat ratio g is 1.4.
Thus, for air, Equation 1.73 yields me � 1.65m.

Experimental measurements of a by several investigators [2] show disagreement with
theoretical values, the discrepancy ranging from 15 to 50%. However, almost all of them
confirm the functional dependence of a on w1/2 and r0 implied in Equation 1.68. Of course,
the attenuation constant a is also a function of surface roughness, flexibility of the tube wall,
humidity of the medium, and so on.

In the foregoing analysis, it has been observed that the axial component of acoustic velocity
uz is a function of radius, and its radial dependence remains the same along the axis. This
latter property enabled us to define an acoustic mass velocity v, and we got Equation 1.71 to
go with Equation 1.70. These two equations correspond to Equations 1.13 and 1.19 for
undamped plane waves. This formal similarity of the standing wave solutions suggests
strongly that one could perhaps write the basic equation in terms of a mean axial particle
velocity u defined as

u � v

r0S
; (1.74)

taking into account the effect of a in the equation of dynamical equilibrium as an additional
pressure-drop term, looking at the velocity of wave propagation c as a real number equal to
the real part of Equation 1.66, the corresponding k as in Equation 1.69, and dropping the
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radial component of acoustic particle velocity altogether. These basic equations would then
lead to a one-dimensional damped wave equation with essentially the same solutions as given.
Such a representation would make conceptualization as well as analysis considerably easier,
and would admit useful generalizations for damped wave propagation in a moving medium,
as shown later in Section 1.6.

Thus, two of the basic equations for damped plane waves, the equation of mass continuity
and thermodynamic (isentropic) process, are the same as Equations 1.1 and 1.3, whereas the
equation for dynamical equilibrium (1.2) becomes

r0
∂u
∂t �

∂p
∂z � 2ar0cu � 0; (1.75)

where 2ar0cu is the pressure drop per unit length due to viscothermal friction as given by
Rschevkin [10].

These three basic equations lead to the one-dimensional damped wave equation [cf.
Equation 1.5]

∂2

∂t2 � c2
∂2

∂z2 � 2ca
∂
∂t

� �
p � 0. (1.76)

Looking for a propagating solution of the type

p � Ce jwtebz (1.77)

one gets, on substituting Equation 1.77 in Equation 1.76,

b � � �k2 � 2jka
� �1/2

≅�jk 1� j
a
k


 �
� � jk � a� �;

(1.78)

where the following inequality has been assumed:

a2/k2 ;a2/k20 ¿ 1. (1.79)

Thus, we recover Equation 1.70 for acoustic pressure p and, hence, Equation 1.71 for the
acoustic mass velocity.

It is important to note here that Equation 1.75 is not an exact equation and therefore should
not be used to find the values of c, k, a and Y, which are to be adopted from the foregoing
relatively rigorous analysis.

1.4 Plane Waves in an Inviscid Moving Medium

Wave propagation is due to the combined effect of inertia (mass) and elasticity of the medium,
and therefore a wave moves relative to the particles of the medium. When the medium itself is
moving with a uniform velocity U, the velocity of wave propagation relative to the medium
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remains c. Therefore, relative to a stationary frame of reference (that is, as seen by a stationary
observer), the forward wave would move at an absolute velocity of U � c and the backward
moving wave at U � c. The waves are said to be convected downstream by mean flow. This is
borne out by the following analysis.

Let the medium be moving with a velocity U, the gradients of which in the r direction as
well as z direction are negligible. The basic linearized equations for this case are the same as
for stationary medium [Equations 1.1–1.3] except that the local time derivative ∂/∂t is
replaced by substantive derivative D/Dt, where

D

Dt
� ∂
∂t � U

∂
∂z . (1.80)

Thus, the mass continuity and momentum equations are

r0
∂u
∂z �

Dr
Dt

� 0 (1.81)

and

r0
Du

Dt
� ∂p
∂z � 0; (1.82)

respectively. The third equation is, of course, the isentropicity relation (1.3).
Eliminating r and u from these three equations yields the convective one-dimensional wave

equation

D2

Dt2
� c20

∂2

∂z2

� �
p � 0 (1.83)

or

∂2p
∂t2 � 2U

∂2p
∂z∂t � U2 � c20

� �∂2p
∂z2 � 0. (1.84)

Making use of the separation of variables and assuming again a time-dependence
function e jwt, the wave equation (1.84) may be seen to admit the following general
solution:

p z; t� � � C1e
�jw/ c0�U� �z � C2e

�jw/ c0�U� �z

 �

e jwt; (1.85)

or

p z; t� � � C1e
�jk0z/ 1�M� � � C2e

�jk0z/ 1�M� �

 �

e jwt. (1.86)

Writing

u z; t� � � C3e
�jk0z/ 1�M� � � C4e

�jk0z/ 1�M� �

 �

e jwt; (1.87)
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substituting Equations 1.86 and 1.87 in convective wave Equation 1.82 and equating the
coefficients of e�jk0z/ 1�M� � and e�jk0z/ 1�M� � separately to zero yields.

C3 � C1

rc0
and C4 � � C2

rc0

Thus, acoustic mass velocity v z; t� � is given by

v z; t� � � r0Su z; t� � � 1
Y0

C1e
�jk0z/ 1�M� � � C2e

�jk0z/ 1�M� �

 �

e jwt; (1.88)

where the characteristic impedance Y0 is the same as for stationary medium–Equation 1.18.
Equation 1.85 indicates (symbolically) the convective effect of mean flow on the two

components of the standing waves, as mentioned in the opening paragraph of this section.

1.5 Three-Dimensional Waves in an Inviscid Moving Medium

As indicated earlier in Section 1.2, analysis of three-dimensional waves in a flow duct is
needed for understanding the propagation of higher-order modes and for evaluating the
limiting frequency below which only the plane wave would propagate unattenuated.

Combining the arguments presented in Sections 1.2 and 1.4 yields the following basic
relations:

Mass continuity: r0r ? u� Dr
Dt

� 0; (1.89)

Dynamical equilibrium: r0
Du

Dt
�rp � 0; (1.90)

The convected 3D wave equation:
D2

Dt2
� c20r2

� �
p � 0. (1.91)

Here, the mean-flow velocity is assumed to be constant in space and time, that is, independent
of all coordinates.

For a rectangular duct (Figure 1.1), the solution to Equation 1.91 would be

p x; y; z; t� � �
X∞
m�0

X∞
n�0

cos
mpx
b

cos
npy
h

� C1;m;ne
�jk�z;m;nz � C2;m;ne

�jk�z;m;nz
n o

e jwt; (1.92)

where k�z;m;n and k
�
z;m;n are governed by the equation [cf. Equation 1.30]

k2z;m;n �
mp
b


 �2 � np
h


 �2 � k0 �Mkz;m;n
� �2

(1.93)

or

k�z;m;n �
��Mk0 � k20 � 1�M2

� � mp
b


 �2 � np
h


 �2� �� �1/2
1�M2 . (1.94)
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Thus, the condition for higher-order modes m; n > 0� � to propagate unattenuated is given
by the condition that the sum under the radical sign is not negative, or

k20 � 1�M2
� � mp

b


 �2 � np
h


 �2� �
³ 0. (1.95)

In other words, only a plane wave would propagate if the frequency is small enough so that

l >
2h

1�M2
� �1/2 or f <

c0
2h

1�M2
� �1/2

(1.96)

[cf. inequality (1.37)], where h is the larger of the two transverse dimensions of the
rectangular duct.

Clearly, the cut-off frequency for the first higher mode (0, 1) for a flow duct is lower than

that of a stationary-medium duct by a factor 1�M2
� �1/2

; where M is the average Mach
number of the mean flow.

It is worth noting here that the cut-off frequency is the same for downstream as well as
upstream propagation.

The same remarks hold for propagation of higher-order modes in a circular duct, the
solution for which can readily be seen to be (following the algebra of Section 1.2.2)

p r; q; z; t� � �
X∞
m�0

X∞
n�0

Jm kr;m;nr
� �

e jmqe jwt � C1;m;ne
�jk�z;m;nz � C2;m;ne

�jk�z;m;nz
n o

; (1.97)

where k�z;m;n and k
�
z;m;n are governed by the equation

k2z;m;n � k2r;m;n � k0 �Mkz;m;n
� �2

(1.98)

or

k�z;m;n �
��Mk0 � k20 � 1�M2

� �
k2r;m;n

h i1/2
1�M2 . (1.99)

Thus, the condition for higher-order modes (m and/or n > 0) to propagate unattenuated is
given by

k20 � 1�M2
� �

k2r;m;n ³ 0. (1.100)

In other words, only a plane wave would propagate if the frequency is small enough so that

k0r0 < 1.84 1�M2
� �1/2

;

or

l >
pD

1.84 1�M2
� �1/2 ;
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or

f <
1.84c0
pD

1�M2
� �1/2 � 0.5857

c0
D

1�M2
� �1/2

(1.101)

The lowering of the cut-off frequency by mean flow has been demonstrated experimentally
by Mason [11,12]. In particular, he has shown that the cut-off frequency for circular tubes

with flow is indeed lowered by a factor 1�M2
� �1/2

for low Mach numbers M < 0.2� � that
are typical of exhaust mufflers.

Now the particle velocity u x; y; z; t� � can be determined by assuming for it a form similar to
that of pressure [i.e. Equation 1.92], with constant C1;m;n and C2;m;n replaced by new constants
C3;m;n and C4;m;n, and summing uz;m;n so obtained over m and n. Thus,

uz x; y; z; t� � � 1
r0c0

X∞
m�0

X∞
n�0

cos
mpx
b

cos
npy
h

� k�z;m;n
k0 �Mk�z;m;n

C1;m;ne
�jk�z;m;nz � k�z;m;n

k0 �Mk�z;m;n
C2;m;ne

�jk�z;m;nz

( )
.

(1.102)

Similarly, the particle velocity u r; q; z; t� � for 3D waves in a circular tube with mean flow
can be readily proved to be given by the equation

uz r; q; z; t� � � 1
r0c0

X∞
m�0

X∞
n�0

Jm kr;m;nr
� �

e jmqe jwt

� k�z;m;n
k0 �Mk�z;m;n

C1;m;ne
�jk�z;m;nz � k�z;m;nz

k0 �Mk�z;m;n
C2;m;ne

�jk�z;m;nz

( )
.

(1.103)

1.6 One-Dimensional Waves in a Viscous Moving Medium

As has been shown in Section 1.3, a wave front in a tube containing a viscous fluid is not
plane inasmuch as axial particle velocity is not the same all over the cross-section, although
acoustic pressure is constant for most of the common gases for which inequality (1.59) is
satisfied. Nevertheless, as shown later in that section, one could write the equivalent one-
dimensional equations following Rschevkin [10]. These equations are extended here to
account for the additional aeroacoustic losses due to turbulent friction, and also the convective
effect of mean flow. They imply use of a quasi-static approach [13] wherein it is assumed that
the steady flow relations apply with acoustic perturbations as well. On subtracting one from
the other and linearizing in terms of acoustic perturbations r and u, we get the required
aeroacoustic equation for propagation of one-dimensional waves in a moving medium with
friction. This principle or approach is indeed the very basis of aeroacoustics, and is used
extensively in Chapter 3.

With subscripts 0 and T denoting mean and total (perturbed) states, we can write

rT � r0 � r; pT � p0 � p; uT � U � u; (1.104)
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where, for the linear case,

r
r0

� �2

¿ 1;
p

p0

� �2

¿ 1;
u

c0

� �2

¿ 1; (1.105)

so that terms involving quadratic terms in the acoustic perturbation variables p; r and u can be
neglected.

Substituting these relations in the mass continuity equation

DrT
Dt

� rT
∂uT
∂z � ∂rT

∂t � ∂
∂z rTuT� � � 0; (1.106)

Subtracting from it the corresponding unperturbed steady flow equation, and noting that
both the time derivative as well as space derivative of the mean quantities p0; r0 andU are
zero by definition, yields the equation

∂r
∂t � U

∂r
∂z � r0

∂u
∂z � 0 (1.107)

which, of course, is identical to Equation 1.81 when one notes that

D

Dt
� ∂
∂t � uT

∂
∂z≅

∂
∂t � U

∂
∂z . (1.108)

The one-dimensional equation for dynamical equilibrium with viscothermal dissipation and
turbulent friction loss can be written as [10,13]

r0
DuT
Dt

� ∂pT
∂z � 2ar0cuT � xr0u

2
T � 0; (1.109)

where 2ar0cuT is the pressure drop per unit length due to viscothermal friction, x � F/2d,
F� Froude’s friction factor, defined as ratio of the pressure drop in an axial length equal to
one diameter divided by the dynamic head 1

2r0u
2
T

�
, and d� diameter of the tube, or hydraulic

diameter (four times the ratio of area and perimeter) if the tube is not circular.
Thus, xr0u2T is the pressure drop per unit length due to boundary-layer friction or wall

friction. Froude’s friction factor F can be obtained as a function of Reynolds number from
textbooks on fluid mechanics (see, for example, [14,15]).

For the typical flow velocities in exhaust mufflers, F is given by Lees formula

F � 0.0072� 0.612

R0.35
e

; Re < 4� 105; (1.110)

where Re is the Reynolds number Udr0/m and m is the coefficient of dynamic viscosity.
Substituting Equation 1.104 in Equation 1.109, subtracting from it the corresponding

unperturbed steady flow equation, and making use of the order-of-magnitude relations for the
small-amplitude (i.e. linear) waves gives

r0
∂u
∂t � r0U

∂u
∂z �

∂p
∂z � 2r0acu� 2xr0U0u � 0
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or

r0
DuT
Dt

� ∂p
∂z � 2r0 ac� xU� �u � 0; (1.111)

For small-amplitude wave propagation in a moving medium with no transverse gradients,
the thermodynamic process is still almost isentropic and therefore Equation 1.3 holds.

Eliminating r and u from Equations 1.3, 1.107 and 1.111 yields the desired wave equation

D2

Dt2
� c20

∂2

∂z2 � 2 xU � ca� � D
Dt

� �
p � 0. (1.112)

This equation is very similar to Equation 1.76 except that local time derivative operator
∂/∂t is replaced by the substantive derivative D/Dt, thereby incorporating the convective
effect of mean flow, and a flow-acoustic friction term has been added.

On assuming a solution of the form

p z; t� � � Ce jwtebz; (1.113)

substituting it in Equation 1.112, making use of the order-of-magnitude considerations

M2a2 < a2
¿ k2;

x2M4 < x2M2
¿ k2;

2xM3a < 2xMa¿ k2;

(1.114)

and some algebraic manipulations [16], one gets two values of b:

b�≅�� a� xM � jk

1�M

� �
. (1.115)

Thus,

p z; t� � � C1 exp �a� xM � jk

1�M
z

� �
� C2 exp �a� xM � jk

1�M
z

� �� �
exp jwt� �. (1.116)

This solution shows clearly that

i. total aeroacoustic attenuation in a movingmediuma M� � is a sum of the contributions of the
viscothermal effects and turbulent flow friction, and

ii. the factors 1�M that represent the convective effect of mean flow apply to the attenuation
constants as well as to the wave numbers.

The attenuation constants are

a� � a� xM
1�M

� a M� �
1�M

; (1.117)

a� � a� xM
1�M

� a M� �
1�M

; (1.118)
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where

a M� � � a� xM; k � k0 � a. (1.119)

a M� � being the same for waves in both the directions, can be construed to be the ‘real’
aeroacoustic attenuation constant for a moving medium. The factors 1�M in a� as well as
b� represent only the Doppler effect due to mean flow convection.

The acoustic mass velocity v can now be written as

v z; t� � � 1
Y

C1 exp �a� xM � jk

1�M
z

� �
� C2 exp �a� xM � jk

1�M
z

� �� �
exp jwt� �. (1.120)

The characteristic impedance Y can be constructed heuristically from Equation 1.72,
making use of the foregoing remarks, a being replaced by a M� �, and the fact observed in
Section 1.4 that mean-flow convection does not alter the characteristic impedance. Thus, for
the case on hand,

Y � Y0 1� a� xM
k0

� j
a� xM

k0

� �
; (1.121)

where, as before, Y0 is the characteristic impedance for plane waves in an inviscid stationary
medium given by Equation 1.18.

Equation 1.121 neglects second-order terms like Ma/k and M2x/k. These terms would
further complicate the algebra inasmuch as Y for the forward direction would not be the same
as for the backward direction.

It is worth repeating here that the above analysis is oversimplified for the specific purpose
of evaluating the aeroacoustic attenuation constant. In particular, Equations 1.108 and 1.111
are not exact because they are one-dimensional.

Thus, Equations 1.116, 1.120 and 1.121 are approximate. Nevertheless, these equations are
very useful from an engineering point of view because of their formal similarity with the
corresponding equations for the case of the inviscid moving medium and the viscous
stationary medium derived in the foregoing section.

1.7 Waves in Ducts with Compliant Walls (Dissipative Ducts)

In all the foregoing sections, the walls of the duct were assumed to be rigid. However, walls of
a finite thickness (typical of the sheet metal from which the exhaust mufflers are fabricated)
are in general compliant inasmuch as the transverse impedance is finite. Alternatively, the
walls of the duct may be lined with an acoustically absorptive material that would, of course,
have a finite normal impedance. This latter application is much more important than the
former and is discussed at length in Chapter 6.

The normal impedance of a wall lined with an acoustically absorptive layer can be assumed
to be independent of z. In other words, the acoustic layer can be assumed to be homogeneous
and ‘locally reacting’. The same, however, does not apply to unlined metallic walls of the
pipes as are used in exhaust mufflers for internal combustion engines, where the wall
impedance would vary with z (increasing near the end plates). Nevertheless, in such mufflers
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the wall thickness is generally substantial so that the impedance is very large or compliance
very small.

Neglecting the viscous friction of the medium as relatively insignificant and assuming the
mean flow velocity to be constant all over the cross-section, the propagation of waves in
compliant ducts would be governed by a 3D wave equation [Equation 1.22 for a stationary
medium and Equation 1.91 for a moving medium]. Here we restrict ourselves to the lowest-
mode (corresponding to plane wave) analysis of acoustically lined ducts with stationary
medium. The relatively minor effect of moving medium is discussed briefly in Chapter 6.

1.7.1 Rectangular Duct with Locally Reacting Lining

For a stationary medium, the general solution to wave equation (1.22) with the Laplacian r2

in terms of Cartesian coordinates [Equation 1.23] is given by Equation 1.25 with wave
numbers kx; ky; and kz being related to k0 as per Equation 1.26.

Let Zw be the normal impedance of the walls at their exposed boundary and let b and h be
the breadth and height of the free section as shown in Figure 1.6. According to the equation of
dynamical equilibrium in the x direction, the x component of acoustic particle velocity ux is
related to acoustic pressure p as

r0
∂ux
∂t � ∂p

∂x � 0 (1.122)

or

ux � �∂p/∂x
jwr0

. (1.123)

Similarly,

uy � �∂p/∂y
jwr0

. (1.124)

hy

b

x z

d

d

Figure 1.6 Schematic views of an acoustically lined rectangular duct with clear dimensions b and h
(cf. Figure 1.1)
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Thus, the boundary conditions for a duct with uniform normal wall impedance Zw would be

p 0; y; z; t� �
�ux 0; y; z; t� � �

p b; y; z; t� �
ux b; y; z; t� � � Zwx; (1.125)

p x; 0; z; t� �
�uy x; 0; z; t� � �

p x; h; z; t� �
uy x; h; z; t� � � Zwy; (1.126)

Substituting solution (1.25) and Equations 1.123 and 1.124 in the four boundary conditions
(1.125) and (1.126) yields

wr0 1� C3� �
�kx 1� C3� � � Zwx; (1.127)

wr0
kx

e�jkxb � C3e�jkxb

e�jkxb � C3e�jkxb
� Zwx; (1.128)

wr0 1� C4� �
�ky 1� C4� � � Zwy; (1.129)

wr0
ky

e�jkyh � C4e�jkyh

e�jkyh � C4e�jkyh
� Zwy. (1.130)

Equation 1.127 yields

C3 � Zwxkx
wr0

� 1

� �
/

Zwxkx
wr0

� 1

� �
; (1.131)

Substituting this in Equation 1.128 and rearranging leads to a quadratic in Zwxkx/wr0,
which in turn yields

Zwxkx
wr0

� �cos kxb� 1
j sin kxb

(1.132)

� �j tan
kxb

2
; j cot

kxb

2
. (1.133)

These two eigen equations can be rewritten in the conventional form

cot kxb/2� �
kxb/2

� �j
Zwx

r0c0
1

k0b/2
(1.134a)

and

tan kxb/2� �
kxb/2

� j
Zwx

r0c0
1

k0b/2
. (1.134b)
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For the limiting case of rigid unlined walls, Zwx ® ∞ ;C3 � 1, and the two equations
yield, respectively,

kx � 0;
2p
b
;

4p
b
; . . . (1.135a)

and

kx � p/b; 3p/b; 5p/b; . . . (1.135b)

Thus, the two equations supply alternate values of the series (1.28a), that is,

kx � mp/b; m � 0; 1; 2; 3. (1.136)

By analogy, the roots or (eigen values) of Equations 1.134a and 1.134b must be alternating
with each other. It can readily be checked that, like the series of roots (1.135a), the roots of the
transcendental equation (1.134a) belong to symmetric modes, whereas, like the series of roots
(1.135b), the roots of Equation 1.134b represent antisymmetric modes, the symmetry here
relating to the axis x � b/2.

An identical analysis of Equations 1.129 and 1.130 would show that ky is given by the
transcendental eigen equations

cot kyh/2
� �
kyh/2

� �j
Zwy

r0c0
1

k0h/2
(1.137a)

and

tan kyh/2
� �
kyh/2

� j
Zwy

r0c0
1

k0h/2
; (1.137b)

the roots of which alternate with each other, representing symmetric and antisymmetric
modes, respectively, the symmetry being reckoned with respect to the axis y � h/2.

Let the infinite roots of Equations 1.134 and 1.137 be

kx;m; m � 0; 1; 2; 3; . . .

and

ky;m; m � 0; 1; 2; 3; . . . ; (1.138)

respectively.
Thus, the general acoustic pressure field equation (1.25) becomes

p x; y; z; t� ��
X∞
m�0

X∞
n�0

e�jkx;m;x � Zw;xkx;m/r0c0k0 � 1
Zw;xkx;m/r0c0k0 � 1

� �
e�jkx;m;x

� �

� e�jky;n;y � Zw;yky;n/r0c0k0 � 1
Zw;yky;n/r0c0k0 � 1

� �
e�jky;n;y

� �

C1;m;ne�jkz;m;nz � C2;m;ne�jkz;m;nz
� 	

e jwt;

(1.139)
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where kz;m;n is given by the equation

kz;m;n � k20 � k2x;m � k2y;n

n o1/2
. (1.140)

On substituting the (m, n) component of Equation 1.139 for acoustic pressure in the
momentum equation for the axial direction, evaluating uz;m;n, and then summing over m and n,
one gets

uz;m;n x; y; z; t� ��
X∞
m�0

X∞
n�0

e�jkx;m;x � Zw;xkx;m/r0c0k0 � 1
Zw;xkx;m/r0c0k0 � 1

� �
e�jkx;m;x

� �

� e�jky;n;y � Zw;yky;n/r0c0k0 � 1
Zw;yky;n/r0c0k0 � 1

� �
e�jky;n;y

� �

� kz;m;n
k0

1
r0c0

C1;m;ne
�jkz;m;nz � C2;m;ne

�jkz;m;nz
� 	

e jwt.

(1.141)

If all the walls of the duct are not lined with an absorptive material, then the wall
impedances Zw;x and Zw;y would be more or less reactive (controlled by mass and elasticity).
Then, according to Equations 1.134 and 1.137, kx and ky would be real and, as per
Equation 1.140, kz;m;n would be real or imaginary, not complex. Thus, the modes that may
propagate along an unlined duct with yielding walls would do so without attenuation. In other
words, the unlined yielding walls do not introduce axial attenuation.

By the same reasoning it can be seen that ducts lined with acoustically absorptive material
(that is, with complex wall impedance) would result in complex values of kx; ky, and hence kz.
The imaginary component of kz would introduce attenuation in the axial direction, and that is
the basic principle of dissipative ducts and parallel baffle mufflers discussed at length in
Chapter 6.

1.7.2 Circular Duct with Locally Reacting Lining

Waves in a circular duct with stationary medium (see Figure 1.7) are governed by Equation
1.22, with the Laplacian defined in terms of cylindrical polar coordinates according to

z

θ
r
P ri

d

ro

Figure 1.7 Schematic views of an acoustically lined circular duct with clear radius ri (cf. Figure 1.2)
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Equation 1.24; that is,

∂2

∂t2 � c20
∂2

∂r2 �
1
r

∂
∂r �

1
r2

∂2

∂q2
� ∂2

∂z2

� �� �
p � 0. (1.142)

Following Section 1.2, the general solution to Equation 1.142 is given by Equation 1.46:

p r; q; z; t� � �
X∞
m�0

X∞
n�0

Jm kr;m;nr
� �

e jmqe jwt � C1;m;ne
�jkz;m;nz � C2;m;ne

�jkz;m;nz
� 

; (1.143)

with kz;mn being determined from Equation 1.47. The notable difference is that kr;m;n is now
determined from the boundary condition that the wall r � ri� � has a finite impedance Zw (the
rigid walls have infinite impedance).

The momentum equation in the radial direction

r0
∂ur
∂t � ∂p

∂r � 0 (1.144)

yields

ur � �∂p/∂r
jwr0

. (1.145)

Therefore,

Zw � p

ur

� �
r�ri

� �jwr0p
∂p/∂r (1.146)

� �jwr0Jm kr;m;nri
� �

kr;m;nJ 0m kr;m;nri
� � ; (1.147)

where

J 0m kr;m;nri
� � � dJm kr;m;nr

� �
d kr;m;nr
� �

" #
r�ri

(1.148)

Thus, kr;m;n; n � 0; 1; 2 . . . are the infinite roots of the transcendental eigen equation

Jm krri� �
krri� �J 0m krri� � � j

Zw

r0c0
1

k0ri
. (1.149)

It is instructive to compare this equation with Equations 1.134 and 1.137. J 0m kr;m;nri
� �

of
Equation 1.149 corresponds to cos kxb/2� � in Equation 1.134a, sin kxb/2� � in Equation
1.134b, cos kyh/2

� �
in Equation 1.137a, and sin kyh/2

� �
in Equation 1.137b. The

correspondence between kx and ky, and between ri, b/2 and h/2 is of course obvious.
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Upon substituting the (m, n) component of Equation 1.143 for acoustic pressure in the
momentum equation for the axial direction, evaluating uz;m;n, and then summing over m and n,
one gets the following equation for acoustic particle velocity:

uz r; q; z; t� � �
X∞
m�0

X∞
n�0

Jm kr;m;nr
� �

e jmqe jwt � kz;m;n
k0

1
r0c0

C1e
�jkz;m;nz � C2e

�jkz;m;nz
� 

; (1.150)

The remarks following Equation 1.141 on the attenuation of waves along a rectangular duct
with compliant walls apply as well to a circular duct.

It is worth noting that, unlike in the z and r directions, for which the solution in general
consists of two terms, we have included only e jmq for the azimuthal direction; the e�jmq term
has been omitted. This is because there are no restrictions or discontinuities in the azimuthal
direction that would generate waves going in the opposite direction. The spiralling modes
represented by e jmq can be excited by nonsymmetries in the system such as area
discontinuities. In the exhaust systems of reciprocating machinery, therefore, radial as well as
azimuthal modes are excited.

Incidentally, for the hypothetical case of axisymmetry, m� 0 and Equations 1.143 and
1.150 have only a single summation (over n); that is, Equation 1.143 reduces to

p r; q; z; t� � �
X∞
n�0

J0 kr;nr
� �

e jwt � C1;m;ne
�jkz;m;nz � C2;m;ne

�jkz;m;nz
� 

; (1.151)

where kr,n is the (n� 1)th of the root of the eigen equation

� J0 kr;nri
� �

kr;nri
� �

J1 kr;nri
� � � j

Zw

r0c0
1

k0ri
. (1.152)

Impedance of the lining Zw at the interface r � ri� � is evaluated later in Section 1.7.4 as a
limiting case of the bulk reacting lining.

1.7.3 Rectangular Duct with Bulk Reacting Lining

A bulk reacting lining allows wave propagation inside the lining along the axis of the duct.
Wave number of this wave is equal to the axial wave number inside the duct. In fact, all
linings are basically bulk reacting in nature. Local reaction is a limiting or special case of the
bulk reaction.

In the bulk reacting model, the lining is assumed to be a homogeneous, highly porous,
fibrous or foam type material with open pores, (thermal insulation lining material is
characterized by closed pores). Its characteristic impedance Yw f� � and wave number kw f� �
are often given by complex empirical expressions in terms of flow resistivity, E, as shown in
Chapter 6 of this monograph. Subscript w connotes wall lining.

The bulk reaction model consists in writing expressions for acoustic pressure and the axial
and transverse particle velocity for a forward progressive wave in the air medium inside as
well as the lining materials, and equating pressure and transverse particle velocity across the
interface. (The effect of thin protective layer [17] and other practical aspects are discussed
later in Chapter 6).
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Thus, for a rectangular duct lined on two opposite sides (shown in Figure 1.8), which
incidentally represents one unit of the two-unit parallel baffle muffler shown in Figure 1.9,
considering the lowest-order mode (corresponding to the plane wave), the field equations are
as follows.

Air passage (subscript 0):

p z; y; t� � � C1 e�jky;0y � C2e
jky;0y

� �
e�jkzze jwt (1.153)

uz;0 z; y; t� � � kz
k0Y0

C1 e�jky;0y � C2e
jky;0y

� �
e�jkzze jwt (1.154)

uy;0 z; y; t� � � ky;0
k0Y0

C1 e�jky;0y � C2e
jky;0y

� �
e�jkzze jwt (1.155)

lb

d

d

h

h

z

y

x

yw

Figure 1.8 Schematic of a bulk reacting rectangular duct lined on two sides

b l

d

d

2h

2h

2d

Figure 1.9 Schematic of a parallel baffle muffler consisting of two units of rectangular duct shown in
Figure 1.8
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Inside the wall lining (subscript w):

pw z; y; t� � � C1 e�jky;wyw � C3e
jky;wyw

� �
e�jkzze jwt (1.156)

uz;w z; yw; t� � � kz
kwYw

C1 e�jky;wyw � C3e
jky;wyw

� �
e�jkzze jwt (1.157)

uy;w z; yw; t� � � ky;w
kwYw

C1 e�jky;wyw � C3e
jky;wyw

� �
e�jkzze jwt (1.158)

The overriding compatibility conditions:

kz;0 � kz;w � kz (1.159)

ky;0 � k20 � k2z
� �1/2

(1.160)

ky;w � k2w � k2z
� �1/2

(1.161)

Boundary conditions:
At the center of the duct,

uy;0 z; 0; t� � � 0 ) C2 � 1 (1.162)

At the rigid wall behind the lining,

uy;w z; 0; t� � � 0 ) C3 � 1 (1.163)

Across the interface,

p z; h; t� � � pw z; d; t� � (1.164)

uy;0 z; h; t� � � �uy;w z; d; t� � (1.165)

Making use of Equations 1.153, 1.156, 1.162 and 1.163, Equation 1.164 yields

cos ky;0h
� � � cos ky;wd

� �
(1.166)

Similarly, use of Equations 1.155, 1.158, 1.162 and 1.163 in Equation 1.165 gives

ky;0
k0Y0

sin ky;0h
� � � � ky;w

kwYw
sin ky;wd
� �

(1.167)

Dividing the two sides of Equation 1.66 with the corresponding sides of Equation 1.167
yields

k0Y0

ky;0
cot ky;0h
� � � � kwYw

ky;w
cot ky;wd
� �

(1.168)
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Here, ky;0 and ky;w are given by Equations 1.160 and 1.161, kw and Yw are complex functions
of frequency, k0 � w/c0 and Y0 � r0c0.

Incidentally, for a locally reacting lining, kz;w � 0 and therefore Equation 1.161 yields
ky;w � kw. Then, Equation 1.168 would reduce to Equation 1.137a, provided

Zw � �jYw cot kwd� � (1.169)

which is impedance of the rigid wall transferred to the interface (distance d), as will be shown
in Chapter 3.

Like Equation 1.137a, the transcendental eigen equation (1.168) is solved for the common
axial wave number, kz, by means of the Newton–Raphson iteration scheme as discussed at
some length in Chapter 6.

1.7.4 Circular Duct with Bulk Reacting Lining

For the circular duct with bulk reacting lining shown in Figure 1.7, the field equations for the
lowest-order mode progressive wave corresponding to Equations 1.153–1.158 for rectangular
duct would be as follows [17].

Air passage (subscript 0):

p z; r; t� � � C1J0 kr;0r
� �

e�jkzze jwt (1.170)

uz;0 z; r; t� � � kz
wr0

C1J0 kr;0r
� �

e�jkzze jwt (1.171)

ur;0 z; r; t� � � �j
kr;0
wr0

C1J1 kr;0r
� �

e�jkzze jwt (1.172)

Inside the wall lining (subscript w):

pw z; r; t� � � C2 J0 kr;wr
� �� C3N0 kr;wr

� �� 
e�jkzze jwt (1.173)

uz;w z; r; t� � � kz
wr0

C2 J0 kr;wr
� �� C3N0 kr;wr

� �� 
e�jkzze jwt (1.174)

ur;w z; r; t� � � �jkr;w
wrw

C2 J1 kr;wr
� �� C3N1 kr;wr

� �� 
e�jkzze jwt (1.175)

where J and N denote the Bessel function and Neumann function, respectively. These are
often called Bessel functions of the first kind and second kind, respectively. The Neumann
function is often denoted by Y. However, in this monograph, Y has been used for
characteristic impedance.

The overriding compatibility conditions:

kz;0 � kz;w � kz say� � (1.176)

k2z � k2r;0 � k20 ) kr;0 � k20 � k2z
� 1/2

(1.177)

k2z � k2r;w � k2w ) kr;w � k2w � k2z
� 1/2

(1.178)
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Boundary conditions:
At the rigid wall behind the lining, (that is, at r � r0),

ur;w z; r0; t� � � 0 ) C3 � � J1 kr;wr0
� �

N1 kr;wr0
� � (1.179)

At the interface (that is, at r � ri), in the absence of a thin protective layer or perforated plate,

p z; ri; t� � � pw z; ri; t� � (1.180)

ur;0 z; ri; t� � � ur;w z; ri; t� � (1.181)

which yield the impedance relationship

Zr;0 ri;w� � � Zr;w ri;w� �; Zr � p

ur
(1.182)

On making use of Equations 1.170, 1.172, 1.173, 1.175, 1.180 and 1.181, Equation 1.182
yields

j
wr0
kr;0

J0 kr;0ri
� �

J1 kr;0ri
� � � j

wrw
kr;w

J0 kr;wri
� �� C3N0 kr;wri

� �
J1 kr;wri
� �� C3N1 kr;wri

� � (1.183)

where C3 is given by Equation 1.179 above.
In Equation 1.183, jw has not been cancelled out between the LHS and RHS so as to retain

correspondence to Equation 1.182 in terms of the respective impedances Zr;0 and Zr;w on the
inner and outer side of the interface at r � ri.

It may be noted that

wr0 � w
c0

.r0c0 � k0Y0 (1.184)

and

wrw � w
cw

.rwcw � kwYw (1.185)

For the limiting case of the locally reacting lining, kz;w � 0, and therefore, as per
Equation 1.178, kr;w � kw. Then, Zr;w which is given by the right-hand side of Equation 1.183
reduces to the following expression for the locally reacting lining:

Zw � jYw
J0 kwri� � � C0

3N0 kwri� �
J1 kwri� � � C0

3N1 kwri� � (1.186)

where C0
3 equals C3 with kr;w

� �
replaced with kw in Equation 1.179. Thus,

C0
3 � � J1 kwr0� �

N1 kwr0� � (1.187)

Therefore, Zw in the eigen equation (1.152) for the locally reacting lining is given by
Equation 1.186 with C3 given by Equation 1.187.

Evaluation of the wave number kw and characteristic impedance Yw of the lining material in
terms of the flow resistivity, and so on is discussed in some detail later in Chapter 6.

Propagation of Waves in Ducts 33



1.8 Three-Dimensional Waves along Elliptical Ducts

Automotive exhaust mufflers are often elliptical in cross-section because of the constraint of
clearing (space) under a car with low center of gravity. Three-dimensional analysis of
elliptical shells is needed not only to evaluate the cut-off frequency for pure plane wave
propagation, but also to analyze short flow-reversal end chambers that are often used in
automotive mufflers. Here, we assume the medium to be stationary and inviscid.

For sinusoidal time dependence (e jwt), that is, working in the frequency domain, the 3D
wave equation reduces to the Helmholtz equation

r2 � k20
� �

p � 0 (1.188)

In terms of the elliptical cylindrical coordinates shown in Figure 1.10, the Laplacian r2 is
given by [18]

r2 � 2

h2 cosh 2x� � � cos 2h� �f g
∂2

∂x2
� ∂2

∂h2

� �
� ∂2

∂z2 (1.189)

Here, x and h are the radial and angular elliptical coordinates, respectively. Conceptually,
these are radial and azimuthal counterparts of the circular polar coordinate system r; q� �
shown in Figure 1.2. Accordingly, the curves of constant x define a family of confocal ellipses
with semi-major axis. D1/2 � h cosh x� � and semi-minor axis, D2/2 � h sinh x� �. Each of
these ellipses has common foci at x � �h, where 2h is the interfocal distance. Thus, line F0F,
connecting the two foci, represents the limiting ‘x � 0’ ellipse. The curves of the constant h
denote a family of confocal hyperbolae, as shown in Figure 1.10.

Figure 1.10 An elliptical coordinate system
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Incidentally, elliptical cylindrical coordinates are related to the Cartesian coordinates as
follows:

x � h cosh x� �cos h;� �; y � h sinh x� �sin h� �; z � z (1.190)

where h is semi-interfocal distance. Thus, the h � 0 and p hyperbolae coincide with X-axis
and the h � p/2 and 3p/2 hyperbolae coincide with the Y-axis as shown in Figure 1.10. This
behavior is similar to the azimuthal coordinates q in the cylindrical polar coordinate system
(see Figure 1.2).

It may be noted that the tangents at the point of intersection of the family of confocal
ellipses and hyperbolae are at right angles, thereby confirming that the elliptical coordinate
system is orthogonal and therefore would permit solution by separation of variables. The
resulting ordinary differential equations are as follows [18–21]:

p x; h; z� � � px x� �ph h� �pz z� � (1.191)

d2ph
dh2

� a� 2q cos 2h� �f gph � 0 (1.192)

d2px
dx2

� a� 2q cosh 2x� �f gph � 0 (1.193)

d2pz
dz2

� k2z pz � 0 (1.194)

Equation 1.192 is called Mathieu differential equation, and Equation 1.193 is called the
modified Mathieu differential equation. In these two equations,

q � k20 � k2z
� �

h2

4
or

2
ffiffiffi
q

p
h

� k20 � k2z
� �1/2

(1.195)

Thus, q plays the same role as the radial wave number in a circular duct. The constant ‘a’ is
the separation constant which is to be so chosen that solutions are periodic in h, so that
ph h � 2p� � � ph h� �.

General solutions to Equations 1.192–1.94 are of the type [18]

ph h� � � C1cem h; q� � � C2sem h; q� � (1.196)

px x� � � C3Cem x; q� � � CuSem x; q� � (1.197)

pz z� � � C5e
�jkzz � C6e

jkzz (1.198)

where cem and sem are radial and angular Mathieu functions, respectively, and Cem and Sem
are the corresponding Modified Mathieu functions. These are given by [18,22] Mathieu
functions:

even-even: ce2n h; q� � �X∞
r�0

A2n
2r cos 2rh� �; m � 2n; n � 0; 1; 2; . . . (1.199)
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even-odd: ce2n�1 h; q� � �X∞
r�1

A2n�1
2r�1 cos 2r � 1� �h� �; m � 2n� 1; n � 1; 2; 3; . . .

(1.200)

odd-even: se2n h; q� � �X∞
r�1

B2n
2r sin 2rh� �; m � 2n; n � 1; 2; 3; . . . (1.201)

odd-odd: se2n�1 h; q� � �
X∞
r�1

B2n�1
2r�1 sin 2r � 1� �h� �; m � 2n� 1; n � 1; 2; 3; . . .

(1.202)

Modified Mathieu functions:

even-even: Ce2n x; q� � �
X∞
r�0

A2n
2r cosh 2rh� �; m � 2n; n � 0; 1; 2; . . . (1.203)

even-odd: Ce2n�1 x; q� � �X∞
r�1

A2n�1
2r�1 cosh 2r � 1� �h� �; m � 2n� 1; n � 1; 2; 3; . . .

(1.204)

odd-even: Se2n x; q� � �
X∞
r�1

B2n
2r sinh 2rh� �; m � 2n; n � 1; 2; 3; . . . (1.205)

odd-odd: Se2n�1 x; q� � �
X∞
r�1

B2n�1
2r�1 sinh 2r � 1� �h� �; m � 2n� 1; n � 1; 2; 3; . . .

(1.206)

It may be noted the Modified Mathieu functions are obtained from the corresponding
Mathieu functions by replacing circular functions (cos and sine) by the corresponding
hyperbolic functions (cosh and sinh). The function names starting with c or C involve cos and
cosh functions and therefore are termed ‘even’, and those starting with s or S involve sine and
sinh functions and therefore are termed ‘odd’. The second adjective denotes the order (2n:
even, 2n-1: odd).

The boundary conditions across the interfocal line in Figure 1.10 are:

Continuity of acoustic pressure: p 0; h� � � p 0;�h� � (1.207)

Continuity of pressure gradient:
∂p 0; h� �
∂x � �∂p 0;�h� �

∂x (1.208)

Then, it can be shown that acoustic pressure field inside a hollow elliptical chamber is
given by [18]
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p x; h; z� � � X∞
m�0

Cem x; q� �cem h; q� � C1
me

�jkzz � C2
me

jkzz
� �

�X∞
m�1

Sem x; q� �sem h; q� � S1me
�jkzz � S2me

jkzz
� � (1.209)

Constants C1
m, C

2
m, S

1
m, and S2m, denote arbitrary constants to be determined from the

boundary conditions in the axial direction.
The mode shapes and their propagation are dependent upon the numerical value of the q-

parameter given by Equation 1.195. For evaluation of the cut-on frequencies of axial modes
corresponding to a certain q valve, let us use the following relations [23]:

2
ffiffiffi
q

p
h

� k0;
2
ffiffiffi
q

p
e

� k0
D1

2
; h � D1

2
e; e � 1� D2

D1

� �2
( )1/2

(1.210)

where e is eccentricity of the elliptical section, while D1 and D2 are, respectively, the major
and minor axes of the elliptical section shown in Figure 1.10.

qm;n and qm;n, the nth zero of the derivative of the Even and Odd type of the modified
Mathieu functions, respectively, of order m, are roots of the following equations characteriz-
ing the rigid wall boundary conditions:

dCem x; qm;n
� �
dx

����
x�x0

� 0 and
dSem x; qm;n

� �
dx

� 0 (1.211)

where

x0 � cosh�1 1/e� � (1.212)

defines the value of the radial elliptical coordinates x at the boundary of the elliptical duct or
shell shown in Figure 1.10.

By setting kz � 0 in Equation 1.195, the nondimensional cut-on frequencies of the even or
odd mode of order m corresponding to the nth parametric zero, that is, qm;n and qm;n,
respectively, are given by

k0 D1/2� �jm;n Even� � � 2
ffiffiffiffiffiffiffiffi
qm;n

p
/e; k0 D1/2� �jm;n Odd� � � 2

ffiffiffiffiffiffiffiffi
qm;n

q
/e. (1.213)

Lowson and Bhaskaran [20] tabulated values of the nondimensional frequencies of an
elliptical duct in terms of eccentricity e; not in terms of the aspect ratio, D2/D1, which would
be of greater interest to muffler designers. They did not document nondimensional cut-on
frequencies of the purely radial modes and cross modes. Recently, Mimani [23] has produced
comprehensive tables of the q-parameters (parametric zeros of the derivative of the modified
Mathieu functions). He has also developed interpolating polynomials for any arbitrary value
of the aspect ratio, D2/D1, and incorporated the convective effect of mean flow.
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The Mimani tables [23] contain the parametric zeros qm;n and qm;n, for even and odd modes
along with the corresponding nondimensional cut-on frequencies, for different values of the
aspect ratio:

D2/D1 � 0.1; 0:2; . . . . . . . . . 0.8; 0:9; 0:95; 0:99

for a hollow elliptical cross-section rigid-wall duct. These are listed below in Table 1.1 for the
lowest two modes.

Incidentally, for the m � 0; n � 1� � mode, qm;n � k0D1/2� �m;n � 0. Therefore the m � 0;�
n � 1� mode represents the plane wave, corresponding to the (0, 0) mode of circular duct in
Figure 1.4. As D2/D1 approaches unity, the nondimensional cut-on frequency of the Even-
Odd (0, 1) mode approaches that of the (1, 0) mode of the circular duct k0D/2 � 1.84� � and
that of the Even-Even (1, 1) mode of the elliptical duct tends to that of the (2, 0) mode of the
circular duct k0D/2 � 3.05� � in Figure 1.4.

Finally, the cut-off frequency, below which all higher-order modes are cut-off (decay
exponentially), of an elliptical cross-section duct of major axis D1 is given by

k0D1/2≅1.86(within� 1%accuracy) (1.214)

which compares with k0D/2 � 1.84 for circular duct (Equation 1.48). Thus, Equation 1.48
can also be used to evaluate the cut-off frequency of an elliptical duct, provided D is replaced
by D1, the major axis of the ellipse, not the geometric mean diameter, D1D2� �1/2.

In other words, the cut-off frequency of an elliptical section is lower than the corresponding
circular duct with the same equivalent diameter by a factor

D1D2� �1/2
D1

� D2

D1

� �1/2
(1.215)

Table 1.1 The q-parameters and the corresponding nondimensional cut-on frequencies (Extracted
from the Mimani Tables [23])

D2/D1 Eccentricity e Even-Odd m � 0; n � 1 Even-Even m � 1; n � 1

qm;n k0D1/2� �m;n qm;n k0D1/2� �m;n
0.1 0.995 0.8804 1.8861 3.0042 3.4840
0.2 0.98 0.8523 1.8844 2.8999 3.4761
0.3 0.954 0.8056 1.8818 2.7280 3.4628
0.4 0.917 0.7407 1.8781 2.4909 3.4441
0.5 0.866 0.6582 1.8736 2.1918 3.4190
0.6 0.8 0.5585 1.8682 1.8346 3.3862
0.7 0.714 0.4422 1.8622 1.4240 3.3419
0.8 0.6 0.3099 1.8556 0.9680 3.2795
0.9 0.436 0.1623 1.8486 0.4825 3.1871
0.95 0.312 0.0830 1.8449 0.2382 3.1258
0.99 0.141 0.0169 1.8419 0.0469 3.0693
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