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Introduction

1.1 The concept of a model

Many applications of science make use of models . The term ‘model’ is usually
used for a structure that has been built with the purpose of exhibiting features and
characteristics of some other objects. Generally, only some of these features and
characteristics will be retained in the model depending upon the use to which
it is to be put. Sometimes, such models are concrete, as is a model aircraft
used for wind tunnel experiments. More often, in operational research, we will
be concerned with abstract models. These models will usually be mathematical
in that algebraic symbolism will be used to mirror the internal relationships in
the object (often an organization) being modelled. Our attention will mainly be
confined to such mathematical models, although the term ‘model’ is sometimes
used more widely to include purely descriptive models.

The essential feature of a mathematical model in operational research is that
it involves a set of mathematical relationships (such as equations, inequalities
and logical dependencies) that correspond to some more down-to-earth relation-
ships in the real world (such as technological relationships, physical laws and
marketing constraints).

There are a number of motives for building such models:

1. The actual exercise of building a model often reveals relationships that
were not apparent to many people. As a result, a greater understanding is
achieved of the object being modelled.

2. Having built a model it is usually possible to analyse it mathematically to
help suggest courses of action that might not otherwise be apparent.

3. Experimentation is possible with a model, whereas it is often not possible
or desirable to experiment with the object being modelled. It would
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clearly be politically difficult, as well as undesirable, to experiment
with unconventional economic measures in a country if there were a
high probability of disastrous failure. The pursuit of such courageous
experiments would be more (though not perhaps totally) acceptable on a
mathematical model.

It is important to realize that a model is really defined by the relationships that
it incorporates. These relationships are, to a large extent, independent of the data
in the model. A model may be used on many different occasions with differing
data, for example, costs, technological coefficients and resource availabilities. We
would usually still think of it as the same model even though some coefficients
have been changed. This distinction is not, of course, total. Radical changes in the
data would usually be thought of as a change in the relationships and therefore
the model.

Many models used in operational research (and other areas such as engineer-
ing and economics) take standard forms. The mathematical programming type of
model that we consider in this book is probably the most commonly used standard
type of model. Other examples of some commonly used mathematical models are
simulation models, network planning models, econometric models and time series
models . There are many other types of model, all of which arise sufficiently often
in practice to make them areas worthy of study in their own right. It should be
emphasized, however, that any such list of standard types of model is unlikely to
be exhaustive or exclusive. There are always practical situations that cannot be
modelled in a standard way. The building, analysing and experimenting with such
new types of model may still be a valuable activity. Often, practical problems can
be modelled in more than one standard way (as well as in non-standard ways). It
has long been realized by operational research workers that the comparison and
contrasting of results from different types of model can be extremely valuable.

Many misconceptions exist about the value of mathematical models, partic-
ularly when used for planning purposes. At one extreme, there are people who
deny that models have any value at all when put to such purposes. Their criti-
cisms are often based on the impossibility of satisfactorily quantifying much of
the required data, for example, attaching a cost or utility to a social value. A
less severe criticism surrounds the lack of precision of much of the data that
may go into a mathematical model; for example, if there is doubt surrounding
100 000 of the coefficients in a model, how can we have any confidence in an
answer it produces? The first of these criticisms is a difficult one to counter
and has been tackled at much greater length by many defenders of cost–benefit
analysis. It seems undeniable, however, that many decisions concerning unquan-
tifiable concepts, however, they are made, involve an implicit quantification that
cannot be avoided. Making such a quantification explicit by incorporating it in
a mathematical model seems more honest as well as scientific. The second crit-
icism concerning accuracy of the data should be considered in relation to each
specific model. Although many coefficients in a model may be inaccurate, it is
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still possible that the structure of the model results in little inaccuracy in the
solution. This subject is mentioned in depth in Sections 4.2 and 6.3.

At the opposite extreme to the people who utter the above criticisms are those
who place an almost metaphysical faith in a mathematical model for decision-
making (particularly if it involves using a computer). The quality of the answers
that a model produces obviously depends on the accuracy of the structure and data
of the model. For mathematical programming models, the definition of the objec-
tive clearly affects the answer as well. Uncritical faith in a model is obviously
unwarranted and dangerous. Such an attitude results from a total misconception
of how a model should be used. To accept the first answer produced by a math-
ematical model without further analysis and questioning should be very rare.
A model should be used as one of a number of tools for decision-making. The
answer that a model produces should be subjected to close scrutiny. If it represents
an unacceptable operating plan, then the reasons for unacceptability should be
spelled out and if possible incorporated in a modified model. Should the answer
be acceptable, it might be wise only to regard it as an option . The specification
of another objective function (in the case of a mathematical programming model)
might result in a different option. By successive questioning of the answers and
altering the model (or its objective), it should be possible to clarify the options
available and obtain a greater understanding of what is possible.

1.2 Mathematical programming models

It should be pointed out immediately that mathematical programming is very
different from computer programming . Mathematical programming is ‘program-
ming’ in the sense of ‘planning’. As such, it need have nothing to do with
computers. The confusion over the use of the word ‘programming’ is widespread
and unfortunate. Inevitably, mathematical programming becomes involved with
computing as practical problems almost always involve large quantities of data
and arithmetic that can only reasonably be tackled by the calculating power
of a computer. The correct relationship between computers and mathematical
programming should, however, be understood.

The common feature that mathematical programming models have is that they
all involve optimization . We wish to maximize something or minimize something.
The quantity that we wish to maximize or minimize is known as an objective
function . Unfortunately, the realization that mathematical programming is con-
cerned with optimizing an objective often leads people summarily to dismiss
mathematical programming as being inapplicable in practical situations where
there is no clear objective or there are a multiplicity of objectives. Such an atti-
tude is often unwarranted because, as we shall see in Chapter 3, there is often
value in optimizing some aspect of a model when in real life there is no clear-cut
single objective.

In this book, we confine our attention to some special types of mathematical
programming model. These can most easily be classified as linear programming
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(LP ) models , non-linear programming (NLP ) models and integer programming
(IP ) models . We begin by describing what an LP model is by means of two
small examples.

Example 1.1: A Linear Programming (LP) Model (Product Mix)

An engineering factory can produce five types of product (PROD 1, PROD 2, . . . ,
PROD 5) by using two production processes: grinding and drilling.

After deducting raw material costs, each unit of each product yields the
following contributions to profit:

PROD 1 PROD 2 PROD 3 PROD 4 PROD 5

£550 £600 £350 £400 £200

Each unit requires a certain time on each process. These are given below (in
hours). A dash indicates when a process is not needed.

PROD 1 PROD 2 PROD 3 PROD 4 PROD 5

Grinding 12 20 – 25 15
Drilling 10 8 16 – –

In addition, the final assembly of each unit of each product uses 20 hours of
an employee’s time.

The factory has three grinding machines and two drilling machines and works
a six-day week with two shifts of 8 hours on each day. Eight workers are
employed in assembly, each working one shift a day.

The problem is to find how much of each product is to be manufactured so
as to maximize the total profit contribution.

This is a very simple example of the so-called ‘product mix’ application
of LP.

In order to create a mathematical model , we introduce variables x1, x2, . . . , x5
representing the numbers of PROD 1, PROD 2, . . . , PROD 5 that should be
produced in a week. As each unit of PROD 1 yields £550 contribution to profit
and each unit of PROD 2 yields £600 contribution to profit, etc., our total profit
contribution will be represented by the expression:

550x1 + 600x2 + 350x3 + 400x4 + 200x5. (1.1)

The objective of the factory is to choose x1, x2, . . . , x5 so as to make the value
of this expression as high as possible, that is, Expression (1.1) is the objective
function that we wish to maximize (in this case).
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Clearly, our processing and labour capacities, to some extent, limit the values
that the x j can take. Given that we have only three grinding machines working
for a total of 96 hours a week each, we have 288 hours of grinding capacity
available. Each unit of PROD 1 uses 12 hours grinding. x1 units will therefore
use 12x1 hours. Similarly, x2 units of PROD 2 will use 20x2 hours. The total
amount of grinding capacity that we use in a week is given by the expression on
the left-hand side of Inequality (1.2):

12x1 + 20x2 + 25x4 + 15x5 ≤ 288. (1.2)

Inequality (1.2) is a mathematical way of saying that we cannot use up more
than the 288 hours of grinding available per week. Inequality (1.2) is known as
a constraint . It restricts (or constrains) the possible values that the variables x j
can take.

The drilling capacity is 192 hours a week. This gives rise to the following
constraint:

10x1 + 8x2 + 16x3 ≤ 192. (1.3)

Finally, the fact that we have only a total of eight assembly workers each working
48 hours a week gives us a labour capacity of 384 hours. As each unit of each
product uses 20 hours of this capacity, we have the constraint

20x1 + 20x2 + 20x3 + 20x4 + 20x5 ≤ 384. (1.4)

We have now expressed our original practical problem as a mathematical model.
The particular form that this model takes is that of an LP model . This model
is now a well-defined mathematical problem. We wish to find values for the
variables x1, x2, . . . , x5 that make expression (1.1) (the objective function) as
large as possible but still satisfy constraints (1.2)–(1.4). You should be aware of
why the term ‘linear’ is applied to this particular type of problem. Expression
(1.1) and the left-hand sides of constraints (1.2)–(1.4) are all linear. Nowhere do
we get terms like x2

1 , x1x2 or log x appearing.
There are a number of implicit assumptions in this model that we should be

aware of. Firstly, we must obviously assume that the variables x1, x2, . . . , x5 are
not allowed to be negative, that is, we do not make negative quantities of any
product. We might explicitly state these conditions by the extra constraints

x1, x2, . . . , x5 ≥ 0. (1.5)

In most LP models the non-negativity constraints (1.5) are implicitly assumed to
apply unless we state otherwise. Secondly, we have assumed that the variables
x1, x2, . . . , x5 can take fractional values, for example, it is meaningful to make
2.36 units of PROD 1. This assumption may or may not be entirely warranted.
If, for example, PROD 1 represented gallons of beer, fractional quantities would
be acceptable. On the other hand, if it represented numbers of motor cars, it
would not be meaningful. In practice, the assumption that the variables can be
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fractional is perfectly acceptable in this type of model, if the errors involved in
rounding to the nearest integer are not great. If this is not the case, we have to
resort to IP .

The model above illustrates some of the essential features of an LP model:

1. There is a single linear expression (the objective function) to be maximized
or minimized.

2. There is a series of constraints in the form of linear expressions, which
must not exceed (≤) some specified value. LP constraints can also be of the
form ‘≥’ and ‘=’, indicating that the value of certain linear expressions
must not fall below a specified value or must exactly equal a specified
value.

3. The set of coefficients 288, 192, 384, on the right-hand sides of constraints
(1.2)–(1.4), is generally known as the right-hand side column.

Practical models will, of course, be much bigger (more variables and
constraints) and more complicated but they must always have the above three
essential features. The optimal solution to the above model is included in
Section 6.2.

In order to give a wider picture of how LP models can arise, we give a second
small example of a practical problem.

Example 1.2: A Linear Programming Model (Blending)

A food is manufactured by refining raw oils and blending them together. The
raw oils come in two categories:

Vegetable oils VEG 1
VEG 2

Non-vegetable oils OIL 1
OIL 2
OIL 3

Vegetable oils and non-vegetable oils require different production lines for refin-
ing. In any month, it is not possible to refine more than 200 tons of vegetable
oil and more than 250 tons of non-vegetable oils. There is no loss of weight in
the refining process and the cost of refining may be ignored.

There is a technological restriction of hardness in the final product. In the
units in which hardness is measured, this must lie between 3 and 6. It is assumed
that hardness blends linearly. The costs (per ton) and hardness of the raw oils are

VEG 1 VEG 2 OIL 1 OIL 2 OIL 3

Cost £110 £120 £130 £110 £115
Hardness 8.8 6.1 2.0 4.2 5.0

The final product sells for £150 per ton.
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How should the food manufacturer make their product in order to maximize
their net profit?

This is another very common type of application of LP although, of course,
practical problems will be, generally, much bigger.

Variables are introduced to represent the unknown quantities. x1, x2, . . . , x5
represent the quantities (tons) of VEG 1, VEG 2, OIL 1, OIL 2 and OIL 3 that
should be bought, refined and blended in a month. y represents the quantity of
the product that should be made. Our objective is to maximize the net profit:

−110x1 − 120x2 − 130x3 − 110x4 − 115x5 + 150y. (1.6)

The refining capacities give the following two constraints:

x1 + x2 ≤ 200, (1.7)

x3 + x4 + x5 ≤ 250. (1.8)

The hardness limitations on the final product are imposed by the following two
constraints:

8.8x1 + 6.1x2 + 2x3 + 4.2x4 + 5x5 − 6y ≤ 0, (1.9)

8.8x1 + 6.1x2 + 2x3 + 4.2x4 + 5x5 − 3y ≥ 0. (1.10)

Finally it is necessary to make sure that the weight of the final product is equal
to the weight of the ingredients. This is done by a continuity constraint:

x1 + x2 + x3 + x4 + x5 − y = 0. (1.11)

The objective function (1.6) (to be maximized) together with constraints
(1.7)–(1.11) make up our LP model.

The linearity assumption of LP is not always warranted in a practical problem,
although it makes any model computationally much easier to solve. When we
have to incorporate non-linear terms in a model (either in the objective function or
the constraints) we obtain an non-linear programming (NLP) model . In Chapter 7,
we will see how such models may arise and a method of modelling a wide class
of such problems using separable programming . Nevertheless, such models are
usually far more difficult to solve.

Finally, the assumption that variables can be allowed to take fractional values
is not always warranted. When we insist that some or all of the variables in
an LP model must take integer (whole number) values we obtain an integer
programming (IP) model . Such models are again much more difficult to solve
than conventional LP models. We will see in Chapters 8–10 that IP opens up
the possibility of modelling a surprisingly wide range of practical problems.

Another type of model that we discuss in Section 4.2 is known as a stochastic
programming model . This arises when some of the data are uncertain but can
be specified by a probability distribution. Although data in many LP models
may be uncertain, their representation by expected values alone may not be
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sufficient. Situations in which a more explicit recognition of the probabilistic
nature of data may be made, but the resultant model still converted to a linear
program, are described. In Chapter 3, we mention chance-constrained models and
in Chapter 4, multi-staged models with recourse, both of which fall in the category
of stochastic programming. An example of the use of this latter type of model is
given in Sections 12.24, 13.24 and 14.24 where it is applied to determining the
price of airline tickets over successive periods in the face of uncertain demand.
A good reference to stochastic programming is Kall and Wallace (1994).


