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1.1 Introduction

High-frequency data in finance is often characterized by fast fluctuations
and noise (see, e.g., [7]), a trait that is known to make the volatility of
the data very hard to estimate (see, e.g., [13]). Although this characteristic
creates many challenges in modeling, it offers itself to the study of distin-
guishing “signal” from “noise,” a topic of interest in the area of quickest
detection (see [25], [5]). One of the most popular algorithms used in quick-
est detection is known as the cumulative sum (CUSUM) stopping rule first
introduced by Page [24]. In this work, we employ a sequence of CUSUM
stopping rules to construct an online trading strategy. This strategy takes
advantage of the relatively frequent number of alarms CUSUM stopping
times may provide when applied to high-frequency data as a result of the
fast fluctuations present therein. The trading strategy implemented settles
frequently and thus eliminates the risk of large positions. This makes the
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2 CHAPTER 1 Trends and Trades

strategy implementable in practice. Prior work has been done by Lam
and Yam [20] on drawing connections between CUSUM techniques and
the filter trading strategy, yet both the filter trading strategy (see [2, 3]),
or its equivalent, the buy and hold strategy (see [12]), run high risks of
great losses mainly due to the randomness associated with settling. The
well-known trailing stops strategy whose properties have been thoroughly
studied in the literature (see, e.g., [15] or [1]) is also related to the filter
strategy and thus suffers similar risks.

Although our proposed rule presents clear merits in terms of minimiz-
ing the risk of large positions by taking advantage of the high volatility
frequently present in high-frequency data, the main purpose of this chapter
is to present and illustrate the use of detection techniques (in this case the
CUSUM) in high-frequency finance. In particular, the strategy proposed
is based on running in parallel two CUSUM stopping rules: one detects
an upward (+) change and the other a downward (−) change in the mean
of the observations. Once an upward/downward CUSUM alarm (called a
“signal”) goes off, there is a buy/short sale of one unit of the underlying
asset. At that moment, we repeat a CUSUM stopping rule, and for every
alarm of the same sign, we continue buying or short selling one unit of the
underlying asset until a CUSUM alarm of the opposite sign is set off, at
which time we sell off all of what we bought or buy up all of what we short
sold. The high frequency of CUSUM alarms in high-frequency tick data
permits the implementation of this rule in practice since large exposures
on one side, whether on the buy or on the sell side, are settled relatively
quickly.

The algorithmic strategy proposed is applied on real tick data of a
30-year asset and a 5-year note sold at auction on various individual days.
It is seen that the algorithm is most profitable in the presence of upward
or downward trends (which we call “subperiods”), even in the presence
of noise, and is less profitable on periods of price stability. The proposed
strategy is, in fact, a trend-following algorithm.

To quantify the performance of the proposed algorithmic strategy,
we calculate its expected reward in a simple random walk model. Our
diagnostic plots indicate that the more biased the random walk is, the more
profitable the proposed strategy becomes, which is consistent with the
actual findings when the strategy is applied to real data. This is because in
the presence of a bias, trends are more likely to form than in the absence
of a bias.
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We take the analytical approach of discrete data and a linear random
walk model, rather than taking the continuous approach via, for exam-
ple, the geometric Brownian motion model, because we are analyzing
the movement of individual ticks of a price, quantized in a linear fash-
ion (e.g., at the level of 1 cent, 1

32
cent, or 1

64
cent). Our models focus

on tracking the motion of an asset price via these ticks, and so a linear
approach is a more realistic setting, when short interest rate effects would be
minimal.

We begin our analysis in Section 1.2 by describing a general trading
strategy based on following upward or downward trends in a data stream,
without specifying the timing mechanism behind such a strategy. We then
develop the notion of gain over the time period of an individual trend. In
Section 1.3, we build a timing scheme stemming from quickest detection
considerations and give a preliminary performance evaluation of the overall
strategy on real tick data. Next, in Section 1.4, we analyze the specific case
of random walk-based data and calculate the expected value of the gain
over a trend in this case. We give an explicit formula for this gain in the
special case of simple asymmetric random walk on asset tick changes.
Then, in Section 1.5, we give results of Monte Carlo simulations for the
asymmetric lazy simple random walk and symmetric lazy random walk
on tick changes. In Section 1.6, we discuss the effect of the CUSUM
threshold parameter on the trading strategy. We conclude in Section 1.7
by a discussion of ways in which the proposed strategy may be improved
with suggestions for further work.

1.2 A trend-based trading strategy

Let {Sn}n=0,1,2... be a sequence of data points; for our purposes, they will
be samples of the price of an asset. We assume that S0 = s is a constant,
and Sk = 0 for some k implies that Sn = 0 for all n > k. Let T0 = 0, and
define Tk, k = 1, 2, ... as an increasing sequence of (stopping) times, called
signals, noting some trend in the sequence. We call Tk the k-th signal.

1.2.1 SIGNALING AND TRENDS

In this subsection, we construct a trading strategy in the case that there
are two types of signals: “+ signals” (declaring the detection of an upward
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trend in the data) and “− signals” (declaring the detection of a downward
trend in the data). Let “Property+(k)” be the property that causes a+ signal
to occur as the kth signal, and denote this event by {Tk = T+

k }. Likewise,
let “Property −(k)” be the property that causes a − signal to occur as the
k-th signal, and denote this by {Tk = T−

k }. Only one type of trend can be
detected at a time, so we formally define T+

k and T−
k by

T+
k :=

{
Tk if Property + (k) occurs
∞ if Property − (k) occurs

(1.1)

T−
k :=

{
Tk if Property − (k) occurs
∞ if Property + (k) occurs

(1.2)

Thus, Tk = T+
k ∧ T−

k for every k = 1, 2, ....
Next, we state what it means for the data to stay in a trend. We define

the sequence of signal indices 𝛼(l) as follows: let 𝛼(0) = 0, so T𝛼(0) = 0,
and for l ≥ 1, with k ≥ 2, define the properties

“Property + (l, k)” : Tj = T−
j for every 𝛼(l − 1) < j < k and Tk = T+

k

“Property − (l, k)” : Tj = T+
j for every 𝛼(l − 1) < j < k and Tk = T−

k .

Then, we define the lth shift point as, for l = 1, 2, ...,

𝛼(l) := inf{k≥ 𝛼(l − 1)+ 2: Property+ (l, k) or Property− (l, k) holds}.

(1.3)

Note that T𝛼(l) is at least two signals after T𝛼(l−1). Definition (1.3) is equiv-
alent to

𝛼(l) := inf{k≥ 𝛼(l− 1) + 2:Tk has different sign than Tj, 𝛼(l− 1)< j< k}.

(1.4)

A sequence of the same type of signal will be called a subperiod of the
sample points. A shift point denotes the end of a subperiod of the same
type of signal.

LetΔn be the number of shares of the asset S held at time n. SetΔ0 = 0.
Note that, for every n ∈ (T𝛼(l), T𝛼(l+1)), the sign of Δn is invariant, that is,
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either Δn > 0 holds for every n ∈ (T𝛼(l), T𝛼(l+1)) or Δn < 0 holds for every
n ∈ (T𝛼(l), T𝛼(l+1)).

Our trading strategy is as follows:

Δn+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δn if no signal at time n, i.e. n ≠ Tj ∀j (no change)

Δn + 1 if n = Tj = T+
j for some j, 𝛼(l) < j < 𝛼(l + 1)

for some l (buy one during a + subperiod)

Δn − 1 if n = Tj = T−
j for some j, 𝛼(l) < j < 𝛼(l + 1)

for some l (sell one during a − subperiod)

0 if n = T𝛼(l) for some l ≥ 1

(buy-up if T+
𝛼(l); sell-off if T−

𝛼(l)).

(1.5)

We assume a market in which all market orders are instantly fulfilled. The
intent of this strategy is to profit from following subperiods of + or −
signals by the old adage “buy low, sell high.” The success of this strategy
relies mainly on the length of such subperiods.

1.2.2 GAIN OVER A SUBPERIOD

We wish to analyze the gain Gl, l = 1, 2, ..., for this trading strategy over
the time period (T𝛼(l−1), T𝛼(l)], called subperiod l; this is the amount of
cash earned or lost by liquidating the transactions made from signals
T𝛼(l−1)+1, ..., T𝛼(l)−1 at T𝛼(l).

Note that a subperiod is determined by the first signal on that run:
if T1 = T+

1 , then the run from signal 1 to signal 𝛼(1) − 1 is a “bull run”
subperiod of individual buy orders followed by a sell-off at time T𝛼(1) =
T−
𝛼(1); if T1 = T−

1 , then this run is a “bear run” subperiod of individual short
sales followed by a buy-up at T𝛼(1) = T+

𝛼(1). Define Gl to be the gain on
subperiod l; thus, G1 is the gain on the first subperiod, starting at signal
T𝛼(0)+1 = T1 and ending at signal T𝛼(1). We require, as a condition, the sign
of the first signal of the subperiod. Let c ≥ 0 be the percentage cost per
transaction, and define

Al := 1{T𝛼(l−1)+1=T−
𝛼(l−1)+1}, Yl := 𝛼(l) − 𝛼(l − 1) − 1. (1.6)
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The gain on a subperiod is calculated as follows:

Gl :=

⎧⎪⎪⎨⎪⎪⎩
(1 − c)

∑𝛼(l)−1
j=𝛼(l−1)+1 STj

− (1 + c)(𝛼(l) − 𝛼(l − 1) − 1)ST𝛼(l)

if T𝛼(l−1)+1 = T−
𝛼(l−1)+1,

(1 − c)(𝛼(l) − 𝛼(l − 1) − 1)ST𝛼(l)
− (1 + c)

∑𝛼(l)−1
j=𝛼(l−1)+1 STj

if T𝛼(l−1)+1 = T+
𝛼(l−1)+1

:=

{
(1 − c)

∑Yl

j=1 STj+𝛼(l−1)
− (1 + c)(Yl)ST𝛼(l)

if T𝛼(l−1)+1 = T−
𝛼(l−1)+1,

(1 − c)(Yl)ST𝛼(l)
− (1 + c)

∑Yl

j=1 STj+𝛼(l−1)
if T𝛼(l−1)+1 = T+

𝛼(l−1)+1.

(1.7)

For example, if c = 0.01, T1 = T+
1 , and 𝛼(1) = 4, then T𝛼(1) = T4 = T−

4 .
Say the prices at the buy-signal times are ST1

= 5, ST2
= 7, ST3

= 9, and we
sell everything off at ST4

= 8. Then ΔT0
= 0, ΔT1

= 1, ΔT2
= 2, ΔT3

= 3,
and we liquidate at time T4 to ΔT4

= 0. The gain on the first subperiod
would then be G1 = (0.99)(3)(8) − (1.01)(5 + 7 + 9) = 2.55.

Combining the 1 − c terms and adding on the random variable
2cYlS𝛼(Tl)

, we have after some algebra a sum of price increments:

Gl + 2cYlS𝛼(Tl)
=
(
c + (−1)Al

)[
YlST𝛼(l)

−
Yl∑

j=1

STj+𝛼(l−1)

]
=
(
c + (−1)Al

) Yl∑
j=1

(ST𝛼(l)
− STj+𝛼(l−1)

).

(1.8)

We can rewrite each difference in the sum as a telescoping sum: setting

Zk := STk+1
− STk

, k = 1, 2, ..., (1.9)

as the incremental price change between signals k and k + 1, we have

ST𝛼(l)
− STj+𝛼(l−1)

=
𝛼(l)−1∑

k=j+𝛼(l−1)

(STk+1
− STk

) =
𝛼(l)−1∑

k=j+𝛼(l−1)

Zk =
Yl∑

k=j

Zk+𝛼(l−1).

Substituting this back into (1.8) yields

Gl + 2cYlS𝛼(Tl)
=

(
c + (−1)Al

) Yl∑
j=1

[
𝛼(l)−1∑

k=j+𝛼(l−1)

Zk

]
=
(
c + (−1)Al

) Yl∑
j=1

jZj+𝛼(l−1).

(1.10)



JWST671-c01 JWST671-Florescu Printer: Yet to Come March 15, 2016 12:33 Trim: 6.125in X 9.25in

1.3 CUSUM timing 7

Therefore, by (1.11), the gain over subperiod l is

Gl =
(
c + (−1)Al

) Yl∑
j=1

jZj+𝛼(l−1) − 2cYlS𝛼(Tl)
. (1.11)

Note that, in the absence of transaction costs (i.e., c = 0), the expected
gain Gl is entirely determined by price increments and the sign of the first
signal of the subperiod.

1.3 CUSUM timing

Next, we describe a version of the CUSUM statistic process and its associ-
ated CUSUM stopping rule, which we will use to devise a timing scheme
based on the quickest detection of trends, and incorporate this scheme to
our trading strategy.

1.3.1 CUSUM PROCESS AND STOPPING TIME

In this section, we begin by introducing the measurable space (Ω, ),
where Ω = ℝ∞,  = ∪nn, and n = 𝜎{Yi, i ∈ {0, 1,… , n}}. The law of
the sequence Yi, i = 1,… , is described by the family of probability mea-
sures {P𝜈}, 𝜈 ∈ ℕ∗. In other words, the probability measure P𝜈 for a given
𝜈 > 0, playing the role of the change point, is the measure generated on Ω
by the sequence Yi, i = 1,… , when the distribution of the Yi’s changes at
time 𝜈. The probability measures P0 and P∞ are the measures generated
on Ω by the random variables Yi when they have an identical distribution.
In other words, the system defined by the sequence Yi undergoes a “regime
change” from the distribution P0 to the distribution P∞ at the change point
time 𝜈.

The CUSUM statistic is defined as the maximum of the log-likelihood
ratio of the measure P𝜈 to the measure P∞ on the 𝜎-algebra n. That is,

Cn := max
0≤𝜈≤n

log
dP𝜈

dP∞

||||n

(1.12)

is the CUSUM statistic on the 𝜎-algebra n. The CUSUM statistic process
is then the collection of the CUSUM statistics {Cn} of (1.12) for n = 1,….



JWST671-c01 JWST671-Florescu Printer: Yet to Come March 15, 2016 12:33 Trim: 6.125in X 9.25in

8 CHAPTER 1 Trends and Trades

The CUSUM stopping rule is then

T(h) := inf
{

n ≥ 0 : max
0≤𝜈≤n

log
dP𝜈

dP∞

||||n

≥ h

}
, (1.13)

for some threshold h > 0. In the CUSUM stopping rule (1.13), the CUSUM
statistic process of (1.12) is initialized at

C0 = 0. (1.14)

The CUSUM statistic process was first introduced by Page [24] in the
form that it takes when the sequence of random variables Yi is indepen-
dent and Gaussian; that is, Yi ∼ N(𝜇, 1), i = 1, 2,…, with 𝜇 = 𝜇0 for i < 𝜈

and 𝜇 = 𝜇1 for i ≥ 𝜈. Since its introduction by Page [24], the CUSUM
statistic process of (1.12) and its associated CUSUM stopping time of
(1.13) have been used in a plethora of applications where it is of interest to
perform detection of abrupt changes in the statistical behavior of observa-
tions in real time. Examples of such applications are signal processing (see
[10]), monitoring the outbreak of an epidemic (see [29]), financial surveil-
lance (see [14] and [9]), and more recently computer vision (see [19]
or [30]). The popularity of the CUSUM stopping time (1.13) is mainly
due to its low complexity and optimality properties (see, for instance,
[21], [22, 23], [6] and [27] or [26]), in both discrete and continuous time
models.

As a specific example, we now derive the form in which Page [24]
introduced the CUSUM. To this effect, let Yi ∼ N(𝜇0, 𝜎2) that change to
Yi ∼ N(𝜇1, 𝜎2) at the change point time 𝜈. We now proceed to derive the
form of the CUSUM statistic process (1.12) and its associated CUSUM
stopping time (1.13) in the example set forth in this section. To this effect, let
us now denote by 𝜙(x) = 1√

2𝜋
e−x2∕2 the Gaussian kernel. For the sequence

of random variables Yi given earlier, we can now compute (see also [28]
or [25]):

Cn = max
0≤𝜈≤n

log
dP𝜈

dP∞

||||n

= max
0≤𝜈≤n

log

∏𝜈−1
i=1 𝜙

(
Yi−𝜇0

𝜎

)∏n
i=𝜈 𝜙

(
Yi−𝜇1

𝜎

)
∏n

i=1 𝜙

(
Yi−𝜇0

𝜎

)
= 1

𝜎2
max
0≤𝜈≤n

(𝜇1 − 𝜇0)
n∑

i=𝜈

[
Yi −

𝜇1 + 𝜇0

2

]
.

(1.15)
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In view of (1.14), we initialize the sequence (1.15) at Y0 = 𝜇1+𝜇0

2
and

proceed to distinguish the following two cases:

� Case 1: 𝜇1 > 𝜇0: divide out 𝜇1 − 𝜇0, multiply by the constant 𝜎2 in
(1.15), and use (1.13) to obtain the CUSUM stopping rule T+ :

T+(h+) = inf

{
n ≥ 0 : max

0≤𝜈≤n

n∑
i=𝜈

[
Yi −

𝜇1 + 𝜇0

2

]
≥ h+

}
(1.16)

for an appropriately scaled threshold h+ > 0.

� Case 2: 𝜇1 < 𝜇0: divide out 𝜇1 − 𝜇0, multiply by the constant 𝜎2 in
(1.15), and use (1.13) to obtain the CUSUM stopping rule T−:

T−(h−) = inf

{
n ≥ 0 : max

0≤𝜈≤n

n∑
i=𝜈

[
𝜇1 + 𝜇0

2
− Yi

]
≥ h−

}
(1.17)

for an appropriately scaled threshold h− > 0.

As shown in the study [24] or [11], we can reexpress the stopping times
(1.16) and (1.17) in terms of the recurrence relations

u0 = 0; un := max
{

0, un−1 +
(

Yn −
𝜇1 + 𝜇0

2

)}
(1.18)

d0 = 0; dn := max
{

0, dn−1 −
(

Yn −
𝜇1 + 𝜇0

2

)}
, (1.19)

which lead to

T+(h+) = inf{n > 0 : un ≥ h+}, (1.20)

T−(h−) = inf{n > 0 : dn ≥ h−}. (1.21)

The sequences un and dn of (1.18) and (1.19), respectively, form a
CUSUM according to the deviation of the monitored sequential observa-
tions Yn from the average of their pre- and postchange means. The first
time that one of these sequences reaches its threshold (in (1.20) or (1.21)),
the respective alarm T+ or T− fires.

Although the stopping times (1.16) and (1.17) and their respective
equivalents (1.20) and (1.21) can be derived by formal CUSUM regime
change considerations using the example set forth in this section, they may
also be used as general nonparametric stopping rules directly applied to
sequential observations as seen in the study by Brodsky and Darkhovsky
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[8] or Devore [11]. The former can be used as a general stopping rule to
detect an upward change in the mean while the latter a downward one.
In many applications, it is of interest to monitor an upward or downward
change in the mean of sequential observations simultaneously. This gives
rise to the two-sided CUSUM (2-CUSUM), which was first introduced
by Barnard [4], and whose optimality properties have been established in
Hadjiliadis [17], Hadjiliadis and Moustakides [16], and Hadjiliadis et al.
[18]. In the context presented in this section, the 2-CUSUM stopping time
takes the form

T+(h+) ∧ T−(h−), (1.22)

where T+(h+) appears in (1.20) and T−(h−) in (1.21). The symmetric
version of the 2-CUSUM stopping time is that of (1.22) when h+ = h− = h.

1.3.2 A CUSUM TIMING SCHEME

We now apply the aforementioned CUSUM stopping rule of (1.22) to a
stream of data representing the value of the underlying asset without any
model assumptions. In other words, the underlying asset is not necessarily
assumed to be independent or normally distributed. That is, we apply the
forms (1.16) and (1.17) in a nonparametric fashion. Let M > 0 denote
the “tick size” of the asset being monitored (presuming that S changes
in increments of M; we do not know the probability distribution of these
changes), and h > 0 be a given threshold. Given that S0 = s, recall that
T0 = 0. We monitor the progress of upward or downward adjustments in
the price Sn of the underlying, by individual ticks.

In view of the previous subsection at time Tk, 𝜇0 is set to the value
of the underlying at time Tk, namely 𝜇0 = STk

, and 𝜇u
1 = STk

+ M and
𝜇d

1 = STk
− M are the two “new” mean levels to be monitored against.

Thus, as in equations (1.18) and (1.19), which cumulate the deviations
of the monitored sequence from the average of their pre- and postchange
means, we now monitor the deviations of the underlying sequence Sn,
n = 1, 2… , from the quantities

mu
k :=

(STk
+ M) + STk

2
= STk

+ M
2

,

md
k :=

(STk
− M) + STk

2
= STk

− M
2

,

(1.23)
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where k ≥ 0. To this effect, set uk
0 = dk

0 = 0, and for n ≥ 1, define the
CUSUM statistics

uk
n := max{0, uk

n−1 + (Sn+Tk
− mu

k)},

dk
n := max{0, dk

n−1 − (Sn+Tk
− md

k )}.
(1.24)

Thus, for k ≥ 0, the CUSUM timing scheme for our trend-following trading
strategy is defined by using (1.20) and (1.21) (and coming from (1.1) and
(1.2)),

Property + (k + 1) : uk
n ≥ h; Property − (k + 1) : dk

n ≥ h
j∗k := min{n > 0 : Property + (k + 1) or − (k + 1) occurs}

Tk+1 : =Tk + j∗k .
(1.25)

In other words, each Tk is the symmetric 2-CUSUM stopping time of
(1.22) for cycle k. Finally, at the “end of day,” that is, on the final tick,
we close out our position, inducing a final shift point to end trading, for
algorithmic purposes.

1.3.3 US TREASURY NOTES, CUSUM TIMING

The following figures and chart describe the CUSUM timing scheme (1.25)
applied to the trading strategy (1.5) for US Treasury notes sold at auction in
2011. Gains quoted are in increments of $1000. In Figure 1.1, we show the

0.8

+1.007e2

Cumulative gain G1 + G2

Negative gain G3, run 3

Cumulative
gain G1 + G2 + G3

Asset price Sn
(dots are signals)

Gain G2, run 2

Gain G1, run 1

Δn

0.7

0.6

0.5

0.4

0.3

0.2

0 50 100 150 200 250

FIGURE 1.1 Plot of the first subperiods, and cumulative gain, for the
CUSUM strategy, August 2, 2011, US 5-year treasury note.
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FIGURE 1.2 Lengths of subperiods versus gains, August 2, 2011, US 5-year
treasury note.

asset price, along with the number of shares held, per-subperiod gain, and
running total gain. Figures 1.2, 1.3, 1.4, 1.5 and 1.6 show the individual
subperiod gains, plotted by the number of signals during a subperiod, of
the gain for 5-year and 30-year treasury notes, and Figure 1.7 aggregates
the data from Figures 1.3, 1.4, 1.5 and 1.6 for 30-year notes.

1.4 Example: Random walk on ticks

We now describe a simple example to model the asset price motions.
Assume that ∃N > 0 such that the sequence {Xj}j∈ℕ are the steps of a

FIGURE 1.3 Subperiod length versus gain, July 29, 2011, US 30-year trea-
sury note.
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FIGURE 1.4 Subperiod length versus gain, August 1, 2011, US 30-year trea-
sury note.

random walk taking integer values bounded between −N and N, that is,|Xj| ≤ N for all j ∈ ℕ, and that Xj ∈ {−N,−N + 1, ..., N − 1, N} for every

j, with pk = P(Xj = k) ≥ 0 and
∑N

k=−N pk = 1. Let S0 = s, and for n ≥ 1,
set Sn = s +

∑n
j=1 Xj. We will consider Sn to be a random walk on ticks,

rather than price itself, and so normalize tick size to M = 1.
Note that, since Δn = 0 ⟺ n = 𝛼(l) for some l ∈ {0, 1, 2, ...}, the

expected gain over a subperiod is the expected gain over an excursion to
zero on Δn, and so we can simply consider the first excursion (independent
of other excursions) on the time interval (T𝛼(0) = 0, T𝛼(1)]. Also, note that

FIGURE 1.5 Subperiod length versus gain, August 2, 2011, US 30-year trea-
sury note.
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FIGURE 1.6 Subperiod length versus gain, August 3, 2011, US 30-year trea-
sury note.

in this case, if the transaction cost c = 0, the Gl of (1.11) are IID random
variables.

Set

p+ := P(T1 = T+
1 ), p− := 1 − p+ = P(T1 = T−

1 ), (1.26)

and note that signal timing increments are independent. Conditioned on
the sign of signal 𝛼(l − 1) + 1 at time T𝛼(l−1)+1, Yl is a geometric random

FIGURE 1.7 Figures 1.3, 1.4, 1.5 and 1.6 combined (30-year).
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variable (starting at 1) which gives the number of signals of the same sign
in subperiod l. The distribution of Yl, conditioned on T𝛼(l−1)+1

, is

Yl ∼

{
geom(p−) if T𝛼(l−1)+1 = T+

𝛼(l−1)+1,
geom(p+) if T𝛼(l−1)+1 = T−

𝛼(l−1)+1.
(1.27)

To explain this, consider the case T𝛼(l−1)+1 = T+
𝛼(l−1)+1 (the first + signal of

a bull run subperiod): a subperiod of + has “failure” probability p+ (a +
signal continues the subperiod with another buy) and “success” probability
p− (a − signal causes a sell-off and ends the subperiod).

Al is an T𝛼(l−1)+1
-measurable random variable, and every increment in

the sum in (1.11) is independent of time T𝛼(l−1)+1. Finally, note that the Yl

are independent of the walk up to time T𝛼(l−1), and if c = 0, so are the Gl.

1.4.1 RANDOM WALK EXPECTED GAIN OVER A SUBPERIOD

We wish to examine the expected gain E(Gl) over subperiod l. For simplic-
ity in our initial analysis, set c = 0. Since the Gl are IID, we will calculate
E(G1). This is, since 𝛼(0) = 0 and Y1 = 𝛼(1) − 𝛼(0) − 1 = 𝛼(1) − 1, by
(1.11),

E(G1) = E

[
(−1)A1

Y1∑
j=1

jZj

]
. (1.28)

We condition over the possible values of Y1 and A1. Note that the sign of
T1 also determines the possibilities of Zj for j = 1, 2, ..., Y1 − 1. Zj depends
on the type of subperiod it resides on, so by the fact that the event {Yl =
n} ∈ T𝛼(l)

, and by setting, for j = 𝛼(l − 1) + 1, ..., 𝛼(l),

B+
j,l,n := E(Zj | T𝛼(l−1)+1 = T+

𝛼(l−1)+1, Yl = n),

B−
j,l,n := E(Zj | T𝛼(l−1)+1 = T−

𝛼(l−1)+1, Yl = n),
(1.29)

then, for n = 1, 2, ..., we have

E

[
Y1∑
j=1

jZj

|||| T1 = T+
1 , Y1 = n

]
= E

[
n∑

j=1

jZj

||||T1 = T+
1 , Y1 = n

]
=

n∑
j=1

jE

[
Zj

||||T1 =T+
1 , Y1 = n

]
=

n∑
j=1

jB+
j,1,n.

(1.30)
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Since the conditioning on B+
j,1,n (and, likewise, B−

j,1,n) is based only on
the walk during the time increments (T0, T1] and (T𝛼(1)−1, T𝛼(1)], for n > 1,
B+

j,1,n and B−
j,1,n are numbers for j = 1, 2, ..., n − 1. Also, for these j, B+

j,1,n are
the same by the strong Markov property at Tj−1 since the signs on the Tj

are all +. However, since the signal T𝛼(1) = Tn+1 has different sign than Tn,
B+

n,1,n has a different distribution. In fact, since this condition implies that
Tn+1 = T𝛼(1) = T−

𝛼(1), B+
n,1,n can be written by the strong Markov property

at Tn = T𝛼(1)−1 as

B+
n,1,n = E

[
Zn

||||T1 = T+
1 , Y1 = n

]
= E

[
Zn

||||T1 = T+
1 , T𝛼(1)=n+1 = T−

𝛼(1)

]
= E

[
Zn

||||T𝛼(1)=n+1 = T−
𝛼(1)

]
= B−

1,1,n

To simplify notation, we rewrite B+
1,1,n = B+ and B−

1,1,n = B−, since they do
not depend on n. In the case n = 1, we simply have B+

1,1,1 = B− and B−
1,1,1 =

B+, and note that B+ ≥ 0 and B− ≤ 0. Thus, our sum (1.30) becomes

E

[
Y1∑
j=1

jZj

|||| T1 = T+
1 , Y1 = n

]
=

n∑
j=1

jB+
j,1,n =

n−1∑
j=1

jB+
j,1,n + nB+

n,1,n

= n(n − 1)
2

B+ + nB−.
(1.31)

The only thing that needs to change for the analogous argument for B−
j,1,n

are the signs; thus, we also have

E

[
Y1∑
j=1

jZj

|||| T1 = T−
1 , Y1 = n

]
= n(n − 1)

2
B− + nB+. (1.32)

Next, we give the probability that Y1 = n, conditioned on the sign of
T1. This is easy, since we know that, conditioned on the sign of T1, Y1 is a
geometric random variable. By (1.27), for n = 1, 2, ...,

P(Y1 = n | T1 = T+
1 ) = (p+)n−1(p−)

P(Y1 = n | T1 = T−
1 ) = (p−)n−1(p+).

(1.33)
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By (1.31), (1.32), and (1.33), and recalling that p− = 1 − p+, the expected
gain on a subperiod, given that the subperiod consists of n signals before a
liquidation, is

E(G1 | Y1 = n) = p+E

[
Y1∑
j=1

jZj

|||| T1 = T+
1 , Y1 = n

]

−p−E

[
Y1∑
j=1

jZj

||||T1 = T−
1 , Y1 = n

]

= p+
(

n(n − 1)
2

B+ + nB−
)
− p−

(
n(n − 1)

2
B− + nB+

)

= n(n + 1)
2

(
B+p+ − B−p−) + n(B− − B+).

(1.34)

The probability that a subperiod lasts n signals, regardless of its sign, is,
by (1.27) and (1.33),

P(Y1 = n) = P(Y1 = n |T1 =T+
1 )P(T1 =T+

1 ) + P(Y1 = n |T1 =T−
1 )P(T1 =T−

1 )

= (p+)n(p−) + (p−)n(p+), (1.35)

which also gives the expected number of same-sign signals in a
subperiod

E(Y1) =
∞∑

n=1

nP(Y1 = n) =
p+

p− +
p−

p+ . (1.36)

Note that this necessarily matches the calculation via conditioning on T1’s
sign; that is, by (1.33),

E(Y1) = E(Y1 | T1 = T+
1 )p+ + E(Y1 | T1 = T−

1 )p− =
p+

p− +
p−

p+ .
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We can sum over all possible values n in (1.34), and use (1.35) to get
the expected gain of a subperiod in terms of p+, p−, B+, and B−:

E(G1) =
∞∑

n=1

E(G1 | Y1 = n)P(Y1 = n)

=
∞∑

n=1

[
n(n + 1)

2

(
B+p+ − B−p−) + n(B− − B+)

]
×
(
(p+)n(p−) + (p−)n(p+)

)
= B+p+

((
p+

p−

)2

− 1

)
− B−p−

((
p−

p+

)2

− 1

)
.

(1.37)

Note that, if p+ = 1
2

(which holds for any symmetric random walk),
then E(G1) = 0, and as p+ ↓ 0 or p+ ↑ 1, E(G1) → ∞.

1.4.2 SIMPLE RANDOM WALK, CUSUM TIMING

We now calculate the expected return of the first subperiod for a sim-
ple random walk asset price, applying CUSUM timing. Set our CUSUM
threshold to h = 1, and our probability measure to the simple asymmetric
random walk on ticks, that is, N = 1, with p1 = p, p−1 = 1 − p for some
0 < p < 1. With M = 1, we have by (1.23), for every k ≥ 0,

mu
k = STk

+ 1
2

, md
k = STk

− 1
2
.

Since Xj ∈ {−1, 1} for every 0 ≤ j < T1, the possible values of u0
j and

d0
j , by (1.24), are {0, 1

2
, 2}, where a 2 occurs only with two consecutive

ticks of the same type (ending on an even step). T1 is the first time 2j such
that u0

2j ≥ 1 or d0
2j ≥ 1. Hence,

T1 = T+
1 = 2j ⟺ Xk+1 = −Xk ∀k, 1 ≤ k < 2j − 1, X2j−1 = X2j = 1;

T1 = T−
1 = 2j ⟺ Xk+1 = −Xk ∀k, 1 ≤ k < 2j − 1, X2j−1 = X2j = −1.

Given S0 = s > 0, ST1
can take only two possible values, from the

paths described earlier. For j = 1, 2, ..., each possibility takes the form of
a geometric random variable conditioned on the final two steps XT1−1, XT1

,
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Sj = s + 1

uj  =    , dj  = 0, j = 1, 3, 50 01
2

1
2

Sj = s

uj  = dj  = 0, j = 0, 2, 4

S6 = s + 2

u6  = 2, d6  = 0

Sj = s – 1

uj  = 0, dj  =    , j = 1, 3

0 0

0 0

00

FIGURE 1.8 The four possible SRW paths for T+
1
= 2(3) = 6.

where a “failure” is a sequence of two steps of opposite direction; that is,
+1 then −1, or −1 then +1.

{T1 = T+
1 } ⟺ {ST1

= s + 2};
P(ST1

= s + 2, T+
1 = 2j) = [2p(1 − p)]j−1p2

{T1 = T−
1 } ⟺ {ST1

= s − 2};
P(ST1

= s − 2, T−
1 = 2j) = [2p(1 − p)]j−1(1 − p)2.

(1.38)

An illustration of the paths leading to a “+” signal T+
1 is shown in

Figure 1.8. The probabilities of each value of ST1
occurring are

P(ST1
= s + 2) =

∞∑
j=1

[2p(1 − p)]j−1p2 =
p2

1 − 2p(1 − p)

P(ST1
= s − 2) =

∞∑
j=1

[2p(1 − p)]j−1(1 − p)2 =
(1 − p)2

1 − 2p(1 − p)
.

Since there is only one possible outcome per signal type, these match the
probabilities of each type of signal occurring:

p+ := P(T1 = T+
1 ) = P(ST1

= s + 2) =
p2

1 − 2p(1 − p)
;

p− := P(T1 = T−
1 ) = P(ST1

= s − 2) =
(1 − p)2

1 − 2p(1 − p)
.

(1.39)
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The increment Zk = STk+1
− STk

then takes values in {−2, 2} and depends
on the sign of the signal of Tk+1. Conditioned on this signal sign, and by
the strong Markov property at Tk, we get the conditional expectations

B+ = E(Zk | Tk+1 = T+
k+1) = 2P(ST1

− s = 2 | T1 = T+
1 ) = 2, (1.40)

B− = E(Zk | Tk+1 = T−
k+1) = −2P(ST1

− s = −2 | T1 = T−
1 ) = −2. (1.41)

Thus, by (1.34), (1.40), (1.41), and (1.37), we have the expected gain

E(G1) =
2(p4 − (1 − p)4)
1 − 2p(1 − p)

[
p2

(1 − p)4
−

(1 − p)2

p4

]
, (1.42)

which can be shown to be symmetric about its minimum p = 1
2

(at E(G1) =
0), with limp↓0 E(G1) = limp↑1 E(G1) = ∞.

We also have the expected time until a signal occurs: by (1.38) and
(1.39),

E(T1 | T1 = T+
1 ) =

∞∑
j=1

(2j)P(T1 = 2j | T1 = T+
1 )

= 2
∞∑

j=1

j
P(T1 = 2j , T1 = T+

1 )

P(T1 = T+
1 )

=
2p2

p+

∞∑
j=1

j[2p(1 − p)]j−1

=
2p2

p+(1 − [2p(1 − p)])2
= 2

1 − [2p(1 − p)]
;

E(T1 | T1 = T−
1 ) = 2

1 − [2p(1 − p)]
;

E(T1) = E(T1 | T1 = T+
1 )p+ + E(T1 | T1 = T−

1 )p−

= 2
1 − [2p(1 − p)]

.
(1.43)

Finally, the expected number of same-sign signals in a subperiod is,
by (1.36) and (1.39),

E(Y1) =
p+

p− +
p−

p+ =
p2

(1 − p)2
+

(1 − p)2

p2
=

p4 + (1 − p)4

p2(1 − p)2
. (1.44)
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1.4.3 LAZY SIMPLE RANDOM WALK, CUSUM TIMING

Introducing a more complicated random walk distribution, such as a lazy
simple random walk, with step distribution

Xj =
⎧⎪⎨⎪⎩
+1 with probability p1

0 with probability p0

−1 with probability p−1,
(1.45)

where p−1 + p0 + p1 = 1 increases the complexity of the analysis of the
CUSUM timing strategy probabilities, and therefore of calculating the
expected gain analytically. We will retain h = 1 and M = 1.

By introducing a zero tick, we expand the possible cases of “failure”
to set off a CUSUM signal. We decompose the lazy random walk path into
seven distinct possible components. First, there are three possible patterns
that fail to set off a signal, being “up-down” (with probability p1p−1),
“down-up” (with probability p−1p1), and “zero” (a one-step pattern with
probability p0). Note that the first two of these are the two possible failure
patterns of (1.38). There are, consequently, four “success” patterns:

� the two from (1.38): “up-up” (with probability p2
1) and “down-down”

(with probability p2
−1);

� and two patterns with zero ticks: “up-zero” (with probability p1p0)
and “down-zero” (with probability p−1p0).

The number of such patterns that occurs up to a signal time is geometric.
Define

S∗ := p2
1 + p2

−1 + p1p0 + p−1p0 (1.46)

F∗ := 1 − S∗ = 2p1p−1 + p0 (1.47)

as the respective signal-pattern success and failure probabilities. Then,
we define Vj as the number of failure patterns until signal j = 1, 2, ....
Vj ∼ geom(S∗) (starting at 0), and, conditioned on Vj, we define Wj as the
number of zero-tick patterns that occur during this time frame. Since the Wj

zero-ticks can take place at any pattern position of the Vj patterns, Wj|Vj
∼

bin(Vj,
p0

F∗ ). Note that if p0 = 0, this reduces to the case in the previous
section.
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We can calculate the expected time before a signal: if there are Vj

failure patterns (of length 1 or 2 ticks) before signal j, Wj of these are the
1-tick zero-tick failures, and, finally, we have a 2-tick success pattern, then
the number of ticks before the first signal is

T1 := W1 + 2(V1 − W1) + 2 = 2V1 − W1 + 2. (1.48)

The expected time until a signal is, then, by (1.48) and (1.47),

E(T1)= 2E(V1)−E(W1)+ 2 = 2E(V1)−
∞∑

v=0

E(W1 |V1 = v)P(V1 = v)+ 2

= 2E(V1) −
p0

F∗

∞∑
v=0

vP(V1 = v) + 2

= 2(1 − S∗)
S∗

(
1−

p0

F∗

)
+ 2=

2− p0

S∗ .
(1.49)

At p0 = 0, (1.49) reduces to (1.43).
The zero-tick success patterns increase the possible asset values at a

signal. In (1.40) and (1.41), the only possible values for the price change
increment Zk of (1.9) are {−2, 2}. Here, the possible values of Zk are
{−2,−1, 1, 2}, and so, by the Markov property at the times j − 2, and
defining PT

j := P(T1 = j)∕S∗ for j ≥ 2, we have the probabilities

P(ST1
= s + 2) =

∞∑
j=2

P(ST1
= s + 2 , T+

1 = j)

= p2
1

∞∑
j=2

P(Sj−2 = s , T1 > j − 2) = p2
1

∞∑
j=2

PT
j

P(ST1
= s + 1) = p1p0

∞∑
j=2

PT
j , P(ST1

= s − 1) = p−1p0

∞∑
j=2

PT
j ,

P(ST1
= s − 2) = p2

−1

∞∑
j=2

PT
j ,

(1.50)
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which all sum to 1, by the fact that
∑∞

j=2 PT
j = 1

S∗
. The equations in (1.50)

also yield the conditional probabilities

P(ST1
= s + 2 | T1 = T+

1 ) =
p2

1

p2
1 + p1p0

,

P(ST1
= s + 1 | T1 = T+

1 ) =
p1p0

p2
1 + p1p0

,

P(ST1
= s − 1 | T1 = T−

1 ) =
p−1p0

p2
−1 + p−1p0

,

P(ST1
= s − 2 | T1 = T−

1 ) =
p2
−1

p2
−1 + p−1p0

.

(1.51)

An illustration of possible paths leading to a “+” signal can be found in
Figure 1.9.

Retaining the definitions of p+ and p− from (1.26), we get

p+ =
p1p0 + p2

1

S∗ ; p− =
p−1p0 + p2

−1

S∗ , (1.52)

which allows us to calculate the expected number of signals on a subperiod.
By (1.52) and (1.36),

E(Y1) =
p+

p− +
p−

p+ =
p1p0 + p2

1

p−1p0 + p2
−1

+
p−1p0 + p2

−1

p1p0 + p2
1

, (1.53)

Sj = s + 1

uj  =    , dj  = 0, j = 1, 3, 50 01
2

1
2

Sj = s

uj  = dj  = 0, j = 0, 1, 2, 3, 4

S6 = s + 1

u6  = 1, d6  = 0

Sj = s – 1

uj  = 0, dj  =    , j = 1, 3

0 0

0 0

S6 = s + 2

u6  = 2, d6  = 00 0

00

FIGURE 1.9 The 12 possible LSRW paths for T+
1
= 6.
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which reduces, if p0 = 0, to (1.44). Also, if the walk is symmetric, that is,
p1 = p−1, then E(Y1) = 2.

Next, we find B+ and B−, the expected size of the incremental changes
Zk, conditioned on the type of subperiod. Generalizing (1.40) and (1.41)
(where p0 = 0), we have by (1.51)

B+ = 2P(ST1
− s = 2 | T1 = T+

1 ) + P(ST1
− s = 1 | T1 = T+

1 )

= 1 +
p2

1

p1p0 + p2
1

,
(1.54)

B− = −2P(ST1
− s = −2 | T1 = T−

1 ) − P(ST1
− s = −1 | T1 = T−

1 )

= −1 −
p2
−1

p−1p0 + p2
−1

.

(1.55)

Finally, the expected gain E(G1) at the end of a subperiod can be found by
combining (1.37) with (1.52), (1.54), and (1.55), generalizing the p0 = 0
case (1.42).

1.5 CUSUM strategy Monte Carlo

Here we provide Monte Carlo simulations of the collection of random
walks on ticks given in the previous section to numerically analyze the
behavior of our strategy against such walks as asset prices.

The two classes of random walks for our simulations are special sub-
classes of (1.45): they are the lazy symmetric simple random walk

Xj =
⎧⎪⎨⎪⎩
+1 with probability p1 = 1−p0

2

0 with probability p0 ∈ {0, 0.05, 0.1, ..., 0.35}

−1 with probability p−1 = 1−p0

2
,

(1.56)

and the lazy asymmetric simple random walk with upward drift

Xj =
⎧⎪⎨⎪⎩
+1 with probability p1 = 0.5 − p0

2
+ 0.05j, j ∈ {0, 1, ..., 6}

0 with probability p0 ∈ {0, 0.1, 0.2, 0.3, 0.4}
−1 with probability p−1 = 1 − p1 − p0,

(1.57)
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where j allows p−1 > 0. Each class of walks was run for 200 simulated
trading days, with N = 5000 ticks for 1 day’s trading, and starting price
s = 10, 000 ticks each day (to guarantee that 1 day’s trading does not
bottom out the asset).

Define the idle time of a trading strategy during a day as the (random)
set of tick times between subperiods, that is, when our algorithm declares
that our portfolio be empty. If the day consists of N ticks, then the idle time
for the day is defined as

idle time := {n ∈ {1, 2, ..., N} : Δn = 0}.

The % idle time in a day is simply |idle time|
N

. If there are R subperiods
in a day, this is

|idle time| = R−1∑
l=0

(T𝛼(l)+1 − T𝛼(l)) + (N − T𝛼(R)),

where T𝛼(R) = N if the final subperiod’s end is induced by the end-of-day
settling the algorithm requires. We can estimate the average number of
subperiods per day by N

E(T)[E(Y)+1]
, and so, since there is the length of one

signal between each subperiod, we can naively estimate the average amount
of idle time in a day as the average number of subperiods per day multiplied
by the average time to a signal, that is, N

E(T)[E(Y)+1]
⋅ E(T1) = N

E(Y)+1
. Then,

the % idle time in a day is naively estimated by this value divided by the
number of ticks per day, or, simply, 1

E(Y)+1
.

Tables containing the results of simulations can be found in the
Appendix, Section 1.7. Table 1.A.1 contains experimental averages of
the following values for the lazy symmetric random walks represented by
(1.56):

� average gain per subperiod (1.37), which can be seen to be close to
E(G1) = 0 in all cases due to symmetry;

� average subperiod length, which approximates (1.49) and (1.53)’s

E(T1)E(Y1): for example, p0 = 0.1 has 7.670 ≈
(

2−0.1
1−2(0.45)2−0.1

)
(2) =

3.83(2) = 7.67;

� average number of signals per subperiod, which approximates
(1.53)’s E(Y1) + 1: for example, p0 = 0.1 has 2.998 ≈ 2 + 1 = 3;
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� average number of subperiods per day, which approximates R above
(which is itself approximated above by N

E(T)[E(Y)+1]
); for p0 = 0.1,

this is 435.185 ≈ 5000

3.83(3)
≈ 434.21;

� and the average % idle time; for p0 = 0.1, this is 33.2% ≈ 1
E(Y)+1

= 1
3
.

The remaining tables contain similar experimental data for various
lazy simple random walks from Section 1.4.3. Results of simulations using
frequencies derived from the real data from the 5-year and 30-year bonds
are shown in Tables 1.6, 1.7, and 1.8.

Table 1.A.2 contains detail on the subperiods of these walks:

� the average number of subperiods with a specific number of signals;
for example, p0 = 0.1, subperiod length n = 4 has 27.31, which,
when divided by the average total number of subperiods 435.185
from Table 1.A.1, gives 27.31

435.185
≈ 0.06275 ≈ P(Y1 = 4) = 0.0625

from (1.35) using (1.52);

� and the average gain on such a subperiod of length n = 4, which is
3.64 ≈ E(G1 | Y1 = 4) = 3.478 from (1.34) using (1.52), (1.54), and
(1.55).

Tables 1.A.3 and 1.A.4 contain the same experimental values as Tables
1.A.1 and 1.A.2, this time from the simple random walk of Section 1.4.2.
For example, in Table 1.A.3, examining p1 = 0.65, we have

� average gain per subperiod 16.378 ≈ E(G1) = 16.481 from (1.42);

� average subperiod length 13.749 ≈ E(Y1) ⋅ E(T1) ≈ 3.7389 ⋅
3.6697 = 13.7208 from (1.44) and (1.43);

� average number of signals per subperiod 4.746 ≈ E(Y1) + 1 =
4.7389 from (1.44);

� average number of subperiods 288.120 ≈ N
E(T)[E(Y)+1]

=
5000

3.6697(4.7389)
= 287.516; and

� average % idle time 20.8% ≈ 1
E(Y)+1

= 1
4.7389

= 21.10%.

Note that, for the simple random walk without a “lazy” probability p0,
the average amount of idle time per simulation (the percentage of ticks
between subperiods) drops as the walk becomes more asymmetric, as the
expected amount of time to get a signal (1.43) (and so be in a subperiod)
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drops. In Table 1.A.4, the first row of each block approximates (1.35)
multiplied by the average number of subperiods from Table 1.A.3 for that
p = p1, and the second row approximates (1.34), which is n2 − 3n for n
same-sign signals.

1.6 The effect of the threshold parameter

In this section, we discuss the effect of varying the threshold parameter h
on the proposed trading strategy. We first examine this effect on the real
data in Section 1.3.3. In particular, Figure 1.10 summarizes the effect of
varying thresholds on the gain in all 5 US Treasury bonds of Section 1.3.3.
In this figure, it is shown that varying the threshold does not change the
sign of the gain. In fact, varying the threshold in the 5-year note leaves
the daily gain almost unchanged, while in the 30-year bonds, although a
more random variation is observed, no apparent pattern of an increasing
or decreasing effect on the gain is observed. This demonstrates a level of
robustness of the proposed strategy’s gain as a function of the threshold.
A closer examination shows that the number of signals per subperiod is
almost constant, regardless of the threshold size, as shown in the column
“average # of signals per subperiod” in Tables 1.1–1.5. Yet, the number
of subperiods per trading day decreases as the threshold increases. This
is shown in Figure 1.11, where we note that the number of signals per
trading day decreases at the rate of the square root of the threshold. The
decrease in the number of subperiods on a given trading day as a result
of an increase in the threshold is to be expected since the quantity that
varies when the threshold varies is the number of ticks, or equivalently,
the amount of time as measured by ticks, required before the completion
of a given subperiod. This is true because a smaller threshold gives rise
to a more sensitive CUSUM stopping time. In fact, the expected time to a
signal (CUSUM alarm) increases as the threshold increases in the order of
the square root of the threshold, that is,

E[T1(h)] ≈ E[T1(1)]
√

h. (1.58)

To justify (1.58), note that, on a trend, one of the CUSUM statistics from
(1.24) increases quadratically, regardless of the threshold h. For example,
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FIGURE 1.10 Total gain versus thresholds for 5-year and 30-year notes. Top
graph: Small thresholds that vary as follows: 0.5*tick, tick, 2*tick, 3*tick, etc.
(up to 29*tick). Bottom graph: Large thresholds that vary as follows: 50*tick,
2*50*tick, 3*50*tick, etc. (up to 20*50*tick).

on an upward trend, uk
n = O(n2), and so the amount of time n it takes to

break the threshold, that is, the minimum n to achieve uk
n ≥ h, is found by

observing O(n2) ≈ h ⇒ n ≈ O(
√

h). The coefficient can then be found by
checking the baseline threshold h = 1. We also offer empirical evidence
for this from bond data and Monte Carlo simulations.
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34 CHAPTER 1 Trends and Trades
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FIGURE 1.11 Number of subperiods versus thresholds for 5-year and 30-
year notes. Top graph: Small thresholds that vary as follows: 0.5*tick, tick,
2*tick, 3*tick, etc. (up to 29*tick). Bottom graph: Large thresholds that vary
as follows 50*tick, 2*50*tick, 3*50*tick, etc. (up to 20*50*tick).

The fifth columns of Tables 1.1–1.5 represent the average subperiod
length E[T𝛼(1)(h)]; the sixth columns represent the average # of signals
per subperiod E[Y1] + 1. Therefore, the expected time to a signal can be
found as

E
[
T1(h)

]
=

E[T𝛼(1)(h)]

E
[
Y1

] . (1.59)
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To see the square-root effect, let us examine the following rows:

� In rows 2 and 5 of Table 1.2, we can calculate E[T1(1)] = 8.931
1.949

=
4.582 and E[T1(4)] = 17.632

1.897
= 9.295, respectively. We now notice

that E[T1(4)] ≈ E[T1(1)]
√

4.

� In row 4 of Table 1.2, we can calculate E[T1(3)] = 15.901
1.943

= 8.184

and E[T1(3)] ≈ E[T1(1)]
√

3.

� In rows 2 and 8 of Table 1.3, we can calculate E[T1(1)] = 8.531
2.023

=
4.217 and E[T1(7)] = 28.815

2.593
= 11.113, respectively. This leads to

E[T1(7)] ≈ E[T1(1)]
√

7.

We have also generated simulated data for each of the bonds from
which once again we can easily decipher the same square-root effect. To
be more specific, we have fitted a lazy random walk model to the 30-
year bond series data for 07/29/2011 and 08/02/2011 with the appropriate
parameters as designated in the caption of Table 1.7. A simple goodness-of-
fit test demonstrates the validity of the model selected. The same process
is followed in the remaining 30-year bond data. The results of the sim-
ulations are summarized in Tables 1.7 and 1.8, respectively. We again
demonstrate the square-root effect once again for the same thresholds used
in the observed data:

� In rows 1, 4, and 3 of Table 1.7, we can calculate E[T1(1)] = 7.535
2.01

=
3.749, E[T1(4)] = 16.452

2.026
= 8.12 and E[T(3)] = 13.879

2.024
= 6.857. Once

again we observe the approximations E[T(4)] ≈ E[T(1)]
√

4 and
E[T1(3)] ≈ E[T1(1)]

√
3, respectively.

� In rows 1 and 7 of Table 1.8, we can calculate E[T1(1)] = 6.834
1.997

=
3.422 and E[T(7)] = 19.636

1.994
= 9.847, from which we can extract the

approximation E[T1(7)] ≈ E[T1(1)]
√

7.

The square-root effect suggests that increasing the threshold reduces
the number of complete subperiods R on any given trading day, and thus
the number of transactions completed therein. Thus, although varying the
threshold does not have a systematic effect on the gain in the absence of
transaction costs, increasing the threshold would decrease the number of
transactions but increase the “riskiness” of the trading strategy. A good
measure of performance of the strategy over the course of an entire day
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of trading is the total gain
∑R

l=1 Gl, which, under the zero transaction cost
model with IID Gl, has expected value of E(R)E(G1) by Wald’s equation.
Examining this product as a function of h under different probabilistic
models of the asset price is of interest, especially in terms of maximizing
the day’s total gain based on the value of h. However, in the presence
of transaction costs, Wald’s equation fails and analytical derivations are
extremely challenging. Besides, transaction costs often vary from firm to
firm and thus the appropriate choice of threshold will depend not only on
the selection of a measure of “riskiness” but also on the transaction costs
related to the specific product or firm.

1.7 Conclusions and future work

In Figures 1.2, 1.3, 1.4, 1.5, and 1.6 of Section 1.3.3, it is shown that the
proposed CUSUM trading strategy performs well in subperiods of many
signals of one sign before a signal of the opposite sign occurs. This is also
evident in Tables 1.3, 1.5, 1.7, 1.A.1, and 1.A.3 related to the results of
the simulation in the random walk model of Section 1.4. Such subperiods
are characterized by consistent upward or downward trends in prices. On
the contrary, the proposed strategy is at a loss in the case of few signals
of one sign followed by a signal of the opposite sign. Such subperiods
are characterized by stability in prices. This observation suggests that the
CUSUM trading strategy can be further improved by an online detection of
“regimes of stability” (as contrasted to “regimes of trends”). This suggests
the construction of new online algorithm possibly inspired by computer
vision (see, for instance, Hadjiliadis and Stamos [19] or Stamos et al. (30)).

Another statistic that is indicative of the contrast between times of
stability versus times of instability is known as the speed of reaction of
the CUSUM, which measures the time between the last reset to 0 of the
CUSUM statistic process and the time of the CUSUM alarm (see, for
instance, [31]). We intend to examine both of these directions of research
in order to improve the performance of the proposed algorithm by limiting
trading in times of stability.

A parameter that should be investigated in depth is the transaction cost
c. The form of the gain over a subperiod given in (1.11) can be written as

Gl = (−1)Al

Yl∑
j=1

jZj+𝛼(l−1) + c

(
Yl∑

j=1

jZj+𝛼(l−1) − 2YlST𝛼(l)

)
. (1.60)
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This second term should be analyzed as a fixed percentage, and on a sliding
scale (considering, e.g., high-volume rebates). In addition, transaction costs
should be investigated via Monte Carlo simulation, as it requires knowledge
of the liquidation price of the asset for that subperiod.

A parameter closely related to the transaction cost is the threshold
parameter h used in the CUSUM timing. A smaller threshold implies more
frequent transactions but decreases the “riskiness” of the strategy on any
given trading day. The optimal choice of the threshold should thus be
based on the trade-off between an appropriately chosen measure of “risk”
of the proposed strategy and the transaction costs in the market where it is
applied.

Moreover, it should be noted that the random walk examples included
here are not intended as actual asset price models (we do not intend to
commit a Bachelierian fallacy); these models are merely used to illustrate
the strategy and allow for basic calculations. In future work, it would be of
interest to examine the best fit random walk model to actual high-frequency
asset data (taking into account such real-world considerations as the bid-
ask spread). Furthermore, open problems on this topic include extending
analysis of this strategy to other models of asset price motion—primarily,
building a binomial model (of which our random walks are the simplest
case) and limiting to a continuous geometric Brownian motion. Note that
our two sets of random walks investigate different types of “time”: the
p0 = 0 case investigates “tick time,” where the clock moves only when
the price moves, and the lazy walk, that is, p0 > 0, considers clock time
(since there may be samples where the price does not move). This simple
discrepancy induces extra possible paths into the CUSUM timing process.
The general binomial model, which may move a price multiple ticks per
sample, and still retain the probability of standing still, is certainly, then,
of interest.

Finally, we wish to examine the CUSUM strategy with mu
k and md

k

set to wait for multiple ticks instead of one (e.g., mu
k = STk

+ bM
2

for some
b > 1).

Appendix: Tables

In this section are the tables described in Section 1.5.
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