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Introduction

Multilevel modeling (MLM), also referred to as hierarchical linear model-
ing (HLM) or mixed models, provides a powerful analytical framework 
through which to study colleges and universities and their impact on stu-
dents. Due to the natural hierarchical structure of data obtained from stu-
dents or faculty in colleges and universities, MLM offers many advantages 
to analysts and policy makers involved in institutional research (IR). This 
chapter introduces fundamental concepts of hierarchy and its statistical 
treatment specifi cally for data structures occurring in IR settings. Our goal 
is to provide an overview of HLM and set the stage for the chapters that 
follow as well as highlight the particular advantages of HLM for those 
involved in IR.

IR professionals routinely encounter the kinds of clustered or nested 
data structures for which HLM is uniquely suited. Cross-sectional studies 
of students nested within classes or courses, classes nested within depart-
ments or schools, faculty within departments, athletes within sport desig-
nations within departments or schools—each of these settings describes 
lower-level individuals (that is, students or faculty) nested or clustered 
within one or more higher-level contexts or groups (that is, within classes 
or within departments). In such cases, the variability in lower-level 

This chapter provides an introduction to multilevel modeling, 
including the impact of clustering and the intraclass correlation 
coeffi cient. Prototypical research questions in institutional research 
are examined, and an example is provided to illustrate the 
application and interpretation of multilevel models.

5NEW DIRECTIONS FOR INSTITUTIONAL RESEARCH, no. 154, Summer 2012 © Wiley Periodicals, Inc.
Published online in Wiley Online Library (wileyonlinelibrary.com) • DOI: 10.1002/ir.20011

1
CO

PYRIG
HTED

 M
ATERIA

L



NEW DIRECTIONS FOR INSTITUTIONAL RESEARCH • DOI: 10.1002/ir

6 MULTILEVEL MODELING TECHNIQUES AND APPLICATIONS

outcomes (student retention, faculty satisfaction) might be due in part to 
differences among higher-level groups or contexts (class size, department 
size, and so on). Analyses of these data using ordinary linear regression 
methods are problematic, as the underlying structure of the data often 
leads to violations of the assumptions of independence intrinsic to these 
models. Through HLM, we are able to model these dependencies and 
to examine how differential characteristics in the higher-level contexts 
help to explain variation in individual or lower-level outcomes. An HLM 
approach can also be used in place of repeated-measures analysis of vari-
ance in longitudinal studies. By viewing a series of repeated observations 
as lower-level outcomes nested within the individual, researchers are able 
to explore the effects of higher-level individual characteristics (gender, 
age) on the patterns of change in the lower-level outcomes over time.

Figure 1.1 represents a prototype situation for nested or clustered cross-
sectional data from a single institution. In this fi gure, potential data of inter-
est such as student persistence, gender, or fi rst-year grade point average 
(GPA) reside at level one, the lowest level of the hierarchy. These level-one 
characteristics vary across individuals within the same department as well as 
between departments. Students are nested within different departments, and 
these departments may vary in terms of supports in place for mentoring new 
students or size of faculty in that department. These level-two characteris-
tics vary between departments, but they do not vary between students 
within the same department. Finally, data representing the institution, such 
as total endowment or selectivity of undergraduate admissions, are common 
to all departments and all students within departments at that institution; 
there is no variability at the institutional level for the prototype model 
shown. Thus, while there seems to be three levels to the hierarchy, the anal-
ysis of outcomes at the student level would be examined through a two-
level HLM: students nested within departments. More complex structures 
are easily accommodated in the HLM environment in both cross-sectional 
and longitudinal studies. If this cross-sectional data collection scheme were 

Figure 1.1. Prototype of Nested or Clustered Data: Students Nested 
Within Departments

Level One:
person or
individual level

Level Two: group
or organizational
level
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implemented at multiple institutions (see Hox, 1998, and Maas and Hox, 
2005, for discussion of factors related to sample sizes at different levels), 
variability in institutional-level characteristics can be measured and exam-
ined, and the infl uence of institutional context as well as departmental con-
text on student outcomes can be examined through a three-level HLM. If 
repeated observations of the outcome are collected on all students over a 
four-year period, such as end-of-year GPA, these repeated measurements 
reside at the lowest level of data collection; they are nested within students, 
who are nested within departments, and as a result would add a third level 
to the analytical design.

Whether the data of interest are longitudinal or cross-sectional, multi-
level analyses are concerned with the study of variation. Just as in stan-
dard (single-level) regression, the goal of multilevel analysis is to attempt 
to explain variability, which implies that the outcome of interest can be 
reliably modeled through a well-chosen or predefi ned set of predictors, 
covariates, or explanatory variables. As the multilevel example illustrates, 
variability exists at each level of a multilevel analysis, and predictors or 
explanatory variables can exist at different levels as well. Overall, the pri-
mary motivation for employing multilevel analysis is to examine and 
understand the nature of the many different kinds of variability present in 
the data (Gelman and Hill, 2007). In doing so, we attempt to model the 
outcomes of interest by examining how group-level or individual-level 
characteristics are related to lowest-level outcomes.

An assumption in standard regression is that the observations or data 
subjected to analysis are statistically independent. With nested data, this 
assumption is clearly violated. Research has consistently shown that for 
clustered data, observations obtained from persons within the same clus-
ter tend to exhibit more similarity to each other than to observations from 
different clusters. This similarity leads to underestimation of the standard 
errors for regression parameter estimates and infl ates Type I error even 
when the similarity is mild (Donner, Birkett, and Buck, 1981; Sudman, 
1985; Kenny and Judd, 1986; Murray and Hannon, 1990; Kish, 1995; 
Fowler, 2001). Cluster homogeneity is commonly measured through the 
intraclass correlation coeffi cient (ICC), which can be interpreted as the 
familiar Pearson correlation between two observations from the same clus-
ter (Donner and Klar, 2000). In a two-level design, the ICC represents the 
proportion of total variance in the outcome that is captured by differences 
between the clusters or groups. When no variability is present between the 
clusters or groups, the value of the ICC is zero, and the assumption of 
independence among all individuals in the sample is justifi ed. However, in 
the presence of between-cluster variability, the value of the ICC is positive, 
indicating a lack of independence, which invalidates standard regression 
models where clustering is ignored. The presence of ICC supports the 
adoption of a multilevel approach to analyzing the data, incorporating 
critical features of the hierarchical structure of the data into the analysis.
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Clustered data may arise due to the existence of intact groups within 
an institution or by design if, for example, fi rst-year students are randomly 
assigned to small-group mentoring activities to boost student engagement. 
Another situation in which IR researchers may be presented with clustered 
data is through sampling convenience. For example, requesting that all 
students within randomly selected intact courses complete a survey on 
fi rst-year experiences would yield a more practical and feasible design rel-
ative to a sample based on a random selection of students across the entire 
college or university. However, such clustered samples have limitations as 
well as strengths that can affect how data may be interpreted. Whether 
naturally occurring or by intent, the structure of clustered data involves 
collecting information from clusters or groups of individuals experiencing 
a common phenomenon or event. In an IR setting, these common phe-
nomena could arise from attending the same class or being in the 
same degree program. Regardless of the nature of the cluster, the ICC is 
found through decomposition of total variance in an outcome of interest 
into its within-group and between-group components; the ICC represents 
the proportion of variance that is between groups (Raudenbush and 
Bryk, 2002).

Historical Approaches to Analyzing Data 
with a Multilevel Structure

Prior to the advent of specialized software devoted to multilevel data, 
researchers often used two approaches when confronted with clustered or 
nested data: aggregation and disaggregation. Although multilevel models 
may eliminate the particular kinds of bias prevalent in these earlier 
approaches, we review them here to underscore the need for researchers to 
avoid the kinds of fallacies that earlier methods may have encouraged and 
to focus instead on methodologically appropriate and ethical practices for 
multilevel data (American Statistical Association, 1999; Goldstein, 2011).

In an aggregation approach, researchers sometimes averaged the 
lower-level data within a cluster or group and then used these averages as 
outcomes or predictor variables in a single-level analysis model. W. S. 
Robinson’s seminal 1950 article on ecological correlations (reprinted in 
the International Journal of Epidemiology, 2009) describes an ecological 
correlation as the statistical correlation among groups of individuals. It 
was fairly common at that time to use ecological correlations as if they 
represented the correlations among the underlying individual-level data; 
the ecological fallacy refers to the inferential problems inherent in using 
group-level data to generalize to individual-level relationships. Robinson 
used 1930 census data to describe correlations among county- or region-
level illiteracy rates and the percentage of African Americans in that 
region. His data showed the ecological correlation to be .946, while the 
individual-level correlation between illiteracy and race was .203. Since the 
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publication of Robinson’s work, researchers have continued to examine 
and caution against the ecological fallacy, with implications for the impor-
tance of context in multilevel studies (for example, Schwartz, 1994; 
Susser, 1994; Diez-Roux, 1998; Oakes, 2009; Goldstein, 2011).

In a disaggregation approach, researchers disregarded the tendency 
for data from persons within distinct groups or geographical regions to be 
correlated and ignored the multilevel structure of the data completely. 
Thus, all data was analyzed as if it arose at the individual level, and group-
relevant variables would retain the same value for all persons within the 
same group. Such an approach clearly violates the traditional assumption 
of independence necessary for valid statistical tests. Consequently, stan-
dard errors are underestimated and probability values for statistical tests 
are too small, leading to the potential for overstating statistical signifi -
cance of the resulting research fi ndings. These issues have been well 
documented by sampling methodologists and multilevel researchers (for 
example, Kish, 1995; Murray, 1998; Raudenbush and Bryk, 2002).

Much of the literature on levels-of-analysis problems has focused on 
the ecological fallacy, but researchers are also cautioned against the atom-
istic fallacy, which occurs while drawing inferences based on individual-
level data and generalizing these inferences to group-level associations 
(Diez-Roux, 1998). Both kinds of fallacies can be avoided by careful con-
sideration of the level at which data are collected (individual versus 
group) and by consistent representation of these levels in the statistical 
model. Hierarchically structured data, such as those that occur with most 
institutional research data, are uniquely represented through multilevel 
models.

Importance of Advancements in Statistical Methods 
in Institutional Research

Pascarella and Terenzini (1991, 2005) are renowned for their emphasis on 
methodological rigor in understanding how colleges affect students. Their 
work documents the importance of remaining current in statistical and 
research methods for those conducting institutional research. In addition 
to advancing theories and models for student change, theory development 
and research must be matched by advances in statistical methodologies. 
For example, two decades ago, Pascarella and Terenzini’s 1991 volume dis-
cussed, in part, the strengths and limitations of the use of meta-analysis as 
an approach to aggregating and comparing results across research studies. 
In their 2005 volume, while still characterizing limitations to meta-
analysis in their updated literature for the new edition, they specifi cally 
recognize the profound advances in statistical methods that have occurred 
over the past 20 years or so, including MLM. The capacity for multilevel 
models to strengthen our understanding of how colleges and universities 
affect students cannot be overemphasized. In the next section, we 
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highlight some of the ways in which multilevel models may be used in 
institutional research, before turning to our introduction of model nota-
tion and interpretation.

Research Questions in Institutional Research

Colleges and universities are complex organizations involving countless 
interactions among students, faculty, staff, and administration. These 
interactions occur among organizational entities made up of depart-
ments, schools, and colleges, each with unique policies, practices, and 
values. Observations of student achievement, faculty productivity, and 
other important performance indicators may be affected by group-level 
similarities based on these organizational structures. In addition, increased 
reliance on institutional data for strategic planning, accreditation, account-
ability, and performance improvement presents a signifi cant challenge for 
IR professionals (Brittingham, O’Brien, and Alig, 2008; Voorhees, 2008). 
Similarly, the increasing demand for comparative analysis across institu-
tions for the purpose of performance benchmarking requires that analyti-
cal models be developed that accommodate potential heterogeneity across 
institutions, states, and regions (Yorke, 2010). To effectively assess 
institutional performance, IR professionals require analytical tools that 
facilitate comparative analysis across these heterogeneous groups and 
permit the evaluation of group effects on individual-level performance. By 
learning and employing multilevel techniques to provide actionable infor-
mation based in this broad institutional perspective, IR offi ces can posi-
tion themselves as key partners in organizational dialogue and decision 
making (Parmley, 2009).

As the higher education landscape is transformed by demands for 
increased accountability, a growing emphasis on global demographics, 
aging faculty and facilities, an increased dependency on technology, 
and ongoing shifts in the economic climate, IR offi ces have become an 
invaluable part of institutional strategic positioning and planning efforts 
(Voorhees, 2008). To properly inform and support these activities, IR pro-
fessionals must provide analyses of a wide variety of performance indica-
tors involving data collected from all areas of the institution. Enrollment 
management measures including college choice, transition to college, stu-
dent fl ow, attrition and retention, and student graduation rates are used to 
shape policy, inform practice, and guide strategic investment across the 
institution. Findings from studies involving student-centered indicators 
such as engagement, satisfaction, safety, and health and wellness are uti-
lized to enhance student development. Analyses of campus-centered vari-
ables such as campus climate, diversity, sustainability, and service may be 
used to transform organizational culture. Institutional researchers may 
also be involved with efforts to effectively deploy campus human resources 
through the analysis of workplace satisfaction, faculty and staff work, and 
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organizational training effectiveness. Evaluation of performance in aca-
demic affairs incorporates measures of student achievement, assessment, 
program completion, student placements, faculty activity and productivity, 
and program effectiveness. As a result of this broad involvement, IR is well 
positioned to facilitate collaborative decision making, which transcends 
the multilevel organizational structures typical of college and universities 
(Leimer, 2009).

Introducing Multilevel Models

Our goal in this chapter is to introduce the IR researcher to the concepts 
and language of multilevel models. We present a discussion of the ways in 
which institutional researchers can use and interpret multilevel models, 
and we identify their strengths as well as limitations through this discus-
sion. There are several different notational frameworks with which to rep-
resent multilevel models, and here we utilize the approach of Raudenbush 
and Bryk (2002), although familiarity with other representations, such as 
that presented in Snijders and Bosker (1999), is recommended. We focus 
in this introductory chapter on models where outcomes are continuous 
and measured at least at the interval level, but the literature on multilevel 
models for dichotomies, ordinal outcomes, counts, or times-to-event 
data—as well as longitudinal and latent-growth models—is fairly exten-
sive and builds naturally on applications for continuous outcomes (see, 
for example, Snijders and Bosker, 1999; Raudenbush and Bryk, 2002; 
Singer and Willett, 2003; Gelman and Hill, 2007; O’Connell, Goldstein, 
Rogers, and Peng, 2008).

We begin with a simple example and introduce the development and 
interpretation of multilevel models by posing a series of questions that can 
be represented by different models. Suppose a university is interested in 
increasing its enrollment of underrepresented students (African American, 
Asian American, Hispanic, and American Indian) into STEM disciplines 
(science, technology, engineering, and mathematics). As a fi rst step, the 
university wants to examine how graduating seniors’ perceptions of their 
college experiences vary across academic units based on student race/
ethnicity and selected characteristics of their home department or unit, 
including its type (STEM, non-STEM) and the proportion of underrepre-
sented students in the department. A random sample of graduating stu-
dents from all departments has been obtained.

In this example, variables are included at two levels. At the student 
level, we have the scores on senior student experiences, which may be 
captured through a self-reported rating scale of 1 through 10, with 10 
representing more favorable experiences. Thus, the outcome Yij will repre-
sent the experiences rating for the ith senior in the jth department. 
We also have a student-level predictor, Xij, which is a dummy-coded vari-
able indicating whether the ith senior in the jth department is from an 
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underrepresented group (1 = yes, 0 = no). Two department-level predic-
tors are included, and we use W rather than X to distinguish between vari-
ables at level one (Xs) versus level two (Ws). For our example, W1j is 
dummy-coded to represent whether or not the jth department falls under 
the identifi cation of a STEM discipline (1 = yes, 0 = no), and our second 
level-two predictor W2j is the proportion of students from underrepre-
sented groups in the jth department.

On Average, Do Seniors’ Experience Ratings Differ Across Depart-
ments? In a multilevel analysis, the fi rst model that is typically fi t is 
referred to as the empty model, and it is the same as a one-way analysis of 
variance (ANOVA) model with random effects (Raudenbush and Bryk, 
2002).

Level 1 0: Y rij j ij= +β

Level 2 0 00 0: β γj ju= +

As with all statistical analyses, simplifying assumptions are made 
regarding the data. Although beyond the scope of this discussion, it is 
strongly recommended that readers investigate the validity of these 
assumptions through model comparisons and residual diagnostics. Here 
we assume that the department rating scores follow a normal distribution, 
with department-specifi c means, β0j, and a common variance within all 
departments, σ 2. The existence of this common variance constitutes the 
homogeneity of variance assumption, which can readily be tested, and 
relaxed, in existing software for multilevel models. We also assume that 
the department means themselves vary based on a normal distribution 
with an overall mean γ00 and variance τ00. Finally, we assume there is no 
correlation between the residuals at level one and those at level two. This 
set of assumptions can be collectively written as:

r iid Nij ~ ,0 2σ( )
u iid Nj0 000~ , τ( )

Cov r uij j, 0 0( ) =

The level-one model tells us about the variability in experience scores 
that exists within each academic unit; and the level-two model tells us 
about the variability between the academic units. All else being equal, a 
larger σ 2 would suggest that, within departments, there is a great deal of 
individual variability in seniors’ experience rating scores. Similarly, all else 
being equal, a larger τ00 would suggest that there is a large amount of vari-
ability between departments in average experience rating scores.

By substituting the level-two model into the level-one equation 
(where the same set of assumptions hold), the two models representing 
variability at each level of data can be combined into a mixed model:
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Y u rij j ij= + +γ 00 0

The complex pattern of variation that is the defi ning characteristic of 
hierarchically structured data can be seen directly in this mixed-model 
form. In particular, two sets of residuals are used to represent the variation 
between and within the academic units, and their relative contribution to 
total variability is captured by the ICC. As described earlier, the ICC is 
a measure of the proportion of total variance (between + within) that can 
be attributed to the group or cluster; it provides an assessment of how 
strongly the clusters contribute to dependency in the data:

ICC =
+

τ
τ σ

00

00
2

The value of the ICC will be positive, even when the contextual group 
effect is very small. Ignoring the existence of a positive ICC, even if close 
to zero, can have serious consequences for validity of hypothesis tests as 
well as for understanding and examining patterns of variability in the data.

Due to the complexity of the model and its partitioning of variance 
into level-specifi c components, estimation of model parameters requires 
iterative strategies generally solved through maximum likelihood proce-
dures. In this simplest of models, the single fi xed effect is γ00, which repre-
sents the single point estimate for the grand mean of all departments’ 
experience rating scores. Simultaneously, estimates are generated for the 
variance components, which summarize the contribution of random 
effects to the model at their respective levels (that is, level one: σ 2 = 
var(rij), and level two: τ00 = var(u0j)).

Multilevel research attempts to explain variability in the dependent 
variable based on the predictors’ contributions to their level-specifi c varia-
tion. Thus we use Xs to attempt to reduce individual variation, σ 2, and we 
use Ws to try to account for between-group variability, τ00. Inferential 
accuracy of the statistical tests of the fi xed effects and the variance compo-
nents rests on the validity of assumptions placed on the data. Generally, a 
t-test is used for testing whether a specifi c fi xed effect (that is, γ00) is equal 
to zero; and a Wald test or a chi-square test is used to assess whether 
a variance component (for example, τ00) is statistically different from 
zero (see Chapter 2, this volume, for alternative approaches to signifi cance 
testing based on deviance comparisons). As variance is explained or 
accounted for, improved understanding of the phenomena of interest is 
achieved.

Does the Senior Student’s Status as a Member of an Underrepre-
sented Group Affect Ratings of Perceived College Experiences? Once 
we have established that differences in outcomes between academic units 
exist, we next consider the effect of a level-one covariate, senior’s group 
membership status. Status is a dichotomous predictor, with 1 indicating 
that the student is a member of an underrepresented group at the 
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university and 0 indicating otherwise. As a student-level predictor, status 
is entered at level one:

Level 1: Y X rij j j ij ij= + +β β0 1

Level 2: β γ0 00 0j ju= +

β γ1 10 1j ju= +

This particular model is referred to as a random coeffi cients model. 
Note that an additional residual term is now included at level two. This 
residual term implies that the effect of status on ratings of college experi-
ence is expected to vary across academic units—that is, the slope for the 
status variable is not constant across departments, but varies between 
them. Thus, the intercepts and slopes from the level-one model vary at 
random. Within any given department, the expected average experience 
rating for non-underrepresented students (that is, when Xij = 0) is β0j, and 
the expected average experience rating for underrepresented students 
(that is, when Xij = 1) is β0j + β1j.

Using back-substitution similar to the empty model, we can derive 
the mixed-model expression for this random coeffi cients model:

Y X u u X rij ij j j ij ij= + + + +γ γ00 10 0 1

Averaging across all departments in this example, the mean experi-
ence rating is γ00 for non-underrepresented students, and the mean experi-
ence rating for underrepresented students is γ00 + γ10. A signifi cant t-test 
result for γ10 implies that the mean difference in experience ratings 
between non-underrepresented students and underrepresented students is 
statistically different from zero. The residual for the slope captures vari-
ability in the effect of senior’s underrepresentation status across schools. If 
this effect does not vary between departments, then all of the u1js would 
equal zero, and the estimated slope for status would be constant for all 
departments. Thus, the slope parameter can be fi xed, or held constant, 
rather than be free to vary across groups.

The addition of a single predictor at level one has important implica-
tions for the covariance structure of the model:

r iid Nij ~ ,0 2σ( )
u

u
iid N

j

j

0

1

00 01

10 11

0

0
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

~ ,
τ τ
τ τ

The covariance structure of the level-two residuals is often written as 
iid N(0, T) where the size of the symmetric covariance matrix T depends 
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on the number of randomly varying coeffi cients at level one. This 
structure is more complex than in the previous empty model, due to the 
accommodation of variability in slopes for the level-one covariate. The 
covariance term, τ01, captures the association between the level-one inter-
cepts and slopes. If we set the slope variance, τ11, to zero, we end up with a 
simpler model but one in which the effect of a student’s underrepresenta-
tion status is constant across all departments.

Adding a relevant predictor to the level-one model should account for 
some of the individual-level variance contributing to σ 2. The reduction in 
variance achieved over the empty model can be assessed by comparing the 
two variances:

σ σ
σ

empty model RC model

empty model

_ _

_

2 2

2

−

This simple proportion can be used to calculate variance accounted 
for in more complex models as well. If the expression is zero or negative, 
it suggests that no variance was reduced over the empty model. Negative 
results may sometimes arise, due to the maximum likelihood estimation 
procedures used to fi t these kinds of models.

Note that we were able to directly interpret the intercepts, β0j, in this 
random coeffi cients model. In all regression models, the intercept is inter-
preted as the prediction when the covariate is zero. For a dummy-coded 
variable such as underrepresentation status, this process is straightfor-
ward, but for many continuous variables—for example, GPA—there may 
be no interpretable zero. In single-level regression we are rarely bothered 
by this fact because our attention is focused on the slopes, which 
represent effects of different predictors on the outcome. In the multilevel 
framework, it is often optimal to have intercepts that are directly interpre-
table. A process called centering is usually employed with continuous 
level-one predictors to provide a more meaningful interpretation to the 
intercepts.

Centering has several forms in the multilevel framework, and 
although it yields a meaningful intercept, it can change the degree of vari-
ability in the model and thus should be used carefully. Group-mean cen-
tering, or centering within contexts (CWC), of a covariate subtracts the 
mean of each group’s covariate score from each participant’s original 
covariate score: (Xij − X

−
.j). Centering at the grand mean (CGM) of the 

covariate subtracts the overall mean from each participant’s score: 
(Xij − X

−
..). Substituting either of these into the level-one random coeffi -

cients model has no effect on the estimation for the fi xed-effect slopes, but 
it does change the quantity being estimated, and thus our interpretation, 
for the intercepts. For example, with CWC the level-one equation becomes 
Yij = β0j + β1j (Xij − X

–
.j) + rij. The intercept is now the predicted value of Yij 

when Xij is at the group mean, that is, for a participant who is at the 
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average value of the predictor for their group. Similarly for CGM, the 
intercept becomes the prediction when Xij is at the grand mean for the 
sample, or for a participant who is at the average value of the covariate for 
all persons in the sample: Yij = β0j + β1j (Xij − X

–
..) + rij. Centering is used 

primarily for continuous covariates, but Raudenbush and Bryk (2002) 
provide a discussion of its use with effect-coded dichotomous variables. 
Other recommended sources for the use of centering and its implications 
in multilevel analyses include Hofmann and Gavin (1998), Paccagnella 
(2006), and Enders and Tofi ghi (2007).

Can Contextual Variables (Characteristics of Academic Units) 
Help to Explain Variability in Intercepts and Slopes across Units? In 
addition to reducing within-unit variance by the inclusion of level-one 
predictors, the random coeffi cients model provides us with baseline infor-
mation about how much variability in the level-one intercepts and slopes 
exists between the academic departments. In our example, we have two 
level-two covariates: W1j is a STEM indicator variable for whether the jth 
department is a STEM discipline (1 = yes, 0 = no), and W2j is the propor-
tion of students from underrepresented groups within the jth department. 
We include these variables at level two to examine their contribution to 
predictions of both the slopes and intercepts from level one.

Level 1: Y X rij j j ij ij= + +β β0 1

Level 2: β γ γ γ0 00 01 1 02 2 0j j j jW W u= + + +

β γ γ γ1 10 11 1 12 2 1j j j jW W u= + + +

Because this model retains the same level-one model as the previous 
random coeffi cients model, the structure of the variance and covariance 
components remains the same, although estimates are likely to differ—
and be smaller, if variance has been explained by the inclusion of level-
two predictors:
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Models of this type, which include both level-one and level-two pre-
dictors, are often called intercepts and slopes as outcomes models, or con-
ditional models. We can assess reduction in between-group variance in the 
intercepts and slopes using an approach similar to that taken to fi nd the 
reduction in within-group variance when we discussed the random coeffi -
cients model. In the next expression, q refers to the qth random coeffi cient 
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(including the intercept) from the level-one model. Thus, our assessment 
of reduction in variance would allow us to verify if the collection of Ws 
added into each equation helped to improve predictions of the slopes and 
intercepts, respectively.

τ τ
τ

qq base qq full

qq base

( ) ( )

( )

−

The conditional model can be used to answer questions regarding 
how characteristics of academic departments, such as whether they repre-
sent a STEM discipline or the proportion of students from underrepre-
sented groups currently enrolled in the department, are related to mean 
perceived experience ratings for non-underrepresented students in that 
department, intercept β0j, or to differences in perceived experience ratings 
between non- and underrepresented students, slope β1j.

Averaging across departments in the conditional model, γ00 tells us 
the expected mean perceived experience score for non-underrepresented 
students not enrolled in a STEM department (W1j = 0) and for depart-
ments in which the proportion of students from underrepresented groups 
is zero (W2j = 0). Also in the level-two intercept equation, γ01 is the fi xed 
effect for W1j and represents the expected difference in the mean perceived 
experience ratings of non-underrepresented students for those in STEM 
disciplines, holding W2j constant. The increase or decrease in mean ratings 
attributed to proportion of students from underrepresented groups in the 
department, holding STEM discipline constant, is captured by the effect 
of W2j (γ02). Statistical tests for these coeffi cients would indicate whether 
they are statistically different from zero or not.

The fi xed effects in the level-two slope equation can be interpreted in 
a similar fashion. Averaging across departments, γ10 represents the mean 
effect of being a student from an underrepresented group on the perceived 
experience ratings, and this effect is conditional on whether the student’s 
academic unit is a STEM department (γ11) and on the unit’s proportion of 
underrepresented students (γ12). Again, signifi cance tests for these coeffi -
cients provide information on their statistical contribution to the level-two 
model being examined.

When level-two predictors have a signifi cant effect on a level-one 
slope estimate, such as may be expected through γ11 and γ12, a cross-level 
interaction has occurred. A cross-level interaction is an interaction 
between a level-one predictor X and a level-two predictor W. The mixed-
model expression shows this quite clearly:

Y W W X X W X W u u Xij j j ij ij j ij j j j i= + + + + + + +γ γ γ γ γ γ00 01 1 02 2 10 11 1 12 2 0 1 jj ijr+

This model may be simplifi ed by fi xing the level-one coeffi cients that 
show little or no variability or by removing nonsignifi cant predictors or 
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cross-level interactions. Consistent with good statistical modeling prac-
tice, decisions to include or exclude variables and interaction terms should 
also be based on theory and the purpose of the research, not just on the 
results of a statistical test.

We now have much of the basic notation necessary to support the 
design and analysis of multilevel models within an IR setting. Other chap-
ters in this book will strengthen these concepts and solidify their applica-
tion to authentic research practice. Before summarizing, however, we turn 
to a few remaining issues to complete this chapter.

Designing Research within Institutional 
Research Settings

Maximum likelihood is a large-sample estimation method and requires 
suffi ciently large samples for valid inferences. Unfortunately, no single 
magic number indicates when a large enough sample size has been 
obtained for a specifi c research question, and many factors can infl uence 
the optimal sample size necessary to reliably detect effects of interest. 
Maas and Hox (2005) discuss the impact that design and sample/popula-
tion features have on the quality of estimation and the resulting inferences 
based on a multilevel analysis, including the sizes of variances and covari-
ances and the ICC.

The size of the ICC for a particular outcome variable affects the size 
of standard errors of the regression coeffi cients for predictor variables, 
which in turn form the denominator of many statistical tests and contrib-
ute to the endpoints of confi dence intervals for point estimates of those 
regression coeffi cients. In the sampling literature on cluster and other 
complex samples, the impact of the ICC is generally characterized through 
the design effect, or “deff,” which represents how much the standard 
errors from a clustered design are underestimated relative to a simple ran-
dom sample (SRS): deff = 1 + (m – 1) * ICC, where m = average cluster or 
group size (Kish, 1995; Murray, 1998). A sampling design that mimics an 
SRS has a deff of 1.0; clustering increases the design effect, which indi-
cates that the assumption of independence of observations is violated, 
making traditional tests of signifi cance biased. The design effect is also 
referred to as the infl ation factor because it tells us how much the sam-
pling variance is infl ated over the sampling variance expected in the gold 
standard of an SRS, due to the clustering effect (the ICC). In design plan-
ning, estimates of expected ICC are singularly important, because the bal-
ance between number of level-one and number of level-two units is 
typically weighted toward a larger number of level-two units as ICC 
increases, and the power to detect important group differences will dimin-
ish as the level-two sample size decreases, all else being equal (Moerbeek, 
van Breukelen, and Berger, 2000; Spybrook, 2008). The relationships 
among ICC, sample size at multiple levels, and power are the driving force 
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behind calls for researchers to publish the ICCs obtained from their 
research studies (Murray, Varnell, and Blitstein, 2004).

A dilemma in most multilevel research design scenarios arises because 
recruiting another unit or group is often more diffi cult—and more 
costly—than recruiting additional participants from an already sampled 
unit or group. Institutional researchers often have access to very large 
samples given the size of their institutions, but a larger level-one sample 
size will not compensate for the decrease in power for detecting group-
specifi c differences or effects given a small level-two sample size. Thus, 
studies in IR need to be carefully planned to attain their research goals 
with suffi cient power.

Resources are available for estimating sample sizes based on desired 
or expected design characteristics. The Optimal Design software (Liu 
and others, 2006; Spybrook, 2008) is freely accessible on the Internet from 
the W.T. Grant Foundation (http://www.wtgrantfoundation.org/resources/
overview/research_tools) and allows researchers to manipulate features of a 
design to optimize power under different research or statistical constraints. 
In addition, the literature and resources for optimizing power given design 
and cost limitations continue to expand (for example, see Moerbeek, van 
Breukelen, and Berger, 2000, 2001; Raudenbush and Liu, 2000, 2001; Bloom, 
2005; Hedges and Rhoads, 2010). For optimal design of studies in IR, 
researchers should ensure that their designs are strong enough to match the 
importance of the research questions being asked in this fi eld (for example, 
see Moerbeek, van Breukelen, and Berger, 2000, 2001; Raudenbush and Liu, 
2000, 2001; Bloom, 2005; Hedges and Rhoads, 2010).

Summary

We conclude with a brief summary of why MLM is important to research-
ers in IR.

1. If our data are hierarchical, and most IR data are indeed hierarchical, 
MLM yields valid estimates of variable effects or group differences by 
directly taking into account the nature of clustering inherent in the 
data.

2. Ignoring the hierarchical structure of IR data limits the opportunity 
to examine whether and how differences in patterns of relationships 
between predictors and outcomes vary across groups, such as aca-
demic units, schools, or other defi nable levels in the data.

3. Study design features can be used to advantage in designing future 
studies to replicate or qualify observed or expected effects, thus fur-
thering the opportunity to strengthen and build upon research in IR.

4. In multilevel analyses, the ICC can be directly measured and the 
impact of clustering accounted for in statistical models, thus decreas-
ing tendency for Type I error and fl awed conclusions.
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5. Contexts do matter, and student’s individual and collective college 
experiences are relevant to many stakeholders (state policy makers, 
university administrators, professors, parents, and students them-
selves). IR researchers have an obligation to examine outcomes and 
enhance this experience for students through ethical and valid 
methodologies.
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