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A Review of Basic Electrostatics

Electric and magnetic phenomena, including electromagnetic wave propagation, are
described by Maxwell’s equations.1 When nothing is changing with time, that is, when
all derivatives with respect to time are zero, the electric and the magnetic phenomena
decouple and become separate electric and magnetic phenomena. These are referred to
respectively as electrostatics, which describes the properties of systems with separated
static regions of positive and negative electric charge (although the entire system is
charge-neutral), and magnetostatics, which describes the properties of systems with electric
currents and/or magnetized materials.

In this book we shall consider only electrostatics. This subset of a subset of topics
describes a vast number of real-world situations. Chapter 2 describes some practical needs
and uses of electrostatic analyses, the remainder of the book will be dedicated to examining
several techniques for performing these analyses.

The materials to follow are intended to be a quick review of the relationships that will be
used throughout this book. The intent here is to provide a consistent set of notation using all
the relationships that will be needed going forward. Many of these relationships are stated
without derivation or proof. A more complete electrostatics theory text is recommended
for newcomers to the subject. There are very many excellent texts available. The references
list at the end of this chapter is certainly not exhaustive, but the texts cited are considered
standards in the field.

1.1 CHARGE, FORCE, AND THE ELECTRIC FIELD

Electric charges exert forces on one another. This is the basis of electrostatics. The charac-
teristics of these forces are summarized in Coulomb’s law:
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1 Electric charge carries a polarity, or sign. The choice of sign was originally arbitrary,
but now is established by tradition—the electron, the most common charged sub-
atomic particle, carries a negative charge.

2 For point charges q1 and q2, measured in coulombs, the (coulomb) force, measured in
newtons, in a uniform medium, is given by

F
!

=
q1q2
4πεr2

ar
! ð1:1Þ

3 In equation (1.1) and elsewhere ε is the permittivity of the material in farads per meter
(F/m). In free space, ε = ε0 = 8.854 F/m. For other linear, isotropic, homogeneous
materials, ε = kε0, where k is the relative permittivity, the relative dielectric
constant, or sometimes simply the dielectric constant, of the material. Farads per se
are defined as coulombs per volt (C/V). In this book we shall consider only linear, iso-
tropic, homogeneous dielectric materials, and going forward this will be assumed.

4 In equation (1.1) r is the distance between q1 and q2.

5 Also, ar
! is a unit vector along the line connecting q1 and q2. If q1 and q2 have the same

sign, then F
!

is pushing q1 and q2 apart. If q1 and q2 have opposite signs, F
!

is pulling
them together.

Equation (1.1) is expressed in the rationalized meter-kilogram-second (mks) system of units.
The derivation of this set of units is an interesting discussion in itself.2

When a test charge is in the area of a collection of charges and the magnitude of these
latter charges is sufficient, relative to the test charge, to render negligible any perturbation of
the situation due to the test charge, then the force on the test charge divided by its charge is
defined to be the electric field at that point (typically called the field point). The electric field
at (the field point) p due to a charge q is therefore

Ep
!

≡
Fp
!
qp

=
q

4πεr2
ar
! ð1:2Þ

where ar
! is the unit vector along the line from charge q to point p and r is the distance from

charge q to point p. The values of E
!

are expressed in volts per meter (V/m).
Since the test charge at p in the preceding example doesn’t disturb the electric field, the

electric field is considered to be a consequence of q; in other words, the test charge doesn’t
have to be present for the field to exist.

The term E
!

is a vector with both magnitude and direction. The direction of E
!

anywhere
in space is identically the direction of the force that would be experienced by a (positive) test
charge at that point. We can look at the field lines of E

!
as a representative of the direction of

the force on a test charge due to q. For a single-point charge, the field lines are simply radial
lines pointing away from the charge. The lines point away because a positive test charge
placed anywhere would feel a force pushing it away from the (source) charge. The magni-
tude of the field decreases with the square of the distance from the charge.

For a collection of charges, the electric field at any point is the sum of the contributions of
all of the charges in the collection. Figure 1.1, for example, shows electric field lines in the
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X–Y plane for two point charges placed at (−1,0,0) and (+1,0,0). In part (a) the two charges
are identical; in part (b) they are the same in magnitude but opposite in sign.

In order to calculate E
!

directly we must keep track of the vector components of every
charge contributing to it. Continuing with the example of Figure 1.1, the simple MATLAB
function charges.m shown here calculates the field anywhere in the X–Y plane.
Calculation of the field components from the geometry is shown in the equations in this
program. Setting q2 to +1 or −1 produces the two cases discussed above.
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FIGURE 1.1 Electric field lines for point charges at (−1,0,0) and (1,0,0).
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function [ Ex, Ey, Emag ] = charges(x,y)
% This function calculates the electric field for the 2 charge
% layout of Figure 1.1

q2 = −1; % Set this to +1 or −1 as needed
eps = 8.854; % pFd/m in free space

theta1 = atan2(y,x + 1); theta2 = atan2(y,x-1);
rsq1 = (x + 1).^2 + y.^2; rsq2 = (x-1).^2 + y.^2
Emag1 = 1./(4∗pi∗eps∗rsq1); Emag2 = 1./(4∗pi∗eps∗rsq2);
Ex1 = Emag1.∗cos(theta1); Ex2 = q2∗Emag2.∗cos(theta2);
Ey1 = Emag1.∗sin(theta1); Ey2 = q2∗Emag2.∗sin(theta2);

Ex = Ex1 + Ex2; Ey = Ey1 + Ey2;
Emag = sqrt(Ex.^2 + Ey.^2);

end

If both charges are equal to +1 in this example, then along the y axis Ex must always be
zero. This can be deduced from the symmetry of the situation without consulting the equa-
tions. On the other hand Ey is zero only at y = 0 and must be an odd function of y. Ey(0,y,0) is
shown in Figure 1.2.

If the right-hand charge (in Figure 1.2) is changed to −1, then, along the y axis Ey must
always be zero—again, from symmetry considerations. Ex in this case is an even positive
function of y, as shown in Figure 1.3.

If a small charged mass such as an electron is placed near charge(s), as in part (a) or (b) of
Figure 1.1, it would immediately start moving. Its trajectory would not be along a field line.
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FIGURE 1.2 Ey(0,y,0) for two identical positive charges.
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Since the electron has mass, it gathers momentum as it moves and a proper description of
its motion requires solving Newton’s equation with the electric field as the driving force.
Electron trajectories in various electric field profiles will be examined in Chapter 17.

Inspection of Figure 1.1a shows that the field lines emanating from both charges start out
radially. They then bend rather than cross and leave the region, going instead to infinity. This
characteristic is identical to the radial field lines from a single charge which also go to
infinity. In Figure 1.1b, however, each field line travels from the positive (left-hand) charge
to the negative (right-hand) charge and terminates. This is characteristic of an electrically
neutral structure, and we can extract a general rule: Electric field lines originate at and
terminate at charge; a neutral structure will have no field lines going to infinity. This will
be expressed as a mathematical relationship in Section 1.2.

1.2 ELECTRIC FLUX DENSITY AND GAUSS’S LAW

Let us define a (vector) quantity D
!

as follows:

D
!

= ε E
! ð1:3Þ

Combining this definition with equation (1.2), we obtain

D
!

=
q

4πr2
ar
! ð1:4Þ

which is independent of the dielectric constant.

The D
!

in these equations is the electric flux density. The rationale for using this term will
become clear shortly. Consider a point charge q surrounded by a virtual spherical shell of
radius r0. The surface area of this shell is 4πr20. Since D

!
is a function only of r, it is a constant
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FIGURE 1.3 Ex(0,y,0) for two charges of opposite sign.
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everywhere on this shell; also, since it is pointed radially outward everywhere, it is normal to
the shell at intersection. The integral of (the magnitude of ) D

!
over the surface of the shell isð ð

s

jD!j ds =
ð ð
s

q

4πr2
4πr2 = q ð1:5Þ

By examining the situation for an arbitrary collection of charges and an arbitrary surface
surrounding them, we can generalize this result to Gauss’s law3

q=
ð ð
s

D
!�ds ð1:6Þ

where the integral is over the entire surface. ds
!

is a differential area with vector direction
normal to the plane of the area and q is the total charge enclosed.

Returning to equation (1.5), we have

ε
ð ð
s

jE!j ds = q ð1:7Þ

For a spherical shell centered at q, we obtain E
!

= E
!

rð Þ only, pointing radially outward,
and therefore

εE
!

4πr2
� �

= q ar
! ð1:8Þ

which is essentially identical to equation (1.2). In other words, Gauss’s and Coulomb’s laws
are equivalent.

Suppose that we have a sphere of charge of radius a, centered at the origin, of uniform
charge density ρ [expressed in coulombs per cubic meter (C/m3)] (see Figure 1.4).

FIGURE 1.4 Sphere of uniform charge density ρ.
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From the symmetry of the situation, we know again that E
!

= E
!

rð Þ only, pointing
radially outward. For any r ≤ a, the charge enclosed is

Qenc = ρ
ð ðr
0

ð
dv= 4

3πr
3ρ ð1:9Þ

Putting this result into Gauss’s law, we have

Qenc = 4
3πr

3ρ = 4πr2εE ð1:10Þ

or

E =
rρ

3ε
ð1:11Þ

The field goes to 0 at r = 0, because there is no charge enclosed. It increases with
increasing r. At r = a all of the charge is enclosed and again using Gauss’ law, for r ≥ a,
we obtain

Qenc = 4
3πa

3ρ = 4πr2εE ð1:12Þ

and then

E =
a3

3εr2
ð1:13Þ

If ρ is not a constant but is instead a function of r (and only r), then it must be brought
inside the integral of equation (1.9) and the integral properly evaluated. The electric
field outside the sphere of charge (r ≥ a) depends only on the total charge in the sphere,
irrespective of the details of ρ(r). This latter point is significant because it tells us that
E(r) (see Figure 1.5) will be the same (again, for r ≥ a), if all the charge is concentrated
at a point at the origin, is spread uniformly through the volume of the sphere, or is
distributed in whatever other configuration that can be imagined. An important case
we will consider (in Section 1.3) is the case where all of the charge resides in a thin shell
at r = a.

1.3 CONDUCTORS

An ideal conductor of charge is a material in which the charge carriers are free to move
about under the influence of electrostatic forces (Coulomb’s law). Good examples of this
are metals such as copper and silver—they are not ideal conductors but they are very
good conductors. The very mobile charge in metals is the electrons in the outer shell
of the metallic atoms; how charge mobility comes about is an important topic of
solid-state physics.4 How charge is arranged in conductors in different situations will
be a central theme in discussion of the method of moments (MoM) in later chapters
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(Chapters 3, 4, etc.). Right now we will consider only situations with geometries whose
symmetries require that charge distributions be uniform.

Consider Figure 1.6. A metal sphere has been placed at r = a, and a spherical metal shell
has been placed at r = b. A charge −Q equal to the total charge enclosed by the inner shell
(+Q) has been placed on the outer shell so that the entire system is now charge-neutral. The
symmetry of the structure implies that charge must be uniform in terms of angle. The charges
on the inner sphere repel each other and are attracted to the charges on the outer sphere. This
means that the charges on the inner sphere will all move to the outer surface of the inner
sphere, which, in turn, means that there is no electric field inside the inner sphere.

FIGURE 1.6 Two concentric spherical shells.
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FIGURE 1.5 E(r) for a sphere of radius a, charge density ρ.
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A further conclusion is that, in terms of the electric field between the outer shell and the
inner sphere, the inner sphere can be either a solid conductor or simply a thin conductor
shell at r = a.

This latter characteristic of electrostatic systems is put to very good use in ultra-high-
voltage systems such as the Van de Graaff generator.5 The safest place for people to be
is inside one of the large metal spheres used in the device, as it is a field-free region.

Returning to Figure 1.6, in the region a ≤ r ≤ b, charge +Q is enclosed, and

E
!

=Er =
Q

4πεr2
ð1:14Þ

When r ≥ b, the sum of the charge on both the inner shell and the outer shell is zero, so that
there is no net charge enclosed and E abruptly drops to zero (Figure 1.7).

Next, consider the structure shown in Figure 1.8. Two large parallel conductor
plates have surface charge densities +σ and −σ [expressed in coulombs per square meter
(C/m2)]. The plates are separated by a distance d.

Near the center of these plates, far from the edges, the charge density on both plates is
uniform. The only possible electric field distribution in this region is uniform, directed from
the positively charged plate toward the negatively charged plate. The figure shows a virtual
right circular cylinder extending from the bottom plate up to some point between the plates.
The actual shape of the virtual structure is insignificant as long as its walls are directed nor-
mal to the plates’ surfaces (i.e., parallel to the electric field lines).

If the area of the top and bottom surfaces of the virtual structure is A, the charge enclosed
by the structure, as long as the top surface is somewhere between the surfaces, is σA.
Because the sidewalls of the structure are parallel to the electric field lines, no lines cross
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FIGURE 1.7 Electric field between two concentric opposite-charge conductive shells.
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the surfaces, and therefore the only contribution to the right-handside of equation (1.6) is the
top surface. Thus Gauss’s law tells us that

σA= εEA ð1:15Þ
or

E =
σ
ε

ð1:16Þ

Gauss’s law can also be expressed in differential, or point, form as3

r� D! = ρ ð1:17Þ

where r � is the divergence operator. In rectangular coordinates this is

∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
= ρ ð1:18Þ

where ρ = ρ(x,y,z) is the charge density, that is

q =
ð ð ð
V

� ρdV ð1:19Þ

where V is the total volume enclosed by s.

1.4 POTENTIAL, GRADIENT, AND CAPACITANCE

Since there is a force on a charged body in an electric field, moving that body through
the field must require work. (If energy is transferred to the body, we’ll consider it negative
work done.) This is analogous to the work done lifting a mass in a gravitational field.
As in the case of work done in a gravitational field, we can define a potential difference
as the work done in moving the body, where dl

!
is a differential length element along the

path from p to q:

FIGURE 1.8 Electric field between two large parallel plates, near the center.
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ϕq−ϕp = −

ðq
p

E
!� dl! ð1:20Þ

The electrical potential φ is also called the voltage V, so equation (1.20) can equivalently
be written

Vq−Vp = −

ðq
p

E
!� dl! ð1:21Þ

As the preceding equations show, only a voltage difference between two points is
defined. Strictly speaking, the voltage at a point has no meaning. It is common, however,
to define the voltage at some point as zero, often called the ground or reference voltage or
potential. It is then possible to refer to the voltage at any point using a single number—the
implied meaning is that we are talking about the voltage difference between that point and
the reference point.

Returning to the example of the concentric spheres (Figure 1.6), we can easily find the
voltage difference (commonly called the voltage) between the two spheres by integrating
equation (1.14):

V rð Þ¼ −Q

4πε

ðr
a

d�r

�r2
¼ Q

4πε
1
a
−
1
r

� �
ð1:22Þ

Here, we have chosen V(a) = 0 as the voltage reference.
The voltage between the two metal shells is then

Vb ¼ Q

4πε
1
a
−
1
b

� �
ð1:23Þ

From a circuital perspective, we are often more interested in voltages (and fields) at
different places in terms of the applied voltage. We obtain this result by dividing equation
(1.22) by equation (1.23):

V rð Þ=Vb
1=a −1=r
1=a −1=b

ð1:24Þ

For the parallel plate structure (Figure 1.8), taking z = 0 as the bottom plate and z = d as
the top plate, with the bottom plate at ground and the top plate at V0, integrating equation
(1.16), and repeating the same procedure as above, we obtain

V zð Þ= σ

ε
z=V0

z

d
ð1:25Þ

Again analogous to the mass in a gravitational field, the potential difference between two
points is path independent, it is inconsequential which path the integral takes from point
p to point q. This implies that the electrostatic field is conservative—any path leading from
point p back to point p will yield a zero-voltage difference. In other words, electrostatic
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energy is neither gained nor lost going around a closed path. An important point to make
here, even though it is beyond the purview of this book, is that this is not a general electro-
magnetic system property—it is valid only in the electrostatic case.

Restating equation (1.21) to yield the field in terms of the voltage difference, in rectan-
gular coordinates, we have

E
!

= −rV = −
∂V

∂x
ax
! +

∂V

∂y
ay
! +

∂V

∂z
az
!

� �
ð1:26Þ

The operatorr is called the gradient operator. This equation shows clearly why an arbitrary
reference voltage choice has no effect on the electric field.

Suppose that there is a charge q at the origin of our coordinate system. If q is the only
charge present, then no work was required to bring q from anywhere else to the origin. Now,
let us bring a test charge from infinity (where the field due to q is zero) to some radius a.
Using equation (1.21), we obtain

Va = −

ða
∞

E
!� dl! ð1:27Þ

and using equation (1.2), the potential at a is

Va = −

ða
∞

q

4πεr2
dr =

q

4πεa
ð1:28Þ

Equation (1.28) is a scalar equation, which is almost always easier to work with than is a
vector equation. Also, once the voltage is known, it is a straightforward job to calculate the
field. Consequently, we will concentrate on finding voltages and then (if necessary) finding
the field, not the other way around.

For the single-point charge of equation (1.28), we already know that the field lines point
radially outward (from the charge), going to infinity. Figure 1.9. shows surfaces of constant
potential, known as equipotential surfaces or more commonly equipotentials. These surfaces
cross the field lines normally and in this situation are spheres.

If, instead of a single charge q, we have a collection of (discrete) charges, we must replace
equation (1.28) by the sum of the contributions of all the charges, and a is replaced by the
distances from each of the charges (xi,yi,zi) to the measurement point p = (xp,yp,zp).
In other words,

rip =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xp
� �2

+ yi−yp
� �2

+ zi−zp
� �2q

ð1:29Þ

and then

Vp =
X
i

qi
4πεri,p

ð1:30Þ

The gradient [equation (1.26)] operating on V produces en electric field vector whose
direction is the same as that of the maximum change in V. Since the direction of maximum
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change from an equipotential contour is always normal to the contour, the electric field lines
will always be normal to the equipotential contours. Figure 1.10 is essentially a repeat of
Figure 1.1, which shows the electric field lines and the equipotential surfaces about a
two-charge system.

The MATLAB program linesofforce.m generates the curves shown in Figure 1.10
(and Figure 1.1):

% lines of force.m

% The lines of force between two equal charge
% q2 may be switched between +1 and −1

close

[x,y] = meshgrid ( −10:.01:10, −10:.01:10 );

q1 = 1; q2 = −1;

theta1 = atan2(y,x + 1); theta2 = atan2(y,x − 1);
r1sq = (x + 1).^2 + y.^2; r2sq = (x − 1).^2 + y.^2;

E1x = q1∗cos(theta1)./r1sq; E1y = q1∗ sin(theta1)./r1sq;
E2x = q2∗cos(theta2)./r2sq; E2y = q2∗sin(theta2)./r2sq;

Ex = E1x + E2x; Ey = E1y + E2y;

startx = []; starty = [];

for theta = .10: pi/8: .85∗pi

FIGURE 1.9 Electric field lines and equipotential surfaces about a point charge.
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startx = [startx, −1 + .03∗cos(theta)];
starty = [starty, .03∗sin(theta)];

end

xy = stream2 ( x, y, Ex, Ey, startx, starty );
figure (1)
axis ([−2, 2, −2, 2])
streamline ( xy );
hold on
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FIGURE 1.10 Repeat of Figure 1.1 with equipotential lines superimposed.
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xy = stream2 ( x, y, Ex, Ey, startx, −starty ); % symmetry
streamline ( xy );

if q2 >0
xy = stream2 ( x, y, Ex, Ey, −startx, starty );
streamline ( xy );

xy = stream2 ( x, y, Ex, Ey, −startx, −starty );
streamline ( xy );

end

r1 = sqrt(r1sq); r2 = sqrt(r2sq);

V = (q1./r1 + q2./r2);

V_lines = [[−7:2:7],[−.5,.5, −.2, .2, 0]];
contour (x, y, V, V_lines)

For a distribution of charge with density ρ(xi,yi,zi), we have

Vp =
1
4πε

ð ð ð
vi

ρ xi,yi,zið Þdv
ri,p

ð1:31Þ

where the integral is over the volume containing the charge distribution.
If we connect a battery between two electrodes, the electrodes assume the potential

difference ( i.e., the voltage) of the battery. In this process, some electrons leave the elec-
trode that is connected to the positive terminal of the battery and flow into the battery;
an equal number of electrons leave the negative terminal of the battery and flow into its
connected electrode. If we were to then remove the battery, this charge imbalance and
the voltage difference would remain at the electrodes. The electrode that lost electrons is
now positively charged at some charge q, and the electrode that gained electrons is now
negatively charged at −q. Both the electrode system (the two electrodes) and the battery
remain electrically neutral. Some work has been done in charging the capacitor, and electro-
chemical changes in the battery that supplied the energy to do this have resulted in some
discharging of the battery.

The ratio of the charge q to the voltage difference between the electrodes is called the
capacitance of the structure, measured in farads:

C ≡
q

ΔV
ð1:32Þ

For the concentric spherical shells of Figure 1.6, directly from equation (1.23), we obtain

C =
Q

Vb
= 4πε

ab

b−a
F ð1:33Þ

For the central region of a large parallel plate structure (capacitor), we must consider
capacitance per unit area. From equation (1.25), we obtain

1.4 Potential, Gradient, and Capacitance 15



C =
ε
d

F=m ð1:34Þ

Equation (1.34) is most often written as the total capacitance for an electrode area A:

C =
εA
d

F ð1:35Þ

Equation (1.35) is known as the ideal parallel plate capacitor relationship. We will see how
closely it approximates the capacitance of a real parallel plate capacitor in one of the first
examples of calculations using the method of moments, presented later in the book.

1.5 ENERGY IN THE ELECTRIC FIELD

Using equation (1.2), the work expended moving a test charge q in the electric field of a
capacitor is

U =
ð

F
!� dl! = q

ð
E
!� dl! = qV ð1:36Þ

If an incremental extra charge dq were then added, the incremental work would be

dU =Vdq=
q

C
dq ð1:37Þ

The work expended in bringing up a total charge Q is

U=
ð
dU =

1
C

ðQ
0

qdq

=
Q2

2C
=
1
2
CV2 ð1:38Þ

where V is the voltage difference between the capacitor electrodes, that is, the voltage dif-
ference to which the capacitor is charged.

In the simple case of an ideal parallel plate capacitor, the electric field is a constant and

U =
1
2

εA
d

E2d2
� �

= 1
2εE

2 Adð Þ= 1
2εE

2 volð Þ ð1:39Þ

The energy density is then

u = 1
2εE

2 ð1:40Þ

Although this relationship has been derived only for the special case of the ideal parallel
plate capacitor, with the help of some vector relationships it can be shown to be true in

general.3 This general relationship, for E
!

= E
!

x,y,zð Þ is then
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U = 1
2

ð ð ð
ε jE!j2dv ð1:41Þ

where the integral is over all space.
Setting equations (1.38) and (1.41), two expressions for the total energy stored in the

electric field, equal to each other and bringing in equation (1.26) to express the electric field
in terms of the voltage between two electrodes

U = 1
2

ð ð ð
ε jE!j2dv= 1

2

ð ð ð
ε j rV x,y,zð Þj2dv= 1

2CV
2
0 ð1:42Þ

gives us a way to find the capacitance of a structure without ever explicitly worrying about
the charge on the electrodes or the electric field:

C =

Ð Ð Ð
ε j rV x,y,zð Þj2dv

V2
0

ð1:43Þ

The notation in this equation deserves some clarification: V0 is the applied voltage at one
electrode referred to another electrode of a structure. V(x,y,z) is the voltage distribution
throughout the volume (possibly all space) where the electric field is nonzero due to V0.

Finding the capacitance directly from the voltage distribution will be shown to be a
very useful technique when dealing with finite difference or finite element solutions for
the voltage distribution.

For an ideal parallel plate capacitor, starting with equation (1.41), we obtain

V zð Þ¼V0
z

d
ð1:44Þ

where 0 ≤ z ≤ d, V0 is the applied voltage, and the area of the plates is A. Continuing,
we obtain

rj j2 = ∂V

∂z

� �2

=
V0

d

� �2

ð1:45Þ

and finally

C =
ε ∂V=∂dð Þ2Ad

V0
2

=
εA
d

ð1:46Þ

which, of course, agrees with equation (1.35).
For the concentric spheres, from equation (1.24), we have

V rð Þ=Vb
1=a−1=r
1=a−1=b

ð1:47Þ
so that
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j rV j2 ¼ ∂V

∂r

� �2

¼V2
0

r4
ab

b−a

� �2

ð1:48Þ

and then, as expected, we obtain

C = ε
ab2

b−a

ð2π
0

ðπ
0

ðb
a

1
r4
r2 sin θð Þdr dθ dφ= 4πε

ab

b−a
ð1:49Þ

These examples of finding capacitance using the stored energy might seem pointless—the
voltage distributions were found from solutions for the electric field in terms of the charge;
these distributions were used to find the stored energy and then to find the capacitance
“without referring to the field or the charge.” Section 1.6 should clarify this issue. The
voltage will be found directly from the structure description, without first looking at the field
or the charge.

1.6 POISSON’S AND LAPLACE’S EQUATIONS

Combining equations (1.17) and (1.26), again in rectangular coordinates, we have

r� D! =r�ε Ε
!

= −εr�rV = ρ ð1:50Þ

The operator r �r, written r2, is called the Laplacian, and in rectangular coordinates
this equation becomes

r2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
=
−ρ
ε

ð1:51Þ

This is Poisson’s equation.
In a charge-free region, Poisson’s equation becomes Laplace’s equation:

r2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 ð1:52Þ

Laplace’s equation will prove to be a workhorse throughout much of this book, so it
is useful to write out the Laplacian in cylindrical and spherical coordinates. In cylindrical
coordinates, we obtain

r2V =
1
r

∂

∂r
r
∂V

∂r
+
1
r2
∂2V

∂φ2
+
∂2V

∂z2
ð1:53Þ

and in spherical coordinates, looking only at systems with spherical (ϕ and θ) symmetry,
we get

r2V =
1
r2

d

dr
r2
dV

dr
ð1:54Þ
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Laplace’s equation, at first blush, seems irrelevant. If there is no charge, what is there to
calculate? In many situations, however, we have a structure with two (or more) charged elec-
trodes in an otherwise charge-free region. Consider, for example, two concentric metal
shells. While we may never examine the charge explicitly, we can still solve Laplace’s equa-
tion for thevoltage distribution in the charge-free region between these shells using the shells
as boundary conditions. From equation (1.54), we have

d

dr
r2
dV

dr
= 0 ð1:55Þ

which integrates to

dV

dr
=
K1

r2
ð1:56Þ

where K1 is a constant of integration. This, in turn, integrates to

V =
K1

r
+K2 ð1:57Þ

where K2 is a second constant of integration.
Fortunately, we have two boundary conditions to satisfy: V(a) = 0 and V(b) = V0. Substi-

tuting these conditions into equation (1.57) gives us two equations in the two unknown con-
stants. Solving for these constants and putting the results back into equation (1.57) gives us
identically equation (1.47).

In Chapter 2 we will see that in many practical situations a structure is very long and
uniform in one dimension and that therefore a cross section of the structure gives us excel-
lent results for V, E, U, and C, the latter two on a per-unit-length basis.

An example of such a structure is the circular coaxial cable shown in Figure 1.11. This is
an example of a transmission line; transmission lines will be discussed in Chapter 2. The
salient point here is that these are two concentric circular conductors of radii a < b. As long
as we are not near the ends of the cylinders, the electrostatic problem is essentially a two-
dimensional problem.

Laplace’s equation in cylindrical coordinates with both circular symmetry and no length
(z) dependence is as follows, from equation (1.53):

r2V =
d

dr
r
dV

dr
= 0 ð1:58Þ

Again, integrating twice and using the boundary conditions V(a) = 0 and V(b) = V0, we get

V =V0
ln r=að Þ
ln b=að Þ ð1:59Þ

and evaluating equation (1.43):

C =
2πε

ln b=að Þ F=m ð1:60Þ
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1.7 DIELECTRIC INTERFACES

When a space is uniformly filled with a dielectric material, solution procedures are straight-
forward. All the conditions and principles discussed and presented above still apply, except
for the number actually used for ε. The circular coaxial cable, for example, is often manu-
factured using a flexible plastic dielectric with a (relative) dielectric constant of approxi-
mately 2 separating the inner and outer conductors. In equation (1.60), then, ε = 2ε0, and
the analysis is complete.

This is not the case, however, when there are multiple dielectrics, that is, there are
dielectric interfaces, present in a structure. Figure 1.12 shows three examples of dielectric
interfaces.

Figure 1.12a shows the cross section of a coaxial cable with two concentric different die-
lectric materials between the two electrodes. Figure 1.12b shows a three-dimensional par-
allel plate capacitor with a slab of dielectric material separating the electrodes. Figure 1.12c
shows a block of dielectric material being used as a standoff insulator to separate two power
carrying lines. In the latter two cases the dielectric interface is between the dielectric material
and the surrounding air.

FIGURE 1.11 Circular coaxial transmission line and a cross section of the line.
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In Figure 1.12a the direction of the electric field is known— symmetry dictates that it be
radial. In Figure 1.12b,c the electric field direction is not known a priori; both the field
strength and direction are unknown functions of position and must be found.

Dielectric material regions influence electrostatic solutions in two ways: their dielectric
constant itself and the perturbation of the voltage and field distributions in a structure due to
the dielectric interfaces. The dielectric interfaces are characterized by boundary conditions
that arise at these interfaces.

Consider Figure 1.13a. Shown in cross section, a small virtual pillbox sits between two
different dielectric materials. The top and bottom surfaces of the pillbox are of area A. The
actual shape of these surfaces doesn’t matter; it could be square, round, or in another con-
figuration. The thickness of the pillbox is Δz. The normal D field components to the top and
bottom surfaces is shown.

In the limit as Δz goes to zero (shrinking from the top and bottom toward the middle),
contribution to the Gaussian surface whose shape is the pillbox from the sides vanishes, and
since there is no charge inside the pillbox, we obtain

Dn1A+Dn2A= 0 ð1:61Þ

or

Dn1 =Dn2 ð1:62Þ

Now consider Figure 1.13b. In this case the dashed-line rectangle is a two-dimensional path.
The integral of the tangential electric field around the path must be zero (the electric field is
conservative) so that, as Δz goes to zero, either

(a)

(b)

(c)

FIGURE 1.12 Three examples of dielectric interfaces.
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ET2s−ET1s= 0 ð1:63Þ

or

ET1 =ET2 ð1:64Þ

Equations (1.62) and (1.64) represent the boundary conditions that we are looking for—
across a dielectric interface, D normal and E tangential are continuous.

Figure 1.14 shows an example of a parallel plate capacitor containing two dielectric
layers. We shall assume that the electrode separation is much less than either electrode
dimension and use the ideal parallel plate capacitor approximation. Also, a new circuit
symbol has been introduced in this figure. The small “rake” connected to the lower electrode

(a)

(b)

FIGURE 1.13 Boundary between two different dielectric materials.

V0

K1

K2

h1

h2

V1A

FIGURE 1.14 Two-dielectric-layer parallel plate capacitor.
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near its left edge is the conventional circuit symbol, stating that the lower electrode is con-
nected to ground, that is, is at zero, or reference, voltage. The upper electrode is at voltage
V0, which is an applied voltage (boundary condition). The dielectric interface is at voltage
V1, which at present we do not know.

For the ideal parallel plate capacitor, D is normal to the electrodes, and for a surface
charge density σ on the bottom electrode, the total charge on the electrode is

Q = σA=DzA ð1:65Þ

from which

Dz = σ=
Q

A
ð1:66Þ

everywhere. The electric field is then

En =

Dn

K1
=

Q

AK1
; z ≤ h1

Dn

K2
=

Q

AK2
; h1 < z ≤ h2

8>>><
>>>:

ð1:67Þ

The voltages across the two layers are

V1 =
Qh1
K1A

ð1:68Þ

and

V0−V1 =
Qh2
K2A

ð1:69Þ

from which

V0 =
Q

A

h1
K1

+
h2
K2

ð1:70Þ

Since V0 is the applied voltage to the top electrode, the capacitance is

C =
Q

V0
=

A

h1=K1ð Þ+ h2=K2ð Þ ð1:71Þ

From equation (1.46), the capacitance of the two layers as individual capacitors is

C1 =
k1A

h1

C2 =
k2A

h2

ð1:72Þ
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Substituting equations (1.72) into (1.71), we have derived the relationship for two capa-
citors in series:

Cser =
1

1=C1ð Þ + 1=C2ð Þ ð1:73Þ

1.8 ELECTRIC DIPOLES

The dual-opposite-charge system shown in Figure 1.1b has something important missing. If
two opposite-charge bodies are placed near each other, the Coulomb force will start pulling
them together. What is missing is a mechanical support, or separator, of some sort that pre-
vents the charges from moving. This separator can take many forms. It could be a dielectric
slab through which the charges cannot move. It could exist at an atomic level— for instance,
positive and negative charges may somehow be “pinned” in separate locations in a molecule
of some sort. The molecule is electrically neutral, but it is made up of opposite charges some-
how separated and held in place by the molecular structure itself.

However, when the charges are held apart, the electrical component of this structure is
called an electric dipole or in context, simply a dipole.

Consider such a structure with the mechanical separating components having a (relative)
dielectric constant of one. This lets us examine the electrical properties of dipoles without
getting entangled in considerations of dielectric interfaces.

Figure 1.15 details an electric dipole with the supporting structure not shown. Charges +q
and −q are located on the Y axis at Y = +L / 2 and Y = −L / 2, respectively.

The voltage at any point (x,y) is simply

V x,yð Þ= Q

4πε0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 + y−L=2ð Þ2
q −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y +L=2ð Þ2

q
2
64

3
75 ð1:74Þ

The same expression may, of course, be written in polar coordinates:

V x,yð Þ= Q

4πε0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2−Lr sin θð Þ + L2=4p −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 + Lr sin θð Þ+ L2=4p
" #

ð1:75Þ

If r is much larger than L, equation (1.75) may be approximated by

4πε0
Q

V x,yð Þ≈ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−Lr sin θð Þp −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 +Lr sin θð Þp

" #
≈

1
r
+
Lr sin θð Þ

2r3
−
1
r
+
Lr sin θð Þ

2r3

� �

ð1:76Þ

or

V≈
Q

4π0
Lsin θð Þ

r2
ð1:77Þ
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The voltage is a function of r and θ, as expected. At θ = 0 or π (along the X axis), it is
exactly zero, as symmetry demands. For any value of θ, the voltage falls off with the square
of r. Far from an electric dipole [where distance (“far”) is measured in units of L], the dipole
does not have much electrostatic influence as compared to separated charge (“separation” is
also measured in units of L).

If an electric dipole is placed in a uniform electric field, there will be no net translation
(movement of the center of gravity of the system) force on the dipole. The force trying to
move the dipole in the direction of the field will be exactly canceled by the force trying to
move the dipole against the direction of the field.

A dipolewill rotate in a uniform electric field so as to align itself with the field. If we define
the vectorL as the line from charge−Q to charge +Q, thenwe can define the dipolemoment as

P
!

= Q L
! ð1:78Þ

and then the dipole torque in the uniform field is

τ! = P
!

× E
! ð1:79Þ

As equation (1.79) predicts, the torque is maximum when the dipole is normal to the field
(along the X axis in Figure 1.16) and zero when the dipole is aligned with the field (along
the X axis in Figure 1.17).

–L/2

L/2

–q

Ѳ

X

Y
(x,y)

+q
r

FIGURE 1.15 Structure of an electric dipole.
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Figure 1.17 depicts a situation with a nonuniform electric field. Concentric circular (cross
sections of long cylinders) electrodes were chosen for this example because the field lines
can be drawn exactly without getting embroiled in calculations.

In this geometry all of the field lines are identical in that they are radial and all have the
same magnitude–radius relationship. The nonuniform characteristic of these lines is that no
two of them will point in the same direction; remember that two vectors have to agree in
magnitude and direction for them to be identical. More complex geometries can be chosen
in which the field lines differ in magnitude and direction, but this “extra” characteristic is not
necessary for the point of this discussion.

In the situation depicted in the figure, two effects take place concurrently. First, as in the
previous example, the dipole will rotate so that the −Q side is pointing toward the higher
potential electrode—in this case the inner circle.

The electric field between two circles exhibits a monotonically decreasing magnitude
(with increasing r). Once the dipole has rotated so that its −Q side is at a smaller radius
than is its +Q side, the −Q side will feel a stronger force pulling it toward the inner circle
than the +Q side will feel pulling it to the outer circle. The dipole, while aligning itself with
the field lines, will move towards the center electrode (assuming, of course, that it is not
being held in place in some way). This effect is called dielectrophoresis.6

Uncharged particles in a fluid will move in a uniform electric field, due to a complex
interaction of the surface of the particle collecting a charge from the fluid while the fluid

FIGURE 1.16 Electric dipole in a uniform field.
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immediately surrounding the particle becomes charged opposite to the particle; the entire
system, of course, remains neutral. This phenomenon is called electrophoresis.7

1.9 THE CASE FOR APPROXIMATE NUMERICAL ANALYSIS

All of the examples presented thus far have been for simple structures with helpful symme-
tries. The availability of such structures is good for exemplifying solving the equations that
have been presented and examining some of these solutions. On the other hand, we must
admit that these examples were not chosen only because they provide compact illustrative
examples but because it is almost impossible to solve these equations formally for anything
except very simple, highly symmetric, structures.

Classical texts are replete with solution techniques and problems that have been solved.8

These are important in that they extend our knowledge of the mathematics and the physics of
electrostatics. On the other hand, most situations that commonly arise in practice are either
totally unsolvable by any of these techniques or would require months of analysis to produce
a solution.

As an example of this situation, consider Figure 1.18. We begin with a strip of metal on
the top of a slab of dielectric that is fully metalized on its bottom face. For reasons that will
be discussed in Chapter 2, we are interested in the capacitance between these two electrodes
and the peak electric field (as a function of the applied voltage). This fairly straightforward
situation is already a very difficult problem to attack analytically.

Now let’s add a narrow upper conductor strip branching off the original center conductor.
What has happened to the capacitance and the peak electric field? Finally, we’ll add some
holes in the upper conductor metalization. At this point we are beyond the capability of an
analytic solution.

This example, although somewhat contrived, is actually indicative of real-world issues.
Modern electronic devices, such as cellphones, make use of multilayer circuitboard tech-
nology. Many layers of dielectric and electrode patterns are sandwiched together into a thin
circuitboard structure. Scattered about the board are holes passing from some layer to
another. The walls of these holes are metalized; the metal on intermediate electrode layers
is cleared away from the holes to prevent accidental contact. Again, the capacitances and

FIGURE 1.17 Section of concentric circles demonstrating a nonuniform field.
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peak electric fields are of significant interest: not only the nominal values but the variations
in these values with manufacturing tolerances of metal patterns, dielectric thickness, metal
patterning alignment errors, and so on.

In general, we need techniques for studying these issues. Changes in geometry must be
input parameters that can be varied easily.

The numerical techniques to be presented in the following chapters are not the only tech-
niques available for solving electrostatic problems. They are, however, indicative of two
basic approaches: approximating either (1) the charge on electrodes for specified voltages
on the electrodes or (2) the voltages in space for specified voltages on the electrodes. In both
cases we replace a partial differential equation with a set of linear algebraic equations, which
we know very well how to solve. The results are, of course, approximate, but by solving
problems that have been solved (or approximated) analytically, we know that excellent
accuracy can be obtained.

The approach chosen to present these materials will be somewhat different from
that used in many texts. Rather than moving quickly to mathematical sophistication and
generalization, we will stay as much as possible with the basic approaches and exploit
these approaches to demonstrate the problems that they can solve. The goal here is not
to present an exhaustive treatment of the approaches but rather to set up and solve
many useful problems with the least sophisticated method possible in each case. If we
succeed, this book should complement rather than duplicate the other books available in
the literature.

FIGURE 1.18 A common conductor–dielectric structure.
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Many concepts in electrostatics, such as image charges, are introduced in the chapters
where these concepts fit logically with the analyses being performed. The decision to do
this rather than introduce them in this chapter was based on the desire for brevity of this
initial chapter—only those topics that are needed to proceed were covered.

PROBLEMS

1.1 Two small spheres of mass m are suspended from weightless strings of length L. The
suspension points are a distance S apart. The spheres are charged as a capacitor; that is,
Q is removed from one sphere and placed on the other. The spheres will move toward
each other as shown in Figure P1.1.
(a) By establishing for equilibrium the force of gravity and the Coulomb force, find

the suspension angle α as a function of Q.
(b) What is the voltage between the spheres as a function of Q?
(c) What is the smallest angle α can assume (for nonzero Q)?

1.2 Repeat Problem 1.1a by finding the total potential energy of the structure and
minimizing it.

1.3 Three small charged spheres are located as shown in Figure P1.3. One sphere is fixed
at X = 0 with a charge of −1 (arbtirary units), one sphere is fixed at X = 10 with a charge
of −3, and the third sphere is free to move on the X axis, with a charge q. What is the
equilibrium position x for this system, and does it matter whether q is positive or
negative?

FIGURE P1.1 Two suspended charged spheres, Problem 1.1.
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1.4 Miniature chip capacitors are often constructed by building up successive layers
of conductors and dielectric (typically a ceramic material) and then interconnecting
the conductors, as shown in Figure P1.5. In these devices, the thickness : lateral dimen-
sions ratio is low enough that we may use the ideal parallel plate capacitor calculation
with good results. If the dielectric thickness between successive conductor layers is h,
then the capacitance (per unit area) of the device is

C

A
=
2kε0n
h

ð1:80Þ

where
k = relative dielectric constant
h = dielectric thickness between the metal layers
n = number of dielectric layers

Suppose that we are allowed a total capacitor thickness of 3 mm. Each metal layers is
0.1 mm thick. We have a choice of dielectrics with relative dielectric constant ranging
from 1 to 100. Unfortunately, however, the breakdown field of the dielectrics varies
with k as

Ep = 1× 10
6−1 × 104k ð1:81Þ

and the capacitor must be able to withstand 100 V. Find the maximum attainable
capacitance per unit area, along with the values of n and k to achieve this maximum
capacitance.

FIGURE P1.3 Layout for Problem 1.3.

FIGURE P1.5 A multilayer chip capacitors.
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1.5 Figure P1.6 shows a quadrupole charge configuration (Figure P1.6). Note that is also
possible to define a linear quadrupole configuration. For r > > L, derive an approxi-
mation for the voltage as a function of r and φ.

1.6 An ideal parallel plate capacitor has a plate separation y. Calculate the force pulling the
plates together under two conditions: (a) constant charge on the plates; (b) constant
voltage on the plates.
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