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1
Nonlinear Models and Behaviors
of DC–DC Converters

1.1 Introduction

DC–DC converters are widely used in industrial and commercial applications with
the requirement of regulating DC power, such as computers, spacecrafts, medical
instruments, communication devices, electrical vehicles, and so on [1–6]. The tech-
nology of DC–DC conversion is a major subject area in the field of power engineering
and drives, and has been under development for seven decades [5]. It is well known
that DC–DC converters are typical nonlinear systems because of their switching pro-
cesses. Some irregular behavior, such as subharmonics and intermittent instability,
has been observed constantly in practice. Over nearly three decades, lots of nonlin-
ear behavior, such as period-doubling bifurcation, Hopf bifurcation, border collision
bifurcation, torus bifurcation, coexistence attractor, intermittent chaos and chaos, has
been studied by power electronics researchers one after the other [7–17].

Although the nonlinear behavior of DC–DC converters has been intensively
studied, people are still puzzled by the practical application of bifurcations and chaos
in switching converters [18]. Miniaturization is the main approach to reduce the
size of DC–DC converters, and a higher switching frequency must be utilized with
the requirement of the smaller size. Electromagnetic interference (EMI), resulting
from bursting changes of voltage or current (dv/dt or di/dt), has been a major design
constraint for a long time due to the high switching frequency. The question of how
to reduce annoying and harmful EMI has attracted much research interest.

Fortunately, chaos research opens up the possibility of the application of nonlinear
characteristics in power electronic systems, and might be a new method to improve
the performance of power electronic systems in the future. For example, the switch-
ing speed between unstable periodic orbits (UPOs) embedded in chaos attractors is
fast. Using this performance, DC–DC converters working in chaos may have a fast
dynamic response [19]. Moreover, it has been actually proved that the application of
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2 Chaos Analysis and Chaotic EMI Suppression of DC-DC Converters

chaotic power spectral characteristics can effectively reduce the EMI and improve the
electromagnetic compatibility (EMC) of DC–DC converters [20–25].

Although spectrum analysis of chaotic switching converters has resulted in some
research achievements, there are still fewer quantitative indicators and comprehensive
assessments of the characteristics of the chaotic spectrum because the switching con-
verter is a complex nonlinear, nonautonomous, and time varying system. First of all,
we need to know about the nonlinear behavior of switching converters and some basic
dynamical concepts. In this chapter, we will begin with an introduction to DC–DC
converters and their operation modes. Next, the conventional modeling methods are
presented. Some basic nonlinear dynamics knowledge is then introduced in the rest
of this chapter.

1.2 Overview of PWM DC–DC Converters

1.2.1 Principle of Pulse Width Modulation

DC–DC converters supply a regulated DC output voltage to a variable-load resistance
effectively. Switch-mode DC–DC converters convert one DC input voltage Vin to a
desired output voltage Vout by storing the input energy temporarily and then releasing
that energy to the output load. The average value of voltage is moderated by control-
ling the switch on and off durations (ton and toff). In Figure 1.1, the input voltage Vin
is chopped to an output voltage Vout. The longer the switch is on compared to the off
duration, the higher the power supplied to the load. So, the duty cycle, describing the
ratio of on duration to the switching time period T, is defined as

d = ton∕T (1.1)

Obviously, the average output voltage varies depending on d. By varying d, Vout can
be controlled. So, this method is called Pulse Width Modulation (PWM).

The simplest way to generate a PWM signal is by comparison, which requires only
a sawtooth or a triangle waveform and a comparator. When the value of the control
signal (vcon, the dash line, commonly comes from the error of the actual output voltage
and reference voltage) is greater than the modulation waveform (vramp, the sawtooth
with fixed frequency T and peak value VU), the comparator output becomes high,

t

T

Vin,out

Vin Vout

toffton

Figure 1.1 DC–DC converter voltage waveforms
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Figure 1.2 Pulse width modulation concept
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Figure 1.3 Closed-loop controlled PWM system to regulate the output voltage

otherwise it is in the low state shown in Figure 1.2 [4]. In practical terms, a PWM
controller consists of three main components: a clock for setting the switching fre-
quency, an output voltage error amplifier, and a sawtooth signal synchronized with
the clock.

To illustrate, a PWM step-down converter and feedback loop block is shown in
Figure 1.3 as a example. A closed-loop converter contains three ports: a switching
main circuit, sampling circuit, and a control circuit that is introduced to regulate the
output voltage. It is desired to design the feedback system in such a way that the
output voltage is accurately regulated, and is insensitive to disturbances in vg or in the
load current [3]. A control system can be constructed by causing the output voltage to
follow a given reference voltage by varying the duty cycle, because the output voltage
is a function of the switch’s duty cycle.

1.2.2 Basic Topologies of DC–DC Converters

According to incomplete statistics, there have been more than 500 prototypes of
DC–DC converters developed over the past seven decades. But all of them come
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Figure 1.4 Basic topologies of nonisolated DC–DC converters including (a) buck, (b) boost,
(c) buck–boost, and (d) Ćuk converters

from the several basic topologies shown in Figure 1.4, where switch S and diode D
are alternately on and off. In these topologies, converters, are the two most basic
topologies. The buck–boost converter carries out both the stepping up and down
action. The Ćuk converter is a duality buck–boost converter.

If the output is required to be electrically isolated from the input, isolated DC–DC
converters, whose isolation is provided by a high frequency isolation transform, are
needed. There are two kinds of isolated topologies, unidirectional and bidirectional
core excitation based on the way they use the transformer core. The unidirectional
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Figure 1.5 Isolated DC–DC converters including (a) forward, (b) flyback, (c) half-bridge,
and (d) full-bridge converters

topology has two categories: forward converter and flyback converter, whose output
voltages are regulated by means of the PWM scheme. The bidirectional topology
has three categories: push-pull, half-bridge, and full-bridge. The circuits of forward,
flyback, half-bridge and full-bridge converters are shown in Figure 1.5(a)-(d) respec-
tively. Topologically, the flyback converter is an isolated buck–boost converter, and
the half-bridge and full-bridge are isolated buck converters.
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1.2.3 Operation Modes of DC–DC Converters

DC–DC converters operate in one of two modes depending on the characteristics of
the inductor current [2, 4]:

1. continuous conduction mode (CCM),
2. discontinuous conduction mode (DCM).

As shown in Figure 1.6, the continuous conduction mode is defined by the contin-
uous output current (greater than zero) over the entire switching period, whereas the
DCM is defined by the discontinuous output current (equal to zero) during any por-
tion of the switching period. Each mode is discussed in relation to the buck–boost
converters in subsequent sections [4].

1.2.3.1 Continuous Conduction Mode

The operation of CCM in steady state consists of two states – switch-on and switch-off
modes – whose equivalent circuits of boost converter are illustrated in Figure 1.7.
When the switch is on for a time duration ton, the switch conducts the source power
and the diode becomes reverse biased, then the inductor current linearly increases.
When the switch is off for a time duration toff, the diode becomes forward biased, and
the inductor current increases.

1.2.3.2 Discontinuous Conduction Mode

The operation of DCM in steady state consists of three states besides the two modes
mentioned above, and the third one is that S and D are all off and the inductor current

T
t

T
(a)        

T T
t

(b)

iL

iL

Figure 1.6 Inductor current waveforms at (a) CCM and (b) DCM
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Figure 1.7 CCM circuit states of boost converter when (a) S on, D off and (b) S off, D on
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Figure 1.8 DCM circuit state of boost converter (S off, D off)

stays zero. Figure 1.8 shows the waveforms for the DCM. In this mode, the inductor
current drops all the way to zero some time after the switch is turned off, and then
remains at zero, with the transistor and diode both off, until the transistor is turned
on again.

1.2.4 State-Space Model of DC–DC Converters

A feedback controlled buck converter is illustrated in Figure 1.3. In order to design
a stable feedback system, and properties such as transient overshoot, settling time,
and steady state regulation should meet special demands, and the model of converter
should be established first. The dynamic model of a DC–DC converter can be one of
several [2, 4]:

1. circuit model,
2. linearized model,
3. state-space model and averaged state-space model,
4. discrete time sampled data model.

The state-space model is the most popular among those mentioned above, and is the
key step in modeling PWM converters with the small-signal linearization model. We
will use the buck converter to illustrate the state-space modeling method of DC–DC
converters.

A state-space model is a model of a system that may be represented by a differential
equation. Here the state is a collection of variables summarizing the past of a system
for the purpose of predicting the future. The system is called time-invariant if the
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different equations do not explicitly depend on time t. However, it is possible to have
more general time-varying systems because the functions depend on time.

A system is called linear if the functions are linear in x and u. A linear state-space
system can thus be represented as state equations in the matrix forms of{

ẋ = Ax + Bu

y = Cx + Du
(1.2)

where x is the state variables, which are a minimum number of variables to uniquely
specify the state of the system, u is the independent input to the system, A, B, C, and
D are constant matrices. Such a system is said to be linear time invariant (LTI).

For the buck DC–DC converter, choosing the inductor current and capacitor voltage
as natural state variables, and picking the input voltage source as u and resistor voltage
as the output vo, there are two state matrices for CCM operation based on the circuit
theory.

Mode 1: Switch S is on, at duration dT:{
ẋ = A1x + B1u

vo = C1x
(1.3)

Mode 2: Switch S is off, at duration (1− d)T:{
ẋ = A2x + B2u

vo = C2x
(1.4)

Here, x= [vo iL]T, A1 = A2 =

(
0 − 1

L
1
C

− 1
RC

)
, B1 = [1/L 0]T, B2 = [0 0]T, and

C1 =C2 = [0 1]T.

The state-space averaged model is a method of deriving the average value of state
variables in one period. For switching converters, averaging and weighting the state
variables by duty cycle over a switching period T, we obtain a state-space averaged
equation {

ẋ =
[
A2d + A2 (1 − d)

]
x + [B1d + B2(1 − d)]u

vo = [C1d + C2(1 − d)]x
(1.5)

Next, disturbance and linearization methods are utilized near the working points to
obtain a small-signal model. Finally, the transfer function may be obtained using the
small-signal model to design the linear controller through classic control theory.

Generally speaking, although the proponents of a given method may prefer to
express the end result in a specific form, the end results of nearly all methods are
equivalent.
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1.2.5 Discrete Model of DC–DC Converters

Under the assumption of a converter operating in a small range beside the steady-state
working points, linear models are used extensively to describe the dynamics of a sys-
tem. However, when a system is required to operate over a large range, in most cases,
linear models do not provide satisfactory descriptions of the system’s behavior. The
discrete model is a kind of large signal model.

If we observe the representative points of every fixed interval, unlike the continuous
motions of the orbits in phase plane, a series of discrete points may be obtained. And
studying the motion of the orbits comes down to the motion of discrete points. The
time interval is called the sampling period, and the discrete points are called sampling
points. Mapping by sampling constant time intervals is called stroboscopic mapping.

Example 1.1 A Boost Converter A schematic diagram of a peak-current control
boost converter is shown in Figure 1.9. The current waveform is illustrated in
Figure 1.10. It is assumed that the boost converter is working in CCM, so that the
inductor current never falls to zero. When the current through inductor L reaches the
reference peak current Iref, the comparator outputs a high level voltage which may
reset the RS-flipflop to a low voltage and drive the switch S off, while the inductor
releases energy that makes the inductor current decrease. When the next clock pulse
comes, the RS-flipflop will be set to a high voltage and drive the switch S on to
restore energy to the inductor, and the inductor current increases.
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Figure 1.9 Schematic diagram of boost converter of peak-current control
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Figure 1.10 Current waveform of peak-current control



Trim Size: 170mm x 244mm Zhang c01.tex V2 - 08/30/2014 9:19 P.M. Page 10

10 Chaos Analysis and Chaotic EMI Suppression of DC-DC Converters

Stroboscopic maps relate the time-discrete state vector at every clock instant [19,
20]. Let iL and vC at the nth switching moment be in and vn respectively, and those at
the next moment be in+1 and vn+1 respectively. We get

xn+1 =
⎧⎪⎨⎪⎩

eA2(T−dnT)
(

eA1dnTxn + ∫ dnT
0 eA1(dnT−𝜏)d𝜏B1E

)
+ ∫ T

dnT eA2(T−dnT−𝜏)d𝜏B2E) dn < T

eA1Txn + ∫ T
0 eA1(T−𝜏)d𝜏B1E dn ≥ T

(1.6)

If A1 and A2 are all full rank,

xn+1 =
⎧⎪⎨⎪⎩

eA2(T−dnT) [eA1dnTxn +
(
eA1dnT − I

)
A−1

1 B1E
]

+
(

eA2(T−dnT) − I
)

A−1
2 B2E dn < T

eA1Txn + (eA1T − I)A−1
1 B1E dn ≥ T

(1.7)

Using Equation 1.7, the stroboscopic map of a peak-current control boost converter
is [27]:{

in+1 = e−kt′n
(
A1 sin𝜔1t′n + A2 cos𝜔1t′n

)
+ E∕R

vn+1 = E + e−kt′n
[
(A1kL + A2𝜔1) ⋅ sin𝜔1t′n + (A2k − A1𝜔1)L cos𝜔1t′n

] (1.8)

where, k = 1∕2RC, 𝜔1 =
√

1∕LC − R2, tn = L(Iref − in)∕E, t′n = T − tn, A1 =
kL(Iref−E∕R)+E−vne−2ktn

𝜔1L
, and A2 = (Iref − E∕R).

In this example, the sampling time instants of the stroboscopic map are syn-
chronous with the switching events, thus it is also called a stroboscopic switching
map. Moreover, for voltage-mode control DC–DC converters, there is always a
special phenomenon called the skipped cycle in the case that the control voltage is
beyond the ramp voltage. Fortunately, S-switching and A-switching maps are utilized
to model DC–DC converters for this particular situation. Detailed introductions to
S-switching and A-switching maps are described in [28], and they are not presented
again in our book.

1.3 Overview of the Nonlinear Behavior of DC–DC Converters

In this section, we will take a look at the nonlinear phenomena that govern the complex
motion of DC–DC converters. Studies of the nonlinear behavior of power electronic
converters began with DC–DC converters over the past 30 years. In 1984, the chaos
phenomenon of the buck converter was first mentioned by Brochett and Wood [29].
Hamill and Jefferies [30] introduced bifurcation and chaos in a PWM buck converter,
where the difference equations and return maps were utilized to analyze its stability
domain in 1988. The phenomena of boundedness, intermittency, and chaos were then
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observed in an experiment by Krein and Bass in 1990 [31]. From then on, plenty of
complex behavior was discovered in power electronic converters.

We give an example of a boost converter in peak current control in Figure 1.9
to illustrate several basic methods and the usual nonlinear behavior of DC–DC
converters.

A phase portrait is a collection of trajectories that represents the solutions of
equations in the state-space. For instance, using the parameters provided gives an
example of phase portraits corresponding to time domain waveforms as shown in
Figure 1.11 [27].

A qualitative change in the number of solutions to a dynamical system by varying a
parameter is called a bifurcation. A bifurcation diagram is a graphical representation
of bifurcation: a parameter is varied and plotted along the x-axis, and the asymptotic

v c
/V

v c
/V

v c
/V

(a) (b)

(c)

17

16.5

16

15.5

15

14.5

14
1.1 1.2 1.3 1.4 1.5 1.6

17

15

16

14

13

12

11

10
0.8 1 1.2 1.4 1.6

18

14

16

12

10

8

6

4
0.8 1 1.2 1.4 1.6

iL/A iL /A

iL /A

Figure 1.11 Phase portraits of (a) period-1, (b) period-2, and (c) chaos. Reprinted, with
permission, from Deane, J.H.B, Chaos in a current-mode controlled dc-dc converter, IEEE
Trans. Circuits Syst. I, and Aug./1992
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behavior of a sampled state variable is plotted on the y-axis as discrete points [28].
A bifurcation diagram of a boost converter is shown in Figure 1.12. If the system is
operating in period-l for some parameter values corresponding to a cycle in the phase
portrait, there will be only one point in the bifurcation diagram. If it is in period-2,
there will be two points. Such a bifurcation diagram summarizes the change in system
behavior in response to the variation of a parameter [28].

Decreasing the value of converter’s input voltage E, the system successively
undergoes period-1, period-2, period-4, … , period-2n (n is the positive integers)
and chaotic orbits as shown in Figure 1.12. The discrete points filled in in the
bifurcation diagram are obtained by sampling the inductor current i every T time
interval repeatedly, where T is the switching period.

In this converter, there are two kinds of bifurcations, period-doubling bifurcation
and border-collision bifurcation. Period-doubling bifurcation is a smooth and standard
bifurcation, whose period number increases multiply as period-1, period-2, period-4,
and so on, which is common in buck or boost converters with current-mode controlled
and voltage-mode controlled [18].

As we know, for DC–DC converters, the duty cycle of a switch is limited in
0–1. Suppose that the converter operates in CCM; three kinds of possible current
waveforms within one clock period T with the current-peak controlled are shown in
Figure 1.13. The stable current waveform usually undergoes two working modes,
mode 1 and mode 2, introduced previously, Figure 1.13a, where its duty cycle is
0< d< 1. There is another unsteady state presented in Figure 1.13b, where only
mode 1 appears, and whose duty cycle d is saturated and equals 1. If the current
waveform just touches the reference current at the end of clock T, Figure 1.13c,
it is a boundary situation between Figure 1.13a,b. The border-collision bifurcation
exists due to the saturation of the duty cycle, and occurs when duty cycle d reaches
one of the saturation values 0 or 1. This type of bifurcation occurs in dynamical

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7
3 10987

E/V

i L
/A

54 6

Figure 1.12 Bifurcation diagram of boost converter under peak-current control. Reprinted,
with permission, from Deane, J.H.B, Chaos in a current-mode controlled dc-dc converter, IEEE
Trans. Circuits Syst. I, and Aug./1992
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Figure 1.13 Modes of CCM of peak-current control at (a) 0< d< 1, (b) d= 1, and (c) bound-
ary situation

systems where two or more structurally different systems operate for different
parameter ranges [18]. Mathematically, when orbits of a piecewise-smooth system
(introduced subsequently) tangent to some borders, this bifurcation will occur.
We might distinguish this for the transform from period-2 to period-4, there is an
unsmooth curve-like fold at the top of the bifurcation diagram which means the
appearance of border-collision bifurcation. Of course, border-collision bifurcation is
a nonstandard bifurcation.

In Figure 1.11c, we find the trajectory appears to move randomly in the state-space.
Moreover, the trajectory is bounded and the motion is nonperiodic [18], or termed
bounded aperiodic orbits. In the bifurcation diagram, we also find that there are plenty
of populated points (infinite theoretically), which look like snow on a television set.
We may roughly discover some properties as follows: (i) it looks random because
the points are dense and chaotic (ii) but, it is ordered because the points concentrate
in a certain bound. Roughly speaking, trajectories of the system that start in a par-
ticular bounded region of the state-space (known as chaos or strange attractor) will
forever remain in that region, without exhibiting any apparent regularity or pattern
(e.g., without converging to an equilibrium or becoming periodic).

1.4 Review of Basic Dynamics Concepts

Since Newton mechanics was founded, people have firmly believed that if a deter-
ministic input is imposed on a deterministic dynamical system, then the output of the
system must be determined as well. For the linear system, this conclusion is quite cor-
rect, but for the nonlinear system, some motions that may not be precisely repeated
and are seemingly random may emerge.

Unfortunately, PWM DC–DC converters are none other than this kind of nonlinear
system. The usage of semiconductor switches means that PWM DC–DC converters
represent a hybrid system, which involves both continuous-valued and discrete-valued
variables. Therefore, due to the nature of the switching process, PWM DC–DC con-
verters are not a continuously differentiable system nor a nonsmooth system, which
may give rise to complex dynamics. In this section, we will start with some basic
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concepts of a dynamical system from dynamics theory. This material is available in
many textbooks on nonlinear dynamics [33–37]. So we shall always try to present
their concepts in geometrical images for ease of understanding.

1.4.1 Dynamical System

Roughly speaking, a dynamical system describes the evolution of a state over time.
The evolution rule of the dynamical system is a fixed rule that describes what future
states follow from the current state. According to the form of state evolution, dynam-
ical systems can be classified into:

1. continuous-time dynamical systems and
2. discrete-time dynamical systems.

1.4.1.1 Continuous-Time Dynamical System

The state of continuous-time dynamical systems is allowed to change (continuously or
discontinuously) at all times t. Ordinary differential equations (flows) are employed to
describe continuous-time dynamical systems. A generalized continuous-time dynam-
ical system is governed by the state-space model in vector form

ẋ = f (x, t) (1.9)

where x is the real, nth-order state vector in ℝn. ẋ is called a vector field, it gives a
vector pointing in the direction of the velocity at every point in phase space.

If there is no time term t at the right hand side of Equation 1.9

ẋ = f (x) (1.10)

this is called a form of autonomous system. For the actual system, it means that the
system does not have any externally applied time-varying input or other time variation.
For example, a three-dimensional Lorenz system is⎧⎪⎨⎪⎩

ẋ1 = a (x1 − x2)
ẋ2 = (1 + b)x3 − x2 − x1x3

ẋ3 = x1x2 − cx3

(1.11)

where a, b, c are parameters.
Conversely, Equation 1.9 is a nonautonomous system which has external inputs or

forcing functions or time variations. For example, PWM power electronic circuits
are explicitly time-dependent nonautonomous systems whose operations are compul-
sively controlled by clock logic with period T.

For a continuous-time dynamical system, the basic geometrical objects associated
with a dynamical system are its orbits in the state-space and the phase portrait com-
posed of these orbits.
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Equilibrium: Consider the autonomous system, a state x∗ ∈ ℝn is called an equilib-
rium of Equation 1.9 if f (x*)= 0.

Cycle: A cycle is periodic orbit for a vector field, namely a nonequilibrium orbit.
Limit cycle: A cycle of a continuous-time dynamical system, in a neighborhood of

which there are no other cycles, is called a limit cycle [31].

Obviously, a limit cycle is the periodic solution with period T satisfying the
equation

x(t + T) = x(t)

The trajectory in phase-space is a point or a closed curve, and is called an equi-
librium or limit cycle as shown in Figures 1.14a,b respectively. Physically, the stable
limit cycle is called self-oscillation.

1.4.1.2 Discrete-Time Dynamical Systems

The state of discrete-time dynamical systems can only change at discrete time
instances. Difference equations are employed to describe discrete-time dynamical
systems. In some circumstances, it is more natural to describe the evolution of a
system at discrete instants of time rather than continuously in time, for example, in
ecology and economics when the state of a system at a certain moment of time t
completely determines its state after a year, say at t+ 1. Discrete time refers to the
set of times that is a subset of the integers. We will use n∈Z to denote discrete time.
Typically, the evolution of the state of a discrete time system with a control parameter
is expressed by a difference equation [33, 37]

xn+1 = f (xn, 𝜇) (1.12)

where x is the nth-dimension state variable, 𝜇 is the set of all control variables, and
this equation also may be called a map f, written as x → f (x).

A fixed point of the discrete-time dynamical system is x* such that x∗ = f (x∗, 𝜇).
Defining f n(x0) is the result of n times iterations of Equation 1.12 from an initial x0.
If finally f n(x0)= x0, and for an arbitrary integer k< n, f k(x0)≠ x0 is always satisfied,

(a) (b) 

Figure 1.14 Illustration of stable (a) equilibrium and (b) limit cycle in a continuous-time
system
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x0

Figure 1.15 Periodic orbits in a discrete-time system

then set {x0, f(x0), … f n−1(x0)} is a period-n orbit of map f. Using a geometrical point
of view on dynamical systems, the period orbit of a discrete-time dynamical system
is plotted in Figure 1.15.

1.4.2 Linear and Nonlinear Dynamical Systems

Dynamical systems can be further classified according to the equations used to
describe the evolution of their state

1. Linear dynamical system, if the evolution is governed by a linear differential
equation (continuous time) or difference equation (discrete time). Linear dynam-
ical systems can be solved in terms of simple functions, and the behavior of all
orbits is classified.

2. Nonlinear dynamical system, if the evolution is governed by a nonlinear differential
equation (continuous time) or difference equation (discrete time). For example, the
aforementioned Lorenz system is a nonlinear continuous-time system.

The theory of linear systems is mature and well developed. Many problems in linear
systems theory have been solved using readily available mathematical tools. On the
other hand, periodic solutions of nonlinear system are rarely known analytically. But,
the study of nonlinear systems is important because almost every real system contains
nonlinearities of one form or another [38].

Although there are types of nonlinear systems in mathematics and practical engi-
neering, we will focus on piecewise linear systems because DC–DC converters are
naturally modeled as piecewise smooth systems.

1.4.2.1 Piecewise-Smooth Dynamical Systems

The map is smooth when the map is continuously differentiable within the whole
domain. In mathematics, a piecewise-defined function is defined by multiple
sub-functions, and each sub-function applies to a certain interval of the main
function’s domain (a sub-domain). The map is called piecewise-smooth if it has the
following two properties: (i) the state-space is divided into different sub-domains,
and each sub-domain has independent map expressions and (ii) the map is continuous
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in the whole state-space, is piecewise continuously differentiable in different
sub-domains, and is not differentiable at the boundaries.

The piecewise-smooth dynamical system may switch between different
sub-domains, because the system state trajectories may cross one of the state-space
boundaries. Undoubtedly, a piecewise-smooth dynamical system is nonlinear dynam-
ical system. There are three classes of piecewise-smooth systems: maps, flows, and
hybrid systems [34].

1.4.2.2 Hybrid Dynamical Systems

Hybrid dynamical systems are combinations of maps and flows, giving rise to discon-
tinuous, piecewise-smooth flows. They can arise both as models of impacting systems
or in the context of the interaction between digital and analog systems. For example,
hybrid automata [35] are defined as dynamical systems with a discrete and a contin-
uous part. The discrete dynamics can be represented as a graph whose vertices are
the discrete states (or modes) and whose edges are transitions. The continuous states
take values in ℝn and evolve along trajectories, typically governed by ODEs or dif-
ferential algebraic equations. The interaction between the discrete and the continuous
dynamics takes place through invariants and transition relations [34].

For example, a PWM boost converter under peak current control (Figure 1.10) is
considered. There are three operation modes, or three topologies, Mode 1, Mode 2, and
Mode 3, corresponding to (S, D)= (on, off), (S, D)= (off, on), and (S, D)= (off, off),
respectively. Figure 1.16 is the hybrid model of the converter. These topologies are a
definitely continuous system and may be described by ordinary differential equations.
However, converters are designed to work in these two or three topologies cyclically
(CCM or DCM), and the transform from one topology to another is controlled by the
external driving signal, which is a typical digital signal or discrete-valued. Therefore,
DC–DC converters are definitely piecewise-smooth hybrid systems which include
continuous and discrete systems synchronously. Therefore, they may have complex
nonlinear behavior.

Mode 1 
X = A1X +B1us

Mode 2 
X = A2X +B2us

Mode 3 
X = A3X +B3us

iL>Iref

T>=T & iL>0

t<
T 

& i L
=

<
0

t>
=T

Figure 1.16 Hybrid model of a boost converter in peak-current control
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1.4.3 Characterization of Nonlinear Behavior

It is well known that linear methods applied alone cannot give a reasonable
explanation of nonlinear phenomena. Thus, some mathematical tools, including
phase portraits, bifurcation diagrams, Lyapunov exponents (LEs), power spectrums,
Poincaré Sections, Jacobian matrices, spider diagrams, and so on, provide information
about the dynamics of the nonlinear dynamical system.

1.4.3.1 Poincaré Map

DC–DC converters are a type of hybrid system managed by a close-loop feedback
controller. It is difficult to obtain the analytical solution, even a numerical solution, so
some graphical tools are used to analyze these systems. In the previous section, we
introduced phase portrait and bifurcation diagrams to describe several motions of a
dynamical system. Compared with analytical methods, these methods may simplify
complex nonlinear behavior. However, for instance, some periodic motions have high
period numbers which perhaps are a mess and difficult to distinguish from aperiodic
trajectories. A common mathematical tool called the Poincaré section can solve this
question well.

A Poincaré section is a hypersurface Σ in the state-space, which replaces state tra-
jectories of the n-dimensional continuous vector field with an (n− 1)-dimensional
map as shown in Figure 1.17. When this plane has a finite number of fixed points, the
original continuous trajectories are periodic. When this plane has a closed curve, the
original continuous trajectories are quasi-periodic. When the plane has dense points
assembling in a certain zone, the original trajectories are chaotic. It is difficult to
obtain the analytical solutions or numerical solutions of the majority of nonlinear
continuous-time systems, so the intuitive features of the Poincaré section make the
relevant studies convenient.

P(x) x0

L0

x

∑

Figure 1.17 Illustration of Poincaré section. With kind permission from Springer
Science+Business Media: Applied Mathematical Sciences, “Elements of Applied Bifurcation
Theory”, 112, ©2000, Kuznetsov, Y. A.
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If we observe the representative points at every constant time interval, unlike the
continuous motions of the orbits in phase plane, a series of discrete points may be
obtained. Studying the motion of the orbits comes down to the motion of discrete
points, or a new discrete-time system, or Poincaré map. As already mentioned, the
time interval is called the sampling period, the discrete points are called the sampling
points, and the new map is called the stroboscopic map. The discretized system thus
reveals the periodicity of the orbit of the underlying continuous-time system via the
periodicity of the corresponding sampled state.

Next, a buck converter is used as an illustration to describe the chaos motions via the
Poincaré map. The buck converter is in voltage control with parameters L= 20 mH,
C= 47 μF, A= 8.4, VL = 3.8 V, VU = 8.2 V, T= 400 μs, R= 22, and Vref = 11.3 V as
shown in Figure 1.18. The discrete map is modeled according to Equation 1.8, and the
Poincaré Section of the inductor current and capacitor voltage at fixed time intervals T
is obtained using the discrete map. Figures 1.19a and b show the period-1 and period-2
orbits at E= 22 V and E= 28 V respectively. The Poincaré Section with E= 37 V is
shown in Figure 1.19c. The left one is the corresponding phase portrait, and the right is
the trajectories plotted as graphs of v and vramp. From this figure, there are contiguously
populated regions, proving that the converter is chaotic.

1.4.3.2 Power Spectrum

Nonrandom motions have a definite frequency structure, and Fourier analysis is a
tool to determine the frequency contents of a given signal. If the signal is periodic or
quasi-periodic, the power spectrum will consist of a sequence of “spikes” at the fun-
damental frequencies. If the signal is neither periodic nor quasi-periodic (for example,
it is chaotic), then the spectrum will be continuous. Thus, the sudden appearance of a
continuous power spectrum from a discrete spectrum is viewed as an indicator of the
onset of chaotic behavior when some parameters of the system are changed [40].

A power spectrum is very useful for analysis of a time series, especially for exper-
iment and simulation data. For example, Feigenbaum (1976) used power spectrum

S

D

L

C R

t

iL

Vin Vo

+

–

vco

vU

vref

vramp

vL

Figure 1.18 Schematic diagram of buck converter
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Figure 1.19 Phase portrait and Poincaré section of buck converter for (a) E= 22, (b) E= 28,
and (c) E= 37 V

analysis to study the onset spectrum of turbulence [36]. Next, Gollub and Bension
used it in a turbulent convection study [37], and it was then used in the study of non-
linear behavior of the Josephson junction by Iansiti et al. [41], and so on.

The spectrum structure of period-doubling bifurcation and chaos is illustrated
in Figure 1.20, where the higher harmonics are ignored. For period-1 motion, the
spectrum is dominated by a primary spectral peak with f0. For period-2 motion, the
subharmonic (f0/2) is excited beside the primary spectral peak. For period-4 motion,
the spectrum contains four peaks, corresponding to a new subharmonic (f0/4).



Trim Size: 170mm x 244mm Zhang c01.tex V2 - 08/30/2014 9:19 P.M. Page 21

Nonlinear Models and Behaviors of DC–DC Converters 21

f

P P P

ff

f0 f0 f0 f0 f0 f0 f03f0

42 2

y y y

xxx

y

x

f

P

4

Figure 1.20 Power spectrum of period-doubling bifurcation. From left to right, there are
phase trajectories and spectrums of period-1, period-2, period-4, and chaos

When the system becomes chaotic, the spectrum has broadband and continuous
characteristics. In other words, chaos motion may be characterized by the presence
of broadband and a continuous power spectrum.

1.4.3.3 Jacobian Matrix

The Jacobian matrix is another commonly used mathematic tool aside from the
Poincaré map, which is used to analyze the stability of equilibriums or fixed points
in continuous or discrete systems.

Suppose that a continuous smooth dynamical system has the form of{
ẋ = f1 (x, y)
ẏ = f2(x, y)

(1.13)

and x0, y0 are its equilibriums. The Jacobian matrix of Equation 1.13 is given by

J =
⎛⎜⎜⎝
𝜕f1
𝜕x

𝜕f1
𝜕y

𝜕f2
𝜕x

𝜕f2
𝜕y

⎞⎟⎟⎠
||||x=x0
y=y0

(1.14)

Assuming that Matrix J has two eigenvalues 𝜆1 and 𝜆2, which are the roots of the
characteristic equation

𝜆2 − 𝜎𝜆 + Δ = 0 (1.15)

where 𝜎 = tr(J), Δ= det(J). The eigenvalues of this matrix determine the stability of
the equilibriums. A stable equilibrium attracts nearby trajectories, while an unsta-
ble equilibrium repels nearby trajectories. Eigenvalues 𝜆1 and 𝜆2 might be real or
complex numbers, whose values indicate the classification of equilibrium and fixed
points. For detailed classification, please see references [33, 35]. Generally speaking,
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in the dynamical system, all eigenvalues of the Jacobian matrix will motion on the
complex plane with a certain parameter. When the change parameter (called a bifur-
cation parameter) reaches a critical value, the stability of a periodic orbit changes and
bifurcation behavior occurs.

Now we consider a discrete-time dynamical system

x → f (x) x ∈ ℝn (1.16)

where the map f is smooth. Let x0 = 0 be a fixed point of the system (i.e., f(x0)= x0)
and let J denote the Jacobian matrix df/dx evaluated at x0. The eigenvalues 𝜆1, 𝜆2, … ,
𝜆n of J are called multipliers or Floquet multipliers of the fixed point. The absolute
values of multipliers may be determined. When all |𝜆|< 1, the fixed points are stable.
When |𝜆|> 1, the fixed points are unstable. Thus, the bifurcation appears at the Floquet
unit circle (𝜆=±1). The standard bifurcation types of discrete system, such as tangent
bifurcation, period-doubling bifurcation, and torus bifurcation, may be distinguished
by studying the trajectories of the multipliers. For the high dimension map, if all the
multipliers are smaller than 1, the fixed points are stable. Conversely, as long as one
multiplier is greater than 1, the fixed points are unstable. For power converters, the
discrete map has the form

xn+1 = f (xn, dn, 𝜇n) (1.17)

where x is the state variable, 𝜇n is the system parameter, dn is the duty cycle, and the
subscript n defines the nth switching period. The stability of the map may be estimated
by the characteristic values of the Jacobian matrix. The relationship between dn and
xn can be expressed using the switching surface

s(xn, dn) = 0 (1.18)

The Jacobian matrix of Equation 1.17 is

J(x∗) =
𝜕f

𝜕xn
−

𝜕f

𝜕dn

(
𝜕s
𝜕dn

)−1
𝜕s
𝜕xn

|||||xn=x∗
(1.19)

And the eigenvalues are roots of the characteristic equation

det[𝜆I − J(x∗)] = 0 (1.20)

where I is the n×n identity matrix. When the maximum value of the norms of the
characteristic roots 𝜆 is greater than 1, Equation 1.17 will not be convergent and the
unstable phenomenon will occur.

1.4.3.4 Lyapunov Exponents

Although power spectrum is an intuitive and graphic method, it is not a characteristic
quantity of “invariance” in principle. For example, to calculate the power spectrum,
the signal {xi} should be changed to {xi

2}. Hence, some new frequency components
will appear naturally.
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LEs are quantitative measures of the evolution of the phase trajectories, and are use-
ful for distinguishing chaos and non-chaos. As we all know, the basic performance of
chaos is sensitivity to initial conditions. Eigenvalues of the Jacobian matrix decide
the rate of being stretched or expanded of two local neighbor trajectories, but this
rate is perhaps different for the other neighbor trajectories in the whole phase space.
Therefore, it is very necessary to quantify the overall characteristics of the dynam-
ical system, and LEs are one of the quantity parameters (invariant measures, fractal
dimension, etc., are the others). In mathematics, Lyapunov exponents are defined as an
average rate of exponential divergence of two initially nearby trajectories. Quantita-
tively, two trajectories in phase space with initial separation 𝛿x0 diverge (provided that
the divergence can be treated within the linearized approximation) at a rate given by

|𝛿x(t)| ≈ e𝜆t|𝛿x0| (1.21)

where 𝜆 is the LE.
What is a geometrical meaning of LEs? The theory is illustrated in Figure 1.21.

Consider two points in a phase space, x0 and x0 + 𝛿x0; each of them will generate an
orbit using some equations. These orbits can be thought of as parametric functions of
a variable like time. Because sensitive dependence can arise only in some portions of
a system, this separation is also a function of the location of the initial value and has
the form 𝛿x(t). In a system with attracting fixed points or attracting periodic orbits,
𝛿x(t) diminishes asymptotically with time. If a system is unstable, the orbits diverge
exponentially for a while, but eventually settle down. For chaotic points, the function
𝛿x(t) will behave erratically. It is thus useful to study the mean exponential rate of
divergence of two initially close orbits using the formula

𝜆 = lim
t→∞

lim
𝛿x0→0

1
t

ln
|𝛿x(t)||𝛿x0| (1.22)

This number is called the Lyapunov exponent, and there are three situations:

If 𝜆< 0, the orbit attracts to a stable fixed point or stable periodic orbit.
If 𝜆= 0, the orbit is a neutral fixed point (or an eventually fixed point). A LE of zero

indicates that the system is in some sort of steady-state mode.
If 𝜆> 0, the orbit is unstable and chaotic. Nearby points, no matter how close, will

diverge to any arbitrary separation.

x(t)

δx(t)

x(t)+ δx(t)

δx0

x 0+
δx 0

Figure 1.21 Geometrical meaning of Lyapunov exponents
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LE is useful to distinguish among the various types of orbits. It works for discrete
as well as continuous systems. We can legitimately conclude that the behavior of the
system is chaotic only if its average LE is positive [40].

1.5 Conclusions

Switching converters are complex nonlinear, nonautonomous, and time varying sys-
tems, so they contain abundant nonlinear phenomena, such as chaos and bifurcation.
First, we introduced the working principle and the basic topologies of the switching
converters in this chapter. Second, an overview of nonlinear behavior in DC–DC con-
verters was given. Finally, we introduced some reviews of basic nonlinear dynamics
concepts, including the dynamical system and some characterizations of nonlinear
behavior.
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