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               Formation of the skeletal system is one of the hallmarks 
that distinguish vertebrates from invertebrates. In higher 
vertebrates (i.e., birds and mammals), the skeletal system 
contains mainly cartilage and bone, which are mesoderm-
derived tissues formed by chondrocytes and osteoblasts, 
respectively, during embryogenesis. A common mesen-
chymal progenitor cell, also referred as the osteochondral 
progenitor, gives rise to both chondrocytes and osteo-
blasts. The fi rst overt sign of skeletal development is 
the formation of mesenchymal condensations, in which 
mesenchymal progenitor cells aggregate at future skele-
tal locations. Mesenchymal cells in different parts of the 
embryo come from different cell lineages. Neural crest 
cells give rise to craniofacial bones, the sclerotome com-
partment of the somites gives rise to most axial skeletal 
elements, and lateral plate mesoderm forms the limb 
mesenchyme, from which limb skeletons are derived 
(Fig.  1.1 ). Skeletal formation proceeds through two major 
mechanisms: intramembranous and endochondral ossifi -
cation. In intramembranous ossifi cation, osteochondral 
progenitors differentiate directly into osteoblasts to form 
membranous bone; during endochondral ossifi cation, 
osteochondral progenitors differentiate into chondro-
cytes to form a cartilage template of the future bone. The 
location of each skeletal element determines its ossifi ca-
tion mechanism and anatomic properties such as shape 
and size. This positional identity is acquired early in 
embryonic development, before mesenchymal condensa-
tion, through a process called pattern formation. 
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  Cell–cell communication plays a critical role in pattern 
formation, and is mediated by several major signaling 
pathways. These include Wnts, Hedgehogs (Hhs), bone 
morphogenetic proteins (Bmps), fi broblast growth factors 
(Fgfs), and Notch/Delta. These pathways are also used 
later in skeletal development to control cell fate deter-
mination, proliferation, maturation, and polarity.  

  EARLY SKELETAL PATTERNING 

  Craniofacial  p atterning 
 Neural crest cells are the major source of cells establish-
ing the craniofacial skeleton  [1] . Reciprocal signaling 
between and among neural crest cells and epithelial cells 
(surface ectoderm, neural ectoderm or endodermal cells) 
ultimately establishes the identities of craniofacial skel-
etal elements  [2] .  

  Axial  p atterning 
 The most striking feature of axial skeletal patterning is 
the periodic organization of the vertebral column into 
multiple vertebrae along the anterior–posterior (A–P) 
axis. This pattern is established when somites, which are 
segmented mesodermal structures located on either side 
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4 Molecular, Cellular, and Genetic Determinants of Bone Structure and Formation

to undergo segmentation via antagonizing FGF signaling 
[Fig.  1.2 (A)]  [18, 19] . 

 The functional signifi cance of the segmentation clock 
in human skeletal development is highlighted by con-
genital axial skeletal diseases. For instance, mutations in 
Notch signaling components cause at least two human 
disorders, spondylocostal dysostosis (SCD, #277300, 
#608681, and #609813) and Alagille syndrome (AGS, 
OMIM# 118450 and #610205), both of which include 
vertebral column segmentation defects. 

 Once formed by the segmentation mechanism described 
above, somites are patterned along the dorsal–ventral 
axis by secreted signals derived from the surface ecto-
derm, neural tube and notochord (Fig.  1.1 ). The sclero-
tome forms from the ventral region of the somite, and 
gives rise to the axial skeleton and the ribs. Sonic hedge-
hog (Shh) from the notochord and ventral neural tube is 
required to induce sclerotome formation  [20, 21]  (Fig.  1.1 ) 
 [22, 23] . In mice that lack  Shh , the vertebral column and 
posterior ribs fail to form  [24] .  

  Limb  p atterning 
 Limb skeletons are patterned along the proximal–distal 
(P–D, shoulder to digit tip), anterior–posterior (A–P, 
thumb to little fi nger), and dorsal–ventral (D–V, back of 
the hand to palm) axes (Fig.  1.3 ). Along the P–D axis, the 
limb skeletons form three major segments: humerus or 
femur at the proximal end, radius and ulna or tibia and 
fi bula in the middle, and carpal/tarsal, metacarpal/
metatarsal, and digits in the distal end. Along the A–P 
axis, the radius and ulna have distinct morphological 
features; so do each of the fi ve digits. Skeletal elements 
are also patterned along the D–V limb axis. For instance, 
the sesamoid processes are located ventrally whereas the 
patella forms on the dorsal side of the knee. Limb pat-
terning events are regulated by three signaling centers in 
the early limb primodium, known as the limb bud, that 
act prior to mesenchymal condensation. 

  The apical ectoderm ridge (AER), a thickened epithelial 
structure formed at the distal tip of the limb bud, is the 
signaling center that directs P–D limb outgrowth (Fig. 
 1.3 ). Canonical Wnt signaling activated by Wnt3 induces 
AER formation  [25] , whereas BMP signaling leads to AER 
regression to halt limb extension  [26] . Multiple FGF 
family members are expressed in the AER, but Fgf8 alone 
is suffi cient to mediate the function of AER  [27–29] . 
Fgf10 is expressed in the presumptive limb mesoderm 
and is required for initiation of limb bud formation; it 
subsequently controls limb outgrowth by maintaining 
 Fgf8  expression in the AER  [30–32] . 

 The second signaling center is the zone of polarizing 
activity (ZPA), a group of mesenchymal cells located at 
the posterior distal margin of the limb bud, immediately 
adjacent to the AER [Fig.  1.3 (B)]. The ZPA patterns digit 
identity along the A–P axis. When ZPA tissue is grafted 
to a host limb bud on the anterior side under the AER, 
it leads to digit duplications in a mirror image of the 
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  Fig. 1.1.         Cell lineage contribution of chondrocytes and osteo-
blasts. Neural crest cells are born at the junction of dorsal 
neural tube and surface ectoderm. In the craniofacial region, 
neural crest cells from the branchial arches differentiate into 
chondrocytes and osteoblasts. In the trunk, axial skeletal cells 
are derived from the ventral somite compartment, sclerotome. 
Shh secreted from the notochord and fl oor plate of the neural 
tube induces the formation of sclerotome, which expresses 
Pax1. Wnts produced in the dorsal neural tube inhibit sclero-
tome formation and induce the dermomyotome, which 
expresses Pax3.  Cells from the lateral plate mesoderm will form 
the limb mesenchyme, from which limb skeletons are derived.  

of the neural tube, bud off at a defi ned pace from the 
anterior tip of the presomitic mesoderm (PSM)  [3] . 
Somites give rise to the axial skeleton, striated muscle, 
and dorsal dermis  [4–7] . The patterning of the axial skel-
eton is controlled by a molecular oscillator, or segmenta-
tion clock, that acts in the PSM [Fig.  1.2 (A)]. The 
segmentation clock is operated by a traveling wave of 
gene expression (or cyclic gene expression) along the 
embryonic A–P axis, which is generated by an integrated 
network of the Notch, Wnt/ β -catenin and fi broblast 
growth factor (FGF) signaling pathways [Fig.  1.2 (B)]  [8, 9] . 

  The Notch signaling pathway mediates short-range 
communication between contacting cells  [10] . The 
majority of cyclically expressed genes in the segmenta-
tion clock are targets of the Notch signaling pathway. 
The Wnt/ β -catenin and FGF pathways mediate long-
range signaling across several cell diameters. Upon acti-
vation of the Wnt pathway,  β -catenin is stabilized and 
translocates to the nucleus where it activates the expres-
sion of downstream genes that are rhythmically expressed 
in the PSM  [9, 11–13] . FGF signaling is also activated 
periodically in the posterior PSM  [14, 15] . There is exten-
sive cross-talk among these major oscillating signaling 
pathways; it is likely that each of the three pathways has 
the capacity to generate its own oscillations, while inter-
actions among them allow effi cient coupling and entrain-
ment  [16, 17] . Retinoic acid (RA) signaling controls 
somitogenesis by regulating the competence of PSM cells 



  Fig. 1.2.         Periodic and left–right symmetrical somite formation is controlled by signaling gradients and oscillations. (A) Somites 
form from the presomitic mesoderm (PSM) on either side of the neural tube in an anterior to posterior (A–P) wave. Each segment 
of the somite is also patterned along the A–P axis. Retinoic acid signaling controls the synchronization of somite formation on the 
left and right side of the neural tube. The most recent visible somite is marked by “0,” whereas the region in the anterior PSM 
that is already determined to form somites is marked by a determination front that is determined by Fgf8 and Wnt3a gradients. 
This FGF signaling gradient is antagonized by an opposing gradient of retinoic acid. (B) Periodic somite formation (one pair of 
somite/2 hours) is controlled by a segmentation clock, the molecular nature of which is oscillated expression of signaling compo-
nents in the Notch and Wnt pathways. Notch signaling oscillates out of phase with Wnt signaling. 
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  Fig. 1.3.         Limb patterning and growth along the proximal–distal (P–D), anterior–posterior (A–P) and dorsal–ventral (D–V) axes are 
controlled by signaling interactions and feedback loops. (A) A signaling feedback loop between Fgf10 in the limb mesoderm and 
Fgf8 in the AER is required to direct P–D limb outgrowth. Wnt3 is required for AER formation. (B) Shh in the ZPA controls A–P 
limb patterning. A–P and P–D limb patterning and growth are also coordinated through a feedback loop between Shh and Fgfs 
expressed in the AER. Fgf signaling from the AER is required for Shh expression. Shh also maintains AER integrity by regulating 
Gremlin expression. Gremlin is a secreted antagonist of BMP signaling that promotes AER degeneration. (C) D–V patterning of the 
limb is determined by Wnt7a and BMP signaling through regulating the expression of Lmx1b in the limb mesenchyme. 
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Sox9 and Runx2 are master transcription factors that are 
required for the determination of chondrocyte and osteo-
blast cell fates, respectively  [52–55] . Both are expressed 
in the osteochondral progenitor cells that constitute the 
mesenchymal condensations in the limb.  Sox9  expres-
sion precedes that of  Runx2   [56] . Coexpression of Sox9 
and Runx2 in osteochondral progenitors is terminated 
when Sox9 and Runx2 expression is segregated into dif-
ferentiated chondrocytes and osteoblasts, respectively 
 [57] . The requirement for Runx2 in bone formation was 
demonstrated by the fi nding that  Runx2   − / −   mice have no 
differentiated osteoblasts  [52, 53] . Humans carrying 
heterozygous null mutations of the  RUNX2  gene have clei-
docranial dysplasia (CCD, OMIM#119600), an autosomal-
dominant condition characterized by hypoplasia/aplasia 
of clavicles, patent fontanelles, supernumerary teeth, 
short stature, and other changes in skeletal patterning 
and growth  [53] . 

 A number of transcriptional regulators that interact 
with Runx2 to control osteoblast differentiation have 
been identifi ed. Zfp521 regulates osteoblast differentia-
tion by HDAC3-dependent attenuation of Runx2 activity 
 [58] . In addition, Runx2 mediates the function of Notch 
signaling in regulating osteoblast differentiation  [59, 60] . 

 Signaling through the Wnt and Indian hedgehog (Ihh) 
pathways is required for cell fate determination of osteo-
progenitors into chondrocytes or osteoblasts by control-
ling the expression of  Sox9  and  Runx2 . Enhanced 
Wnt/ β -catenin signaling increased bone formation and 
 Runx2  expression, but inhibited chondrocyte differentia-
tion and  Sox9  expression  [61–63] . Conversely, blocking 
Wnt/ β -catenin signaling by removing  β  -catenin  or  Lrp5  
and  Lrp6  in osteochondral progenitor cells resulted in 
ectopic chondrocyte differentiation at the expense of 
osteoblasts  [63–66] . Therefore, Wnt/ β -catenin signaling 
levels in the condensation determine the outcome of 
bone formation. Relatively high Wnt/ β -catenin signaling 
in intramembranous ossifi cation allows direct osteoblast 
differentiation in the condensation, whereas during 
endochondral ossifi cation, Wnt/ β -catenin signaling in 
the condensation is initially lower, such that only 
chondrocytes differentiate. At later stages of endochon-
dral ossifi cation, Wnt/ β -catenin signaling is upregulated 
at the periphery of the cartilage, driving osteoblast 
differentiation. 

 Ihh signaling is required for osteoblast differentiation 
only during endochondral bone formation by activating 
Runx2 expression  [67, 68] . When Ihh signaling is inacti-
vated in perichondrial cells, they ectopically form chon-
drocytes that express Sox9 at the expense of Runx2. 
Genetic epistatic tests showed that that  β  -catenin  is 
required downstream of  Ihh  to promote osteoblast matu-
ration  [69] . In accordance, Ihh signaling is not (required 
once osteoblasts express osterix  Osx )  [70] , a maker for 
cells committed to the osteoblast fate  [71] . 

 BMPs are transforming growth factor  β  (TGF β ) super-
family members that were identifi ed as secreted proteins 
able to promote ectopic cartilage and bone formation 
 [72] . Unlike Ihh and Wnt signaling, BMP signaling pro-

endogenous ones  [33] .  Shh  is expressed in the ZPA and 
is necessary and suffi cient to mediate ZPA activity  [34, 
35] . However, the A–P axis of the limb is established 
prior to Shh signaling. This pre-Shh A–P limb patterning 
is controlled by combined activities of multiple tran-
scription factors, including Gli3, Alx4, and the basic 
helix-loop-helix (bHLH) transcription factors dHand and 
Twist1. Mutations in the human  TWIST1  gene cause 
Saethre-Chotzen syndrome (SCS, OMIM#101400). The 
hallmarks of this syndrome are premature fusion of the 
calvarial bones and limb abnormalities. Mutations in 
the  GLI3  gene cause Greig cephalopolysyndactyly syn-
drome (GCPS, OMIM#175700) and Pallister-Hall syn-
drome (PHS, OMIM#146510), which are characterized by 
limb malformations. 

 The third signaling center is the non-AER limb ecto-
derm that covers the limb bud. This tissue controls D–V 
polarity of the ectoderm itself and also of the underlying 
mesoderm [Fig.  1.3 (C)] (reviewed in Refs.  36  and  37 ). Wnt 
and BMP signaling control D–V limb polarity.  Wnt7a  is 
expressed in the dorsal limb ectoderm and activates the 
expression of  Lmx1b , which encodes a dorsal-specifi c 
LIM homeobox transcription factor that determines the 
dorsal identity  [38, 39] .  Wnt7a  expression is suppressed 
by the transcription factor En-1 in the ventral ectoderm 
 [40] . The BMP signaling pathway is also ventralizing in 
the early limb [Fig.  1.3 (C)]. The effects of BMP signaling 
in this ventralization are mediated by the transcription 
factors Msx1 and Msx2. The function of BMP signaling 
in the early limb ectoderm is upstream of En-1 in control-
ling D-V limb polarity  [41] . However, BMPs also have 
En-1-independent ventralization activity by directly sig-
naling to the limb mesenchyme to inhibit  Lmx1b  expres-
sion  [42] . 

 Limb development is a coordinated three-dimensional 
event. Indeed, the three signaling centers interact with 
each other through interactions of the mediating signal-
ing molecules. First, there is a positive feedback loop 
between Shh expressed in the ZPA to maintain expres-
sion of FGFs in the AER, which connects A–P limb pat-
terning with P–D limb outgrowth [Fig.  1.3 (B)]  [43–45] . 
This positive feedback look is antagonized by an FGF/
Grem1 inhibitory loop that attenuates FGF signaling and 
thereby terminates limb outgrowth in order to maintain 
a proper limb size  [46] . Second, the dorsalizing signal 
Wnt7a is also required for maintaining the expression of 
Shh that patterns the A–P axis  [47, 48] . Third, Wnt/ β -
catenin signaling is both distalizing and dorsalizing 
 [49–51] .   

  EMBRYONIC CARTILAGE AND 
BONE FORMATION 

 The early patterning events described above determine 
where and when mesenchymal cells condense. Subse-
quently, the osteochondral progenitors in these conden-
sations must form either chondrocytes or osteoblasts. 
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(OMIM#134934), and osteoglophonic dysplasia (OGD, 
OMIM#166250).  

  CHONDROCYTE PROLIFERATION 
AND DIFFERENTIATION IN THE 
DEVELOPING CARTILAGE 

 During endochondral bone formation, chondrocytes dif-
ferentiate from osteochondral progenitor cells to form 
cartilage, which provides a growth template for the future 
bone. Chondrocytes undergo a tightly controlled program 
of progressive proliferation and hypertrophy, which is 
required for endochondral bone formation. In the devel-
oping cartilage of the long bone, chondrocytes at different 
stages of differentiation are located in distinct zones 
along the longitudinal axis and such organization is 
required for long bone elongation [Fig.  1.4 (A)]. Proliferat-
ing chondrocytes express  Col2a1  (ColII), whereas hyper-
trophic chondrocytes express  Col10a1  (ColX). The 
chondrocytes that have exited the cell cycle, but have 
not yet become hypertrophic, are known as prehypertro-
phic chondrocytes. Chondrocytes either remain in one 
zone (i.e., those in the permanent cartilage) or transit to 
other zones in order (i.e., those in the growth plate) 
during development or homeostasis. This progression 
is precisely regulated by multiple signaling pathways. 

motes the differentiation of both osteoblasts and chon-
drocytes from mesenchymal progenitors. Reducing BMP 
signaling by removing BMP receptors leads to impaired 
chondrocyte and osteoblast differentiation and matura-
tion  [73] . The mechanisms underlying this unique prop-
erty of BMPs have been under intense investigation for 
the past two decades. Our understanding of BMP action 
in chondrogenesis and osteogenesis has benefi ted greatly 
from molecular studies of BMP signal transduction  [74] . 

 The functions of FGF pathways in mesenchymal con-
densation and osteochondral progenitor differentiation 
remain to be elucidated, as complete genetic inactiva-
tion of FGF signaling in mesenchymal condensations 
has not been achieved. Nevertheless, it is clear that 
FGFs act in mesenchymal condensations to control 
intramembranous bone formation. FGF signaling can 
promote or inhibit osteoblast proliferation and differen-
tiation depending on the cell context. Mutations in the 
genes encoding FGFR 1, 2, and 3 cause craniosynostosis 
(premature fusion of the cranial sutures). All of these 
mutations are autosomal dominant and many of them 
are activating mutations. The craniosynostosis syn-
dromes involving FGFR1, 2, 3 include Apert syndrome 
(AS, OMIM# 101200), Beare-Stevenson cutis gyrata 
(OMIM#123790), Crouzon syndrome (CS, OMIM#123500), 
Pfeiffer syndrome (PS, OMIM#101600), Jackson-Weiss 
syndrome (JWS, OMIM#123150), Muenke syndrome 
(MS, OMIM#602849), crouzonodermoskeletal syndrome 

  Fig. 1.4.         Chondrocyte proliferation and hypertrophy are tightly controlled by signaling pathways and transcription factors. (A) 
Schematic drawing of a developing long bone cartilage. Chondrocytes with different properties of proliferation have different mor-
phologies and are located in distinct locations along the longitudinal axis. See text for details. (B) Molecular regulation of chondro-
cyte proliferation and hypertrophy. Ihh, PTHrP, Wnt, FGF, and BMP are major signaling pathways that control chondrocyte 
proliferation and hypertrophy. A negative feedback loop between Ihh and PTHrP is fundamental in regulating the pace of chondro-
cyte hypertrophy. Transcription factors Sox9 and Runx2 act inside the cell to integrate signals from different pathways. See text 
for details. 
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 Many FGF ligands and receptors (FGFRs) are expressed 
in the developing cartilage. The signifi cant role of FGF 
signaling in skeletal development was fi rst realized by 
the discovery that achondroplasia (ACH, OMIM#100800), 
the most common form of skeletal dwarfi sm in humans, 
was caused by a missense mutation in  FGFR3 . Later, 
hypochondroplasia (HCH, OMIM#146000), a milder form 
of dwarfi sm, and thanatophoric dysplasia (TD, OMIM#
187600 & 187601), a more severe form of dwarfi sm, were 
also found to result from mutations in  FGFR3 . Signaling 
through FGFR3 negatively regulates chondrocyte prolif-
eration and hypertrophy  [83–90] , in part by direct signal-
ing in chondrocytes  [83, 84]  to activate Janus kinase–signal 
transducer and activator of transcription-1 (Jak–Stat1) 
and the MAPK pathways  [85] . FGFR3 signaling also 
interacts with the Ihh/PTHrP/BMP signaling pathways 
 [86, 87] . 

 Since  Fgf18   −    /    −   mice exhibit a phenotype including 
increased chondrocyte proliferation that closely resem-
bles the cartilage phenotypes of  Fgfr3   − / −   mice, Fgf18 is 
likely a physiological ligand for FGFR3 in the mouse. 
However, the phenotype of the  Fgf18   −    /    −   mouse is more 
severe than that of the  Fgfr3   −    /    −   mice, suggesting that 
Fgf18 signals through FGFR1 in hypertrophic chondro-
cytes and through FGFR2 and -1 in the perichondrium. 
Mice conditionally lacking FGFR2 develop skeletal 
dwarfi sm with decreased bone mineral density [88, 89)]. 
Osteoblasts also express FGFR3, and mice lacking  Fgfr3  
are osteopenic  [90, 91] . Thus in osteoblasts, FGF signal-
ing positively regulates bone growth by promoting osteo-
blast proliferation. Interestingly, mice lacking  Fgf2  also 
show osteopenia, though much later in development 
than in  Fgfr2 -defi cient mice  [92] , suggesting that Fgf2 
may be a homeostatic factor that replaces the develop-
mental growth factor, Fgf18, in adult bones. It is still not 
clear which FGFR responds to Fgf2/18 in osteoblasts. 

 Like the other major signaling pathways mentioned 
above, BMP signaling also acts during later stages of carti-
lage development. Both  in vitro  explant experiments and 
 in vivo  genetic studies showed that BMP signaling pro-
motes chondrocyte proliferation and  Ihh  expression. The 
addition of BMPs to limb explants increases proliferation 
of chondrocytes whereas Noggin blocks chondrocyte pro-
liferation  [86, 93] . In addition, conditional removal of 
both  BmpRIA  and  BmpRIB  in differentiated chondro-
cytes leads to reduced chondrocyte proliferation and Ihh 
expression. BMP signaling also regulates chondrocyte 
hypertrophy, as removal of  BmpRIA  in chondrocytes 
leads to an expanded hypertrophic zone due to accelerated 
chondrocyte hypertrophy and delayed terminal matura-
tion of hypertrophic chondrocytes  [94] . BMP signaling 
regulates chondrocyte proliferation and hypertrophy at 
least in part through regulating Ihh expression. 

 BMP and FGF signaling pathways are mutually antago-
nistic in cartilage  [86] . Comparison of cartilage pheno-
types of BMP and FGF signaling mutants indicate that 
these two signaling pathways antagonize each other in 
regulating chondrocyte proliferation and hypertrophy 
[94)]. 

Ihh is expressed in prehypertrophic and early hypertro-
phic chondrocytes and acts as a master regulator of endo-
chondral bone development by promoting chondrocyte 
proliferation, controlling the pace of chondrocyte hyper-
trophy and coupling cartilage development with bone 
formation by inducing osteoblast differentiation in the 
adjacent perichondrium  [67] . 

   Ihh   −    /    −   mice have striking skeletal defects, including a 
lack of endochondral bone formation and smaller carti-
lage elements due to a marked decrease in chondrocyte 
proliferation and acceleration of hypertrophy  [67, 75] . 
Ihh controls the pace of chondrocyte hypertrophy by 
activating the expression of parathyroid hormone related 
peptide ( PTHrP ) in articular cartilage and periarticular 
cells  [67, 76] . PTHrP acts on the same G-protein-coupled 
receptors used by parathyroid hormone (PTH). These 
PTH/PTHrP receptors ( PPR s) are expressed at high levels 
by prehypertrophic and early hypertrophic chondrocytes. 
PTHrP signaling is required to inhibit precocious chon-
drocyte hypertrophy primarily by keeping proliferating 
chondrocytes in the proliferating pool  [77, 78] . Ihh and 
PTHrP form a negative feedback loop to control the 
chondrocyte ’ s decision whether or not to leave the pro-
liferating pool and become hypertrophic [Fig.  1.4 (B)]. In 
this model, PTHrP, secreted from cells at the ends of 
cartilage, acts on proliferating chondrocytes to keep 
them proliferating. When chondrocytes displaced far 
enough from the source of PTHrP that the PPRs are no 
longer activated, they exit the cell cycle and become Ihh-
producing prehypertrophic chondrocytes. Ihh diffuses 
through the growth plate to stimulate PTHrP expression 
at the ends of cartilage as way to slow down hypertro-
phy. This model is supported by experiments using chi-
meric mouse embryos  [79] . Clones of  PPR   −    /    −   chondrocytes 
differentiate into hypertrophic chondrocytes and produce 
Ihh within the wild type proliferating chondrocyte 
domain. This ectopic Ihh expression leads to ectopic 
osteoblast differentiation in the perichondium, upregula-
tion of PTHrP expression, and a consequent lengthening 
of the columns of wild type proliferating chondrocytes. 
These studies demonstrate that the lengths of proliferat-
ing columns, and hence the elongation potential of car-
tilages, are critically determined by the Ihh–PTHrP 
negative feedback loop. Indeed, mutations in  IHH  in 
humans cause brachydactyly Type A1 (OMIM#112500), 
which is characterized by shortened digit phalanges and 
short body statue  [80] . 

 Several Wnt ligands are expressed in the cartilage and 
perichondrium of mouse embryos  [62, 81] . Some activate 
canonical ( β -catenin-dependent) and others activate non-
canonical ( β -catenin-independent) pathways to regulate 
chondrocyte proliferation and hypertrophy. In the absence 
of either canonical or noncanonical Wnt signaling, chon-
drocyte proliferation is altered and hypertrophy is delayed 
 [63, 81, 82] . Furthermore, both canonical and noncanoni-
cal Wnt pathways act in parallel with Ihh signaling to 
regulate chondrocyte proliferation and differentiation 
 [69, 81] . Wnt and Ihh signaling may regulate common 
downstream targets such as Sox9 (see below)  [81, 82] . 
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iting the activity of Runx2  [103] . Runx2 interacts with 
the Gli3 repressor form Gli3rep, which inhibits DNA 
binding by Runx2  [104] . Therefore, one mechanism 
whereby Hh signaling promotes osteoblast differentia-
tion may be through enhancing Runx2 DNA binding by 
reducing the generation of Gli3rep. 

 Developing skeletal elements have distinct morpholo-
gies, which are required for their function. For example, 
the limb and the long bones preferentially elongate along 
the P–D axis. Although the molecular mechanism under-
lying such directional morphogenesis was poorly under-
stood in the past, there is evidence that alignment of 
columnar chondrocytes in the growth plate is regulated 
by planar cell polarity (PCP) pathways during directional 
elongation of the cartilage  [105, 106] . PCP is an evolu-
tionarily conserved pathway that is required in many 
directional morphogenetic processes including left–right 
asymmetry, neural tube closure, body axis elongation 
and brain wiring  [107–109] . Recently, a major break-
through has been made by demonstrating that newly 
differentiated chondrocytes in developing long bones are 
polarized along the P–D axis. Vangl2 protein, a core regu-
latory component in the PCP pathway, is asymmetrically 
localized on the proximal side of chondrocytes  [110] . The 
asymmetrical localization of Vangl2 requires a Wnt5a 
signaling gradient. In the  Wnt5a  − / −    mutant limb, the car-
tilage forms a ball-like structure, and Vangl2 is sym-
metrically distributed on the cell membrane  [110]  (Fig. 
 1.5 ). Mutations in genes encoding PCP pathway compo-
nents, such as  WNT5a  and  ROR2 , have been found in 
skeletal malformations such as the Robinow Syndrome 
and brachydactyly type B1, both of which are short-limb 
dwarfi sms  [111–115] . 

    REGULATION OF CHONDROCYTE SURVIVAL 

 Apart from its proliferation, differentiation and polarity, 
chondrocyte survival is also highly regulated. The Wnt/ β -
catenin, Hh, and BMP pathways signaling are all impor-
tant in chondrocyte survival. Chondrocyte cell death is 
signifi cantly increased when  β -catenin is removed  [69] . 
Cartilage is also special as it is an avascular tissue that 
develops under hypoxia because chondrocytes, particu-
larly those in the middle of the cartilage, do not have 
access to vascular oxygen delivery  [116] . As in other 
hypoxic conditions, the transcription factor hypoxia-
inducible factor 1 (Hif-1), and its oxygen-sensitive com-
ponent Hif-1 α , is the major mediator of the hypoxic 
response in developing cartilage. Removal of  Hif-1 α   
in cartilage results in chondrocyte cell death in the inte-
rior of the growth plate. A downstream target of Hif-1 
in regulating the hypoxic response of chondrocytes 
is VEGF  [117] . The extensive cell death seen in the car-
tilage of mice lacking  Vegfa  has a striking similarity to 
that observed in mice in which  Hif-1 α   is removed in 
cartilage  [116] . The Wnt/ β -catenin, Hh, and BMP path-
ways signaling are all important in chondrocyte survival. 

 The above signaling pathways mediate the majority of 
their effects on cell proliferation, differentiation, and sur-
vival by regulating the expression of key transcription 
factors. Sox9 and Runx2 are two critical transcription 
factors that integrate inputs from these signaling path-
ways. When  Sox9  was removed from differentiated chon-
drocytes, chondrocyte proliferation and the expression of 
matrix genes and the Ihh–PTHrP signaling components 
were reduced in the cartilage  [56] . This phenotype is very 
similar to that of mice lacking both  Sox5  and  Sox6 , two 
other Sox-family members that require Sox9 for expres-
sion. Sox5 and Sox6 cooperate with Sox9 to maintain the 
chondrocyte phenotype to regulate chondrocyte specifi c 
gene expression  [95] . Haploinsuffi ciency for  SOX9  in 
humans causes campomelic dysplasia (CD, OMIM#
114290), a condition that is recapitulated in  Sox9   + / −   mice, 
and which includes cartilage hypoplasia and a perinatal 
lethal osteochondrodysplasia  [96] . Chondrocyte hyper-
trophy is accelerated in the  Sox9   + / −   cartilage, but delayed 
in  Sox9 -overexpressing cartilage  [82, 96] . Sox9 acts in 
both the PTHrP and Wnt signaling pathways to control 
chondrocyte proliferation. PTHrP signaling in chondro-
cytes activates PKA, which promotes Sox9 transcrip-
tional activity by phosphorylating it  [97] . In addition, 
Sox9 inhibits Wnt/ β –catenin signaling activity by pro-
moting  β –catenin degradation  [82, 98] . Thus, Sox9 is a 
master transcription factor that acts in many critical 
stages of chondrocyte proliferation and differentiation as 
a central node inside prechondrocytes and chondrocytes 
to receive and integrate multiple signaling inputs. 

 In addition to its role in early osteoblast differentiation, 
Runx2 is expressed in prehypertrophic and hypertrophic 
chondrocytes and controls chondrocyte proliferation and 
hypertrophy. Chondrocyte hypertrophy is signifi cantly 
delayed and Ihh expression is reduced in  Runx2   −    /    −   mice, 
whereas  Runx2  overexpression in the cartilage results in 
accelerated chondrocyte hypertrophy  [99, 100] . Further-
more, removing both  Runx2  and  Runx3  completely 
blocks chondrocyte hypertrophy and Ihh expression in 
mice, suggesting that Runx transcription factors control 
Ihh expression  [101] . Thus, as with Sox9, Runx2 can be 
viewed as a master controlling transcription factor and a 
central node through which other signaling pathways are 
integrated in coordinate chondrocyte proliferation and 
hypertrophy. In chondrocytes, Runx2 acts in the Ihh-
PThrP pathway to regulate cartilage growth by control-
ling the expression of Ihh. However, this cannot be its 
only function, as  Runx2  upregulation leads to accelerated 
chondrocyte hypertrophy, whereas  Ihh  upregulation 
leads to delayed chondrocyte hypertrophy. One of 
Runx2 ’ s Ihh-independent activities is to act in the peri-
chondrium to inhibit chondrocyte proliferation and 
hypertrophy by regulating Fgf18 expression  [102] . Inter-
estingly, this role of Runx2 in the perichondrium is 
antagonistic to its role in chondrocytes. Recent studies 
have shown that histone deacetylase 4 (HDAC4), which 
governs chromatin structure and represses the activity of 
specifi c transcription factors, regulates chondrocyte 
hypertrophy and endochondral bone formation by inhib-
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using endogenous cells, autologous cells and tissues, or 
iPS (induced pleuripotent stem) cells. Understanding 
skeletal development is also indispensable for under-
standing pathological mechanisms in skeletal diseases, 
fi nding therapeutic targets, promoting consistent carti-
lage or bone repair  in vivo  and eventually growing func-
tional cartilage or bone  in vitro .  

  REFERENCES 

      1.      Santagati   F   ,    Rijli   FM   .   2003 .  Cranial neural crest and 
the building of the vertebrate head .  Nat Rev Neurosci  
 4 ( 10 ):  806 – 818 .  

      2.      Helms   JA   ,    Cordero   D   ,    Tapadia   MD   .   2005 .  New insights 
into craniofacial morphogenesis .  Development   132 ( 5 ): 
 851 – 861 .  

      3.      Pourquie   O   .   2011 .  Vertebrate segmentation: From 
cyclic gene networks to scoliosis .  Cell   145 ( 5 ): 
 650 – 663 .  

      4.      Christ   B   ,    Huang   R   ,    Scaal   M   .   2004 .  Formation and dif-
ferentiation of the avian sclerotome .  Anat Embryol 
(Berl)   208 ( 5 ):  333 – 350 .  

      5.      Gossler   A   ,    Hrabe de Angelis   M   .   1998 .  Somitogenesis . 
 Curr Top Dev Biol   38 :  225 – 287 .  

      6.      Hirsinger   E   ,    Jouve   C   ,    Dubrulle   J   ,    Pourquie   O   .   2000 . 
 Somite formation and patterning .  Int Rev Cytol   198 : 
 1 – 65 .  

      7.      Scaal   M   ,    Christ   B   .   2004 .  Formation and differentiation 
of the avian dermomyotome .  Anat Embryol (Berl)  
 208 ( 6 ):  411 – 424 .  

      8.      Aulehla   A   ,    Pourquie   O   .   2006 .  On periodicity and direc-
tionality of somitogenesis .  Anat Embryol (Berl)  
 211 ( Suppl 1 ):  3 – 8 .  

      9.      Dequeant   ML   ,    Glynn   E   ,    Gaudenz   K   ,    Wahl   M   ,    Chen   J   , 
   Mushegian   A   ,    Pourquie   O   .   2006 .  A complex oscillating 
network of signaling genes underlies the mouse seg-
mentation clock .  Science   314 ( 5805 ):  1595 – 1598 .  

      10.      Ilagan   MX   ,    Kopan   R   .   2007 .  SnapShot: Notch signaling 
pathway .  Cell   128 ( 6 ):  1246 .  

      11.      Aulehla   A   ,    Wehrle   C   ,    Brand-Saberi   B   ,    Kemler   R   ,    Gossler  
 A   ,    Kanzler   B   ,    Herrmann   BG   .   2003 .  Wnt3a plays a major 
role in the segmentation clock controlling somitogen-
esis .  Dev Cell   4 ( 3 ):  395 – 406 .  

      12.      Suriben   R   ,    Fisher   DA   ,    Cheyette   BN   .   2006 .  Dact1 pre-
somitic mesoderm expression oscillates in phase with 
Axin2 in the somitogenesis clock of mice .  Dev Dyn  
 235 ( 11 ):  3177 – 3183 .  

      13.      Ishikawa   A   ,    Kitajima   S   ,    Takahashi   Y   ,    Kokubo   H   ,    Kanno  
 J   ,    Inoue   T   ,    Saga   Y   .   2004 .  Mouse Nkd1, a Wnt antago-
nist, exhibits oscillatory gene expression in the PSM 
under the control of Notch signaling .  Mech Dev  
 121 ( 12 ):  1443 – 1453 .  

      14.      Niwa   Y   ,    Masamizu   Y   ,    Liu   T   ,    Nakayama   R   ,    Deng   CX   , 
   Kageyama   R   .   2007 .  The initiation and propagation of 
Hes7 oscillation are cooperatively regulated by Fgf and 
notch signaling in the somite segmentation clock .  Dev 
cell   13 ( 2 ):  298 – 304 .  

  Fig. 1.5.         Wnt5a gradient controls directional morphogenesis 
by regulating Vangl2 phosphorylation and asymmetrical local-
ization. (A) Schematics of skeletons in a human limb that pref-
erentially elongates along the proximal–distal axis. (B) A model 
of a Wnt5a gradient controlling P–D limb elongation by provid-
ing a global directional cue. Wnt5a is expressed in a gradient 
(orange) in the developing limb bud, and this Wnt5a gradient is 
translated into an activity gradient of Vangl2 by inducing dif-
ferent levels of Vangl2 phosphorylation (blue). In the distal limb 
bud of an E12.5 mouse embryo showing the forming digit car-
tilage, the Vangl2 activity gradient then induces asymmetrical 
Vangl2 localization (blue) and downstream polarized events. 

(A)

(B)

Wnt5a

Vangl2

P

P

D

Chondrocyte cell death is signifi cantly increased when 
 β -catenin is removed  [69] .  

  CONCLUSIONS 

 Skeletal formation is a process that has been perfected 
and highly conserved during vertebrate evolution. Under-
standing the molecular mechanisms regulating cartilage 
and bone formation during development will allow us to 
redeploy these pathways to promote skeletal tissue repair 
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