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Introduction

1.1 Aeroservoelasticity

Aeroservoelasticity (ASE) is the study of interactions among structural dynamics, unsteady
aerodynamics and flight control systems of aircraft (Fig. 1.1), and an active research topic in
aerospace engineering. The relevance of ASE to modern airplane design has greatly increased
with the advent of flexible, lightweight structures, higher airspeeds and large-bandwidth, auto-
matic flight control systems. The latter trend assumes a greater significance in the modern
age, as many of the flight tasks that were earlier performed by a much slower human inter-
face, must now be carried out by high-speed, closed-loop digital controllers, resulting in an
increased encroachment into the aeroelastic frequency spectrum. Inadvertent ASE couplings
can arise between an automatic flight controller and the aeroelastic modes, resulting in signals
becoming unbounded in the closed-loop system. Hence, every new aircraft prototype must be
carefully flight-tested to evaluate the ever expanding aeroservoelastic interactions domain, and
the higher aeroelastic modes that could be safely neglected in the past must now be fully inves-
tigated. Furthermore, favourable ASE interactions can be designed by suitably modifying the
feedback control laws, such that certain aeroelastic instabilities are avoided in the operating
envelope of the aircraft.

Consider the block representation of the typical ASE system shown in Fig. 1.2. Here, an
automatic flight control system is designed to fulfil the pilot commands by actuating control
inputs applied to the aircraft. It is seldom possible to model all aspects of an aircraft’s dynamics
by well-defined mathematical representations. The unmodelled dynamics of the system can be
treated as unknown external disturbances applied at various points, such as the atmospheric
gust inputs acting on the aircraft and the measurement noise present in the sensors. If such
disturbances were absent, one could design an open-loop controller to fulfil all the required
tasks. However, the presence of random disturbance inputs necessitates a closed-loop system
shown by the feedback loop in Fig. 1.2, where the control inputs are continuously updated
based on measured outputs. Such a closed-loop system must be stable and should perform
well by following the pilot’s commands with alacrity and accuracy. Ensuring the stability and
good performance of the closed-loop system in the presence of unknown disturbances is the
primary task of the control engineer.
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Figure 1.1 Venn diagram showing that aeroservoelasticity (ASE) lies at the intersection of aerodynam-
ics, structural dynamics and flight control systems
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Figure 1.2 Block diagram of a typical flight control system, highlighting the importance of aeroser-
voelastic analysis

The flight control system is usually designed either without regard to the aeroelastic interac-
tions, or with only the primary, in vacuo structural modes taken into account. When applied to
the actual vehicle, such a control system could therefore cause unpredicted consequences due
to unmodelled dynamic interaction between the flexible structure and the aerodynamic loads,
often leading to instability and structural failure. It is usually left to the flight-test engineers
to identify and iron out the problematic ASE coupling of a flying prototype through either a
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redesign of the structural members, or reprogramming the flight control computer. This process
is time consuming, expensive and very often fraught with danger. However, if the ASE anal-
ysis is introduced as a systematic procedure into the basic airframe and flight control design
from the conceptual stage, such difficulties can be avoided at a more advanced stage. The focus
of the present book is to devise such a systematic procedure in the form of an adaptive design
of the flight control system.

The most important ASE topic is the catastrophic phenomenon of flutter, which is an
unstable dynamic coupling between the elastic motion of the wings (or tails) and the unsteady
aerodynamic loading that generally begins at a small amplitude, and grows to large amplitudes
thereby causing structural failure. The classical flutter mechanism consists of an interaction
between two (or more) natural aeroelastic modes at a critical dynamic pressure, and can be
excited by either atmospheric gusts or control surface movement. While traditional method
of avoiding flutter consists of stiffening the structure such that the natural modes causing
flutter occur outside the normal operating envelope of the aircraft, such a method is not
always reliable, and requires many design iterations based on expensive, cumbersome and
dangerous flight-tests of actual prototypes. The main problem lies in accurately predicting
the critical dynamic pressure, because of a drastic change in aerodynamic characteristics due
to Mach number and the equilibrium angle of attack. Such a bifurcation typically occurs
at transonic speeds and requires a nonlinear stability analysis. For example, the flutter
dynamic pressure computed by linearized subsonic aerodynamics is often much higher than
that actually encountered at transonic Mach numbers. Since the non-conservative dip in
the flutter dynamic pressure due to transonic effects can be extremely treacherous, either
accurate computational fluid dynamics (CFD) modelling or precise wind-tunnel experiments
are necessary for predicting transonic flutter modes. However, both CFD modelling and
wind-tunnel testing are complicated by the sensitivity of nonlinear transonic aerodynamics
to transition and turbulence, for which no CFD model or experimental technique, however
advanced, can be entirely relied upon. Even an extremely sophisticated Navier—Stokes
computation with tens of million of grid points is unable to resolve the fine turbulence
scales of an unsteady transonic flowfield on a complete aircraft configuration. Furthermore,
these same aeroelastic phenomena have large-scale effects (Edwards 2008), which make an
extrapolation of wind-tunnel data to the full-scale aircraft highly uncertain. The inadequacies
of aerodynamic modelling can be practically overcome only by an adaptive, closed-loop
identification and control of unsteady aerodynamics, which is the topic of the present book.

Actively suppressing flutter through a feedback control system is an attractive alternative to
passive flutter avoidance by haphazard redesign and flight testing. The concept of active flutter
suppression began to be explored in the 1970s (Abel 1979), wherein an automatic control
system actuated a control surface on the wing, in response to the structural motion sensed by
an accelerometer. This modified the aeroelastic coupling between critical modes, such that the
closed-loop flutter occurred at a higher dynamic pressure. Linear feedback control design for
active flutter suppression requires an accurate knowledge of the aeroelastic modes that cause
flutter. Although the classical flutter of a high aspect-ratio wing of a transport type aircraft is
caused by an interaction between the primary bending and torsion aeroelastic modes, the flutter
mechanism of a low aspect-ratio wing of a fighter-type airplane involves a coupling of several
aeroelastic modes. Despite extensive research (Abel and Noll 1988, Perry et al. 1995), active
flutter suppression has yet to reach operational status. This shortcoming is due to the inability of
designing a feedback control system that can be considered sufficiently robust with respect to
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the parametric uncertainties caused by nonlinear transonic effects which, as mentioned earlier,
are difficult to predict. Routine implementation of active flutter suppression must wait until
suitably accurate transonic ASE design methods are available. Hence, development of practical
adaptive control techniques for transonic flutter suppression will be a revolutionary step in the
design of automatic flight control systems.

The process of adaptive aeroservoelastic design is briefly introduced in this chapter, although
full explanations will follow in the subsequent chapters. ASE applications require designing
an underlying feedback control system (Chapter 2) in order to ensure closed-loop stability in a
range of operating conditions. Such a design is typically based upon a linearized model of the
underlying aeroelastic system, which is discussed in Chapter 3. The aircraft has a continuous
structure, but for computational considerations it is approximated by finite degrees of freedom
using a process such as the finite element method (FEM). In a complete wing—fuselage—tail
combination, this approximation may require several thousand degrees of freedom for an
accurate representation. However, as most aeroelastic phenomena of interest involve only
about a dozen structural modes, the structural displacement vector {z(f)} ! can be represented
as a linear combination of a few structural vibration modes given by the vector of modal
degrees of freedom {¢(7)} (also called the generalized coordinates), and result in the following
generalized equations of motion:

MI{q} +[C g} + [Kl{q} = {Q}({q}. {q}. {g}) (LD

where [M], [C,], [K] are the generalized mass, damping and stiffness matrices representing
the individual masses, viscous damping factors and moments of inertia corresponding to the
various modal degrees of freedom, and {Q(#)} is the generalized aerodynamic force vector,
whose dependence upon the modal degrees of freedom (and their time derivatives) requires
separate modelling.

1.2 Unsteady Aerodynamics

The computation of unsteady aerodynamic forces { Q(¢) } from structural degrees of freedom is
the main problem in aeroelastic modelling. The fluid dynamics principles upon which such an
aerodynamic model is based require a conservation of mass, momentum and energy of fluid
flowing through a control volume surrounding the aircraft. As in the case of the structural
model, a CFD model necessitates the approximation of the continuous fluid flow by a finite
number of cells (called a grid), within each of which the conservation laws can be applied,
and then summed over the entire flowfield. The grid can either have a well-defined shape
(called structured grid) or could be entirely unstructured in order to give flexibility in accurately
modelling the moving, solid boundary. The spatial summation from individual grid points
to the entire flowfield can be carried out by finite difference, finite volume or finite element
methods, each requiring a definite discretization process. There is also the possibility of using
simplifying assumptions in applying the conservation laws. For example, the airflow about
a wing (x,y) € S,z, < z < z, at a sufficiently large Reynolds number can be regarded to be
largely inviscid, with the viscous effects confined to a thin region close to the wing (boundary
layer) and in its wake. This affords a major simplification, wherein {Q(f)} is computed from

! Vectors and matrices in this chapter are denoted by braces and brackets, respectively. A more compact notation
follows in the next chapter.
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continuity, inviscid momentum and energy conservation (Euler equations) applied outside the
boundary layer and wake, and integrated in space (x, y, z) subject to suitable unsteady boundary
conditions. These latter include the solid boundary condition of no flow across the moving
wing surface, and tangential velocity continuity at its trailing edge (the Kutta condition) due
to the presence of viscosity in the boundary layer and wake.

The unsteady Euler equations can be written in the conservation form as follows:

ofF}  olf) A} olf)
()t+()x+()y+dz_

{0}, (1.2)

where
{F} = {p, pu, pv, pw, pe}, (1.3)

is the independent flow variables vector, with p being the density, e the specific internal energy,
{(VY={uv,w}, (1.4)

the velocity vector with (u, v, w) being the velocity components along (x, Yy, z), respectively,
and

{fi} =u{F} +{0,p,0,0, pu}
{fy} =v{F} +{0,0,p,0,pv}
(£} =wiF} +{0,0,0,p,pw}, (1.5)

are the flux vectors along x, y and z directions, respectively. The flux gradients, %, %’ %, are
required to be modelled differently according to the local direction of the inﬁnitesiinal pres-
sure waves. Clearly, even the Euler equations are inherently nonlinear, requiring an iterative
solution procedure, which is further complicated by having to model an entropy condition for
a unique solution, usually by introducing artificial viscosity into the solution procedure. An
artificial viscosity model can lead to spurious frequency spectra in unsteady flow computa-
tions. Alternatively, a solution by flux direction biasing or splitting algorithms in finite-element
(or finite-volume) methods is employed, which can have further problems of non-physical
oscillations when the sonic condition is encountered in the flowfield. Dealing with non-unique
and physical solutions is a major problem associated with Euler equations, often requiring
sophisticated computational procedures that add to the computational time.

An additional approximation is invariably necessary for modelling purposes, namely
that of potential flow with small perturbations. However, even the full-potential (FP) and
small-disturbance solutions for the transonic regime are inherently nonlinear and iterative and
fraught with non-unicity and non-physical nature, such as the prediction of expansion shock
waves. As in the case of Euler solvers, the closure of the inviscid, potential computational
problem necessitates the addition of an entropy condition in the form of either artificial
viscosity or flux biasing/splitting. Consequently, little is gained in terms of computational
complexity by making the potential approximation of unsteady transonic flows. Owing
to their iterative nature and high computational times, the unsteady CFD computations of
nonlinear governing equations are infeasible to carry out in a real time adaptive control
scheme, which may require several evaluations of {Q()} per time step. Only in the subsonic
and supersonic regimes can the small-disturbance potential equation be linearized. In such a
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case, the unsteady aerodynamic computation involves an integration of pressure distribution
p(x,y,z,t) on the wing surfaces, subject to the flow velocity normal to the wing (normalwash)
{V} - {n} created by the structural vibration modes. If the wing is thin (z, =~ z,,), the vibration
amplitudes are small, and there are no aerodynamic dissipation mechanisms present (such as
viscous flow separation and shock waves), the pressure—normalwash relationship is rendered
linear, and is given by the following integral equation:

w(x,y, 1) = / K[Gx,y : & n),t]1Ap(E, n, dédn, (1.6)
S

where Ap =p, —p, is the pressure difference between the lower and upper faces of the
essentially flat wing’s mean surface at a given point (&, ), and w(x, y, ) the flow component
normal to the mean surface (z-component) called the upwash (or its opposite in sign, the
downwash). Such a simple relationship is enabled by the process of linear superposition
of elementary, flat plate (or panel) solutions to the governing partial differential equation.
However, while Eq. (1.6) can be applied in subsonic and supersonic flows about thin wings
with small vibrations, it is invalid in the transonic regime, where nearly normal shock waves
are always present and cause viscous separation in the boundary layer and wake. Furthermore,
even in subsonic and supersonic regimes, the linear superposition cannot be applied around
thick wings undergoing large amplitude vibration, as flow separation or strong shock waves
could be present.

A linear aerodynamic model Eq. (1.6) combined with the linear structural dynamics
Eq. (1.1) yields the following linear aeroelastic state equations that can be used as a baseline
plant of the adaptive ASE control system:

{X} = [AX} + [Bl{u} + [F1{p), (1.7)

where {X(7)} = [{q(t)}T, {('I(t)}T]T is the state vector of the aeroelastic system, {u(?)} the vec-
tor of generalized control forces generated by a set of control surfaces and {p} the vector
of random disturbances called the process noise. In order to derive the constant coefficient
matrices [A], [B], [F], an additional step is necessary, even if the generalized aerodynamic
forces {Q(#)} are linearly related as follows to the modal displacements {¢(7)} and their time
derivatives by virtue of Eq. (1.6):

{0} = [G(®N{4q(s)}, (1.8)

where s is the Laplace operator and [G(s)] denotes the unsteady aerodynamics transfer matrix.
The essential step is modelling of [G(s)] by a suitable rational-function approximation (RFA),
such as the following:

N
G()] = [Ag] + [AIs + [Ay]5% + Y [A 0] ——, 1.9
[G()] = [Ag] + [A4,]s + [, ]s ]Zl,[ iy (19
where the numerator coefficient matrices, [A(],[A;]+ [A,],[A;5],j=1,--,N are deter-

mined by curve fitting [G(iw)] to the simple harmonic aerodynamics data (s = iw) at a
discrete set of frequencies @, and for each flight condition (speed and altitude). Additionally,



Introduction 7

the denominator coefficients bj, j=1,---,N may be selected by a nonlinear optimization
process, whereby the curve fit error in a range of frequencies is minimized. Such an optimized
curve fitting is not a trivial matter, and is by itself an area of major research with the
objective of deriving an accurate RFA, which is also of the minimum possible order. The
order of the state space model (the dimensions of [A]) increases rapidly with the order of
the RFA, and the computational effort in optimizing the denominator coefficients could be
significant especially if a large range of flight conditions is involved. For this reason, several
different RFA techniques have been proposed in the literature. However, in keeping with the
present objective of designing an adaptive control system, RFA optimization must be carried
out offline and its results stored in order to derive the baseline aeroelastic plant model in the
flight conditions of interest. The frequency domain (simple harmonic) data to be used for
RFA derivation is also pre-computed by a suitable linearized small-disturbance, potential
aerodynamic model, such as that based on the integral equation, Eq. (1.6). After the RFA for
the aerodynamic transfer-matrix, Eq. (1.9), is derived, a linear, time-invariant, state-space
model, Eq. (1.7), for the aeroelastic system — perhaps also including the control-surface
actuators model — is obtained.

1.3 Linear Feedback Design

Consider the basic automatic control system shown in Fig. 1.3, where the automatic con-
troller is designed as a generic device to exercise control over the plant, in order that the
entire control system meets a certain set of desired objectives, and follows a desired trajec-
tory, {x,(#)}. For the purposes of this book, the desired trajectory is taken to be a constant
equilibrium state, {x,(#)} = {0}, wherein the control strategy to be evolved becomes a regula-
tor problem. If the plant can be described precisely by a set of fixed mathematical relationships
between the input, {u(?)}, and output, {y(¢)}, variables, then the controller can usually be
designed fairly easily in order to meet the performance requirements in a narrow range of
operating conditions (Tewari 2002). Such a controller would have a fixed structure (often
linear) and constant parameters. However, a physical plant almost never conforms exactly
to any deterministic mathematical description due to either improperly understood physical
laws, or unpredictable external disturbances treated as stochastic signals (the process noise
vector), which is shown in Fig. 1.3 as the externally applied random vector signal, {p(?)}.

Measurement noise Process noise
vector, {m(t)} vector, {p(?)}
Desired trajectory, l Control inputs l Outputs vector,

{xg (0} vector, {u(f)} {y®}
— »  Controller Plant »

A4

A

Feedback loop

Figure 1.3 Basic automatic control system with a feedback control loop
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Similarly, the controller, when physically implemented, has its own imperfections that defy
precise mathematical description. For the feedback controller, such a departure from a deter-
ministic controller model is shown as the measurement noise vector, {m(f)}, appearing in the
feedback loop. The success of the automatic controller in performing its task of tracking the
reference signals with any accuracy depends upon how sensitive the control system is to the
unmodelled noise signals, {p(?)}, {m(#)}. If no regard is given to the noise signals while design-
ing the controller, there is a real possibility that the control system will either break down
completely, or have a poor performance when actually implemented. The controller design is
therefore carried out to ensure adequate robustness with respect to the noise signals. A feed-
back loop by itself provides a certain degree of robustness with respect to unmodelled process
and measurement noise. If the feedback control parameters are suitably adjusted (fine-tuned),
the sensitivity to noise inputs can be further reduced. Such a design is called loop shaping
(Chapter 2). For a plant with a linear input—output behaviour and a fair statistical descrip-
tion of the noise inputs that are small in magnitude, the robust control theory (Maciejowski
1989) can be applied to design a linear feedback controller with constant parameters, which
will produce an acceptable performance in many applications. However, constant controller
gains may either fail to stabilize the system if the plant behaviour is highly uncertain or may
have unacceptable performance in the presence of noise inputs. In such cases, the alternative
strategy of sensing the actual plant behaviour and to adapt the controller gains to suit a cer-
tain minimum performance level in a range of operating conditions is the only answer. Such a
strategy where the controller parameters are functions of the sensed plant state vector is called
adaptive control, and is nonlinear by definition. In summary, design of an automatic controller
can be alternatively based on ensuring a high level of robustness with respect to unmodelled
dynamics with constant controller parameters by a design process called robust control or by
making the controller parameters adapt to a changing plant behaviour through an adaptation
mechanism. The two design techniques of robust control and adaptive control may appear to
be contradictory in nature, because in one case the controller is deliberately made impervious
to process and measurement noise, while in the other, the controller is asked to change itself
with a changing plant dynamics. However, if a compromise can be carried out in the two meth-
ods of synthesis, the result can be a synergistic fusion of robust and adaptive control. In such a
case, the high-frequency noise (which is typically of small magnitude) is sought to be rejected
by an inbuilt control robustness, while the much slower but larger amplitude variations in the
plant dynamics are sensed and carefully adapted to. Such an ideal combination of robustness
and adaptation is the goal of most control system designers.

An important step in ASE design is to derive a baseline multivariable feedback controller
for active stabilization by standard linear closed-loop techniques, such as eigenstructure
assignment and linear optimal control (Tewari 2002). For example, if a linear optimal
regulator is sought, one minimizes the following quadratic Hamiltonian function with respect
to the control variables, {u(7)}, subject to linear dynamic constraint of Eq. (1.7):

H= %{X}T[Q]{X} + ()T ISHu) + %{M}T[R]{u} + (A TAANX) + [Bl(u)).  (1.10)

where [Q], [S], [R] are the constant, symmetric cost coefficient matrices, and {A(¢)} is the
vector of co-state variables. The necessary conditions for optimality with an infinite control
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interval are then given by the following Euler—Lagrange equations:

, oH \' r
{4} = —<m> = —[QHX} - [SHu} = [A]" {4}, (1.11)
{A}(c0) = {0}, (1.12)
% = {0} = [SI"{X} + [R){u} + [B]" {4}, (1.13)

the last of which is solved for the optimal control vector to yield the following:
{u} = =[RI™ ([SI"{X} + [BI{4}) - (1.14)

Substitution of Eq. (1.14) into Egs. (1.7) and (1.11) results in the following set of linear state
and co-state equations:

(X} = ([A1 = [BIRI™'[S]") {X} ~ [BI[R] ' [B]" {4}, (1.15)
{4} == (1A = SIRIT'(BI") {4} + (IS)RI7'(SI" - [Q1) (X}, (1.16)

which have to be solved subject to the following two-point boundary conditions,
{(X}0) = {X,);  {4}(o0) = {O}. (1.17)

The simultaneous forward and backward time-marching required for the solution of Egs. (1.15)
and (1.16) is commonly expressed as the following linear feedback control law with a constant
gain matrix, [K]:

{u} = -[K]{X}, (1.18)

where
[K]=[R]™" ([BI"[P1+[S1"), (1.19)

and the constant matrix [P] is the solution to the following algebraic Riccati equation (ARE):

{0} = [Q1 + (IA] - [BIRI'[SI")  [P] + [P] (IA] - [BI[R]""[S]")
—[PIBIRI' B [P] - [SIIR1™"[S]". (1.20)

The ARE is a nonlinear algebraic equation and necessitates an iterative solution procedure,
which must be carried out for each set of coefficient matrices [A], [B], [Q], [R], [S]. This is, in
a nutshell, the linear, quadratic regulator (LQR) problem with a quadratic cost and an infinite
control horizon. The cost coefficients [Q], [R], [S] must be selected such that the regulator is
an asymptotically stable system, which requires that all the eigenvalues of the closed-loop
dynamics matrix, [A] — [B][K], should lie in the left-half side of the Laplace domain. Alterna-
tively, the eigenvalues and eigenvectors of the dynamics matrix, [A] — [B][K], can be directly
specified in order to determine [K], which is termed an eigenstructure assignment.

The state feedback regulator cannot be directly implemented because the state variables of
the aeroelastic plant, {X}, are unavailable for direct measurement. What one can measure are
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the output variables, {y}, detected by a set of sensors placed strategically on the aircraft. The
state vector, { X'}, which is required by the linear feedback control law, Eq. (1.18), must then be
constructed by an additional system called an observer (or state estimator). The linear output
equation,

{y} = [CHX} + [D{u} + {m}, (1.21)

where {m(t)} is the vector of random disturbances (the measurement noise), can be used to
design a full-order observer, whose dynamics is governed by the following state equation:

(X} = (1A] - [LI[CD {X) + ([B] — [LIIDD) {u} + [L1{y}, (1.22)

where {X } is the estimated state vector, and [L], the observer gain matrix. Such an observer
requires that the plant must be observable with the outputs given by Eq. (1.21). The observer
gain matrix, [L], can be selected in a manner similar to (but separately from) the regulator gain,
[K], by either eigenstructure assignment for the observer dynamics matrix, [A] — [L][C], or via
linear, quadratic, optimal control where [A] is replaced by [A]”, and [B] by [C]”. The optimal
observer is also known as the Kalman filter and is guaranteed to minimize the covariance
matrix, [R,], of the estimation error, {e} = {X} — {X},in the presence of zero-mean, Gaussian
process and measurement noise signals, {p}, {m}. In the infinite horizon case, the Kalman filter
gain is determined by the following ARE similar to Eq. (1.20), and hence the Kalman filter is
regarded as the dual of the state feedback regulator.

{0} = [AGIIR,] + [RIIAG]" — [RIICI[S,, 17 [CIIR,]
+[F1(IS,] = [S,,1S,,7"[S,,1") [F1. (1.23)

where [S,,],[S,]. [S,,] are the matrices of power spectral density of the measurement noise,
{m}, that of the process noise, {p}, and the cross-spectral density of {p}, {m}, respectively,
and

[AG] = [A] - [FI[S,,,1[S,,]7'[C]. (1.24)
The Kalman filter gain matrix is then given by
[L] = ([RIICT" + [FILS,,,,1) [S,,]7". (1.25)

Clearly, the matrices [S,,], [Sp]’ [Spm] act as the cost coefficients of a quadratic objective func-
tion for determining [L] in a manner similar to [Q], [R], [S] for the LQR regulator. These should
be suitably selected in the observer design process.

The observer’s dynamics must be designed to be stable and much faster than the regulator. It
is crucial for practical considerations that the derived control laws must be robust with respect
to modelling uncertainties (process noise) and sensor (measurement) noise at a selected range
of operating conditions. The procedure by which an LQR and a Kalman filter (also called lin-
ear, quadratic estimator (LQE)) are designed separately for a linear, time-invariant plant, and
then put together to form a compensator is referred to as the linear, quadratic, Gaussian (LQG)
method. Here, the Kalman filter supplies the estimated state for feedback to the LQR regulator.
The design of the LQG compensator — specified by the gain matrices, [K], [L] — depends upon
the chosen cost parameters, [Q], [R], [S], [S,,], [Sp], [Spm]. Suitable performance and robustness
requirements of the overall ASE system restrict the choice of the cost parameters to a specific
range. Being based upon optimal control, an LQG compensator has excellent performance
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features for a given set of cost parameters, but its robustness depends upon how much the
performance is degraded by state estimation through the Kalman filter. If the observer gains,
[L], are too small, the estimation error, {e}, does not tend to zero fast enough for the feedback
to be accurate. On the other hand, if the observer has very large gains, there is an amplifica-
tion of process and measurement noise by feedback, thereby reducing the overall robustness
of the control system. Clearly, a balance must be struck in selecting the Kalman filter design
parameters, such that a good robustness is obtained without unduly sacrificing performance.
Several linear feedback strategies are in use for striking a compromise between robustness
with respect to plant uncertainty, and noise rejection properties. These include LQG compen-
sation with loop-transfer recovery (LTR) (Maciejowski 1989), H,/H_, control (Glover and
Doyle 1988) and structured singular value (SSV) (or u-) synthesis (Packard and Doyle 1992).
Chapter 2 is a brief compilation of the basic linear feedback design methods for achieving a
robust control system with constant parameters.

1.4 Parametric Uncertainty and Variation

Any aeroelastic model employed in ASE design is likely to have modelling uncertainties in
its parameters, [A], [B], [C], [DP]. These can be either due to errors in the linear aeroelastic
plant or due to a part of the dynamics which is entirely unmodelled. The parametric errors in
the linear plant are due to inadequacies of the structural dynamics model, as well as those in
evaluating the frequency domain aerodynamics and its transfer matrix (RFA) representation.
The unmodelled dynamics include nonlinear structural and aerodynamic effects, which are
difficult to account for. While linear parametric uncertainties are easier to handle in a control
system design, it is the presence of unmodelled dynamics that causes a greater anxiety. Of
these, the nonlinear aerodynamic phenomena are the most critical as they can cause unforeseen
aeroelastic instabilities, and whose model requires iterative and complex CFD computations
which (as noted above) are infeasible to carry out in real time. Aerodynamic nonlinearities
encountered in aeroservoelastic systems are divided into two classes: (i) unsteady behaviour
involving normal shock waves and (ii) largely separated or vortex-dominated flows. While
type (i) is only present at the transonic speeds, nonlinearities of type (ii) occur at high
angle-of-attack flight. A fighter-type aircraft manoeuvring at transonic speeds will encounter
both the effects. The unsteady flow separation (type (ii)) causes a buffeting of the airframe
at low frequencies, and can result in rigid dynamic instabilities, such as wing-rock, nose-slice
and coning motions, but rarely cause an aeroelastic coupling. This is due to the fact that
the structural dynamics of the airframe simply acts as a stable, linear filter of the nonlinear
buffeting forces and moments, allowing the peaks of the spectrum to occur only at the in
vacuo structural frequencies. Consequently, notch-filters can be designed to suppress the
buffet at well-identified frequencies. Such a nonlinear dynamic characteristic can be analysed
by the Popov stability criterion (Chapter 7). However, the shock-wave effects (type (i)) are
more interesting; they cause dynamic aeroelastic instabilities, leading to a sharp reduction
in the flutter dynamic pressure and a sustained limit-cycle oscillation (LCO), often ending
in a catastrophic structural failure. An accurate transonic aerodynamic model is necessary to
account for unsteady shock wave effects and an absence of such a model renders the unsteady
aerodynamic forces and moments highly uncertain.

In addition to modelling uncertainties, there are significant variations in the aeroelastic char-
acteristics due to changing operating conditions (flight speed and altitude). For example, as the
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flight Mach number is increased from subsonic to supersonic, the variation of the lift, pitching
moment and control-surface hinge moment with angle-of-attack and control deflections vary
drastically. Some steady-state aerodynamic derivatives can even change in sign as the tran-
sonic regime is crossed. The transonic flight regime is especially critical as it is characterized
by different, simultaneously occurring flow regions (subsonic/sonic/supersonic). However,
the unsteady transonic variations are more crucial, as they often lead to markedly different
aeroelastic behaviour depending upon the flow geometry (airfoil shape, angle-of-attack,
control-surface deflections). The unsteady mixing of the different flow regions creates
complex, time-dependent flow patterns, and causes interesting aeroelastic interactions. These
include a significant dip in the flutter dynamic pressure, transonic buffet, LCO and control
surface oscillation (buzz) caused by unsteady shock wave and boundary-layer interaction.
Any of these phenomena can cause a catastrophic structural failure, if not properly addressed
in airframe (open-loop) and active flight control (closed-loop) designs. In fact, these very
transonic aeroelastic instabilities were historically dreaded as the ‘sound barrier’ which
prevented safe supersonic flight in the first half of the 20th century. In the present age,
nearly all airline transport aircraft fly in the high subsonic/transonic regime. Furthermore,
fighter-type aircraft must not only cross the sonic speed but also perform high-g manoeuvres
at transonic speeds in their mission. Hence, transonic ASE is even more important now than
at any other time in the history of aviation.

Since transonic ASE applications involve unsteady shock motions, as well as periodic
boundary-layer separation and reattachment induced by shock waves, advanced CFD
modelling techniques are required for such inherently nonlinear effects (Silva et al. 2006).
The inviscid, unsteady transonic equations required to capture shock waves are inherently
nonlinear, even in their small-disturbance potential form. Furthermore, the presence of normal
shock waves in the transonic flow exacerbates the transient (unsteady) flow behaviour by
introducing nonlinear shock-induced flow oscillations, which can interact with the viscous
boundary layer, thereby causing unsteady flow separation. The ASE plant for such a case
is further complicated by the separated wake, or the leading-edge vortex from the wing
interacting with the tail, resulting in irregular and often catastrophic deformation of the
tail — either on its own or driven by a rapid and large deflections of the elevator. Such a
wing—tail-elevator coupling of a post-stall buffet or a shock—vortex interaction requires a
fully viscous flow modelling that is only possible by a Navier—Stokes method (Obayashi
1993). Another example of transonic ASE is the control of unsteady control-surface buzz
and shock-induced buffet encountered by an aircraft manoeuvring in the transonic regime
(Huttsell er al. 2001), leading to nonlinear flutter or LCO (Bendiksen 2004). An appropriate
CFD model in such a case would require a FP, Euler or Navier—Stokes method, depending
upon the geometry, structural stiffness, Mach number and Reynolds number. Sometimes,
semi-empirical models are devised from wind-tunnel data for separated and shock-induced
flows (Edwards 2008), because they do not require unsteady CFD computations to be per-
formed in loop with structural dynamic and control-law calculations. However, the veracity
of such a correlation must be checked carefully before being deployed in ASE design and
analysis. An alternative method is to employ flight-test data for deriving an ASE model, such
as the neural-network identification by Boély and Botez (2010).

Any flow model that fully accounts for the unsteady transonic effects over an oscillating
wing must necessarily be very complex, hence difficult to solve in real time. Owing to the
inherent uncertainty of an unsteady aerodynamic model, a closed-loop controller for ASE
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application must be quite robust to modelling errors. Furthermore, such a controller must also
adapt to changing flight conditions, which renders it mathematically nonlinear even for a lin-
ear aeroelastic plant. This implies that as an accurate unsteady aerodynamics plant model is
infeasible for aeroservoelastic design, adaptive plant identification in closed loop is the only
practical alternative.

1.5 Adaptive Control Design

Following the above discussion, it is logical that the final step in aeroservoelastic system design
should be the derivation of adaptive control laws that can fully account and compensate for the
parametric uncertainties and variations in the characteristics of the aeroelastic system. Such
control laws allow variation of the controller parameters in order to adapt to uncertain and
changing plant characteristics. For this, an adaptation mechanism based upon the sensed (iden-
tified) input—output behaviour of the plant must be devised. Various adaptation mechanisms
that can be applied to adaptive ASE design are now explored.

Design of a control system generally requires a plant model. The ability of a control system
in achieving its desired performance depends upon how accurately the plant modelling is
carried out. For example, the resolution of a digital camera depends upon how precisely the
dynamics of the sensor, aperture and diaphragm are modelled. Similarly, the tolerance of a
robotic positioning device largely depends upon the number of structural vibration modes
considered in modelling the robotic arm. Most mechanical and electrical systems can be mod-
elled to a very high accuracy because their dynamics are well understood, and hence controller
design for the systems can be carried out by traditional methods. The same, however, cannot
be said of an ASE system, wherein achieving high accuracy may result in the aeroelastic
model becoming too unwieldy and complex to be of any benefit in control system design.
For example, accurate modelling of a viscous, unsteady flow over a deforming wing surface
would require unsteady, turbulent, Navier—Stokes solutions involving several thousands of grid
points and hundreds of hours of computation time. The past several decades have seen signif-
icant advancement in CFD, but only at the cost of increasing complexity of modelling, which
cannot be practical for closed-loop design and analysis. Rather than pursuing the course of
increasingly accurate plant models, which seems to have reached a dead end, it is more prof-
itable to look for simpler models that can capture the fundamental physical aspects of the
aeroelastic plant. Therefore, accuracy is sacrificed in the interest of simplicity for a practical
ASE design. Simplifying assumptions are usually made by neglecting some aspects of the
plant characteristics, such as high-frequency dynamics, and structural and aerodynamic non-
linearities, thereby producing a mathematical model which is more amenable to control system
design with either constant, or well-defined controller gains.

Consider an aircraft wing experiencing multimodal vibration in the presence of unsteady
airloads. While in vacuo structural modelling of the wing can be accurately performed by a
high-order finite-element method, the unsteady air loads acting on the wing are quite another
matter. Depending upon the airspeed and altitude, the aerodynamic characteristics can range
from low-subsonic, through transonic, to supersonic, each of which is dramatically and
fundamentally different from the other. Furthermore, even in a given speed regime, a part
of the flow on the wing could be laminar and another part turbulent, attached or separated,
subsonic or supersonic, thereby creating almost infinite variation in the magnitude and phase
of the dynamic loading. Since the structural deformations (elasticity) and air loads (flowfield)
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are strongly coupled, each can cause a large change in the other at any given time, and this
picture keeps on changing with time in an unpredictable manner. It can be said that an accurate
aeroelastic model of the wing must take into account a large number of mutually coupled,
randomly varying, local phenomena, an exact accounting of which is impossible. Even the
most sophisticated aerodynamic model (Navier—Stokes equations with a statistical turbulence
model) falls well short of faithfully capturing the complex flowfield around a flexing wing.
Furthermore, such models are cumbersome in terms of computational efficiency, hence cannot
be used in control system design. Therefore, the best available aeroelastic plant model is often
an inaccurate and uncertain one.

How does one go about designing a good aeroservoelastic system if the plant is not
well modelled? This question takes us to adaptive control design. A practical ASE system
must operate at different design conditions representative of an aircraft flying at various
speeds, altitudes and loadings. In many cases, the aerodynamic behaviour of the aircraft
changes drastically when going from one flight regime to another, such as from subsonic to
supersonic speeds. If not properly compensated for, the resulting aerodynamic changes (such
as appearance of shock waves) can cause a large reduction in aeroelastic stability margin,
perhaps leading to a catastrophic condition such as flutter. In order to maintain stability in
the presence of varying flight conditions, one has two options: (i) meticulously redesign
the control system at a large number of expected conditions and store the design points for
a smooth interpolation of controller parameters in a given flight regime. This approach is
called gain scheduling and is one of the first adaptive flight control strategies implemented in
aircraft. (ii) Render the control system self-adaptive with respect to changing flight parameters
through an extra feedback loop, which automatically compensates for loss of stability margin.
While the former approach relies upon accurate plant modelling, the latter requires updating a
‘workable’ plant model by actual flight data in real time. Since it is only option (ii) that can be
called adaptive in a true sense, it will be the main thrust of the present chapter. While most of
the literature on ASE is concerned with accurate plant modelling by sophisticated structural
and aerodynamic techniques that are necessary for the gain scheduling approach, we depart
from this traditional approach and instead concentrate on developing good adaptive control
algorithms that can achieve the closed-loop performance even in the face of a mathematically
uncertain plant model. It can be appreciated by an aerodynamicist that even the best possible
flow model may fail to capture many essential features of a flowfield, such as turbulent,
separated and shock-dominated flows. Unfortunately, it is precisely such flow phenomena
that are the most troublesome to an aeroservoelastician. Thus uncertainty in the plant model
is unavoidable, and even becomes amplified as one approaches the transonic regime where
the majority of modern aircraft operate. Furthermore, even if a high degree of modelling
accuracy can been achieved at a particular design condition, the off-design operation usually
becomes very sensitive to initial conditions and flow parameters, such as in the nonlinear
buffet and limit cycle behaviour caused by separated flows. Owing to its inability to provide
a reliable plant model across the flight regimes, the gain scheduling approach has proved to
be inadequate for ASE purposes, and has not achieved flight certification status even more
than 50 years after it was first devised. Clearly, the answer to a practical implementation of
an ASE system lies in the alternative approach, namely self-adaptive control.

The ultimate example of self-adaptive control is the natural flight of birds, where a mul-
titude of muscles move a group of feathers to produce a graceful flight. This is also a fine
example of the juggling act involved in multivariable control, such as the symphony generated
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by the concerted sounds of an orchestra. Such examples of nature provide a motivation and a
challenge for the control engineer. Of course, it may be argued that the luxury provided by a
plethora of natural control input variables — individually capable of modulation — is unavail-
able in the average engineering problem. This largely explains why the graceful, quiet and
highly manoeuvrable trajectories of birds and insects are only in the realm of dreams of an air-
craft designer. The control engineer has to work with a small number of control inputs, each of
which is limited in magnitude and rate, often resulting in an underactuated plant. Thus the suc-
cess in achieving a control objective relies solely upon the sophistication of the control laws
employed for the purpose. The ASE designer is acutely aware of this limitation, and has to
devote his energy in mathematically deriving a clever control strategy that could compensate
for the deficiencies of his plant, which are both physical and mathematical.

1.5.1 Adaptive Control Laws

Adaptive control becomes necessary whenever the plant has either an unknown structure,
unknown parameters or changing operating conditions, which imply an absence of any fixed
description of input—output relationships. In such a case, an adaptive mechanism becomes
necessary for the controller. For simplicity, we focus the discussion to state-feedback reg-
ulators, whose parameters are defined by the changing regulator gain matrix, [K(#)]. If an
output-feedback scheme is used, the observer gains, [L(#)], are also a part of the controller
parameters. The adaptive controller is a self-adjusting system that can modify its parame-
ters, [K(#)], based upon the actual inputs, {u(f)}, applied to the plant, and the measurement of
the actual outputs, {y(7)}, produced by the plant. In essence, an adaptive controller compen-
sates for the lack of knowledge (or a change) of the plant’s mathematical model by employing
the measured plant characteristics. Owing to the dependence of the controller parameters on
the plant’s inputs and outputs, the adaptive controller is a nonlinear system, as depicted by the
block diagram of Fig. 1.4. On comparison with the basic, fixed gain control system of Fig. 1.3,
the presence of the additional adaptation mechanism is evident as the outer feedback loop,
which allows for a change in controller parameters, [K(f)], by a set of adaptation laws. Such
a mapping of the plant’s input and output vectors, {u(f)}, {y(¢)}, onto the controller parameter
vector space, [K(#)], is the hallmark of an adaptive control system.

Adaptation loop
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Figure 1.4 Generic adaptive control system with an adaptation mechanism for controller parameters
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Adaptive control (Astrom and Wittenmark 1995) arose as a discipline especially for
designing the flight control systems of high-speed aircraft, which encounter large parametric
variations in their operating envelope. Active research in the last several decades has produced
many useful adaptive control techniques that can be applied to a wide range of problems.
Unfortunately, these are specific to the application, rather than general, and can often be ad
hoc procedures. The selection of an adaptive ASE control law is thus a challenging task,
because an accurate aeroelastic model is unavailable in most cases. Hence, ASE has remained
a formidable technological problem.

A part of the plant’s output vector, {y(¢)}, specifies the operating conditions. For example, a
flight vehicle’s operating (flight) conditions are the airspeed, altitude and Mach number. Often
a good mathematical model of the plant can be derived for different sets of flight conditions
(flight points), each having a set of linear controller parameters (gains) specially designed for
it. In such a case, the adaptation mechanism is simply a table look-up of stored data points and
the controller gains can be scheduled with the flight point. The resulting adaptive controller
is called a gain scheduler. A schematic diagram of the gain schedule adaptation is shown in
Fig. 1.5, where the inner feedback loop is the underlying linear control law for achieving stabil-
ity for a given set of plant parameters, while the outer feedback loop determines the variation
of the underlying controller parameters based upon a pre-set interpolation schedule. The gain
scheduling approach was the earliest example of adaptive controllers designed for high-speed
aircraft, rockets and spacecraft in the 1950s. As the name implies, most flight applications
of gain scheduling involve an adjustment of linear feedback gains, but a more general appli-
cation can also be envisaged where the controller parameters, [K(#)], appear in a nonlinear
relationship with the desired states, {x,(f)}, and the outputs, {y(#)}, as shown in Fig. 1.5. Gain
scheduling is thus regarded as a functional mapping method to vary the controller parameters
[K], [L] according to the identified operating conditions. This requires solving for and storing
the different sets of [K], [L] at various flight conditions. It can be expected that having to design
controllers for a wide range of operating conditions requires a massive effort. Furthermore, as
there is no possibility of taking into account either modelling errors or unmodelled (nonlinear)
plant behaviour, gain scheduling is not regarded as an adaptive controller in the true sense.

A detailed and accurate model of the plant for various operating points is necessary before
a gain scheduler can be designed for it, which is not always possible, especially for ASE
plants in which we are presently interested. In a typical ASE application, the change in the
plant’s behaviour can be dramatic and not entirely predictable, such as in the case of transonic
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v J X
Controller u(t) -
X, (1) —> u=g(K.xz.y) » Plant Multiplexer (1)
T T Other outputs
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Figure 1.5 Schematic block diagram of a gain scheduling system
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flutter and high angle-of-attack (stall) flutter. While an extensive research database exists on the
transonic and high angle-of-attack flight, there are no efficient and reliable techniques available
at present for modelling the essentially nonlinear characteristics of the aeroelastic plant under
such conditions. In such a case, the gain-scheduling approach is not viable and recourse must
be made to what is called a ‘self-adaptive’ control system.

Traditional self-adaptive systems for the regulation of an uncertain plant dynamics can be
broadly classified into (i) self-tuning regulators (STRs) and (ii) model-reference adaptation
systems (MRASs). An STR is an adaptive controller based on online parameter estimation
of the unknown plant dynamics. A MRAS uses a predefined plant model (often linear and
time-invariant) as its reference, in order to compare the actual behaviour, and to adapt the con-
troller parameters accordingly. Since the desired behaviour is known a priori, such an adaptive
mechanism is said to be direct. In contrast, an STR must first estimate the plant behaviour by
sensing its input—output relationship in a closed loop and then apply an adaptation (or update)
law for the controller parameters. Owing to the online identification of the plant’s unknown
behaviour, the self-tuning approach is called an indirect adaptation method. The two strategies
can be further classified depending upon the types of adaptation laws and parameter identifi-
cation algorithms they employ. We will consider STR for ASE systems in Chapter 5, while
MRAS techniques will be the topic of Chapter 8.

A true adaptive controller must detect the actual plant behaviour, and apply a suitable
correction to the underlying controller parameters in order to produce a stable closed-loop
system. The most formal interpretation of this task is the STR whose schematic diagram is
depicted in Fig. 1.6. Note the outer feedback loop for an online identification of the plant
parameters, [A], [B], [C], [D], based upon a measurement of the plant’s output vector, y, and a
knowledge of the applied inputs, «. The slanted arrows in Fig. 1.6 indicate adaptation of the
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Figure 1.6 Schematic block diagram of a self-tuning regulator (STR)
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parameters of the observer and the regulator. Consider a system with the following output
equation:

@} = [P1]{6}, (1.26)

where {0} are the unknown plant parameters arranged in a column vector and [®(7)] is a
regressor matrix of functions of the known inputs and outputs. A parameter estimation scheme
derives an estimate {é} by minimizing a positive cost function of the estimation error, {¢} =
{y} — [®®)]{h} ata given time ¢.

The parameter identification must be carried out with a finite record of the inputs and
outputs. As the updated plant parameters become available, they are used to determine the
new regulator and observer gains by solving the underlying linear control problem (such as the
nonlinear ARESs). The identification process is generally based on the solution to a set of linear
algebraic equations, and hence the online controller updation is a much less complex task than
that of accurately modelling the plant behaviour through a set of nonlinear partial differential
equations. The success of the self-tuning approach depends upon active stabilization, rather
than on how accurately the plant behaviour can be identified at any given instant. Therefore,
guaranteeing closed-loop stability of the adaptation scheme is the primary objective. In some
cases, it is even likely that a set of constant controller parameters are found to be stabilizing,
albeit the plant parameters may be varying in time. The identified plant parameters are directly
used in the underlying controller design, regardless of whether they are the ‘true’ parameters.
Hence, the STR design approach is based upon the certainty equivalence principle, which
disregards the uncertainty (or error) in plant identification.

The computation of the controller parameters from the underlying control design process
of the STR can be transformed into a mapping from the plant’s input—output record to the
controller parameters space. The plant’s parameter identification is then implicit in the adapta-
tion mechanism, and it would appear that the controller parameters are being directly updated
from the plant’s input—output behaviour. An implicit dependence of the controller parameters
on those of the identified plant is sometimes termed direct adaptation, whereas the explicit
modules of identification and controller design in Fig. 1.6 is called indirect adaptation.

A variation of the direct STR is the MRAS, where the identification and controller design
blocks are replaced by a reference model and an adaptation mechanism for the controller
parameters, such that the error between the output of the reference model and that of the actual
plant is minimized. Such a scheme is illustrated by the block diagram of Fig. 1.7. Note that
when the reference input vector, {(¢)}, is removed from the MRAS, the result is very similar
to the STR of the direct type. However, the methods of designing and implementing the MRAS
and STR are quite different.

Consider a linear, time-invariant plant with a state-space model given by the following
state-space equations with constant (but unknown) coefficient matrices [A], [B], [C], [D], and
unknown process noise, {p(t)}, and measurement noise, {m(?)}:

{x} = [Al{x} + [BH{u} + {p}, (1.27)
{y} = [Cl{x} + [Di{u} + {m}. (1.28)

If the plant’s state vector, {x(#)}, can be directly measured, the following state-feedback law
can be applied to stabilize the system:

{u} = —[K]l{x} - [K, ]{r}, (1.29)
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Figure 1.7 A model-reference adaptation system (MRAS)

such that the plant’s state tracks a reference input vector, {r}(¢). Here [K,] is a feedforward gain
matrix, and [K] the regulator gain matrix. A reference model is defined by the following linear,
time-invariant state-space representation with known coefficient matrices [A,], [B,], [C,], [D,],
and the reference input vector, {r(7)}:

(%) = [4,]{x,} + [B,]{r}, (1.30)
.} = [C1{x,} +[D{r). (1.31)

The estimated state, X, required by the regulator is supplied by an observer (such as that given
by Eq. (1.22)) whose gain matrix, [L], must be designed on the basis of the plant’s parame-
ters, [A], [B], [C], [D]. Since the plant’s parameters are uncertain, an exact set of stabilizing
controller parameters, [K], [K,], [L], is unknown. Thus beginning from an initial guess of sta-
bilizing controller gains, [K(0)], [K,.(0)], [L(0)], the controller parameters must be evolved
in time such that the error between the plant output and that of a reference model, {e¢} =
{¥@®)} — {y,()}, is minimized in the limit # — oo. This is the broad philosophy behind MRAS
schemes.

When the plant is inherently nonlinear, and cannot be linearized about an operating condi-
tion, a nonlinear feedback control-with an adaptation mechanism for its parameters — becomes
necessary. A possible design strategy for such a controller is the geometric nonlinear feedback
approach (Slotine 1995), such as adaptive feedback linearization, wherein the adaptive
feedback renders the control system linear by cancelling its nonlinearities. However, a major
shortcoming of feedback linearization is its inability to handle parametric uncertainties that
are not matched by the control inputs (i.e., the uncertainties occurring in those state equations
that do not contain the control inputs). Therefore, while the rigid body motion can be stabilized
by adaptive feedback linearization, the same cannot be said for flexible structures or dynamic



20 Adaptive Aeroservoelastic Control

aeroelastic systems. Furthermore, the cancellation of stable nonlinearities is undesirable,
because it degrades the closed-loop response. Another popular geometric nonlinear method
is the sliding mode (variable structure) control (Slotine 1995), which apart from the inability
to stabilize unmatched uncertainties, is also unsuitable for aeroelastic applications because of
the inherent problem of ‘chattering’ on the sliding surface. Consequently, adaptive feedback
linearization, sliding mode control and other such geometric nonlinear feedback methods
cannot be considered in an adaptive ASE design. There is very little mathematical treatment of
nonlinear ASE effects in the literature. Traditional nonlinear ASE applications have employed
frequency response aeroelastic models via describing functions. While such methods model
structural nonlinearities (Dowell and I’lgamov 1988) by describing functions, they are not
easily found for the nonlinear behaviour caused by separated and shock-dominated flows in
the transonic regime. In addition, nonlinear adaptation ASE applications are absent in the
literature. However, the describing function approach offers the promise of being used in
conjunction with a recursive nonlinear identifier discussed below.

Alternatives to the nonlinear geometric feedback methods are the Lyapunov stabilization
techniques of passivity-based methods (Haddad and Chellaboina 2008) and recursive
back-stepping integration (Krstic ez al. 1995). The advantage of the Lyapunov-based methods
is that they can be easily applied to yield adaptation control laws required for MRASs and
STRs. Unlike geometric control methods, the Lyapunov-based controllers do not depend very
much on the plant characteristics, which offer a great flexibility in their design. This book
mainly utilizes the Lyapunov-based methods for adaptive controller derivation. However, it is
necessary to highlight the important theoretical concepts before applying them in the design
process.

1.6 Organization

The treatment of all possible adaptive control techniques that could be applied to the design
and analysis of ASE systems is a formidable task. This book attempts to do so by focussing on
the important features and concepts. Chapter 2 details the feedback design methods applied to
design the underlying controller, whose parameters are to be adjusted by a separate adaptation
mechanism. Chapter 3 covers the basic principles and techniques used to derive an aeroelas-
tic plant model that is suitable for use in controller design. Chapter 4 introduces the active
suppression of the primary ASE instability, namely flutter, and presents examples of both
typical-section (two-dimensional) and lifting-surface (three-dimensional) flutter. Chapter 5
introduces STRs for adaptive ASE systems based upon online plant identification. Chapter 6
details the essential concepts used in analysing the stability, and designing stabilizing con-
trollers for nonlinear systems, of which adaptive ASE systems are the target. Chapter 7 presents
the methodology of describing functions analysis, and Nyquist-like techniques based upon
Circle and Popov criteria, which can be applied to model LCOs associated with nonlinear
aeroelastic behaviour caused by shock-induced and separated flows. Chapter 8 focuses on
MRAS techniques, with applications to ASE systems. Chapter 9 presents the essentials of the
powerful adaptive control method via backstepping integration as an alternative to the tradi-
tional methods (MRAS and STR). Chapter 10 considers robust design of adaptive systems in
the presence of nonlinearities and noise inputs. Finally, Chapter 11 covers the ultimate end of
adaptive ASE design, namely the possible handling of transonic flutter and LCOs by adaptive
control methods.
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