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Thermodynamics

One does not understand thermodynamics, one can only know it
—Jan Hermans

As a biophysicist, you must know thermodynamics
—Barry Lentz

1.1 INTRODUCTION

Thermodynamics describes the relation between different forms of energy, their
interconversion, and the exchange of energy between physical systems. Thermo-
dynamics is applicable to energy management in all situations. It was developed
in the context of the industrial revolution, with an important goal being the design
of more efficient versions of newly invented machines, first the steam engine, later
such devices as the internal combustion engine and the refrigerator. Thermodynam-
ics also describes how the total energy of a system is partitioned between useful
energy (available to do work) and wasted energy (that associated with the random-
ness of a system), and establishes conditions that must be met for a system to
not undergo spontaneous change, that is, to be at equilibrium. The branch of ther-
modynamics that concerns us most deals with the energetics of chemical systems
and systems containing interacting molecules. However, thermodynamics does not
formally assume a molecular nature of matter, but is simply a formal description of
the relationship between work, heat, and energy. Three laws, which are based on
“everyday” observations, form the foundation of thermodynamics. The surprisingly
profound conclusions that follow from these laws have been verified extensively.

Thermodynamics strikes many as a boring formalism, seemingly devoid of the
interesting intellectual content of quantum and statistical mechanics. Indeed, one
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4 THERMODYNAMICS

can think of thermodynamics as a bookkeeping tool that tracks otherwise obscure
relations between different forms of energy storage, and in doing so keeps the
biophysicist from many an egregious error. At the same time, the very fact that a
complex framework of relations can be built on a few fundamental laws should be a
source of marvel, as is the insight of the scientists who developed thermodynamics
in the nineteenth century. The development of thermodynamics on the basis of
a few laws resembles the development of mathematics from a small number of
axioms. However, the axioms of mathematics can be chosen by the mathematician,
while the laws of thermodynamics are based on observations of our physical world,
and these laws could be changed only on the basis of radically new experimental
findings.

This chapter is not a textbook on thermodynamics; it is presumed that students
using this book have had an introductory physical chemistry course that treated
chemical thermodynamics in some detail. It is also presumed that many who have
had such a course do not remember it very well. Thus, our goal is to review briefly
the fundamental concepts of thermodynamics and then to give them a context in
terms of solutions of macromolecules and their interactions with other molecules.

1.2 THE FUNDAMENTAL POSTULATES OR LAWS
OF THERMODYNAMICS

1.2.1 Systems

A system is a part of the universe in which we have interest for a particular
problem. In biology, it is often some collection of molecules. It is separated by
some boundary from the rest of the universe (its surroundings; Fig. 1.1).

Open systems exchange energy and matter with their surroundings.

Closed systems exchange energy but not matter with their surroundings.

Isolated systems exchange neither energy nor matter with their surroundings.

System

q = Heat flow into system
from surroundings

w = Work done by
system on

surroundings

Surroundings

FIGURE 1.1 A closed system exchanges energy in the form of heat and work but not
matter with its surroundings. If no heat is exchanged (q = 0), the process is adiabatic. An
open system can also exchange matter with the surroundings.
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1.2.2 States and State Functions

The state of a closed system can be changed by the exchange of energy with
the outside (surroundings), and can also change spontaneously. Thermodynamics is
concerned with the equilibrium states that are the outcome of spontaneous change,
and with the processes by which change from one equilibrium state to another
occurs. Many equilibrium states are metastable; for example, a mixture of oxygen
and hydrogen gases is stable, but can be ignited to explode (spontaneous change)
and form water vapor. A state is defined in terms of characteristic properties, such
as temperature, density, pressure, and chemical composition. The energy of a state
is one of its fundamental characteristics, and is therefore called a state function.
By definition, a state function depends on certain properties of a system such as
the number of molecules composing it (N ), the volume (V ), perhaps the pressure
on the system, and a very interesting property called temperature (T ).

Observation tells us that not all these properties are independent; that is, if we
set the values of some, then others are fixed by these assignments. Aside from the
extensive (how big the system is) property N , the thermodynamics of a closed sys-
tem are defined by two additional properties, which are referred to as independent
variables of the system. All other properties of the system, including its state func-
tions, are dependent properties of the system. There is nothing holy or sacrosanct
about an independent variable, these are defined by the experimental conditions we
use to observe the system and are those properties over which we exercise control.
However, once we choose these independent properties or variables, the values
of the state functions for the system are defined and can be obtained by the laws
of thermodynamics. Thermodynamic state functions depend only on the values of
these independent properties and not on how the system reached this state.

1.2.3 The First Law and Forms of Energy—Energy a State Function

Classical mechanics introduces three forms of energy: kinetic energy, potential
energy, and work. Kinetic energy is evident in an object’s motion. The poten-
tial energy of an object is latent energy that allows the object to do work or to
acquire kinetic energy. Work has associated with it a force and a path; force act-
ing along the path changes the potential energy and/or the kinetic energy of an
object. Thermodynamics considers an additional category of energy, heat, and is
concerned solely with the relationships between and interconversion of heat, work,
and energy. We stress that thermodynamics does not distinguish between kinetic
and potential energy, nor does it bother itself with motion—these issues are totally
the venue of mechanics. These two independent areas of physics came together
only in the latter half of the nineteenth century through the collaboration of the
Scottish mathematician James Scott Maxwell (kinetic theory of gases) and the Aus-
trian physicist Ludwig Eduard Boltzmann (the Boltzmann distribution) to develop
a statistical description of the average speed of molecules in a gas. This is the
Maxwell–Boltzmann distribution, which forms the basis of statistical mechanics
(also called statistical thermodynamics; see Chapter 5).
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The First Law of thermodynamics states that the energy of a system and its
surroundings is conserved. The “everyday” experience of doing work to move a
mass up a hill against the force of gravity leads to the concept that the work
done is converted into potential energy, which remains hidden, until the object
is released and rolls back down. In the absence of friction, energy is conserved
during the rollback down the hill, and the object acquires a new form of energy,
kinetic energy. There are many familiar examples of converting energy into work or
heat or capturing work as energy. Several are illustrated in Fig. 1.2. The invention
of the steam engine stimulated the development of thermodynamics. In it and its
modern-day replacement, the internal combustion energy, the energy released in
the form of heat produced when hydrocarbons react with oxygen to form CO2 and
H2O, causes this gas mixture (or water vapor in the steam engine) to expand and
this produces pressure–volume work (PV work) on a piston that is captured as
the work needed to increase the kinetic energy of a vehicle. Thus, by virtue of
the First Law, heat also must be considered a form of energy. In this example,
a chemical reaction liberates energy in the form of heat. By virtue of the First
Law, the chemical (or internal) energy of the reactants must decrease by a like
amount. Similarly, a charged battery possesses potential energy that is released
when electrons are allowed to flow through a wire to drive an electric motor that

1. Chemical energy → Heat
(CH2)n + 3nO2 → n(CO2 + H2O) + q

2. Hot CO2 + H2O expand: q → PV work

3. Car moves:
PV work → Kinetic energy

4. Friction:
Kinetic energy → Heat

2e−

Zn

Zn++

Cu

Cu++

q

Electrical work: −I2Rt

Electrical

Radiant
energy

Chemical energy → Electrical work

(a) (b)

(c)

(d)

FIGURE 1.2 Examples of interconversion of different forms of energy. (a) Internal com-
bustion engine, (b) light bulb, (c) electric water heater, and (d) flashlight battery.
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performs work. This process can also be used to produce heat by running a current
I through a resistor R.

Heat has been traditionally defined in terms of the amount needed to change
the temperature of 1 g of water by 1 ◦C, the calorie. In modern usage, heat is
treated as energy and expressed in appropriate standard international units of energy.
Thus, the calorie is now defined by the equation 1 cal = 4.184 J. Physical scientists
preferentially use the standard units, while nutritionists have adhered to the calorie.

To make a more formal definition of the First Law, we note that the total energy
of a closed system can be changed by two means: by work (work done by the
system) or by the transfer of heat into the system. The internal energy decreases as
a result of work w done by the system, and increases as a result of heat q transferred
into the system. Thus, the First Law states that the change of the internal energy is1

�Ua→b = Ub − Ua = q − w. (1.1)

The First Law requires the internal energy, U to be a state function, that is, to
depend only on the internal state of a system, as determined by its characteristics
such as temperature, volume, and composition

�Ua→b = −�Ub→a

q − w = −(q ′ − w′). (1.2)

(the primed quantities are for a process that produces state a from state b). Were the
First Law not to hold, it would be possible to build a perpetual motion machine (“of
the first kind”), a device that indefinitely continues to produce energy, a situation
that all our experience tells us is impossible.

We then have for any small change in the system that

dU = ∂q − ∂w. (1.3)

Work and heat are definitely not state functions, as one can raise a system’s tem-
perature by transferring into it heat from a bath, but also by performing work, for
instance, electrical energy applied to an electrical heating element (Fig. 1.2c), or
mechanical energy applied by stirring; by writing ∂q and ∂w (rather than dq and
dw ), we indicate that q and w are not state functions.

We now understand heat as kinetic and potential energy that is distributed ran-
domly over the atoms making up any chemical or physical system, as described in
detail in chapters 5 and 6 on Statistical Thermodynamics. Note however, that this
insight was unavailable when thermodynamics was first developed as a science.

1.2.4 Temperature and the Ideal Gas or Kelvin Scale

Simple “everyday” experience tells us that two systems in contact through a wall
that allows the flow of heat will change until they reach thermal equilibrium, and if
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FIGURE 1.3 If heat flows from A to B and from B to C, then (i) heat will also flow
from A to C, and (ii) A is said to be hottest and have the highest temperature, and C is
coolest and has the lowest temperature. When heat flow ceases, the systems are said to be
in thermal equilibrium with each other, are equally “hot” and have the same temperature.

two systems are in thermal equilibrium with a third, they are in thermal equilibrium
with each other (Fig. 1.3). We say the two systems have a common property called
temperature. If two systems are not in thermal equilibrium, they are at different
temperatures. Heat flows from high to low temperature, and temperature orders
“hotness.” (This is sometimes called the Zeroth Law of Thermodynamics.) A rise
of a system’s energy content in the form of heat corresponds to a rise in the
temperature.

Early scales of temperature (such as Celsius’ scale) depended on two sharply
defined experimental points (0 ◦C as the melting temperature of ice, 100 ◦C as the
boiling temperature of water at 1 atm pressure) and interpolation assuming linear
expansion of liquid volume (e.g., mercury).

The Kelvin temperature scale is set by relating temperature to physical properties
of an ideal gas, as follows.

Because, in the gaseous state, molecules interact only slightly, the gaseous state
is a natural starting point for theories of matter. The ideal or perfect gas is a
hypothetical state in which the molecules do not interact at all. One approximates
an ideal gas by diluting a real gas, that is, by increasing its volume and thus lowering
its pressure. Thermal motions in an ideal gas consist of internal vibrations within
each molecule, and of rotational and translational motions of the gas molecules. As
the molecules do not interact (except by rare collisions), the thermal energy does
not depend on the volume occupied by a sample.

It is known from observation (Boyle’s Law) that dilute gases, which we expect
to be close to ideal, follow a simple relationship between pressure and volume

PV = constant, (1.4)

and that this product increases with temperature. By now setting this proportional
to the absolute temperature, that is,

PV = NkBT , (1.5)
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where N is the number of molecules, one obtains the Kelvin scale; the value of
the proportionality constant, kB, called Boltzmann’s constant,2 is fixed by retaining
the 100◦ interval of the Celsius scale.

1.2.5 The Second Law: Real and Reversible Processes

Three simple examples suffice to show that work is not a state function. A viscous
liquid can absorb energy by transfer of heat from warmer surroundings, or by
work in the form of agitation; in either case the end result is a resting, but warmer
liquid. A gas can expand against a piston and in so doing perform work on the
environment, or it can expand into a vacuum, and perform no work (Fig. 1.4b).
Heat generated by combustion of fuel can be used to drive machinery (steam or
internal combustion engine, steam turbine), but the heat can also be used to warm
the environment directly, without any work being generated.

In the first example, work is turned into heat and “lost,” and everyday experience
shows many such instances of friction. In the second and third examples, the ability
to perform a certain amount of work is lost.

The Second Law reflects this experience by stating that in any real process some
ability to perform work is lost. The magnitude of work performed by a system in
a real process is less than the maximum possible, and, if a fixed amount of work
is performed on the system, then the system’s ability to perform work is increased
by a smaller amount (and, perhaps, not increased at all).

The Second Law states that it is not possible to create a machine that, for
example, captures heat to do an equivalent amount of work (e.g., PV work due
to expansion), and then applies this work to generate a high energy state (e.g.,
an electrical potential) that can then be used to generate an equivalent amount of
heat (I 2R heating) that can be used to do an equivalent amount of work, etc. As
energy is conserved according to the First Law, if each of these processes were
completely efficient, we would have a perpetual motion machine (“of the second
kind”), which, by our experience, is not possible.

A quantitative statement of this law requires that we distinguish between
reversible and irreversible processes.3 In brief, if a reversible process, say A → B

(a)

(b)

FIGURE 1.4 (a) When a gas expands against a force (indicated by the arrows) acting on
a piston, the gas performs so-called PV work. (b) When the gas is allowed to expand into
a vacuum by removal of a partition, no work is performed.
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is repeated in reverse following exactly the same path, and the complete process is
A → B → A, then there is no net exchange of work or heat with the environment,
that is, any heat or work expended in running the system through the first leg is
recovered during the second leg, and vice versa. However, reversible change is
an idealization that we can never achieve in real processes. We approximate a
reversible process by carrying out the change very slowly, that is, in infinitesimal
steps. While a reversible A → B → A process (e.g., a swinging pendulum) can
continue indefinitely, such a process can only be imagined and never be achieved
in a real system. Thus, real processes are irreversible and behave according to the
Second Law.

1.2.6 New State Functions: Free Energy and Entropy

We have seen that the energy of a system is defined by its current state (pressure,
volume, temperature, and contents), and not by its history; on the other hand, work
and heat are definitely not state functions. However, we can now ask how much
work might be performed by a system in an optimally chosen process, and thereby
define a new state function, the free energy, A, the process to take place at constant
temperature.

Because total energy is conserved, a change in A cannot exceed the concomitant
change of the internal energy, U of the system. The function U –A, is of course
also a state function, which is written as TS , where S is our second new state
function, the entropy

A = U − TS . (1.6)

Naturally, this will serve to determine A only if we can determine S, and this is
where the (famous) Carnot cycle comes into play.4

We will not describe the Carnot cycle here as it involves steps that are adia-
batic, making the description obscure. Instead, we describe a simple scheme that
employs compression and expansion of an ideal gas in a heat pump (a machine
that exchanges work and heat flow) as shown in Fig. 1.5. As mentioned, the (N )
molecules in an ideal gas do not interact, the internal energy is independent of P

or V , which, themselves, are related by the gas law (Eq. 1.5).
We now pick a temperature, T1 and a volume V1 and compress the gas from

that starting point to a smaller volume V2, by moving a piston. When the moving
piston collides with the gas molecules, it increases their velocities, and thus the
internal energy increases and the temperature rises. (The increase of the internal
energy exactly equals the amount of work done by pushing the piston.) However,
if the system is placed in a heat reservoir5 at constant temperature T1, then the
excess heat, q1 will flow from the gas into the heat bath, and the energy of the gas
does not change. Because the internal energy of the gas does not change, the work
done on the gas is equal to the amount of heat transferred. Because, according to
our definition of the free energy, the work done in this process can be equated with



THE FUNDAMENTAL POSTULATES OR LAWS OF THERMODYNAMICS 11

FIGURE 1.5 Four-step cycle (not a Carnot cycle) of isothermal compression, cooling by
contact with a bath, isothermal expansion and heating by contact with a bath, applied to an
ideal gas. Arrows indicate heat flow into or out of the system in each step.

the free energy change, we have

�A1 = −
∫

PdV = −NkBT1 ln(V2/V1) = −q1

�A1 = �U − q1 = �U − T1
q1

T1
, (1.7)

�U being zero.
We can compress the gas from V2 to V1 at another temperature, T2, which gives

the same equation relating �A2, T2, V1/V2, q2, and �S2 and thus

�S2 = −�S1.

We can then construct the cyclic process of Fig. 1.5 by compressing from V1 to V2
at T1, then cooling to T2, expanding back to V1 at T2, and heating back up to T1.
Because the internal energy is independent of P and V , the heating and cooling
steps produce/require exactly opposite changes of energy, q3 = −q4. In a cyclic
process, the net change of any state function is zero. The change in energy for the
entire cycle is obviously zero.

�U1 + �U2 + �U3 + �U4 = 0 + 0 + q3 + q4 = 0. (1.8)

Now, by defining the entropy as the integral of the heat exchanged divided by the
temperature in a reversible (or quasi-static) process,
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dS = dq

T

S =
∫

dq

T
, (1.9)

the entropy changes in the heating and cooling steps are also equal and opposite,6

so that for this cycle

�Scycle = �S1 + �S2 + �S3 + �S4 = 0. (1.10)

It is easily shown that this equation holds for any cycle that combines two such
cycles that share a part of their circumference, and as any closed cycle can be
decomposed in smaller cycles of the form of Fig. 1.5, it follows that the entropy
as defined by Eqs. 1.6 and 1.9 is a state function for ideal gas systems. This can
then be generalized to any other system by an argument that invokes the Second
Law for this system thermodynamically coupled to an ideal gas.4

The work done to run the cycle
(−∫

PdV
)
, which equals the area inside the

closed curve in Fig. 1.5), is not zero, and this energy ends up as the difference
between the heat given off in the compression leg and that taken up in the expansion
leg of the cycle. When run in the indicated direction, each cycle transfers heat from
the cooler heat reservoir at T2 to the warmer heat reservoir at T1 in the amount
q2 = −�A2, and thus acts as a (completely impractical) heat pump.

1.2.7 Entropy Tends to Increase

The transfer of heat between two systems at different temperatures occurs in one
direction and is an irreversible process. The entropy of the colder system increases
by dq/T1, and that of the warmer decreases by dq/T2; the net change is positive,
and in the absence of performance of work

dS = dq(1/T1 − 1/T2) > 0.

Many processes produce a rise or fall in the temperature of the system. In order
to maintain the system at a constant temperature, the necessary heat is exchanged
with a heat reservoir, and one sees that this cannot be done reversibly without an
increase of the entropy (of system plus reservoir) unless the temperature of the
heat reservoir is at all times exactly the same as that of the system (which would
require an infinitely slow process).

In a system kept at constant temperature by contact with a heat reservoir (an
isothermal system), a real, irreversible process is one in which the work done by
the system is less than the maximum possible, that is, is less than the decrease in
free energy,

−dA ≥ ∂w. (1.11)
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Given the relation between A, U , and S, we then have

−(dU − TdS ) ≥ ∂w

dS ≥ dU + ∂w

T
= ∂q

T
, (1.12)

and one sees that the entropy increases by more than the amount corresponding to
the heat transferred into or out of the system.

The general conclusion is that in all real processes,7 because of the Second Law,
the entropy of the universe (the system plus its reservoir) increases (dSU > 0). This
is a familiar statement of the Second Law. It is also the least transparent statement,
although it follows completely from the more common-sense statement that heat
does not flow from a lower to a higher temperature system.8

1.2.8 The Second Law and Equilibrium

A fundamental concept of thermodynamics is that of equilibrium, a state from
which spontaneous change (i.e., not induced by an exchange of work or heat)
is not possible. The majority of applications of thermodynamics in molecular bio-
physics consider conditions needed to establish equilibrium and the deviations from
equilibrium if these conditions are not met.

For an isolated system (no w or q), the Second Law requires that entropy
of a system increases (irreversible or spontaneous change) or remains the same
(reversible change). Thus, at equilibrium, the entropy of an isolated system tends
to become larger, until it reaches a maximum, which can be expressed as

dS ≥ 0 in the absence of exchange of heat or work.

We can now see that the entropy plays a critical role in thermodynamics, as it
allows us to express the equilibrium condition as the maximum of a state function.
The rest is algebra.

If the system is able to exchange heat or work with a reservoir, we have

∂w = ∂q − dU ≤ TdS − dU

dU ≤ TdS − PdV − ∂w′, (1.13)

where w has been separated into work for expansion (PV work) and other work,
w′.9 In this expression the differential of the state function U is expressed as a
function of the independent variables S and V , and is the state function that is
minimized when entropy and volume are constant (dS = dV = 0; and no other
work is done). This expresses the combined First and Second Laws. The equal
sign holds for reversible processes. However, a condition of constant entropy is
not easily realized experimentally, and its meaning is difficult to grasp. In the next
section, we discuss which state functions are minimized when temperature, rather
than entropy, is constant, and when work is done (pressure, not volume, being
constant).
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1.3 OTHER USEFUL QUANTITIES AND CONCEPTS

1.3.1 Gibbs and Helmholtz Free Energies and Enthalpy

We now have the basis for the normal treatment of thermodynamics. In this treat-
ment, it is convenient to define two new functions, in addition to U , S, and A.
These functions are the enthalpy, H and the Gibbs free energy, G; the previously
introduced state function A is distinguished as the Helmholtz free energy. (Older
literature tends to use the symbol F for A, while some still use F for G.) We then
have

H = U + PV

A = U − TS

G = A + PV = H − TS . (1.14)

By combining Eqs. 1 and 1.14 we get the following expressions for dH , dA, and
dG ,10

dH ≤ TdS + VdP − ∂w′

dA ≤ −SdT − PdV − ∂w′

dG ≤ −SdT + VdP − ∂w′. (1.15)

This allows us to identify state functions that are minimized under three different
sets of equilibrium conditions:

1. At equilibrium, the Helmholtz free energy, A, is a minimum at constant T

and V .

2. At equilibrium, the enthalpy, H , is a minimum at constant S and P .

3. At equilibrium, the Gibbs free energy, G, is a minimum at constant T and P .

As a corollary,

1. A is the state function defined by independent variables T , V , and composi-
tion Ni .

2. H has the same form as U except that its independent variable is P instead
of V .

3. G is the state function defined by independent variables T , P , and composi-
tion Ni .

Within narrow margins, biological systems operate at constant temperature. Not
surprisingly, applications of thermodynamics in molecular biophysics rely on state
functions A and G whose minima define the equilibrium condition at constant
temperature. Specifically, spontaneous processes at constant T result in decreases
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in free energy until they reach equilibrium, at which point the free energy change
is zero:

δA ≤ 0, in a system held at constant volume and temperature, (1.16)

δG ≤ 0, in a system held at constant pressure and temperature; (1.17)

for each, the equal sign holds at equilibrium.
At equilibrium, A or G is at a minimum, and any perturbation of the conditions

of the system causes an increase of A or G,

dA ≥ 0 for perturbations from equilibrium at constant V, (1.18)

dG ≥ 0 for perturbations from equilibrium at constant P. (1.19)

As biophysical systems are studied at constant pressure, the Gibbs free energy is
normally the more useful. Note however that, in most experiments with solutions,
the changes in PV are so small that a distinction between A and G has no noticeable
effect.11

1.3.2 Chemical Potential

A fundamental concept of thermodynamics, and certainly one of the most useful
in chemistry, is that of chemical potential, which is crucial to a description of the
thermodynamics of mixtures (and hence of solutions). It is defined as the partial
derivative of the Gibbs free energy with respect to the amount, Ni of component
i,12 while T , P , and the amounts, Nj �=i of all other components are taken as defined
(i.e., constant or fixed), so that

μi =
(

dG

dNi

)
T ,P,Nj �=i

=
(

dA

dNi

)
T ,V,Nj �=i

. (1.20)

The chemical potential describes the intrinsic or intensive free energy that a sub-
stance has in a mixture (or in a pure state).

If we are describing an open system, we must extend the total differentials of
U , A, H , and G (Eqs. 1.13 and 1.15), which reflect the combined First and Second
Laws, in order to take into account the dependence on ni , and this gives

dU ≤ TdS − PdV − ∂w′ +
∑

μidNi

dH ≤ TdS + VdP − ∂w′ +
∑

μidNi

dA ≤ −SdT − PdV − ∂w′ +
∑

μidNi

dG ≤ −SdT + VdP − ∂w′ +
∑

μidNi, (1.21)

where ∂w is any additional work done by the system.
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1.3.3 Fundamental Relationships Between State Functions

Our statement of the combined First and Second Laws (Eq. 1.13) expresses dU
as an exact differential with respect to the independent variables V and S. Several
properties of exact differentials are quite useful in thermodynamics. (See Section
A9.7, “Useful relations between partial differential quotients.”)

Single derivatives. The first is that the total differential of any function is
given by the sum of the partial derivatives of that function with respect to each
independent variable of the function times the differentials of the variable (Eqs.
A9.16 and A9.17).

Using the definition of a total differential, we get the following expressions for
T , P , and μi in terms of partial derivatives of U

T =
(

∂U

∂S

)
V,Ni

; P = −
(

∂U

∂V

)
S,Ni

; μi =
(

∂U

∂Ni

)
S,V,Nj

. (1.22)

Application to the total differentials of the other state functions we have defined
(G, H , A; see Eq. 1.15) gives the following additional relations between state
variables and state functions

S = −
(

∂G

∂T

)
P,Ni

; V = −
(

∂G

∂P

)
T ,Ni

; μi =
(

∂G

∂Ni

)
T ,P,Nj

T =
(

∂H

∂S

)
P,Ni

; V =
(

∂H

∂P

)
S,Ni

; μi =
(

∂H

∂Ni

)
S,V,Nj

S = −
(

∂A

∂T

)
V,Ni

; P = −
(

∂A

∂V

)
T ,Ni

; μi =
(

∂A

∂Ni

)
T ,V,Nj

. (1.23)

Double derivatives. The second property that we can exploit is that the order of
partial differentiation can be switched according to the Euler chain rule (Eq. A9.13).
For example, (

∂

∂V

(
∂A

∂T

)
V

)
T

=
(

∂

∂T

(
∂A

∂V

)
T

)
V

i.e.,

(
∂S

∂V

)
T

= −
(

∂P

∂T

)
V

. (1.24)

This is a so-called Maxwell relation. The following Maxwell relations (in which S

does not appear) are particularly useful,
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(
∂V

∂Ni

)
P,V

= −
(

∂μi

∂P

)
V,T(

∂P

∂Ni

)
V,T

= −
(

∂μi

∂V

)
P,T(

∂μi

∂Nj

)
Ni,T

=
(

∂μj

∂Ni

)
Nj ,T

. (1.25)

Multiple variables. As noted, what we call “independent variables” are not really
independent but are what we choose to control, and control does not always mean
that we keep the independent variable constant. For example, P and V might both
vary, while we control how V varies, and we must then consider how state functions
vary when both P and V vary. This is again accomplished using additional rules
about differentials.

As an example of application of Eq. A9.15, consider the internal energy, U ,
which is a function of both V and P . For example, we may ask how U depends
on P when V also varies, which is formally expressed by(

∂U

∂P

)
T

=
(

∂U

∂P

)
V

+
(

∂U

∂V

)
P

(
∂V

∂P

)
T

. (1.26)

The first term on the right is zero because no PV work is done at constant V .
Substituting the expression for (∂U/∂V )P derived earlier (Eq. 1.22), we get(

∂U

∂P

)
S

= P

(
∂V

∂P

)
T

= Pκ, (1.27)

where κ is the isothermal compressibility.
Temperature dependence of energy and free energy. The temperature dependence

of both the energy and of the enthalpy is called a specific heat(
∂U

∂T

)
V,Ni

= CV and

(
∂H

∂T

)
P,Ni

= CP ; (1.28)

CV is the specific heat at constant volume, and CP the specific heat at constant
pressure. The temperature dependence of the free energy can be expressed as(

∂A

∂T

)
V

= −S and

(
∂G

∂T

)
P

= −S, (1.29)

or instead as13

∂(A/T )

∂(1/T )
= U and

∂(G/T )

∂(1/T )
= H. (1.30)

Thus, a complete knowledge of A or G implies a knowledge of all thermodynamic
functions.
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1.3.4 The Gibbs–Duhem Equation and Equilibrium

At fixed intensive variables T , P , and μi ,
14 we can integrate the exact differential

for dG
dG = −SdT + VdP +

∑
μidNi (1.31)

to obtain
G =

∑
Niμi. (1.32)

Note that this relationship between the free energy and the chemical potential of
all species applies only for the Gibbs free energy at fixed T and P . If we take the
total differential of this, we obtain

dG =
∑

Nidμi +
∑

μidNi. (1.33)

If we equate the total differential of G from this equation with the total differential
form of dG given in Eq. 1.21 we obtain the Gibbs–Duhem equation15

∑
Nidμi = VdP − SdT , (1.34)

which, at constant T and P , becomes∑
Nidμi = 0. (1.35)

The usefulness of this expression will become clear as we apply it in a variety
of situations. We shall see that Gibbs–Duhem relates the chemical potential of
solvent to that of solutes (Eq. 1.49), defines the condition of chemical equilibrium
and leads to the definition of the equilibrium constant (Eq. 1.67), and is again used
in a derivation of linkage relations in Chapter 9.

1.3.5 Relation Between Heat Capacity and Other Functions

We said earlier that if A is completely known, then other thermodynamic functions
are also known. But we can just as well base a knowledge of A, U , and S on a
knowledge of the specific heat, CV . The reason for doing this is that specific heat
of very many systems can be measured accurately with a calorimeter.

To begin with, the energy U and the entropy S are integrals of the specific heat
(heat is transferred slowly, at constant volume)

�U =
∫

dq =
∫

dT
dq

dT
=

∫
dT CV

�S =
∫

dq

T
=

∫
dT

T

dq

dT
=

∫
dT

CV

T
. (1.36)

The entropy S of all systems is set equal to zero when the absolute temperature,
T , is zero. (This is the so-called Third Law.) Classical chemical thermodynamics
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by convention sets the energy of each pure chemical element to zero when T is
zero; current practice sets the energy at T = 0 to the quantum-mechanical ground
state energy, ε0.

The free energy is then given by these two equations

�A = −
∫

S dT

�A

T
=

∫
U d(1/T ), (1.37)

where �A = A(T )–ε0. If the calorimetric measurements are done at constant pres-
sure, then equivalent expressions relate CP , H , and G.

1.4 THERMODYNAMICS OF THE IDEAL GAS

Pressure and volume of an ideal gas are related by Boyle’s ideal gas law, PV =
NkBT (Eq. 1.5). Boyle’s law is an empirical relation, which we now understand
to apply only when each gas molecule behaves independently of all the others.

Accordingly, the free energy depends on the volume according to

A = −
∫

PdV = −
∫

NkBT

V
dV = C − NkBT ln V = NkBT ln(V/V •)

C = −NkBT ln V •, (1.38)

where the integration constant C is set by choosing a fixed reference volume V •.
The volume V • represents a standard state, that is, a state relative to which we
can define the chemical potential of the gas at any other experimentally defined
volume, V (or pressure P , related to V by the ideal gas law). In principle, the choice
of standard state is arbitrary, but, in practice, convention sets the pressure of the
standard state at 1 bar, and V • then depends on T according to the ideal gas law.16

The equation for A states that if we change either P or V away from standard
conditions, A varies as the natural logarithm of the ratio of the new volume to the
volume at standard conditions.

By differentiating the free energy A of the ideal gas in Eq. 1.38 with respect to
N at constant T and V , one obtains according to Eq. 1.23 an expression for the
chemical potential

μ = kBT ln V • − kBT ln V

μ = kBT ln

(
V •

N

)
+ kBT ln

N

V
= μ• + kBT ln

N

V
, (1.39)

where the constant term μ• is the chemical potential of the gas at a standard state,
which is here taken as N/V = 1; μ• is still a function of T . One can also express
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μ as a function of T and P = NkBT/V ,

μ = μ• + kBT ln(N/V ) = μ
◦ + kBT ln P. (1.40)

The constant terms μ• and μ
◦ both represent the chemical potential of the gas at

the conventional standard state of a gas at 1 bar, but their values differ according
to the different choice of either volume or pressure as state function.

The terms indicated with μ• and μ
◦ are termed the unitary or standard chemical

potential and are independent of concentration; however, their values depend on
the choice of standard state. The terms in ln(N/V ) and ln P (the cratic terms)
contain the concentration dependence and are related to the entropy of the gas,
which becomes greater the more the gas is dilute.

The ideal gas law applies also when the molecules in the gas are not all of the
same kind, and the gas can contain a mixture of different components. We say that
in an ideal gas mixture each component contributes to the total pressure as if it
were the only gas occupying the volume, that is, P = P1 + P2 + P3 + · · ·, where
Pj is the partial pressure of gas j , which is XjP , where Xj is the mole fraction
of gas j in the mixture

(
Xj = Nj/

∑
iNi

)
.

It is then easy to show that the equivalent expression for the chemical potential
for a component of a gas mixture is

μi = μ•
i + kBT ln(Ni/V )

μi = μo
i + kBT ln Pi. (1.41)

Alternatively, if we make such a mixture at constant pressure and temperature, then
the volume of the mixture will be the sum of the volumes of all the gases that
we mix

(
V = ∑

iVi = ∑
ikBT Ni/Pi

)
and the total number of molecules will be

N = ∑
iNi . The free energy change for creating this mixture is the sum of the free

energies for expanding each of the component gases from volume Vi to volume V .

�A = −kBT
∑

i

Ni ln(V/Vi) = kBT
∑

i

Ni ln Xi (1.42)

This is the free energy of mixing the gases at constant T and P . We note here that
this same expression describes the free energy of mixing of an ideal mixture. This
is a mixture in which all molecular species interact in an identical manner; thus,
in a two-component system 1–1, 2–2, and 1–2 interactions are equivalent in this
model system.

1.5 THERMODYNAMICS OF SOLUTIONS

Most biophysical experiments are done in solution. Fortunately, the thermodynam-
ics of dilute solutions are relatively easy to describe on the basis of experiments
that allow one to relate these to the thermodynamics of gases.
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1.5.1 “Ideal” Dilute Solutions

The thermodynamics of solutions can be related to those of dilute gases by exper-
iments that consist of equilibrating the solution with its vapor and measuring the
concentration of the solute in both phases. At low concentration of solute in the
liquid, the ratio between the concentration of a particular solute,17 component 1,
in solution c1,s and the concentration in the vapor c1,v is a constant whose value
is found to be specific for that solute and that solvent:

c1,s

c1,v
= (N1/V )s

(N1/V )v
= Kv→s. (1.43)

Here, Kv→s is the partition coefficient or equilibrium constant for transferring solute
from vapor to solution phase. This relation (called Henry’s Law) holds only in
the limit as the concentration of solute approaches zero, but in practice it holds
over a sufficient range of concentration that accurate values of transfer equilibrium
constants can be determined. In an ideal gas, the molecules are assumed not to
interact with each other. In a dilute solution, we assume that solute molecules
interact only with the surrounding solvent molecules but not with other solute
molecules. This model is called the ideal solution.

We now make use of the fact that G is a minimum for the equilibrated system;
consequently, transfer of a small amount of solute from solution to vapor or vice
versa causes balancing changes in G of the gas and solution according to

dG = dN1(μ1,s − μ1,v) = 0, (1.44)

so that the two chemical potentials are equal,

μ1,s = μ1,v. (1.45)

(This is true for all components in all phase equilibria.) First, substituting the
expression for μ1,v of the ideal gas, Eq. 1.39, and second using the proportionality
of c1,s and c1,v, Eq. 1.43, one obtains the following expression for the chemical
potential of the solute in an ideal solution,

μ1,s = μ•
1,v + kBT ln c1,v

μ1,s = μ•
1,v + kBT ln(c1,s/Kv→s) = μ

◦
1,s + kBT ln c1,s. (1.46)

The standard or unitary chemical potential in the vapor and solution differ; μ
◦
1,v is

the chemical potential of pure component 1 in the vapor at a concentration (particle
density) c1,v = (N1/V )v = 1, and μ

◦
1,s is the chemical potential of component 1 in

solution at a concentration c1,s = (N1/V )s = 1.
The standard chemical potential of solute in an ideal solution is the standard

chemical potential of solute in the ideal gas phase plus the free energy of transfer-
ring a molecule of solute from the vapor to the solution phase,

μ
◦
1,s = μ•

1,v − kBT ln(Kv→s). (1.47)
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The value of the standard chemical potential depends not only (as expected) on
the state for which it is defined but also on the units in which the concentration is
expressed.16 Unless it is explicitly stated otherwise, one should assume that con-
centration units are in moles per liter, and, if we use any concentration scale other
than the molarity scale, then the value of μ

◦
i,s must be altered by subtracting kBT

times the natural log of the factor that converts molarity to the new concentration
unit, and, if we wish to compare the standard states of a solute in two different
solutions, we must use the same units of concentration for both.

Using units of mole fraction, the chemical potential of an ideal solution is

μ1,s = μ∗
1,s + kBT ln X1,s, (1.48)

where the standard chemical potential, μ∗
i,s, is the chemical potential of pure com-

ponent i(Xi = 1) surrounded by solvent. The observant reader will note that this
seems nonsensical, as for Xi = 1 no solvent is present. Indeed μ∗

i,s is the value
required to obtain μi,s equal to μ∗

1,s + kBT ln X1,s for proper dilute solutions, that is,
for X1,s 	 1; μ∗

i,s represents the (imaginary) state of pure compound 1 interacting
only with the solvent.

The last step is to derive an equation for the chemical potential of the solvent
in an ideal solution. We start with the Gibbs–Duhem equation (Eq. 1.35), which
becomes for just two components

N1dμ1 + N0dμ0 = 0. (1.49)

If we wish to focus on how the chemical potentials change with N1, we can divide
both sides of Eq. 1.49 by dN1,

N1
dμ1

dN1
+ N0

dμ0

dN1
= 0

dμ0

dN1
= −N1

N0

dμ1

dN1
. (1.50)

With this expression for the chemical potential of the dilute solute (N1 	 N0),
Eq. 1.46, one has with the mole fraction of solute, X1 = N1/(N1 + N0)

dμ0

dN1
= −N1

N0

d(−kBT ln X1)

dN1
= −kBT

N0

(
1 − N1

N1 + N0

)
≈ −kBT

1

N0
, (1.51)

and integration gives

μ0,s = constant − kBT
N1

N0
≈ μ

◦
0,s − kBT X1 = μ

◦
0,s − kBT (1 − X0). (1.52)

At low total solute concentrations, the expression for μ0 can also be written as

μ0,s = μ
◦
0,s + kBT ln(1 − X1) = μ

◦
0,s + kBT ln X0. (1.53)
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If one equates μ0,s with the chemical potential of an ideal gas of Eq. 1.39, one
sees that the (partial) pressure of solvent in the vapor is proportional to the mole
fraction of solvent in dilute solution, always assuming that both vapor and solution
behave ideally. This is the classical form of Raoult’s Law.

In summary, the chemical potentials of components of a dilute solution are

μ0 = μ
◦
0,s − kBT

∑
i>0

Xi

μi>0 = μ∗
i,s + kBT ln Xi = μ

◦
i,s + kBT ln ci, (1.54)

where μ
◦
0,s is the chemical potential of pure solvent at T , P , but μ∗

i,s of the dilute
solute is not the chemical potential of pure solute, but rather the value needed to
give the actual value of μi,s of a dilute solution (Xi 	 1), when substituted in
Eq. 1.46, and similarly for μ

◦
i,s.

1.5.2 Nonideal Solutions

If the proportionality between c1,v and c1,s does not hold in Eq. 1.46, the solution
is said to be “nonideal” and a correction is needed. This deviation from ideal
behavior is due to interactions between solute molecules. However, at equilibrium
the chemical potential of solute in solution and vapor are equal whether or not
either phase is ideal. Thus, we can develop a description of a nonideal solution
just as we did for an ideal solution and, in this way, hold on to the simplified
functional forms for the concentration dependence of ideal solutions by replacing
concentration by activity, a,

μi = μ
◦
i,s + kBT ln ai = μ

◦
i,s + kBT ln γici, (1.55)

where γi is the activity coefficient of component i in the real solution. As can be
seen from this discussion, deviations from γi = 1 imply the existence of signifi-
cant interactions between solutes in a mixture, and deviations are most severe for
strongly interacting solutes at high concentrations. Of course, this is all easy to
write down, and even easier to say, but it is rarely easy to measure the activities of
solutes in a multicomponent solution. The reality is, then, that we usually end up
using the thermodynamic expressions for ideal solutions, even though these proba-
bly do not hold in a cell. We shall use activities wherever this is appropriate (e.g.,
we shall express equilibrium constants as ratios of activities, not concentrations),
but in practical applications ideal behavior is assumed and activities are nearly
always equated with the corresponding concentrations.

Only quite small molecules are sufficiently volatile to allow one to establish the
ideality of their solutions by measurements of vapor pressure. However, the concen-
tration dependence of the chemical potential of macromolecules can be determined
via the technique of light scattering (see Section 6.7), and these measurements give
us confidence, for example, that dilute protein solutions follow close to ideal ther-
modynamics. Molecules of nucleic acids are highly charged and interact strongly in
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water; however, the interaction is greatly reduced in solutions of reasonable ionic
strength.

The activity of many inorganic ions can be measured with potentiometric meth-
ods (which are otherwise not discussed in this book). A very important application
of potentiometric measurement is the pH meter. Thus, pH is defined as

pH = −10 log aH+ . (1.56)

The pH of 0.1 N HCl is 0.11, not 0.10, which indicates that this moderately con-
centrated acid solution is significantly nonideal.

1.5.3 Osmotic Effects

Equation 1.51 shows that solutes change the activity of water in a manner that is
roughly proportional to their concentration. For relatively inert solutes (i.e., those
that interact weakly with other solutes and even with the solvent), this expression
can hold up to significant concentrations. Some such solutes, called osmolytes,
occur in cells; by lowering the activity of cellular water, they serve to maintain
cellular water content under drought conditions. As biological macromolecules
interact strongly with water, a change in the activity of water brought about by
osmolytes such as glycerol or sucrose can have significant effects on, for example,
equilibria between conformation states or equilibria for forming macromolecular
complexes. This will be taken up in Chapter 9 and again in Chapter 16.

Osmotic pressure reflects a tendency of solutions to become more dilute. We can
think of the free energy as a potential with a corresponding “force” that drives the
system to lower values of the potential by making the solution more dilute, similar
to the pressure that tends to expand the volume of a gas. This thermodynamic
“force” is due to entropy and manifests itself clearly in a situation where compart-
ments can be separated by a wall containing passages through which the solvent
can pass, but the solute cannot; such a wall is called a semipermeable wall or
membrane. Dialysis membranes pass solvent and solutes of low molecular weight,
but not macromolecules; membranes used in desalination pass water, but not NaCl;
lipid bilayer membranes are impermeable to many compounds, while others can
pass across the membrane by dissolving in the membrane, by taking advantage
of fluctuations in membrane structure, by forming hydrogen-bonded chains (in the
case of water), or, in the case of cell membranes, by diffusing through specific
protein channels.

If a solution and a pure solvent are equilibrated in two compartments (A con-
taining solution; B containing solvent; Fig. 1.6) separated by a semipermeable
membrane, the solvent passes from compartment B into A in order to maximize
the entropy of the system. Equilibrium is reached when the pressure in compart-
ment A is higher than that in compartment B by a certain amount, namely, when
the work required to move the solvent from B to A against this pressure is equal
to the decrease in free energy (increase in entropy) associated with solvent moving
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FIGURE 1.6 Osmotic pressure resulting from equilibration of solvent across a semiper-
meable membrane.

into compartment A. The free energy to transfer a solvent molecule from pure sol-
vent into a solution can be written as a sum of three terms, the first for removing
the solvent molecule from the solvent at constant pressure, the second for moving
it to a system with a larger pressure, and the third for adding it to the solution at
constant pressure,

�G = (−μ
◦
0) + �V0 + μ0, (1.57)

where V0 is the volume per solvent molecule, and the difference in pressure between
the two compartments is called the osmotic pressure, denoted with the symbol �

(� = PA − PB).
In an ideal solution, the chemical potential of the solvent is given by Eq. 1.54.

Setting �G in this equation to zero gives for the osmotic pressure that

−μ
◦
0 + �V0 + μ

◦
0 − kBT X1 = 0

�ideal = kBT
X1

V0
≈ kBT N1

V
= kBT

c1

M1
, (1.58)

where N1 is the number of moles of solute and c1 the concentration in units of
mass/volume, M1 being the solute’s molecular mass. Osmotic pressure reflects
solution entropy; it is one of several colligative properties,18 which all depend on
the number of particles in a solution (and hence offer opportunities for measurement
of molecular weight). If the solute is not a single particle, we must multiply c by
the number of moles of particles per mole of solute (e.g., 2 for NaCl).

1.6 PHASE EQUILIBRIA

1.6.1 Equality of Chemical Potential

Melting, boiling, and sublimation are familiar transitions between different phases
of the same pure material, brought about by changes in temperature and pressure.
Less familiar are the transitions between different solid phases; for example, the
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relatively open structure of ice I (ice-cube ice) collapses to more compact forms
of ice at high pressures.

When two phases of a pure compound are in equilibrium, the chemical potential
of the compound is the same in each phase; one can prove this easily by considering
the transfer of a small amount, dN, of compound from one phase (B) to the other
phase (A), for which the free energy change is dG = dN (μA − μB); this must be
zero at equilibrium according to Eq. 1.19. Equality of chemical potential in the two
phases holds only at specific combinations of pressure and temperature.

If the system contains more than one compound, the equilibrium condition at
constant P and T

dG = −dGA + dGB = −
(∑

μi,AdNi

)
+

(∑
μi,BdNi

)
= 0, (1.59)

for any choice of the dNi , which gives as the essential condition of phase equilib-
rium that the chemical potential of each component is the same in every phase (or
state)

μi,A = μi,B. (1.60)

1.6.2 Transfer Free Energy

The chemical potential of a compound in solution can be related experimentally to
the chemical potential of the pure compound, if one is able to establish equilibrium
with a phase containing the same compound in pure form (crystalline solid or dilute
gas) for which the chemical potential is known by standard methods described in
any thermodynamics text. One then has

μ1,c = μ1,s = μ
◦
1,s + kBT ln a1,s (for a crystalline phase)

or

μ1,v = μ
◦
1,v + kBT ln c1,v = μ

◦
1,v + kBT ln a1,s (for a vapor phase). (1.61)

If the pure phase is a vapor, one may determine the standard chemical potential
in the solution, μ

◦
1,s, by extrapolating to low concentration, where activity equals

concentration. If the pure phase is a crystal, and the solution is not dilute, then the
extrapolation to dilute solution can be done by measuring the chemical potential of
the solvent (from equilibrium with its vapor) and applying the Gibbs–Duhem rela-
tion to relate its change upon dilution to the corresponding change in the chemical
potential of the solute.

Such a difference between standard chemical potentials is called a transfer free
energy. Measurement presupposes measurable solubility in the chosen solvent and
either a measurable volatility or existence of a crystalline phase. While the concept
of a transfer free energy applies also to solutions of a macromolecule, its measure-
ment is usually impossible because neither the gaseous form nor a pure crystalline
form of the macromolecule can be realized experimentally. Transfer free energies
of small molecules related to the structure of proteins have been measured and
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play an important role in understanding the effect of the solvent on the stability
of native conformations of proteins and nucleic acids. These include values based
on solubility of amino acids and peptides, and on transfer equilibrium to the dilute
gas phase of a series of more volatile molecules related to amino acid side chains.
This will be discussed in detail in Chapter 16.

1.6.3 Phase Diagram of a Pure Compound

For a system containing only a single component, the chemical potential of each
phase is a different function of T and P ; consequently, two phases can coexist
in equilibrium only at certain combinations of T and P , at which the chemical
potentials happen to have the same value. If, say, T is changed, two phases no
longer coexist and the system exists as a single-phase region of its phase diagram.
Indeed, for most combinations of T and P , only one phase is stable. However,
P can be adjusted at the new value of T to reestablish phase equilibrium. Thus,
for each T , there is a unique P for which two phases coexist. These T and P

pairs define coexistence curves separating regions of stability of single phases.
A coexistence curve establishes a relation between T and P , that is, P is a function
of T or vice versa. A triple point is where two coexistence curves intersect, that
is, where three phases (A, B, and C, which can be a crystalline form, liquid, and
vapor) are at equilibrium. At this triple point, μA(T , P ) = μB(T , P ) = μC(T , P ),
and we have two equilibrium constraints.

The results can be represented in the form of a phase diagram. A simple example
illustrates how such a diagram is interpreted (Fig. 1.7). The slope of the solid–liquid
coexistence curve, AB, is negative because liquid water has higher density than ice.
(This is atypical; most solids have higher density than their liquid forms.) The triple
point occurs when ice and liquid water are in equilibrium at near-zero atmospheric
pressure; the pressure of the water vapor in equilibrium with these two phases is
only 0.006 atm (4.6 mmHg). The phase diagram also displays a so-called critical
point: distinction between liquid and vapor phases usually becomes less marked
at high temperature and pressure, as the vapor becomes denser as a result of the
increase in pressure and the liquid expands because of the increase in temperature;
finally, liquid and vapor phases become indistinguishable and the coexistence curve
between these two phases ends.

1.6.4 The Gibbs Phase Rule

More complicated phase diagrams result in systems containing more than one com-
ponent. These can be constructed using a relation known as the Gibbs phase rule.
In general, we have seen that the number of independent intensive variables (those
not dependent on N , the number of molecules), required to define the thermody-
namic state of a system is 2 (e.g., T and P or T and V/N ). This is called the
number of degrees of freedom (nF) of the system. Gibbs recognized that, if more
than one phase was present, each equality of chemical potentials across all phases
(Eq. 1.60) imposed an additional constraint on the system that reduced nF, while
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Pressure

1 atm

Solid
(‘‘ice’’)

B
374 °C,
218 atm

C

Liquid
(‘‘water’’)

Gas 
(‘‘steam’’)

A

Temperature

0 °C

0.01 °C, 
0.0060 atm

100 °C

FIGURE 1.7 Schematic phase diagram separating solid, liquid, and vapor phases of water,
showing triple point (A), critical point (C), and melting and boiling points at atmospheric
pressure.

conversely the variable composition of each phase produced additional degrees
of freedom. The phase rule states that nF is two plus the number of components
present beyond one (nC − 1), and reduced by the number of constraints, which is
equal to the number of phases present, less one (nP − 1),

nF = 2 + (nC − 1) − (nP − 1) = 2 + nC − nP.

We will not go into the phase rule or the process of constructing phase diagrams
here in detail (any text on Physical Chemistry will treat this).

Typically, in biophysics, the phases contain mixtures of components. If two
phases are in equilibrium, the chemical potentials of each component, μj , must be
the same in each phase, and, of course, these now also depend on the concentrations
of all components,

μj,A(T , P, {Ni,A}) = μj,B(T , P, {Ni,B}) (1.62)

For a two-component system, three independent variables define the state of the sys-
tem (T , P , X1 = 1–X2). If we fix P , the condition of phase equilibrium (Eq. 1.62)
establishes a relationship between T , X1,A, and X1,B that defines coexistence lines
of a temperature-composition phase diagram.

The most commonly encountered phases in biophysics are vapor and dilute aque-
ous solution; with the exception of ice crystals, pure solid phases are uncommon.
Of great importance is the phospholipid lamellar (bilayer) phase that provides the
essential structure of biological membranes that delimit and compartmentalize the
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cell. This phase self-assembles in water because water is largely excluded from the
lipid, and the lipid is very poorly soluble in water. However, solutes of medium
polarity can and do partition between the aqueous and lipid lamellar phases; the
ability to equilibrate between bilayers and aqueous phases is thought to be the basis
of activity of some anesthetics. Equilibration of immiscible liquids produces two
liquid phases, each of which consists predominantly of one of the components,
with a small admixture of the other (e.g., ether and water). Typical for macro-
molecular solutes is coexistence of a solvent-rich phase with a solute-rich phase.
Examples include precipitation of proteins by addition of a poor solvent component
and formation of protein crystals from supersaturated mother liquor.

1.7 CHEMICAL EQUILIBRIA

When a chemical reaction takes place, the amounts of the reactants decrease and
the amounts of the products increase. For a reaction having reactants with stoi-
chiometries νi, a small change in the extent of reaction (represented by δs) leads to
changes in the amounts of each of the components present in the reaction mixture

δNi = νiδs (1.63)

For example,

A + 2B ↔ 2C

νA = −1, νB = −2, νC = +2. (1.64)

Whenever a reaction has proceeded to equilibrium (at constant T and P ), a further
backward or forward reaction must produce an increase in the Gibbs free energy,
that is, G is at a minimum with respect to s.

∂G

∂s
=

∂
∑

Niμi

∂s
= 0

⇒
∑

νiμi = 0 (1.65)

This relationship can also be obtained from the Gibbs–Duhem equation.
Recalling that the chemical potential of any substance in solution is related to

the activity via Eq. 1.55, we have∑
νiμi =

∑
νiμ

◦
i + kBT

∑
(νi ln ai) = 0 (1.66)

This condition for equilibrium can be rewritten as∏
i

ai
νi = KP

−kBT ln KP =
∑

i

νiμ
◦
i . (1.67)
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This defines KP , the equilibrium constant at constant P in terms of the standard
chemical potentials of the reactants and the stoichiometry of the reaction. In the
case of the above-mentioned simple example this becomes

KP = exp[−(2μ
◦
C − μ

◦
A − 2μ

◦
B)/kBT ] =

(
aC

2

aAaB
2

)
eq

. (1.68)

For an ideal solution, the activities can be replaced by concentrations.
It is common to write

−kBT ln KP =
∑

i

νiμ
◦
i = �G

◦
, (1.69)

where �G◦ is the standard free energy change for the reaction. Formally, this
represents the free energy change when each of the reactants is taken from, and
each of the products is placed in a solution in which its activity is equal to 1. For an
ideal solution, these solutions have concentration equal to 1. As noted previously,
the standard state represented by μo

i is not pure reactant i, but is an imaginary
state in which each component is surrounded only by the solvent (see discussion
of Henry’s Law). In many biophysics publications, standard free energy changes
are (alas) reported as �G , with omission of the superscript.19

When a chemical equilibrium is written as in Eq. 1.63, there is no clear dis-
tinction between reactants and products. By virtue of the Second Law, a chemical
equilibrium will favor that side of the equation having lower free energy, and in
a chemical reaction this would be the product side, with the other side, of higher
free energy, then containing the reactants. Nevertheless, many important metabolic
reactions seemingly proceed from reactants to products of higher free energy. How-
ever, upon closer study this is found to never be the case, as such an unfavorable
reaction is always coupled to another reaction that is very favorable. Say, we have
a synthesis of a compound AB, from reactants A and B,

A + B AB (1.70)

that is unfavorable (as indicated by the longer arrow pointing to the left). Then,
either this reaction can proceed in two (or more) favorable steps, in which first one
(or more) reactants is converted to a different form

A + XY AX + Y

AX + B AB + X, (1.71)

or, the favorable and unfavorable reactions may be directly coupled in a single
reaction, as in

A + XY + B AB + X + Y. (1.72)

In both cases, the breakdown of one compound (XY) “produces” the free energy
(and more) needed for the biosynthesis of the other (AB). Compounds such as
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XY are called high energy compounds; a much encountered example is adenosine
triphosphate (breaking down to adenosine diphosphate and phosphate ion, or to
adenosine monophosphate and pyrophosphate ion).

1.8 TEMPERATURE DEPENDENCE OF CHEMICAL EQUILIBRIA:
THE VAN’T HOFF EQUATION

As the standard free energy of a reaction can be found from the equilibrium con-
stant, the enthalpy, which is related to the temperature dependence of the free
energy by Eq. 1.30, can be found from the temperature dependence of the equilib-
rium constant as

�H o = ∂[�Go/T ]

∂[1/T ]
= −kB

∂ ln KP

∂[1/T ]
= kBT 2 ∂ ln KP

∂T
(1.73)

This is the van ’t Hoff equation. It states quantitatively the common observation that
“an endothermic equilibrium (�H

◦
> 0) shifts to the right” when the temperature

is raised.

1.9 MICROCALORIMETRY

A classical approach to measuring thermodynamic functions is to use a calorimeter
(a “heat meter”). It is easy to accurately supply energy in the form of heat input
to a sample by passing an electric current through a heating element embedded in
the sample, and thereby measure the specific heat, CV , by monitoring the resultant
change in temperature. Two types of sensitive microcalorimeters are available, a
scanning type, in which the temperature is varied over an interval by continuous
heating, and a mixing type, in which successive aliquots of reactant are added
to the sample. Scanning microcalorimetric studies of proteins were pioneered by
J. Sturtevant; subsequently, much work has been done with instruments developed
by J. Brandts in the United States. and by P. Privalov in the (then) Soviet Union;
elements of both these instruments have been incorporated in commercially avail-
able instruments. We describe here both scanning and mixing type instruments,
according to one particular design strategy.

A differential scanning calorimeter is one in which a sample (e.g., protein plus
buffer) and a control (only buffer) are isolated as much as possible from the envi-
ronment and from each other. The instrument is surrounded by a water bath that
tracks as closely as possible the temperature of the samples, in order to suppress
heat flow between reservoir and sample (“pseudo-adiabatic”). The reservoir is grad-
ually heated and the temperature differences between the sample (�T1) and the
buffer (�T2) ampoules and the reservoir are measured (Fig. 1.8). A feedback cir-
cuit causes electrical heaters in contact with each ampoule to provide enough heat
so as to keep �T1 ≈ �T2 ≈ 0. The block is designed so that heat cannot flow
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FIGURE 1.8 Diagram of a pseudo-adiabatic differential scanning calorimeter. The bath
is heated at a steady rate. The cells are isolated from the bath; the temperature in each
cell is sensed separately, and feedback mechanisms supply current to maintain each cell at
the temperature of the bath. The difference in current supplied to the two cell heaters is
recorded.

between the sample and reference, so that any heat that is produced (exothermic
change) or absorbed (endothermic change) by the sample relative to the buffer ref-
erence is recorded as a difference in electrical heat energy supplied to the sample
and reference ampoules ([I 2Rt]1 − [I 2Rt]2), as measured with a sensitive amme-
ter and recorded as a function of temperature. A temperature-induced transition or
change in the sample ampoule is thus recorded as a difference in heat flow into the
sample versus the reference. Sophisticated modern calorimeters can measure very
small differences in heat flow (∼10 ncal/s).

By measuring the heat required to take a sample relative to buffer from (nearly)
0 K to higher temperature by heating one can obtain values of CV or CP as a
function of temperature. This can be integrated to give both internal energy and
entropy changes; see Eqs. 1.36 and 1.37.

If the volume of the system is held constant during the heating process so that no
PV work is done on or by the system, the procedure yields CV , S, U , and A. If the
pressure is held constant, and the volume changes during heating, the system will
do work (P�V ) on its surroundings, thus reducing the change in system internal
energy as a result of input of the same amount of heat. In this case, CP , S, H , and
G are the state functions obtained from the calorimetric measurement.

The enthalpy of a temperature-induced transition can be measured with such
an instrument, provided that the enthalpy of the transition, and therefore the tem-
perature dependence of the equilibrium constant (Eq. 1.73), is sufficiently large.
This will be discussed in Chapter 16 where we describe how microcalorimetry is
applied to study the folding–unfolding transitions of proteins.

A calorimeter can also be set up as a mixing calorimeter to measure reaction
enthalpies. Figure 1.9 shows an isothermal titration calorimeter used for this
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FIGURE 1.9 Diagram of an isothermal titration calorimeter (design principle similar to
Fig. 1.8). At the start, sample (B) and reference (A) have identical contents. Titrant is added
in small aliquots to the sample cell, and current is supplied to the reference to maintain the
same temperatures in the two cells. (If the reaction is endothermic, heating is applied to
cell B.) If necessary, the temperature of the bath can also be adjusted.

purpose. A sample solution is placed in an ampoule and stirred continually with
a very precise stirring device so that the heat of stirring can be carefully recorded.
Another solution (titrant) is added from a chamber at the same temperature as the
sample. With each addition of titrant, one adds I 2Rt heat to the reference ampoule
(also containing sample solution) to keep the temperatures of the sample and
reference identical (if the reaction is exothermic. In the case of an endothermic
reaction, the compensating heat is supplied to the sample). An example of data
from such an experiment is discussed in Section 8.3 (Fig. 8.7).

Note that calorimetric enthalpy and heat capacity are intrinsically determined
per unit of sample mass (e.g., gram), while enthalpy and heat capacity derived from
the temperature dependence of equilibrium constants via the van’t Hoff equation
are determined per mole.

NOTES

1. As a convention in this book, a change of a thermodynamic function, such as Ub − Ua , is
denoted either as �Ua→b or as �Uab . The corresponding notation for equilibrium con-
stants is Kab = Ka→b = cb/ca , and similarly for rate constants kab or ka→b represents
the forward rate constant in the reaction a → b.

2. Boltzmann’s constant, kB is expressed in units of energy/(temperature × amount of
material). The value of kB depends on the choice of units for any of these three quantities.
If the amount of material, N , is expressed in number of molecules versus number of
moles, the values of kB differ by a factor of Avogadro’s number, NA. At one time, we
distinguished between these two cases by assigning the name Boltzmann’s constant (kB)
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to the value per molecule, and the name gas constant (R = NAkB) to the value per mol.
In modern physics, the convention is to refer only to kB, with the units being understood
from the context in which it is used.

3. Also called, respectively, quasi-static and real processes.

4. Complete discussions of the Carnot cycle and how it leads to the conclusion that S is
a state function can be found in advanced texts on thermodynamics.

5. A “heat reservoir” is a body at constant volume that does no work but simply provides
or absorbs heat. The heat taken up or given off is thus equal to its change in internal
energy (�U ) and is thus a state function of the reservoir.

6. Because the dependence of U on T is the same at both pressures.

7. A (real) adiabatic process can be accomplished as an isothermal real process followed
by exchange of heat with a bath at a different temperature. The entropy of the universe
rises in both steps.

8. If an ideal gas expands without performing work (when the volume is suddenly
increased), the ability to perform work decreases, so that A decreases. But no work is
done, so the energy U is constant. In this irreversible process the entropy has decreased
but no heat has been exchanged.

9. Other types of work include electrical work (e�Eel), volume change of a gel (��V ),
and mechanical work including elastic extension (F�L), where e = charge, Eel =
electrostatic potential, � = osmotic pressure, F = force, L = distance or length.

10. For example, to derive the expression for dA, the definition A = U –TS
gives dA = dU –TdS –SdT . Then, substitution for dU according to the
fundamental statement of the first and second laws, Eq. (1.13) gives
dA = dU –TdS –SdT ≤ TdS –PdV –∂w–TdS –SdT , or dA ≤ –SdT –PdV –∂w.

11. However, for an ideal gas G = A + PV = A + N kBT .

12. In this chapter, the symbol N represents number of molecules, but can equally well be
taken to represent number of mols.

13. This is derived as ∂(A/T )/∂(1/T ) = A + (1/T )∂A/∂(1/T ) = A − T ∂A/∂T = A +
TS = U , where we have substituted ∂A/∂T from Eq. (1.23).

14. The proportions of different components and P and T are held constant, so that the μi
are constant during the integration.

15. J. Willard Gibbs was a great American scientist, professor at Yale, whose name is
immortalized in the term Gibbs free energy, G.

16. Unless specifically stated otherwise, the choice of standard state is the pure gaseous,
liquid, or crystalline solid state of a compound at T = 25◦C and pressure P = 1 bar =
100 kPa = 105 N M–2 ≈ 1.013 atm.

17. It is usual to number the components of a mixture 1, 2, . . . , i; if one of the components
is in great excess, that is, a solvent, then it is given index 0.

18. Colligative properties include depression of freezing point and elevation of boiling point.

19. Note that ln KP is properly defined only if KP is unitless, which is the special case in
which the number of molecules on each side of the reaction is equal (i.e., if

∑
νi = 0),

or, in the general case, if the activities are expressed in mole fraction units. When
an equilibrium constant is given in concentration units other than mole fraction, and∑

νi �= 0, it is ideally first converted to mole fraction units before one calculates �G◦

(something that admittedly is not always done).


