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Module I
Nonrelativistic Quantum Mechanics
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1
Basic Concepts of Quantum Mechanics

1.1 Probability interpretation of the wave function

In quantum mechanics the state of some particle moving in time and space is described by a (complex)
wave function ψ(r, t) of the space coordinate r (= ix + jy + kz) and time coordinate t. The state of the
particle is “described” by ψ(r, t) in the sense that knowledge of the precise form of this function enables us to
make precise predictions of the probabilities of the various possible outcomes of any given type of physical
measurement on the particle. In particular, in a position measurement the probability of finding the particle
to be in an infinitesimal box of volume dxdydz ≡ d3 r with centre at r at time t is

P (r, t)dxdydz = ψ∗(r, t)ψ(r, t)dxdydz, (1.1)

where ψ∗(r, t) is the complex conjugate of the function ψ(r, t). Equation (1.1) may be written alternatively
as

P (r, t)d3 r = |ψ(r, t)|2 d3 r. (1.2)

Clearly, since any probability must be a dimensionless number, and d3 r has the dimensions of volume [L]3,
the quantity P (r, t) is a probability density, with dimensions [L]−3.

The wave function ψ(r, t) is also known as the probability amplitude, and has (in three-dimensional
space) dimensions [L]−3/2.

Since the particle must be found somewhere in space, the continuous sum (i.e., integral) of the probabilities
(1.2) over infinitesimal boxes filling all space must be equal to unity:

∫

all space

|ψ |2 d3 r = 1. (1.3)

A wave function ψ satisfying (1.3) is said to be normalized.
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4 1 Basic Concepts of Quantum Mechanics

1.2 States of definite energy and states of definite momentum

If a particle is in a state of definite energy E, the corresponding wave function ψ(r, t) can be separated as a
product of a space-dependent factor φ(r) and a time-dependent factor that takes the form of a pure harmonic
wave e−iωt [i.e., there is only one Fourier component (one frequency) in the Fourier decomposition of the
time dependence], where the frequency ω is given by ω = E/� (the Einstein relation E = �ω), in which �

(= 1.055 × 10−34 Js) is Planck’s constant h divided by 2π .
Thus, the time dependence of the wave function of a particle (or, indeed, a system of many particles) with

definite energy E is always of the form e−iEt/�.
If a particle is in a state of definite momentum p = ipx + jpy + kpz (so that the energy is also well defined

and the above-mentioned factorization occurs), the space-dependent part φ(r) of the corresponding wave
function ψ(r, t) is a harmonic plane wave eik·r [i.e., there is only one Fourier component (one wave vector
k) in its Fourier decomposition], where the wave vector k = ikx + jky + kkz is related to the momentum p
by k = p/�, i.e., kx = px/�, and so on. [This is the well known de Broglie relation p = � k, which, for the
magnitudes, gives

p ≡ | p| = � | k| ≡ �k = h

2π
· 2π

l
= h

l
,

where l is the wavelength associated with wave number k.]
Thus, the space dependence of the wave function of a particle with definite momentum p is the plane wave

φ p(r) = ei p· r/� . (1.4)

[To see the reason for the designation “plane wave”, we choose the z axis to lie along the direction of the
momentum p. Then (1.4) takes the form eipz/�, which clearly has the same phase (and so takes the same
value) over any surface z = const (a plane).]

Successive planes on which the function (1.4) has the same phase are separated by a distance equal to the
wavelength l and are called wave fronts.

To understand the motion of wave fronts, consider a particle of definite energy E and definite momentum
p (along the z axis). Then the corresponding wave function is

ψE, p(t) ∝ ei(pz−Et)/�,

and the equation of motion of a wave front, that is, of a plane z = zP with given phase of the wave function,
is found by equating the phase of ψE, p(t) to a constant:

pzP − Et = const,

that is,

zP = zP(t) = E

p
t + const ≡ vPt + const,

Thus, a wave front (surface of constant phase) moves with phase velocity vP = E/p (> 0) along the
positive z axis, that is, in the direction of the momentum p.
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1.3 Observables and operators

With every physically measurable quantity (“observable”) A we can associate an operator Â, such that, if a
particle is in a state with a well defined value a of A [we denote the wave function corresponding to this state
by ψa(r, t)], then

Âψa(r, t) = aψa(r, t). (1.5)

Thus, the action of the operator Â on the function ψa(r, t) is to reproduce precisely the same function of r
and t but scaled by a constant factor a equal to the well defined value of A in this state. We say that ψa(r, t)
is an eigenfunction of the operator Â, and a is the corresponding eigenvalue of the operator Â.

1.4 Examples of operators

As follows from section 1.2, the state of a particle with definite energy E and definite momentum p is described
by a wave function of the form

ψE, p(r, t) ∝ ei(k· r−ωt) = ei(p· r−Et)/�.

Accordingly [see (1.5)], there must exist an energy operator Ê and a momentum operator p̂ such that

Êei(p· r−Et)/� = Eei(p· r−Et)/�

and

p̂ei(p· r−Et)/� = pei(p· r−Et)/�.

The differential operators

Ê = i�
∂

∂t
(1.6)

and

p̂ = −i�

(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
≡ −i�∇ (1.7)

clearly have the required properties (if we bear in mind that p · r = pxx + pyy + pzz).
Just as we have found the energy and momentum operators by considering wave functions corresponding

to definite energy and definite momentum, we can find the position operator by considering a wave function
corresponding to definite position. We restrict ourselves, for the moment, to motion confined to one dimension.
Then a particle with (at some given time) a definite position x = x1 will be described by a wave function with
the following spatial dependence (at that time):

φx1 (x) = δ(x − x1),
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where δ(x − x1) is the Dirac delta-function, equal to zero when x �= x1 and with the properties∫
f (x)δ(x − x1)dx = f (x1) and

∫
δ(x − x1)dx = 1,

(provided that the range of integration includes the point x = x1). We need an operator x̂ with the following
effect:

x̂φx1 (x) = x1φx1 (x),

that is,

x̂δ(x − x1) = x1δ(x − x1). (1.8)

The purely multiplicative operator

x̂ = x

has the required property, since (1.8) becomes

xδ(x − x1) = x1δ(x − x1),

which is clearly true both for x �= x1 and for x = x1. Similarly, we have ŷ = y and ẑ = z, and so the operator
of the three-dimensional position vector r is r̂ = r.

The operator corresponding to a general observable A(r, p) is obtained by the prescription

A → Â = A( r̂, p̂) (1.9)

with

r̂ = r and p̂ = −i�∇ . (1.10)

For example, the angular momentum, about the coordinate origin, of a particle at a vector distance r from the
origin and with momentum p is given classically by the vector product L = r × p, and the corresponding
operator L̂ is given by:

L̂ = r̂ × p̂ = −i� r × ∇ . (1.11)

1.5 The time-dependent Schrödinger equation

The total energy E of a particle at a given point r at time t is given by the sum of the kinetic energy T(r, t) and
potential energy V(r, t):

E = E(r, t) = T (r, t) + V (r, t)

= p · p
2m

+ V (r, t) ≡ p2

2m
+ V (r, t), (1.12)

where p = p(r, t) is the momentum of the particle (of mass m) at the point r at time t.
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We make the operator replacements (section 1.4):

E → Ê = i�
∂

∂t
,

p → p̂ = −i�∇ (so that p2 ≡ p · p → −�
2∇ · ∇ ≡ −�

2∇2), (1.13)

V (r, t) → V̂ = V ( r̂, t) = V (r, t).

Since the relation E = T + V is a physical requirement, a physically acceptable wave function ψ(r, t) must
satisfy the equation Êψ = T̂ ψ + V̂ ψ , that is,

i�
∂ψ(r, t)

∂t
= − �

2

2m
∇2

ψ(r, t) + V (r, t)ψ(r, t). (1.14)

This is the time-dependent Schrödinger equation, and is (for the nonrelativistic case and in three dimensions)
a completely general differential equation (first order in time and second order in space) for the evolution of
the wave function ψ(r, t) of a particle whose energy may or may not be well defined, moving in a potential
that may or may not be varying in time.

1.6 Stationary states and the time-independent Schrödinger equation

We now specialize to the case when the particle is in a state with definite energy E. For this case (section 1.2)
the wave function is always of the form

ψ(r, t) = φ(r)e−iEt/�, (1.15)

where φ(r) specifies the space-dependent part of the function. Because, from (1.15), |ψ(r, t)|2 = |φ(r)|2,
which is independent of the time t, such a state is called a stationary state. When (1.15) is substituted into the
time-dependent Schrödinger equation (1.14) the left-hand side becomes Eψ(r, t), and so, after cancellation
of the factor e−iEt/�, we obtain

− �
2

2m
∇2

φ(r) + V (r)φ(r) = Eφ(r), (1.16)

where we have also replaced V(r, t) by V(r), since for a particle to be in a state of well-defined energy E it
is a necessary (though not sufficient) condition that the potential-energy function be time independent. [This
is clearly seen from the fact that equation (1.16) with different potentials Vt (r) ≡ V (r, t) at different times
t will have different solutions φt (r) with different energy eigenvalues Et , contradicting the assumption of a
definite energy E.] The equation (1.16) is the time-independent Schrödinger equation, and is an eigenvalue
equation [see (1.5)] of the form

Ĥφ(r) = Eφ(r) (1.17)

with

Ĥ = − �
2

2m
∇2 + V (r) (1.18)

(the hamiltonian operator, or hamiltonian).
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1.7 Eigenvalue spectra and the results of measurements

The set of all possible eigenvalues a of an operator Â is called the spectrum of the operator Â. A measurement
of A always yields a value belonging to this spectrum.

Two cases are possible:
(a) The wave function ψ(r, t) describing the state of the particle is an eigenfunction ψi(r, t) of Â, that is,

Âψi(r, t) = aiψi(r, t). (1.19)

Then the result of measuring A will certainly be ai .
(b) The wave function ψ(r, t) describing the state of the particle is not an eigenfunction of Â; that is,

the action of Â on ψ(r, t) gives a function that is not simply a scaled version of ψ(r, t). But since the
eigenfunctions ψi(r, t) of Â form a complete set, in the sense that any normalized function can be expanded
in terms of them, we may write ψ(r, t) as such an expansion:

ψ(r, t) =
∑

i

ciψi(r, t). (1.20)

Then a measurement of A can yield any eigenvalue ai for which the corresponding eigenfunction appears in
the sum (1.20) with nonzero weight ci . For example, a measurement of A yields the result aj with probability∣∣cj

∣∣2
.

1.8 Hermitian operators

The operators corresponding to all physical observables are hermitian.

Definition. An operator Â is said to be hermitian if, for any pair of normalizable wave functions ψ(r, t)
and χ (r, t), the relation

∫
χ∗Âψd3 r =

∫
(Âχ )∗ψd3 r (1.21)

always holds.

The eigenvalues of hermitian operators are real. This is proved as follows. Choose χ and ψ to be the same
eigenfunction ψi of the operator Â, with corresponding eigenvalue ai ; that is, choose

χ = ψ = ψi (Âψi = aiψi).

Then (1.21) becomes

ai

∫
ψ∗

i ψid
3 r = a∗

i

∫
ψ∗

i ψid
3 r,

that is, ai = a∗
i , or, in other words, the eigenvalue ai (and hence any eigenvalue of Â) is real.
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Now choose χ and ψ to be two different eigenfunctions of Â: let χ be ψi with eigenvalue ai , and let ψ be
ψj with eigenvalue aj . Then (1.21) becomes

∫
ψ∗

i Âψj d3 r =
∫

(Âψi)
∗ψj d3 r,

whence

aj

∫
ψ∗

i ψj d3 r = a∗
i

∫
ψ∗

i ψj d3 r.

But a∗
i = ai and, since aj �= ai , we have:

∫
ψ∗

i ψj d3 r = 0. (1.22)

This result states that eigenfunctions of a hermitian operator that correspond to different eigenvalues of that
operator are orthogonal.

We now use the idea of orthogonality to prove an inequality

∣∣∣∣
∫

φ∗χd3 r

∣∣∣∣
2

≤
(∫

φ∗φd3 r
) (∫

χ∗χd3 r
)

(1.23)

that will be used in section 1.11 to prove the general uncertainty relation. The case when the functions
φ and χ are the same function clearly corresponds to the equality in (1.23). The inequality (1.23), if true,
will be true for any normalization of φ and χ , since when we multiply φ and χ by arbitrary factors these
factors cancel in the inequality (1.23). Therefore, for convenience in examining the left-hand side of (1.23),
we choose unit normalization for φ and χ . But if in the left-hand side |∫ φ∗χd3 r|2 the function χ contains
not only a part proportional to φ but also a part proportional to a normalized function ρ orthogonal to φ, so
that χ = aφ + bρ, with |a|2 + |b|2 = 1 (note that then, in particular, |a| ≤ 1), we have:

∣∣∣∣
∫

φ∗χd3 r

∣∣∣∣ =
∣∣∣∣
∫

φ∗(aφ + bρ)d3 r

∣∣∣∣ = |a|
∫

φ∗φd3 r ≤
∫

φ∗φd3 r. (1.24)

Similarly, expressing φ in this case as φ = cχ + dη, with the function η orthogonal to χ and with both χ

and η normalized to unity (so that |c|2 + |d|2 = 1 and, in particular, |c| ≤ 1), we have

∣∣∣∣
∫

φ∗χd3 r

∣∣∣∣ =
∣∣∣∣
∫

χ∗φd3 r

∣∣∣∣ =
∣∣∣∣
∫

χ∗(cχ + dη)d3 r

∣∣∣∣ = |c|
∫

χ∗χd3 r ≤
∫

χ∗χd3 r, (1.25)

so that, taking the product of (1.24) and (1.25), we obtain (1.23).



JWST256-c01 JWST256-Shepherd Printer: Yet to Come December 11, 2012 7:1 Trim: 246mm × 189mm

10 1 Basic Concepts of Quantum Mechanics

1.9 Expectation values of observables

The expectation value of an observable A in a particle state described by a wave function ψ(r, t) is defined
as the average result of N (→ ∞) measurements of A, all carried out on a particle in the same state ψ(r, t).
The prescription for calculating the expectation value when the (normalized) function ψ(r, t) is known is

〈A〉ψ(r,t) ≡
∫

ψ∗(r, t)Âψ(r, t)d3r. (1.26)

To show that this prescription is equivalent to the definition of the expectation value as an average, we
substitute the expansion (1.20) into (1.26) and use the fact that the eigenfunctions ψi(r, t) of Â are normalized
and mutually orthogonal (an orthonormal set). (We showed in section 1.8 that eigenfunctions belonging to
different eigenvalues of a hermitian operator are always mutually orthogonal. Also, although eigenfunctions
belonging to the same eigenvalue need not be mutually orthogonal, it is always possible to form linear
combinations of them that are.) The result is

〈A〉ψ(r,t) =
∑

i

|ci |2 ai. (1.27)

This relation asserts (in precise accord with its definition as an average) that the expectation value of A in the
state ψ(r, t) is the sum of all possible outcome ai , each weighted by the probability |ci |2 that in this state a
measurement of A will yield the result ai .

1.10 Commuting observables and simultaneous observability

If the operators corresponding to two observables A and B have a common, complete set of eigenfunctions ψij

(i labels the corresponding eigenvalues ai of Â, and j labels the corresponding eigenvalues bj of B̂), we say
that A and B can be simultaneously well defined, or, equivalently, that they are simultaneously observable.

The commutator [Â, B̂] ≡ ÂB̂ − B̂Â of any pair of simultaneously well-definable observables A and B is
identically zero, in the sense that its action on an arbitrary normalizable function ψ gives zero. To show this,
we use the fact that any such function ψ can be written as a linear combination of the common eigenfunctions
ψij of Â and B̂, so that

[Â, B̂]ψ = [Â, B̂]
∑
i,j

cijψij =
∑
i,j

cij[Â, B̂]ψij = 0, (1.28)

which follows from the fact that

[Â, B̂]ψij ≡ ÂB̂ψij − B̂Âψij = Âbjψij − B̂aiψij

= bj Âψij − aiB̂ψij = bjaiψij − aibjψij = 0.

The converse is clearly also true, in that if two operators Â and B̂ commute, that is, [Â, B̂] = 0, they can
be simultaneously well defined.
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1.11 Noncommuting observables and the uncertainty principle

If [Â, B̂] �= 0, the observables A and B cannot be simultaneously well defined. We define the uncertainty in
A in the state ψ by

(�A)ψ =
√〈(

Â − 〈
Â

〉
ψ

)2
〉
ψ

(1.29)

(which is clearly the standard deviation of A, i.e., the root mean square deviation of A from the mean of A,
where the “mean” here is the expectation value in the state ψ). Then, as is proved below, the product of the
uncertainties in two observables A and B is given by the inequality (general uncertainty relation)

(�A)ψ (�B)ψ ≥ 1

2

∣∣∣〈[Â, B̂]
〉
ψ

∣∣∣ . (1.30)

Proof: With the definition (1.29) in mind, we set φ ≡ (Â − 〈Â〉ψ )ψ and χ ≡ (B̂ − 〈B̂〉ψ )ψ , so that

∫
φ∗φd3 r =

∫ [(
Â − 〈

Â
〉
ψ

)
ψ

]∗ (
Â − 〈

Â
〉
ψ

)
ψd3 r

=
∫

ψ∗
(
Â − 〈

Â
〉
ψ

) (
Â − 〈

Â
〉
ψ

)
ψd3 r = (�A)ψ

2,

where we have used the fact that Â is a hermitian operator [see (1.21)]. Similarly,
∫

χ∗χd3 r = (�B)ψ 2. Then
the inequality (1.23) becomes:

(�A)ψ
2(�B)ψ

2 =
(∫

φ∗φd3 r
)(∫

χ∗χd3 r
)

≥
∣∣∣∣
∫

φ∗χd3 r

∣∣∣∣
2

=
∣∣∣∣Re

(∫
φ∗χd3 r

)∣∣∣∣
2

+
∣∣∣∣Im

(∫
φ∗χd3 r

)∣∣∣∣
2

≥
∣∣∣∣Im

(∫
φ∗χd3 r

)∣∣∣∣
2

=
∣∣∣∣
∫

φ∗χd3 r − ∫
χ∗φd3 r

2i

∣∣∣∣
2

= 1

4

∣∣∣∣
∫ ((

Â − 〈
Â

〉
ψ

)
ψ

)∗ (
B̂ − 〈

B̂
〉
ψ

)
ψd3 r −

∫ ((
B̂ − 〈

B̂
〉
ψ

)
ψ

)∗ (
Â − 〈

Â
〉
ψ

)
ψd3 r

∣∣∣∣
2

= 1

4

∣∣∣∣
∫

ψ∗
(
Â − 〈

Â
〉
ψ

) (
B̂ − 〈

B̂
〉
ψ

)
ψd3 r −

∫
ψ∗

(
B̂ − 〈

B̂
〉
ψ

) (
Â − 〈

Â
〉
ψ

)
ψd3 r

∣∣∣∣
2

,

where we have again used the fact that that Â and B̂ are hermitian operators. Thus, we have

(�A)ψ
2(�B)ψ

2 ≥ 1

4

∣∣∣〈ÂB̂
〉
ψ

− 2
〈
Â

〉
ψ

〈
B̂

〉
ψ

+ 〈
Â

〉
ψ

〈
B̂

〉
ψ

−
(〈

B̂Â
〉
ψ

− 2
〈
B̂

〉
ψ

〈
Â

〉
ψ

+ 〈
B̂

〉
ψ

〈
Â

〉
ψ

)∣∣∣2

= 1

4

∣∣∣〈ÂB̂ − B̂Â
〉
ψ

∣∣∣2
≡ 1

4

∣∣∣〈[Â, B̂]
〉
ψ

∣∣∣2
,

from which (1.30 follows). For example, when Â = x̂ = x and B̂ = p̂x = −i�∂/∂x, we have [x̂, p̂x]ψ =
−i�

(
x

∂ψ

∂x
− ∂

∂x
(xψ)

)
= i�ψ . From this we see that [x̂, p̂x] = i�, and so (1.30) yields (�x)ψ (�px)ψ ≥ �

2 ,

which asserts that for a particle in one-dimensional motion no state ψ exists for which the product of the
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uncertainties in the position and momentum is smaller than �/2. In fact, the equality (�x)ψ (�px)ψ = �

2
(corresponding to the smallest possible product of the position and momentum uncertainties) is found in the
case of a one-dimensional harmonic oscillator in its ground state, as can be seen by substituting the gaussian
space-dependent part φ(x) ∝ exp(−αx2) of the latter [see (3.36)] into the expressions for (�x)ψ and (�px)ψ.

1.12 Time dependence of expectation values

Using the expression (1.26) for the expectation value of an observable A, and also the time-dependent
Schrödinger equation (1.14) in the form

i�
∂ψ(r, t)

∂t
= Ĥψ(r, t) (1.31)

(together with the complex conjugate of this equation), we can immediately obtain an expression for the rate
of change of the expectation value with time:

i�
d

dt
〈A〉ψ = 〈

[Â, Ĥ ]
〉
ψ

+ i�
〈
∂Â/∂t

〉
ψ

, (1.32)

which is known as Ehrenfest’s theorem.

1.13 The probability-current density

We now use the time-dependent Schrödinger equation (1.14) to find the time rate of change of the probability
density P (r, t) = ψ∗(r, t)ψ(r, t). We find

∂P (r, t)
∂t

+ ∇ · j(r, t) = 0 (1.33)

(the continuity equation for the probability density). Here,

j = − i�

2m

(
ψ∗∇ψ − (∇ψ∗)ψ

)
(1.34)

is the probability-current density.

1.14 The general form of wave functions

In this section, for simplicity, we consider the case of one-dimensional motion of a particle of mass m and
potential energy V(x).

The space part φE(x) of the wave function of a stationary state with energy E satisfies the time-independent
Schrödinger equation:

− �
2

2m

d2φE

dx2
+ V (x)φE = EφE, (1.35)
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that is

1

φE

d2φE

dx2
= 2m

�2
[V (x) − E].

Case (a): Consider points x at which E > V (x), that is, points at which the kinetic energy T(x) is positive,
corresponding to a classically allowed situation. At such points,

1

φE

d2φE

dx2
< 0,

that is, φE(x) is concave to the x axis.
Case (b): At points x at which E < V (x), that is, points at which the kinetic energy T(x) is negative,

corresponding to a classically forbidden situation, we have:

1

φE

d2φE

dx2
> 0,

that is, φE(x) is convex to the x axis.
These features of φE(x) are made clear in figure 1.1, in which, as a convention, we plot schematically the

real part (or it could be the imaginary part) of φE(x) at the level of E.
The kinetic energy (and hence the momentum p = �k) is greatest at the deepest part of the well (the centre,

in this case); that is, k is largest, and hence the “local wavelength” l = 2π/k is shortest, near the centre of
the well.

Similarly, since higher values of E correspond to higher values of the kinetic energy T (and hence of the
momentum p) at all points, the wave functions of the higher-energy states have more oscillations (and hence
more nodes).

Suppose now that the potential energy V is piecewise-constant in space, for example, as in the case of the
“potential barrier” shown in figure 1.2.

In regions in which V is constant and smaller than E (classically allowed regions, such as the regions to
the left and to the right of the barrier in figure 1.2), the space-dependent part of the wave function always has
the oscillatory form

φE(x) = Aeikx + Be−ikx, (1.36)

E

V (x)

V (x)

x

x

Re E (x)φ

Figure 1.1 Real or imaginary part (schematic) of the space part φE (x ) of the wave function of a particle of
definite energy E moving in a potential V(x).
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E

x

V (x)

Figure 1.2 A “potential barrier” V(x). The dashed line denotes the level of the total energy E of the particle.

where k is found from the relation

E − V = T = �
2k2

2m
,

in which V is the constant potential energy in the given region. Thus, the wave number k in (1.36) is given by

k =
[

2m

�2
(E − V )

]1/2

.

In regions in which V is constant and greater than E (classically forbidden regions, such as the region of the
barrier in figure 1.2), the space-dependent part of the wave function has the general form of an exponentially
increasing and an exponentially decreasing term:

φE(x) = Ceγ x + De−γ x, (1.37)

with

�
2γ 2

2m
= V − E,

where V is the constant potential energy in the given region. Thus, γ in (1.37) is given by

γ =
[

2m

�2
(V − E)

]1/2

.

To find the constants of the type A, B in the forms (1.36) or of the type C, D in the forms (1.37) in all the
regions of constant V, we impose the following requirements on the wave function φE(x):

(i) The function φE(x) is continuous.
(ii) The first derivative dφE(x)/dx is continuous [except at singularities or infinite discontinuities of V(x)].

(iii) The function φE(x) is normalized.

These conditions are, in fact, general physical requirements on the space part of the wave function of
a particle with a definite energy E. Moreover, it turns out that, in the general case, they cannot be met
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for arbitrary values of E, and the time-independent Schrödinger equation has solutions that satisfy these
requirements only if the energy E is specified to have a value belonging to a specified spectrum. In certain
regions of energy this spectrum may be discrete, and so the above requirements lead naturally to energy
quantization.

1.15 Angular momentum

The vector angular-momentum operator L̂ (1.11) has the following cartesian components:

L̂x = −i�

(
y

∂

∂z
− z

∂

∂y

)
= i�

(
sin ϕ

∂

∂θ
+ cot θ cos ϕ

∂

∂ϕ

)
,

L̂y = −i�

(
z

∂

∂x
− x

∂

∂z

)
= i�

(
− cos ϕ

∂

∂θ
+ cot θ sin ϕ

∂

∂ϕ

)
,

L̂z = −i�

(
x

∂

∂y
− y

∂

∂x

)
= −i�

∂

∂ϕ
,

and, therefore,

L̂2 = L̂2
x + L̂2

y + L̂2
z = −�

2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
. (1.38)

As will be proved in chapter 2, the eigenvalue spectrum of L̂2 is

0, 2�
2, 6�

2, 12�
2, 20�

2, . . . ,

that is,

l(l + 1)�2, with l = 0, 1, 2, 3, 4, . . . ,

and the eigenvalue spectrum of L̂z is

0,±�,±2�,±3�, . . . ,±l�,

that is,

m�, with m = 0,±1, ± 2, ± 3, . . . ,±l.

It is easily shown that [L̂2, L̂z] = 0, and so (see section 1.10) the operators L̂2 and L̂z have a set of common
eigenfunctions, labelled by the quantum numbers l and m [the spherical harmonics Ylm(θ, ϕ)]:

L̂2Ylm(θ, ϕ) = l(l + 1)�2Ylm(θ, ϕ),

L̂zYlm(θ, ϕ) = m�Ylm(θ, ϕ). (1.39)
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The spherical harmonics are given by the expression

Ylm(θ, ϕ) = NlmP m
l (cos θ )eimϕ, (1.40)

where the P m
l (cos θ ) are the associated Legendre functions, defined by

P m
l (w) = (

1 − w2
)|m|/2 d|m|Pl(w)

dw|m| (1.41)

[Pl(w) is a Legendre polynomial – see below], and the normalization constants Nlm are given by

Nlm = ε

[
2l + 1

4π
· (l − |m|)!

(l + |m|)!
] 1

2

, with ε =
{

(−1)m (m > 0)
1 (m ≤ 0)

The Pl(w) (l = 0, 1, 2, . . . ) are polynomials of order l (power series in w containing a finite number of
powers of w, the highest being wl), called Legendre polynomials, and are polynomial solutions of Legendre’s
equation

d

dw

[
(1 − w2)

d

dw
Pl(w)

]
+ l(l + 1)Pl(w) = 0.

The Pl(w) are defined on the interval |w| ≤ 1 and normalized by the requirement that

1∫

−1

Pl(w)Pl′ (w)dx = 2

2l + 1
δll′ .

The first few Legendre polynomials Pl(w) are

P0(w) = 1, P1(w) = w,P2(w) = 1

2

(
3w2 − 1)

)
, P3(w) = 1

2

(
5w3 − 3w

)
, · · ·

The polynomials Pl(w) have the parity of l, that is, they are even functions of w if the integer l is even, and
odd functions of w if l is odd.

Since

[L̂x, L̂y] = i�L̂z, [L̂y, L̂z] = i�Lx, [L̂z, L̂x] = i�L̂y, (1.42)

that is, since the components of L̂ do not commute with one another, only one of the components of L can be
well defined.
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1.16 Particle in a three-dimensional spherically symmetric potential

For motion in a three-dimensional spherically symmetric potential V(r) = V(r) the time-independent
Schrödinger equation for stationary states of energy E is [see (1.16)]

− �
2

2m
∇2

φ(r) + V (r)φ(r) = Eφ(r). (1.43)

In spherical polar coordinates this becomes

− �
2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂ϕ2

]
φ(r) + V (r)φ(r) = Eφ(r).

We now multiply this equation by −2mr2/�
2, try the substitution

φ(r) = φ(r, θ, ϕ) = R(r)Y (θ, ϕ),

and divide the resulting equation by φ = RY . The result is

1

R

d

dr

(
r2 dR

dr

)
+ 2mr2

�2
(E − V (r)) = − 1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

sin2 θ

∂2Y

∂ϕ2

]
. (1.44)

(Note that the first term on the left involves a total, not a partial, derivative with respect to r, since R depends
only on r.) Since the left-hand side is a function of r, and the right-hand side is a function of θ and ϕ, and yet
the two sides are equal, they must be equal to the same constant Λ. The right-hand side then becomes

−
[

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

sin2 θ

∂2Y

∂ϕ2

]
= ΛY. (1.45)

Comparison with (1.38) shows that this can be written as

L̂2

�2
Y = ΛY, or L̂2Y = Λ�

2Y.

This is none other than the first eigenvalue equation in (1.39), and so we can make the identifications

Λ = l(l + 1),

Y (θ, ϕ) = Ylm(θ, ϕ).

With this Λ the radial equation (obtained by setting the left-hand side of (1.44) equal to Λ) is, after division
by r2,

1

r2

d

dr

(
r2 dR

dr

)
+

[
2m

�2
(E − V (r)) − l(l + 1)

r2

]
R = 0. (1.46)
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1.17 The hydrogen-like atom

In the case of a hydrogen-like atom (i.e., one-electron atom), with nuclear charge Ze (Z is the number of protons
and e is the modulus of the electron charge –e) and nuclear mass mnuc, equation (1.46) describes the relative
motion of the electron–nucleus system if we identify r with the electron–nucleus distance r = |relec − rnuc|,
replace m by the reduced mass μ of the electron–nucleus system:

m = μ = melecmnuc

melec + mnuc
,

and set V(r) equal to the Coulomb potential energy of the electron–nucleus system:

V (r) = − Ze2

4πε0r
. (1.47)

The radial equation then has negative-energy (bound-state) solutions that satisfy the physical require-
ments of continuity, continuity of gradient (except at the singularity r = 0 of the Coulomb potential), and
normalizability only if E belongs to the spectrum of values

E = En = − 1

2n2
· Ze2

4πε0a0(Z)
, (1.48)

where the principal quantum number n = 1, 2, 3, . . . , and

a0(Z) = 4πε0�
2

μZe2
= a0(1)

Z
≡ a0

Z
(1.49)

is the Bohr radius in the case when the nucleus has charge Ze.
The corresponding radial solutions are:

Rnl(r) = e− 1
2 αr (αr)lL2l+1

n+l (αr),

with α = ( 8μ|En|
�2

)1/2
(i.e., α depends on the quantum number n), and L2l+1

n+l (αr) is a polynomial (Laguerre
polynomial) of degree n′ = n − l − 1, that is, with n − l − 1 nodes.

For example,

R10(r) =
(

Z

a0

)3/2

· 2e−r/a0(Z), (1.50)

R20(r) =
(

Z

2a0

)3/2 (
2 − Zr

a0

)
e−r/2a0(Z), (1.51)

R21(r) =
(

Z

2a0

)3/2
r√

3a0(Z)
e−r/2a0(Z). (1.52)

These radial functions are depicted schematically in figure 1.3.
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R10 R20

r

R21

r

r = 2a0/Z

r

Figure 1.3 The radial functions R10(r ), R20(r ) and R21(r ).

The full solutions have the form

φnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ).

Consider the effect on these of inversion, that is, of replacing r by –r, which means replacing (r, θ, ϕ) by
(r, π − θ, ϕ + π ). Under inversion,

eimϕ → eim(ϕ+π) =
{

eimϕ if m is even,
−eimϕ if m is odd,

that is, the factor eimϕ is even under inversion if m is even, and odd under inversion if m is odd. We say that
eimϕ has the parity of m.

Similarly, since Pl(cos θ ) has the parity of l under inversion, and

P m
l (w) = (

1 − w2
) 1

2 |m| d|m|Pl(w)

dw|m| ,

it follows that P m
l (cos θ ) has the parity of l − |m| under inversion.

Therefore, the spherical harmonic

Ylm(θ, ϕ) = NlmP m
l (cos θ )eimϕ

has the parity of l.
Thus, wave functions with even l are even under inversion, and wave functions with odd l are odd under

inversion.
For example, the functions φnlm = φ100, φ200 and φ300 are all even under inversion, and hence, as can be

seen from the graphs in figure 1.3, have a cusp (a discontinuous gradient) at r = 0.
For example,

∂

∂x

∂φ100

∂x

∣∣∣∣
r=0

= −∞. (1.53)
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This discontinuity of gradient is perfectly permissible in the case of the Coulomb potential, since the
potential energy (1.47) is singular at r = 0 (it tends to −∞ at r = 0), so that, for a given fixed total energy E,
the kinetic energy tends to +∞ at r = 0. Since, as can be seen from (1.12) and (1.13), the operator representing
minus the kinetic energy contains second-derivative operators with respect to x, y and z, the relation (1.53)
has a natural interpretation.

Functions with l = 0, 1, 2, 3, 4, . . . are called s, p, d, f, g, . . . functions, respectively. Since for l = 0 we
must have m = 0 always, all s functions contain the factor

Y00 = 1/
√

4π,

and so are independent of θ and ϕ, that is, are spherically symmetric functions.
For any given value of the principal quantum number n (except n = 1) there are three p functions (l = 1,

m = 1, 0, –1). For these the radial part is Rn1(r) and the three possible spherical harmonics are

Y10(θ, ϕ) =
(

3

4π

)1/2

cos θ,

Y1,±1(θ, ϕ) = ∓
(

3

8π

)1/2

sin θe±iϕ.

Any linear combination of the three functions φn1m (m = 1, 0, –1) will also be a solution of the Schrödinger
equation for the hydrogen-like atom. In particular, consider the combinations

φn10 = Rn1Y10 ∝ Rn1 cos θ,

1

2
(φn11 + φn1,−1) = Rn1

2
(Y11 + Y1,−1) ∝ Rn1 sin θ cos ϕ, (1.54)

1

2i
(φn11 − φn1,−1) = Rn1

2i
(Y11 − Y1,−1) ∝ Rn1 sin θ sin ϕ.

Since cos θ = z/r , sin θ cos ϕ = x/r and sin θ sin ϕ = y/r , the three functions (1.54) are simply z, x and
y, respectively, multiplied by a spherically symmetric function. Since spherically symmetric functions are
invariant under coordinate rotations and reflections, the three functions (1.54) transform under coordinate
rotations and reflections like z, x and y, respectively, and so are designated φnpz

(r), φnpx
(r) and φnpy

(r).
For example, we can depict the function φ2pz

(r) by drawing surfaces of constant
∣∣φ2pz

(r)
∣∣, as in one of the

diagrams in figure 1.4. The nodal plane z = 0 is one such surface and the proportionality to z is indicated by
the opposite signs of the function in the half-spaces z > 0 and z < 0.

Similarly, from the five l = 2 spherical harmonics (corresponding to d functions) we can construct five
linear combinations that transform, under coordinate rotations and reflections, like xy, yz, zx, x2 − y2,
and 3z2 − r2. For the example of n = 3 (the 3d functions) these are also depicted, with the corresponding
designation of the respective functions, in figure 1.4.

For the 2p functions and for the 3d functions the number of nodes of the radial part is zero (n – l – 1 = 0
in both cases). Examples for which the radial part of the wave function has one node (the function φ2s(r), for
which n – l – 1 = 1) or two nodes (the function φ4pz

(r), for which n – l – 1 = 2) are illustrated in figure 1.5 .
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Figure 1.4 Surfaces of constant modulus of the three 2p and five 3d functions.
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Figure 1.5 Nodal surfaces and relative signs of (a) the function φ2s (r) and (b) the function φ4pz(r).
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