
Introducing SQL
Server 2012

PART

I
CHAPTER 1 ■ Understanding SQL

 Server’s Role

CHAPTER 2 ■ Installing SQL Server 2012

CHAPTER 3 ■ Working with the
 Administration Tools

CHAPTER 4 ■ SQL Server Command-Line
Administration

CHAPTER 5 ■ Querying SQL Server

c01.indd 1c01.indd 1 16-05-2013 7:49:4516-05-2013 7:49:45

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 16-05-2013 7:49:4616-05-2013 7:49:46

Chapter

1
Understanding SQL
Server’s Role

TOPICS COVERED IN THIS CHAPTER:

 ✓ What Is Information Technology?

 ✓ Introduction to Databases

 ✓ Database Servers and Applications

 ✓ SQL Server’s Role

c01.indd 3c01.indd 3 16-05-2013 7:49:4616-05-2013 7:49:46

Microsoft SQL Server 2012 is a database management system
that provides enterprise-class features for organizations of all
sizes. If you are tasked with administering a SQL Server, you

need to understand the various roles it can play within an organization. This understanding
comes best by studying from the foundation up, and this chapter provides that foundation.
From this foundation, you will move through this book to learn how to administer the
essential aspects of SQL Server 2012. In addition, the contents of exams 70-461 (Querying
Microsoft SQL Server 2012), 70-462 (Administering a Microsoft SQL Server 2012 Data-
base), and 70-463 (Implementing Data Warehouses with Microsoft SQL Server 2012) are
covered throughout the book.

The fi rst major topics you’ll tackle in this chapter are the concept of information tech-
nology and the role a database or database system plays within this concept. Next, you’ll
look at databases in more detail and gain an understanding of fundamental concepts
that apply to all databases, not just SQL Server databases. Once you’ve suffi ciently cov-
ered the general database concepts, you’ll investigate database servers and applications.
Finally, you’ll explore SQL Server’s features and the roles SQL Server can play in modern
organizations.

What Is Information Technology?
Many organizations differentiate between information systems (IS) and information tech-
nology (IT). In general, IS deals with software and system development, and IT is con-
cerned with technology management. Certainly, IT is the collection of technologies and
resources used to manage information. Organizations place great value on their informa-
tion, as they should, and they expect the IT group to manage this information well. It is
essential that those of us who work in IT remember the I stands for information and that
our primary responsibilities are to collect, retain, distribute, protect, and when appropriate
destroy that information. When a single group is responsible for these tasks, consistency is
accomplished and security can be achieved.

The Importance of IT
Consider an organization that manufactures and sells the components used to make
 fi shing lures. These components are used by many different fabricators and distributors.
What would happen if a competing company stole the customer database of the world’s

c01.indd 4c01.indd 4 16-05-2013 7:49:4716-05-2013 7:49:47

What Is Information Technology? 5

top fi shing-lure company? The results could be catastrophic. However, if the company’s
IT department creates and uses the proper information-protection mechanisms, the event
could be mitigated or the theft itself could be prevented.

Throughout this book, the term SQL Server will refer to Microsoft’s data-
base server product in general. When a discussion is applicable only to a
specific version of SQL Server, the appropriate version number, such as
SQL Server 2012, will be specified.

In addition, I pronounce SQL Server as “sequel server,” and I pronounce
the SQL language as “ess-cue-el.” You’ll notice this based on the articles
(“a” versus “an”) that I use. I have reasons for my pronunciations, but I’ll
reserve those for a later chapter.

Although losing a database to a competitor is an extreme example of why an IT depart-
ment is needed, there are many day-to-day problems and issues that arise within a company
that are best handled by the IT department. For instance, customer service professionals
aren’t as productive or effective when they cannot access data (information distribution)
when they need it to answer customers’ questions. Customers may become impatient if their
questions aren’t suffi ciently addressed, and they could very well choose a different provider.
An effective IT department helps everyone within a company manage information so each
team can be successful.

Effective IT solutions enable the fi ve key responsibilities of information management to
be accomplished.

Information Collection Database systems and applications are used to collect information
from users. Well-coded applications validate data integrity and ensure that only valid users
can enter or modify information.

Information Retention A good information storage system provides effective storage
and backup mechanisms. You’ll learn about SQL Server’s backup solutions in Chapter 17,
“Backup and Restoration.”

Information Distribution The right people need the right information at the right time,
and information distribution solutions allow for this. Examples include replication, mirror-
ing, Integration Services packages, and more.

Information Protection There are many different types of information with varying
degrees of priority and confi dentiality. In most organizations, only certain users should have
access to certain information. Security solutions from authentication to storage encryption
should be used to protect valuable data. Additionally, coding best practices should be fol-
lowed in order to prevent the opening of accidental back doors into your information stores.

Information Destruction Sometimes information needs to be destroyed. Your IT solutions
should account for this and ensure that a nonrecoverable method is used to destroy the data
when it is required.

c01.indd 5c01.indd 5 16-05-2013 7:49:4716-05-2013 7:49:47

6 Chapter 1 ■ Understanding SQL Server’s Role

These fi ve facets of information management must be included in any IT plan. SQL
Server databases can assist with these processes. Although SQL Server features and capa-
bilities can be integrated with client solutions and network infrastructure solutions to do
so, SQL Server cannot provide all of the best solutions alone. An authentication system,
such as Microsoft’s Active Directory, will be needed to provide secure authentication. Addi-
tionally, although SQL Server integrates with Windows Server Active Directory domains
to provide stronger authentication, if the SQL Server is not integrated with a Windows
domain and the client computers are running non-Windows operating systems, you may
be required to implement a virtual private network (VPN) or Internet Protocol Security
(IPSec) association with the SQL Server before the users can authenticate. This VPN solu-
tion can be implemented using Microsoft’s Routing and Remote Access Services (RRAS)
service or a third-party product.

The Components of IT
In today’s computing environments, IT is responsible for three core components:

Client Solutions These include desk-top computers, laptops or notebooks, portable
devices, and even telephones in Voice over IP implementations.

Network Infrastructure Solutions These include switches, routers, and network commu-
nications services. Network communications services allow communications to take place
on the network, such as DNS, DHCP, authentication services, and so on.

Information Storage Solutions These include databases, fi le servers, and networked stor-
age such as Network Attached Storage (NAS) and storage area networks (SANs).

These core components will be discussed further throughout this book as you learn
about SQL Server and how to deploy and administer it in any environment.

Figure 1.1 shows the core components of IT.

F I GU R E 1.1 The core components of IT

Client

Infrastructure

Storage

Understanding how SQL Server operates within these three areas is crucial for the mod-
ern database administrator (DBA). Unlike DBAs in the past, today’s DBAs must understand
the basics of the operating system on which the database solution runs, the fundamentals
of network communications, and the clients that talk to the database server. Gone are the
days of simply replacing a dumb terminal if a user cannot communicate with the database
(or at least those days are far less common for most of us).

c01.indd 6c01.indd 6 16-05-2013 7:49:4716-05-2013 7:49:47

Introduction to Databases 7

When you implement advanced SQL Server features, such as database mirroring, you
need to understand how to determine whether a communication problem is caused by an
internal confi guration error or a problem in the network infrastructure between the two
SQL Servers involved. Even if you’re not responsible for repairing the network infrastruc-
ture, you’ll need to know when to contact the network administrator at the very least.

Many support professionals work in small organizations (or small groups within larger
organizations), and they must be able to support practically everything that has a wire in
their buildings. Of course, this means they need to understand everything in the commu-
nication chain from the database server to the client and back again. For this reason, this
book will teach you more than just how to work with SQL Server. It will explain how SQL
Server works with your other systems, including Windows clients, non-Windows clients,
and other servers.

Introduction to Databases
The word data is defi ned as meaningful information, and it can include words, numbers,
letters, and binary information such as images. The word base means foundation or place.
Simply put, a database is a place to put your data. If you’re looking for a more technical
defi nition of a database, it would go something like this: a computer database is a (usually)
structured collection of information stored according to a defi ned model and accessible
through standard or proprietary database communications languages.

If you’ve been working with databases for many years, you may choose to
skip this section and move on to, “SQL Server’s Role.” However, if you do
read this section, you may be surprised and learn a few things. This choice
is yours.

Make sure you don’t confuse the database with the database management system.
The, “Database Servers and Applications,” section of this chapter will cover this
 difference in more detail. For now, just remember that the database is separate from
the database management system, and it can usually be transferred from one computer
running the compatible database management system to another computer running the
same system.

Types of Databases
The database model defi nes the way in which the data is stored. Most modern databases
use the relational model, but other models also exist. In general terms, the database model
is the type of database. Two primary types are still in use today: fl at-fi le and relational
databases.

c01.indd 7c01.indd 7 16-05-2013 7:49:4716-05-2013 7:49:47

8 Chapter 1 ■ Understanding SQL Server’s Role

Flat-File Databases
All of the information in a fl at-fi le database is stored in a single storage container. When
stored in a database, information regarding customer orders might look something like
Figure 1.2.

F I GU R E 1. 2 A table of flat-file databases

OrderID

23

27

36

42

CustomerNum

413

413

413

413

CustomerName

Dale Thomas

Dale Thomas

Dale Thomas

Dale Thomas

Phone

937-555-0135

937-555-0135

937-555-0135

937-555-0135

Email

DaleThomas4532@company.net

DaleThomas4532@company.net

DaleThomas4532@company.net

DaleThomas4532@company.net

Here are a few key points to consider regarding fl at-fi le databases:

Flat-file databases result in high levels of data redundancy. If you examine Figure 1.2,
you can see redundancy in action. Note that the name Dale Thomas is repeated for each
line item, as well as the customer number, phone number, and email address. If a separate
table were used to store the customer information, this redundancy could be avoided.

Flat-file databases cost more when data is added. Because fl at-fi le databases result in more
redundancy, the system simply must write more information when data is added. When
referring to an information system, the term cost can mean dollars and cents, or it can
mean resource costs (CPU, memory, and so on). In this case, the costs are resource costs.
You cannot ask a system to do more without consuming more resources within that system.

Working with flat-file databases may be easier for some users. This point is actually a
positive characteristic of fl at-fi le databases, and it is one of the many reasons you create
views in relational databases. Flat-fi le databases are often easier for users to work with
because all of the data is in one location. Consider the two SQL statements in Listing 1.1.
(Don’t worry if you don’t fully understand SQL yet; you will learn more about it in Chapter
5, “Querying SQL Server.”) Although the increased complexity of the relational database
query may seem trivial, consider what it might look like if you have to join fi ve or more
tables together to retrieve the needed information. Because all of the data is in a container
in the fl at-fi le format, no join statements are needed, and all of the data is easily accessed by
decision-support professionals or business managers who may not understand the
complexities of relational queries.

Listing 1.1: SQL Statement Examples

--This first query is on a relational database

SELECT dbo.Products.ProductID, dbo.Products.ProductName,
 dbo.Sales.OrderID, dbo.Sales.Quantity, dbo.Sales.Price

c01.indd 8c01.indd 8 16-05-2013 7:49:4716-05-2013 7:49:47

Introduction to Databases 9

FROM dbo.Products
INNER JOIN dbo.Sales ON dbo.Products.ProductID = dbo.Sales.ProductID;

--This second query retrieves the same information from a flat-file database
SELECT dbo.Sales.ProductID, dbo.Sales.ProductName,
 Dbo.Sales.OrderID, dbo.Sales.Quantity, dbo.Sales.Price
FROM dbo.Products;

This simplifi cation is one of the driving factors behind many views that are created and
behind many of the decisions that are made when online analytical processing (OLAP)
databases are implemented. OLAP databases are usually read from (far more read-
operations are performed as opposed to write-operations), and they may benefi t from a
fl attened model; however, even with OLAP databases, it is still common to have multiple
tables. The tables may simply be less normalized (understood as more redundant) than
those for an online transaction processing (OLTP) database that processes large numbers of
writes to the data.

Normalization is the process used to ensure that relational data is stored
in a manner that removes or reduces anomalies in data modifications. The
process also results in a reduction in redundancy within the data store.
Normalization will be covered in more detail in Chapter 8, “Normalization
and Other Design Issues.”

Relational Databases
Relational databases store information in separate containers called tables. Each table rep-
resents a single entity, although denormalized relational databases may not always do so.
You’ll learn about normalization in Chapter 8; for now, you just need to know that a rela-
tional database is a collection of entity containers (tables) that are related to one another in
various ways.

When you convert the data in Figure 1.2 to a relational database model, the results
should be similar to those shown in Figure 1.3. Notice that the Customers table is related
to the Sales table so that the customer information is entered only once. In each order, the
customer ID is used to reference everything about the customer. You could further optimize
this database by breaking the Sales table into two tables: Sales and Items. The Sales table
would contain the header information for the sale (sale date, sale ID, customer ID, and so
on), and the Items table would list the details for each item purchased (product ID, price,
quantity, and so on).

c01.indd 9c01.indd 9 16-05-2013 7:49:4716-05-2013 7:49:47

10 Chapter 1 ■ Understanding SQL Server’s Role

F I GU R E 1. 3 The Sales and Items tables interact in a relational structure.

OrderID

23

27

36

42

CustomerNum

413

413

413

413

ProductID

45

32

78

98

Quantity

12

6

53

13

UnitPrice

12.45

14.97

3.78

12.17

City

Marysville

Urbana

Austin

CustomerNum

413

414

415

416

CustomerName

Dale Thomas

Amie Freeman

Tracy Mathys

Jose Ramos

Phone

937-555-0135

405-555-9090

417-555-0078

913-555-1616

Email

DaleThomas4532@company.net

Amie_F@company.net

Tracy@thenet.com

JoseRamos@company.net Elk City

The relational model provides several benefi ts.

Relational databases can be indexed and optimized more efficiently. Relational databases
can be indexed and optimized more effi ciently because you are dealing with smaller units
of information in each data store (each table). For example, you can index the Customers
table uniquely for retrieving common columns of information, and you can index the
Sales table uniquely for retrieving common columns of information retrieved from the Sales
table. If the two tables were crammed together into a single fl at structure, you would have
to ask which is more important: customer columns or sales columns. You can create only so
many indexes before you start hurting more than you help.

Relational databases consume less space to store the same information than flat-file data-
bases. Because the redundancies have been removed, a relational database requires less
space to store the same information as a fl at-fi le database. For example, consider Figure 1.2
again. The customer ID, customer name, phone number, and email address must be added
every time Dale Thomas places an order; however, with the structure in Figure 1.3, only
the customer ID must be added with each order. You are, therefore, dealing with one
column instead of four. You can see how the relational structure saves on storage space.

Relational databases can handle more concurrent users more easily. Because data is bro-
ken into logical chunks, relational databases can handle more concurrent users more easily.
With the data store represented in Figure 1.2, even if the user wants only the sales-specifi c
information with no information about the customer, all of the data must be locked in
some way while the user retrieves the information. This behavior prevents other users from
accessing the data, and everyone else must wait in line (what a database system usually calls
a queue). The relational model is better because one user can be in the Sales table while
another is in the Customers table. Of course, modern database systems go even further and
usually allow locking at the data page or even the row (record) level.

Relational databases are more scalable. Because they allow for more granular tweaking
and tuning, relational databases scale better. They store more information in less space.

c01.indd 10c01.indd 10 16-05-2013 7:49:4716-05-2013 7:49:47

Introduction to Databases 11

They allow more users to access the data more quickly. These benefi ts are all realized in
SQL Server 2012 databases.

Of course, the fact remains that a relational database that is heavily normalized
(with extreme reductions in redundancy) may be much more diffi cult for users to utilize.
For example, it is not uncommon to see the typical customer record build from four or
more underlying tables in modern relational databases. This structure means that the users
have to join the four or more tables together to retrieve that typical customer record. One
of the key decisions a DBA makes is determining just how normalized a database needs to
be. That question is addressed in Chapter 8.

Weighing the Benefits of Using a Local
or Server-Based Database
In addition to the fl at-fi le versus relational database debate, the value of local databases
versus server-based databases needs to be considered. Developers must continually decide
which to use, and IT support professionals in general must also make this decision fre-
quently. For example, when a vendor tells you that you can run their application with a
locally installed database for a single user or with a SQL Server server–based database for
several users, you must choose between the two.

Additionally, you may have to choose between using a database intended for local use
(i.e., Access) and a database intended for server-based access (i.e., SQL Server) when just a few
users need access to the data. Some organizations have successfully implemented Microsoft
Access databases for 5 to 10 people, and others have faced tremendous diffi culties allowing
just 2 or 3 users to share a Microsoft Access database. Databases that are designed primar-
ily for local access simply do not scale well, and when multiple users need access to the data,
implementing a server-based database system is usually a better multiuser solution.

Understanding Local Databases
A local database, such as Microsoft Access or FileMaker Pro, is completely stored on
the user’s machine or a network share the user can access. When using local fi le storage, the
application that accesses the database uses a local data access engine to talk to the database
fi le. No network communications occur. When it is stored on a network share, the
database fi le is still treated as a local fi le from the perspective of the database application.
The networking functionality in Windows is handled in a different part of the operating
system called Kernel mode.

Truly local databases are good from one perspective: they do not consume network
bandwidth. If only one user needs access to the data, local databases are often the way to
go. The good news is that Microsoft provides a free version of SQL Server for this scenario,
called SQL Server 2012 Express. In addition, Microsoft provides the SQL Server Compact
edition for use on mobile devices such as PDAs. The features of these free editions are simi-
lar to those of the SQL Server 2012 Standard edition as long as you are using small data-
bases, and you can use a solution you are familiar with for both your local databases and
your server-based databases.

c01.indd 11c01.indd 11 16-05-2013 7:49:4716-05-2013 7:49:47

12 Chapter 1 ■ Understanding SQL Server’s Role

Three versions of Express edition are available: Express, Express with
Tools, and Express with Advanced Services. Express edition comes
with no GUI management tools, but both Express with Tools and Express with
Advanced Services come with SQL Server Management Studio. Express
with Advanced Services also adds more features such as full-text search
and Reporting Services Express.

So, why use Microsoft Access or any other single-user database system today? For many
organizations, the built-in forms engine in Microsoft Access is enough to justify continued
use of the tool, while other IT departments simply don’t have any use for it. Of course, you
can use Microsoft Access to build forms, queries, and reports against a backend SQL Server
database as well. The latter option is probably the best use of Microsoft Access today. And,
yes, Microsoft Access can be used as a frontend for local SQL Server 2012 Express data-
bases, although you will probably have to design the database in SQL Server Management
Studio Express 2012.

Understanding Server-Based Databases
The benefi ts of server-based databases can be grouped into three primary categories:

■ Data availability

■ Data integrity

■ Data security

Data Availability

Users need access to data when they need it. Although this point may seem obvious, it is
often overlooked when developers build database solutions. Data availability can be consid-
ered from two viewpoints:

■ Data persistence or existence

■ Data access effi ciency

From the perspective of data persistence, you need to ensure that your data is stored
safely, is backed up properly, and is accessible to the appropriate users. To accomplish
this, data that must be accessed by multiple users should be stored in a network location.
Of course, Microsoft Access databases can be stored in a network location; however,
depending on the database in question, fewer than fi ve users may be able to access that
data concurrently. The power of server-based databases really shines in this area; many
server-based databases can handle hundreds or even thousands of users accessing the data
concurrently. Local databases simply cannot match this scale.

Although network storage ensures that the data is accessible, the storage engine used
by the server-based database will ensure that the data is stored safely. SQL Server uses
transaction logs to help in this area. Active transaction logs are used to recover from minor
failures, and backed-up transaction logs may be used to recover from major mistakes
or failures. Either way, the server system establishes solid data storage processes to make
sure the data gets into the database properly.

The last element of data existence is backup. The backup features of a server-based data-
base system are usually far more extensive than those of local databases. In fact, most local

c01.indd 12c01.indd 12 16-05-2013 7:49:4716-05-2013 7:49:47

Introduction to Databases 13

databases are backed up at the fi le level only. The entire fi le is copied to a backup location,
and the data is backed up in this simple way. This simple method may seem benefi cial, but
it is missing an important feature: the ability to back up the database while a user is con-
nected to it. Server-based systems usually provide this feature. For example, SQL Server
allows online backups of the data that is in the database. This feature allows backups to
occur even in 24/7 businesses, and it is essential to modern database systems.

For the data to exist or persist, regardless of the calamity, all three of these factors must
be in place:

■ The data must be appropriately stored when it is initially entered.

■ The data must be backed up to protect against catastrophic failures.

■ The data must be available when users want it.

SQL Server provides for all three factors.
The next element of data availability is access effi ciency. It’s one thing to say that users

can get to the data they need. It is quite another to say that they can get to it in a timely
fashion. Server-based database systems have much more complex locking algorithms, which
allow them to handle many more users more quickly than a local or single-user database
system. SQL Server can lock an entire table, a single data page (which may contain one or
more rows), or a single row (record). In addition, SQL Server can use different lock types.
For example, a shared lock can be acquired for data reads. This type of lock allows other
users to read the same data without waiting for the fi rst user’s shared lock to release.
Of course, exclusive locks can also be used when modifying data to ensure data integrity.

From the perspective of data availability for multiuser applications, there is just no com-
parison between a proper server-based database system like SQL Server and an intended
single-user database system like Microsoft Access. When you need the data to be available
to the right users at the right time and multiple users must access the same data, server-
based systems win every time.

Data Integrity

For the purposes of this book, data integrity is defi ned in a slightly different way than in
most resources. Data integrity means that the data could be what it should be. Notice that
the defi nition reads could be what it should be and not that it is what it should be. There
is a simple reason for this defi nition: it is impossible to guarantee that all data is what it is
supposed to be even with excellent data integrity policies and procedures. Why? It’s because
of the human element.

Most of the time, data is entered by humans and not by machines. As long as the pro-
gramming is accurate, you can predict with certainty what a machine will do or generate in
relation to data output; however, humans are not so predictable.

For example, imagine a company has a website form that a user must fi ll out in order to
retrieve a white paper from the company. In that form, they ask the user to enter his or her
email address, and they require that the email address fi eld include data that is formatted
like an email address (i.e., it has some characters followed by the @ sign, followed by more
characters, and then a period and at least two more characters). Will every user enter their
valid email address? Of course not! Users will often use completely fabricated addresses to
avoid receiving spam from the company.

c01.indd 13c01.indd 13 16-05-2013 7:49:4716-05-2013 7:49:47

14 Chapter 1 ■ Understanding SQL Server’s Role

The company may decide to send a link to the email address in order to download the
white paper. Will this force users to enter email addresses where the company can actually
reach them? Not really. They could simply use something like, http://10MinuteMail.com
or any of the dozens of free email servers. Yes, users really hate spam that much.

In the end, website applications usually settle for something that looks like an email
address. They may try emailing the link just to see whether it is a valid email address, but
there is no way to know if it is the user’s real email address. So, the outcome is simple. The
email address could be what it should be, but you don’t know that it is what it should be.

For some data elements, there may be methods to guarantee that the data is accurate.
For email addresses and many other similar data elements, you have to accept reality. How-
ever, this acquiescence does not mean you give up on data integrity. It simply means you
employ data integrity measures that are worth the effort and stop there.

In the area of data integrity, there is not a tremendous difference between local database
systems and server-based systems. For example, SQL Server offers triggers, and Access
offers macros. SQL Server offers stored procedures, and, again, Access offers macros. SQL
Server offers data types (to ensure that numbers are numbers, for example) and so does
Access. The line is not as clear-cut here, but you will fi nd that SQL Server triggers and
stored procedures offer much more power than Access macros, thanks to the ability to run
.NET code. Earlier versions of SQL Server used extended stored procedures, which were
basically DLL fi les called by the SQL Server. This ability to run code developed in advanced
languages is one of the separating factors between SQL Server and Microsoft Access in the
area of data integrity. In addition, SQL Server has the Transact-SQL language, which is
more powerful than the SQL version used in Microsoft Access.

In this context, data integrity is viewed from the perspective of accuracy.
Data integrity can also be considered from a security or storage consis-
tency perspective. From a security perspective, data integrity ensures that
no malicious changes are made to the data. From a consistency perspec-
tive, it ensures that the data is not corrupted under normal data processing
or storage operations. In Chapters 18 through 20, you’ll learn about SQL
Server security solutions. In Chapter 14, you’ll learn how to analyze the
integrity of the stored data.

Data Security

Information is valuable, and for most organizations this information is stored primarily
in two types of locations. The fi rst type is a data fi le such as a spreadsheet, presentation,
or typed document. The second is a server-based database. While databases are ultimately
stored in fi les, the access methods for spreadsheets, presentations, and word processor
documents differ. Server-based databases provide enhanced security for these databases.
Figure 1.4 illustrates the difference between local or single-user database security and
server-based database security.

c01.indd 14c01.indd 14 16-05-2013 7:49:4716-05-2013 7:49:47

Introduction to Databases 15

F I GU R E 1. 4 Comparing Microsoft Access and SQL Server database security

G
ra

nt
ed

 A
cc

es
s

Microsoft
Access

MDB File

Logical
database Service Access

Physical
database

File

SQL Server Service

User accessing a
Microsoft Access database

User accessing a
SQL Server database

M
ust H

ave A
ccess

In the example in Figure 1.4, notice that the Access database requires users to have per-
missions on the database fi le itself. A user who wants to open an Access database from a
network location must have at least Read permissions on the MDB fi le that holds the data-
base. This presents a security concern in that many network operating systems allow a user
with read access to a fi le to copy that fi le to their own computer or removable media such
as a USB thumb drive.

Notice the difference in Figure 1.4 in the represented access to a SQL Server database.
The user is given access to talk to the SQL Server service but is given no access to the data
fi les themselves. This confi guration means the user can access the data only through pro-
vided applications. If a user with read access wanted to copy all of the data to a thumb
drive, the user would have to export the data. Such behavior could be easily logged and
prevented through the use of security features built into SQL Server.

For example, access to data could be designed to occur only through stored procedures.
With such a confi guration, users are not given direct access to the tables. They are given
access only to execute stored procedures. The stored procedures execute as a different user
than the calling user, so they can access the data on the user’s behalf. A data access model
that relies solely on stored procedures could ultimately make it impossible for nonadmin-
istrative users to make a copy of the entire data set. Not only would the stored procedures
limit the data returned with each execution, but they may further look for nonstandard use
and disallow a given account access to the data until further investigation has been done or
some acceptable time has passed.

A more passive security method would be the simple logging of any SELECT statements
(basic database statements used mostly to read information) that read all of the data in a
given table. For example, the system could watch for nonfi ltered SELECT statements (state-
ments without a WHERE clause) and log the username, the time of execution, and the actual
statement. This log could be sent to security personnel who audit data access. Additionally,

c01.indd 15c01.indd 15 16-05-2013 7:49:4716-05-2013 7:49:47

16 Chapter 1 ■ Understanding SQL Server’s Role

the system could disallow more than one nonfi ltered SELECT statement in a given window of
time against multiple tables.

These actions do not need to be taken for every database. In fact, they should not be
taken for most. However, these brief examples illustrate the power derived from an inter-
mediary data access method that could be used if a very sensitive database must be placed
online. The SQL Server service acts as the intermediary between the client and the data-
base. As the man in the middle, SQL Server can provide many different data protection
mechanisms. In Chapters 18 through 20, you’ll learn about the most important security
techniques at your disposal.

Important Database Terms
As you learn about programming and SQL Server, you will encounter many terms related
to SQL Server implementation and management. It is important that you understand the
defi nitions for these terms as used in this book. Many terms have more than one defi nition,
and it is important that you understand the meaning poured into the words in context.
Some of these terms are basic, and some are more complex, but you will see them appear-
ing again and again throughout this book and as you read articles, white papers, and web-
sites related to the work of a DBA. The following list will defi ne these common terms used
in the world of databases and specifi cally SQL Server:

Table/Record Set/Relation In relational database design, a table is not something at
which you sit down to eat. Rather, a table is a container for data describing a particular
entity. Tables are sometimes called record sets, but the term record set usually references a
result set acquired by a SELECT statement that may include all or a portion of the table data.
The formal name for a table is a relation. All of the entries in the table are related in that
they describe the same kind of thing. For example, a table used to track LCD projectors
describes projectors. All entries are related to projectors.

Column/Field/Domain To describe the entity represented in a table, you must store infor-
mation about that entity’s properties or attributes. This information is stored in columns or
fi elds depending on the database system you’re using. SQL Server calls them columns, and
Microsoft Access calls them fi elds, but they are the same thing. For example, the LCD Pro-
jectors table would include columns such as Brand, Model, SerialNum, and Lumens. Note
that these properties all describe the projector. The term domain is used to reference a type
of property or attribute that may be used throughout the database. For example, you may
consider City, LastName, and eMail to be domains. To ensure domain integrity, you would
enforce the same data type, constraints, and data entry rules throughout the database for
these domains.

Record/Row/Tuple A collection of columns describing or documenting a specifi c instance
of an entity is called a record. Stated simply, one entry for a specifi c unit in the LCD Projec-
tors table is a record. Records are also called rows in many database systems and by many
DBAs. The formal term for a record is a tuple (usually pronounced “too-pel,” but some
argue for “tyoo-pel”).

c01.indd 16c01.indd 16 16-05-2013 7:49:4816-05-2013 7:49:48

Introduction to Databases 17

Index An index is a collection of data and reference information used to locate records
more quickly in a table. SQL Server supports two primary index types: clustered and non-
clustered. Clustered indexes are similar to a dictionary or telephone book. Nonclustered
indexes are similar to those found at the back of a book. For now, it’s enough to know that
they can be used to increase database performance and that they can equally decrease data-
base performance when used improperly. You will learn about them in detail in Chapter 11,
“Indexes and Views.”

View One of the most over-explained objects in databases is the view. Here’s the simple
defi nition: a view is a stored SQL SELECT statement. That’s really all it is. Views are used
to make data access simple, to abstract security management, and to improve the perfor-
mance of some operations. The most common use of views is the simplifi cation of data
access.

SQL SQL is the database communications language managed by the ANSI organization.
It is a vendor-neutral standard language that is supported at some level by nearly every
database product on the planet. SQL Server implements a customized version of SQL called
Transact-SQL, or T-SQL for short.

Stored Procedure When you want to process logical operations at the server instead of the
client, stored procedures can be used. A stored procedure is either a collection of T-SQL
statements or a compiled .NET stored procedure in SQL Server 2008 and newer. Earlier
versions of SQL Server supported and recommended extended stored procedures, which
were really just DLLs called by the SQL Server. Stored procedures are used to centralize
business rules or logic, to abstract security management, or to improve performance. Other
reasons exist, but these are the three big motivators.

Trigger A trigger is like a dynamic stored procedure. A trigger is a group of T-SQL state-
ments that is executed automatically when specifi ed events occur. For example, you may
want to launch a special procedure anytime someone attempts to execute a DROP TABLE
(delete a table) statement. The trigger could either back up the table before deleting it or
simply refuse to delete the table.

Concurrence Concurrence is defi ned as acting together. In the database world, either a
system supports multiple concurrent users or it does not. Concurrency is a single word that
says a database system supports multiple users reading and writing data without the loss of
data integrity.

DBA A DBA is a database administrator. A DBA is the person who installs the routers
and switches, implements the network operating system, builds the user databases, confi g-
ures the client computers, programs the telephone system, troubleshoots production and
security problems, and, oh yeah, works with databases on occasion. But seriously, you live
in a new world of IT. Today, most IT professionals must wear multiple hats. This reality
means that DBAs usually have to know about the database server service, the server operat-
ing system, and even a bit about the network infrastructure across which users communi-
cate with the database system. It’s a brave new world.

c01.indd 17c01.indd 17 16-05-2013 7:49:4816-05-2013 7:49:48

18 Chapter 1 ■ Understanding SQL Server’s Role

Remember, these are the basic terms that will appear throughout your
experiences with databases, regardless of the database system with which
you are working. Be sure you know what these terms mean. You’ll learn
about many more database terms as you read the rest of this book.

Database Servers and Applications
Now that you’ve learned the fundamental concepts of a database, it’s time to investigate
server-side databases and database applications in a bit more detail. Let’s immediately clear
up one thing:

The database is not the database server, and the database server is not the database.

It’s not uncommon for a DBA to say, “I have to restart the SQL Server database.” What
he really means is that he needs to restart the SQL Server service, which manages access to
the database. The database is separate from the database management system. SQL Server
is the database management system. Databases may be detached from one SQL Server instance
and then attached to another. In fact, you can attach Excel spreadsheets, Access databases,
and virtually any data source that you can connect to with Open Database Connectivity
(ODBC) to a SQL Server as a linked server object. Once the link is made, the SQL Server
service can manage access to that data source (via the ODBC or other connection type) for
your users. ODBC is a standard database access method used by many database manage-
ment systems.

To help you better understand the relationship that applications have with a database
server, the following section will explain the three kinds of database applications:

■ Localized

■ Client-server (single tier)

■ N-tier (multiple client-server relationships)

Database Application Types
The three primary kinds of applications are localized, client-server, and n-tier applications.
Localized applications will not be covered in detail here because our primary focus is on
running SQL “servers” and not SQL Server on the clients. However, you should know that
a localized application usually talks to a local install of SQL Server using a protocol called
Shared Memory. The name says it all: the local application talks to the local SQL Server
installation (usually SQL Server Express) without using the network interface card.

Client-Server (Single Tier)
Client-server implementations, also called single tier, involve a client application communi-
cating directly with the database in most cases. An example of a client-server application is
a Microsoft Access frontend that communicates with a SQL Server backend database. The
SQL Server database is the server, and Microsoft Access is the client. Technically, an Excel

c01.indd 18c01.indd 18 16-05-2013 7:49:4816-05-2013 7:49:48

Database Servers and Applications 19

data import from a SQL Server is a client-server application. Figure 1.5 shows an example
of this model.

F I GU R E 1.5 A simple implementation of client-server technology with a client
accessing a single server directly

Client application
runs on the PC

Data for the client
stored on the server

Figure 1.5 shows an application communicating with a SQL Server. Notice that the user
interacts with the application as if everything is installed on her local machine. In fact, as
long as the network is working and the database server is available, the user will usually
feel as if the data is indeed in her computer. Of course, as you add more users—without
increasing servers or the single server’s capacity—she will likely notice a drop in perfor-
mance; however, this drop should be minimal as long as the database server is well main-
tained and upgraded as needed.

N-Tier (Multiple Client-Server Relationships)
An n-tier application is an application that requires multiple levels (tiers) of communica-
tion in order to accomplish meaningful work. For example, a SharePoint server farm that
includes one server for the database and another server for the website is an n-tier applica-
tion or, more specifi cally in this case, a two-tier application. The user communicates with
the web server (tier 1), and the web server communicates with the database on the user’s
behalf (tier 2). The n in n-tier is simply replaced with the number of links in the communi-
cation chain.

Figure 1.6 shows the SharePoint implementation visually. You can see the links or tiers
in the application. Such an implementation provides several benefi ts. First, developers can
change the database without necessarily rewriting all of the code at the web server. This
benefi t assumes that a standard data access method was used between the web server
and the database. Second, the developers can completely change the look and feel of the
 application without changing any of the data. In three-, four-, and more-tier implementa-
tions, the solution is even more componentized, and the result is greater fl exibility in the
solution over time.

c01.indd 19c01.indd 19 16-05-2013 7:49:4816-05-2013 7:49:48

20 Chapter 1 ■ Understanding SQL Server’s Role

F I GU R E 1.6 An n-tier application using a SharePoint server to access a backend
database server

Data for SharePoint is
stored in the database

server.

Client application
runs on the PC.

SharePoint runs on the
application server.

Finally, n-tier applications are easier to scale. Single-tier applications are notoriously
 diffi cult to scale. Everything is resting on a single server. If the performance of the database
becomes too slow, you are very limited in what you can do. With an n-tier application,
you can distribute the data across several servers on the backend and absolutely nothing
changes from the users’ perspectives. No wonder developers love to use this model. It’s not
without its faults, but it certainly has its benefi ts.

SQL Server’s Role
You are fi nally ready to explore how SQL Server fi ts into all of this discussion of database
technologies. To help you understand the roles SQL Server can play in your organization,
this section will begin by explaining the product’s major new features and its evolution.
First, you’ll explore the new features introduced in SQL Server 2012. Next, you’ll look
at the features SQL Server 2008 introduced (and that, of course, are still in SQL Server
2012). The fi nal new features section focuses on those features introduced in SQL Server
2005. This coverage of the two previous editions is very important. Some organizations
are moving directly from SQL Server 2000 and skipping SQL Server 2005 and 2008 alto-
gether. That decision is certainly acceptable as long as you can ensure compatibility with
your applications. But compatibility was also an important consideration for those who
upgraded from SQL Server 7.0 or 2000 to SQL Server 2005 a few years ago. This section
provides you with a quick overview of the evolution of SQL Server for a little more than
the last decade.

Finally, this section covers the roles SQL Server can play based on these new features.
You’ll learn about enterprise databases, departmental databases, reporting servers, ETL
servers, analysis servers, and more. Let’s jump into these exciting new features.

c01.indd 20c01.indd 20 16-05-2013 7:49:4816-05-2013 7:49:48

SQL Server’s Role 21

New Features Introduced in SQL Server 2012
This section introduces the newest features found only in SQL Server 2012 and not in
 previous editions. To make the coverage simpler, the features are separated into two cat-
egories: management features and development. This book is primarily focused on manage-
ment and administration of SQL Server 2012, so more information about the management
enhancement features is provided; however, it is practically impossible to manage a SQL
Server without doing some development or without understanding the components, lan-
guages, and processes used by developers. For this reason, the development features will be
covered here and throughout the rest of the book, although less exhaustively.

New Management Features
SQL Server 2012 introduces several features that enhance the manageability of the
database engine (the core of SQL Server). These features and enhancements include the
following:

■ SQL Server Management Studio

■ Contained databases

■ Windows PowerShell

■ New and improved dynamic management views (DMVs)

SQL Server Management Studio

The fi rst and most signifi cant change to SQL Server Management Studio (SSMS) is that it is
now built in the Visual Studio environment. This change makes the SSMS interface similar
to other Visual Studio–based solutions, like the traditional Business Intelligence Develop-
ment Studio (BIDS) used in previous versions of SQL Server. It also adds the powerful capa-
bilities of the Visual Studio IDE, including the following:

■ New Visual Studio default keyboard shortcuts

■ Transact-SQL IntelliSense enhancements such as breakpoints, code snippets, and
 templates

■ Watching Transact-SQL expressions during execution

■ Quick Info pop-ups when you move the mouse cursor over a Transact-SQL identifi er

In addition to this overall change to SSMS, the new database engine Query Editor adds
many new debugging features for SQL code. This enhancement may seem more appropri-
ate for the database developer than the database administrator at fi rst glance; however,
experienced administrators spend a tremendous amount of time working in SQL code with
performance analysis and troubleshooting endeavors. The new debugging features benefi t
you, too.

SSMS also introduces enhanced database restore capabilities. The Restore feature is
more effi cient, and this improves restore times. A new visual timeline is available for point-
in-time restores, making them much easier. Select corrupt pages can also be restored with
the new Page Restore dialog using a GUI interface.

c01.indd 21c01.indd 21 16-05-2013 7:49:4816-05-2013 7:49:48

22 Chapter 1 ■ Understanding SQL Server’s Role

Contained Databases

Contained databases allow users to exist in a user database without having associations with
logins in the instance of SQL Server. You create a user in the database without creating a
login for the SQL Server itself, which is where the phrase contained database comes from.
This can make database moves from one instance to another much easier. SQL Server 2012
actually implemented partially contained databases because some items still depend on the
instance. These items can be viewed using the sys.dm_db_uncontained_entitied and
sys.sql_modules views. The partially contained databases allow for improved database
movement, improved failover when using the new AlwaysOn feature, and improved
development processes for testing and troubleshooting.

Windows PowerShell

Windows PowerShell 2.0 is a prerequisite for installing SQL Server 2012. PowerShell
 modules are used to load the SQL Server components into the PowerShell environment.
The sqlps module is imported into PowerShell to load the SQL Server snap-ins. Two new
cmdlets are backup-sqldatabase and restore-sqldatabase.

New and Improved Dynamic Management Views

SQL Server provides DMVs and dynamic management functions (DMFs) for insight into
the SQL Server operations. The following system views have been added or changed in
SQL Server 2012:

■ sys.dm_exec_query_stats (modifi ed)

■ sys.dm_os_colume_stats (added)

■ sys.dm_os_windows_info (added)

■ sys.dm_server_memory_dumps (added)

■ sys.dm_server_services (added)

■ sys.dm_server_revistry (added)

New Development Features
The database engine of SQL Server 2012 offers the following development or programma-
bility features:

■ FileTables

■ Statistical semantic search

■ Full-text search enhancements

■ New functions

■ SQL Server Express LocalDB

FileTables

The FileTable is an enhancement or extension to the fi lestream technology introduced in
earlier versions of SQL Server. The FileTable feature allows you to store fi les and documents
in SQL Server tables and access them as if they were stored in the Windows fi le

c01.indd 22c01.indd 22 16-05-2013 7:49:4816-05-2013 7:49:48

SQL Server’s Role 23

system. The FileTable is also called a table of fi les. Each row in a FileTable represents a fi le
or a directory and contains a fi le_id, path_locator, and parent_path_locator. Traditional
fi le attributes are also stored, such as date modifi ed and last access time.

Files can be bulk-loaded into FileTables to convert traditional file storage
(such as image asset libraries) into SQL Server data tables. Use the BCP,
BULK INSERT, and INSERT INTO commands to accomplish this.

Statistical Semantic Search

Full-text search has been in SQL Server for several versions. Statistical semantic search
adds the element of meaning to full-text search. Where full-text searching allows you to
locate data based on included words, semantic search allows you to locate data based on
meaning. The SemanticSimilarityTable function can be used to locate documents or data
similar to a specifi ed document. Statistical semantic search is most commonly used with
documents stored in the SQL Server. These documents are likely to be stored in FileTables
moving forward.

Full-Text Search Enhancements

In addition to semantic searches, full-text indexes now support property-scoped searching
for documents stored in FileTables. For example, you can search by author, title, and other
document properties. Only documents with appropriate fi lters installed can be searched in
this way.

You can also now use a NEAR statement within a CONTAINS or CONTAINSTABLE function
to perform proximity searches. You can determine that multiple words must exist in a
data column or document and that they must exist in a specifi c order. You can also specify
the number of words within which the defi ned words must occur. For example, NEAR((Tom,
Carpenter), 2, TRUE) would require that Tom is before Carpenter (this is what the keyword
TRUE means) and that it is within two words of Carpenter. Therefore, Tom Dale Carpenter
would match.

New Commands and Functions

Fourteen new commands and functions were introduced to Transact-SQL in SQL Server 2012:

PARSE The PARSE command is used to translate an input value to a new data type. For
example, you can translate or convert a string that contains a date into an actual datetime2
data type. It is used only with string source values. The PARSE command uses the following
syntax:

PARSE (string_value AS data_type [USING culture])

TRY_PARSE TRY_PARSE is like PARSE except that it can return a NULL value if the command
fails. The TRY_PARSE command uses the following syntax:

TRY_PARSE (string_value AS data_type [USING culture])

c01.indd 23c01.indd 23 16-05-2013 7:49:4816-05-2013 7:49:48

24 Chapter 1 ■ Understanding SQL Server’s Role

TRY_CONVERT The TRY_CONVERT command is similar to the CONVERT command except that it can
return a NULL value if the command fails. The TRY_CONVERT command uses the following syntax:

TRY_CONVERT (data_type [(length)], expression [, style])

DATEFROMPARTS The DATEFROMPARTS function takes individual values and converts them to
a single date value. For example, it can take 2000, 10, and 24 as separate values and convert
them to 200—10—24 as an actual date value. The following syntax is used:

DATEFROMPARTS (year, month, day)

DATETIMEFROMPARTS This function is the same as DATEFROMPARTS except that it returns the
data as a datetime data type and receives more inputs. The following syntax is used:

DATETIMEFROMPARTS (year, month, day, hour, minute, seconds, milliseconds)

DATETIME2FROMPARTS This function is the same as DATEFROMPARTS except that it returns
the data as a datetime2 data type and receives more inputs. The following syntax is used:

DATETIME2FROMPARTS (year, month, day, hour, minute, seconds,
 fractions, precision)

DATETIMEOFFSETFROMPARTS This function is the same as DATEFROMPARTS except it returns the
data as a datetimeoffset data type and receives more inputs. The following syntax is used:

DATETIMEOFFSETFROMPARTS (year, month, day, hour, minute, seconds,
 fractions, hour_offset, minute_offset, precision)

SMALLDATETIMEFROMPARTS This function is the same as DATEFROMPARTS except it returns
the data as a smalldatetime data type and receives more inputs. The following syntax is
used:

SMALLDATETIMEFROMPARTS (year, month, day, hour, minute)

TIMEFROMPARTS The TIMEFROMPARTS function returns a time value and data type when
provided the hour, minute, seconds, fractions, and precision as input. The following syntax
is used:

TIMEFROMPARTS (hour, minute, seconds, fractions, precision)

EOMONTH The EOMONTH function is used to determine the end-of-month date for the month
in which a provided date exists. For example, given the input of 2/12/2016, it would return
29, because 2016 is a leap year. The following syntax is used:

EOMONTH (start_date [, month_to_add])

CHOOSE The CHOOSE function returns an item in a list based on the provided index value.
For example, in the list horse, cow, pig, the value of 2 for the index returns cow. The fol-
lowing syntax is used:

CHOOSE (index, val_1, val_2 [, val_n])

IIF The IIF function returns one of two values depending on whether the input expres-
sion equates to true or false. It is a short way for writing a CASE statement, which was avail-
able in previous versions of SQL Server. The following syntax is used:

c01.indd 24c01.indd 24 16-05-2013 7:49:4816-05-2013 7:49:48

SQL Server’s Role 25

IIF (boolean_expression, true_value, false_value)

CONCAT The CONCAT function takes two or more string values and combines them into
a single string. You simply provide it with the string values you want to concatenate. For
example, CONCAT (‘Tom’, ‘ ’, ‘Carpenter’) would return Tom Carpenter. The following
syntax is used:

CONCAT (string_value1, string_value2 [, string_valueN])

FORMAT The fi nal new function in SQL Server 2012 is the FORMAT function. It can be used
to convert data from one format to another, for example from U.S.-formatted dates to
European-formatted dates. The following syntax is used:

FORMAT (value, format [, culture])

SQL Server Express

The SQL Server Express LocalDB is a lightweight version of SQL Server Express. It
includes the same programmability features, but it runs in user mode and is installed
quickly with no confi guration. It is used for those projects where the developers desire to
have a local database similar to a Microsoft Access database but in the format of SQL
Server databases. The SQL Server Express LocalDB edition is managed using a utility
called SqlLocalDB.exe. The database fi les (with an .mdf extension) can be attached to full
SQL Server installations later, if desired.

Features Introduced in SQL Server 2008
If you are upgrading from SQL Server 2005 to SQL Server 2012, the features covered
in this section will be of great interest to you. The features were either new or greatly
enhanced in SQL Server 2008. Like the new 2012 features, they are grouped here into
management and development features.

All of the features mentioned here will be discussed in more detail in later chapters. The
intent here is to help you understand the roles SQL Server 2012 can play in an organization
based on the enterprise-class feature set it provides.

Management Features Added in SQL Server 2008
The management features added in SQL Server 2008 were among the most talked-about
new features. From policy-based management to the Resource Governor, SQL Server 2008
defi nitely provided the major capabilities needed for large multiserver enterprise implemen-
tations. These features included the following:

■ Policy-based management

■ Confi guration servers

■ The Resource Governor

■ Transparent data encryption

■ Performance data collectors

c01.indd 25c01.indd 25 16-05-2013 7:49:4816-05-2013 7:49:48

26 Chapter 1 ■ Understanding SQL Server’s Role

Policy-Based Management

Policy-based management (PBM) allows for the confi guration of SQL Server services
through policies. This functionality means that DBAs can confi gure pools of SQL Servers
together rather than having to confi gure each server individually. Of course, PBM is most
useful for environments with 10 or more servers, but it may provide benefi ts to smaller
organizations as well.

To use PBM, policies are grouped into facets that are confi gured as conditions
and applied to targets. For example, the Surface Area facet can be used to disable the
xp_cmdshell extended system stored procedure, and then this policy can be applied to
every server or a selection of servers. A policy, in the PBM world, is defi ned as a condition
enforced on one or more targets.

Configuration Servers

Confi guration servers are special SQL Servers that are used to centrally confi gure other
servers. Any SQL Server instance can be converted to a confi guration server. Once the
confi guration server is implemented, two primary tasks can be performed: centralized
management of PBM and multiserver queries. The centralized management of PBM with
a confi guration server causes PBM to provide functionality similar to group policies in
a Windows domain. From one central server, you can confi gure all of your SQL Servers
based on confi guration groups.

The multiserver query feature is exceptional. With this feature, you can execute a query
from the confi guration server to be run against all of the servers in a confi guration group.
For example, if you need to create a table in a database that has been replicated or simply
duplicated to seven different servers, a confi guration server would allow you to execute
the code to create that table on all seven servers at the same time. Figure 1.7 illustrates the
 concept of the multiserver query.

F I GU R E 1.7 An example of multiserver queries with the user querying one server that
queries three other servers in turn

Server
Group

Central
Configuration

Server

Multiserver
Query

c01.indd 26c01.indd 26 16-05-2013 7:49:4816-05-2013 7:49:48

SQL Server’s Role 27

The Resource Governor

The Resource Governor is used to impose limits on workloads based on the user request-
ing the work, the application requesting the work, or the database against which the work
is performed. Workloads can be assigned priorities so that, for example, a single user’s
actions do not prevent other users from completing necessary work. With previous versions
of SQL Server, DBAs could use the Windows System Resource Manager (WSRM) on Enter-
prise editions of Windows Server to perform similar operations. Now, the feature is built
into SQL Server and has more granular control over the resources in relation to SQL Server.

Transparent Data Encryption

SQL Server 2005 fi rst introduced encryption into the SQL Server Database Engine. The
only problem was that existing applications could not use it because the application had
to call both the encrypting and decrypting routines. SQL Server 2008 solved this problem
with transparent data encryption (TDE). To use TDE, you must still generate the appropriate
encryption keys and enable encryption for the database; however, these steps are taken at the
server by the DBA, and the developers will not have to change anything in their applications.
The encryption and decryption happen automatically, and the data is accessed in the same
way as unencrypted data.

The TDE feature provides storage encryption. The data is decrypted by the SQL Server
and then transferred to the client. Do not confuse this with transit encryption or communi-
cations encryption. To encrypt the communications between the SQL Server and the client,
you will still usually need to implement IPSec or a VPN protocol.

Performance Data Collectors

The next major management feature is the performance data collectors. Data collectors are
simply the tools used to collect performance information about your server. Historical per-
formance data can be automatically stored in a management data warehouse, allowing the
DBA to review historical performance data at any time. The process of collecting the data
is as follows:

1. SQL Server Agent schedules and launches the Data Collector component.

2. The Data Collector component launches the needed SSIS package.

3. The SSIS package collects the performance data and stores it in the management data
warehouse.

As you can see, Microsoft has taken advantage of existing technologies from earlier ver-
sions of SQL Server to build the Data Collector engine. You could have accomplished some-
thing similar in earlier versions of SQL Server by collecting performance data using the
System Monitor and confi guring it to automatically store the data in a SQL Server table;
however, the built-in tools to accomplish this are much more integrated in SQL Server 2008
and newer versions.

Development Features Added in SQL Server 2008
The development enhancements in SQL Server 2008 were also important. As a DBA, you
may never write a single line of code that gets compiled into an application, or you may

c01.indd 27c01.indd 27 16-05-2013 7:49:4816-05-2013 7:49:48

28 Chapter 1 ■ Understanding SQL Server’s Role

be a “programming DBA.” Many times programmers/developers must manage their own
SQL Servers. However, even if you do not write the code, it is useful to understand its basic
structure so that you can better troubleshoot problems in SQL Server–based applications.
The development features new to SQL Server 2008 are included here.

Developer Tool Improvements

The SQL Server 2008 Query Editor, which was still built into SQL Server Management
Studio, supported IntelliSense capabilities. This meant that the Query Editor could com-
plete entire words for you representing functions, keywords, variables, and more. If you
found yourself testing scripts in the Query Editor, this feature proved priceless. Addition-
ally, an error list feature similar to that in Visual Studio had been incorporated into the
Query Editor. When the editor detected errors, they would appear (see Figure 1.8), and you
could click the instance to see the error and fi nd help to repair it. The Query Editor is even
better now in SQL Server 2012 because the entire SQL Server Management Studio has been
reworked to operate within Visual Studio’s development environment.

F I GU R E 1. 8 Errors listed in the Error List dialog

Change Data Capture

Developers have been writing triggers and stored procedures for years in order to capture
data changes. When a user modifi es a record, for example, the trigger fi res and saves to a
History table a copy of what the data looked like before the modifi cation. SQL Server 2008
Enterprise and Developer editions support a feature called Change Data Capture. This
 feature is still supported in SQL Server 2012. It is easily enabled for the entire database or a
specifi c set of tables. Once enabled, historical states of the data can be queried.

Data Type Changes

SQL Server 2008 provided several data type enhancements and changes. The date and
time data types were upgraded with a new datetime2 data type. The datetime2 data type
supports a broader range of dates and greater accuracy. The new hierarchyid data type is
used to reference the position of items in a hierarchy, such as an employee’s position in an
organizational chart. Finally, the new filestream data type allows data to be stored on the
NTFS fi les system outside of the database data fi les but managed by SQL Server like other
data types.

c01.indd 28c01.indd 28 16-05-2013 7:49:4816-05-2013 7:49:48

SQL Server’s Role 29

New Report Designer

SQL Server 2005 introduced the Report Builder, but SQL Server 2008 took this to the next
level with the Report Designer. The Report Designer took on the look and feel of Microsoft
Offi ce 2007, including the Ribbon bar. Charting was enhanced, and there was a new tablix
data region that looked oddly similar to a pivot table, although that name never seems to
appear in Microsoft’s documentation related to the tablix.

Sparse Columns

When Windows 2000 was released in 1999, Microsoft implemented sparse fi les in the
NTFS fi le system. These fi les consumed 0 literal bytes on the drive, although they appeared
to consume from 1 byte to terabytes of space. Now, sparse columns have been added to the
feature set of SQL Server 2008 and are still supported in SQL Server 2012. Sparse columns
are most useful for columns that may have excessive records with NULL values. When the
value is NULL, the column will consume 0 bytes in the data pages. Sparse columns can help
you fi t a few more bytes of data into that 8,060-byte limit imposed by SQL Server.

LINQ to SQL Provider

Microsoft developed the Language Integrated Query (LINQ) feature for .NET development
some time ago; however, there was no direct support for it in SQL Server 2005 and older.
SQL Server 2008 implemented a LINQ-to-SQL provider, which meant that developers
could write queries in standard .NET code (instead of embedded SQL variables), and SQL
Server would take care of translating the request into T-SQL that the server could process.

Features Introduced in SQL Server 2005
If you are upgrading from SQL Server 2000 to SQL Server 2012, you will get all of the new
features covered in the previous sections, but you will also acquire all of the features that
were fi rst introduced in SQL Server 2005. Moving from SQL Server 2005 to SQL Server 2012
is like climbing a three- or four-rung stepladder; signifi cant changes have occurred, but they
are not massive. However, moving from SQL Server 2000 to 2012 is like climbing 35 to 40
rungs on a ladder. As you will see, SQL Server 2005 introduced drastically different adminis-
tration tools, an entirely new way of thinking about custom stored procedures, and the ability
to mirror databases, just to name a few changes. Like SQL Server 2012’s and 2008’s features,
the features can be divided into management and development enhancements.

Management Features Added in SQL Server 2005
The management features introduced in SQL Server 2005 were many. This section focuses
on a few key features:

c01.indd 29c01.indd 29 16-05-2013 7:49:4816-05-2013 7:49:48

30 Chapter 1 ■ Understanding SQL Server’s Role

■ New management tools

■ Database Mail

■ Dedicated administrator connection

■ SQL Server Integration Services

■ Database snapshots

■ Database mirroring

■ Failover clustering for Analysis Services

■ Online indexing

■ Security enhancements

■ Reporting services

New Management Tools

The new management tools introduced in SQL Server 2005 and enhanced in SQL Server
2008 were very welcome additions. As described earlier, they have been further enhanced in
SQL Server 2012. The SQL Server 2005 tools did not simply upgrade what was available
in SQL Server 2000; they completely replaced them. The Enterprise Manager (shown in
Figure 1.9) and Query Analyzer (shown in Figure 1.10) were both replaced with SQL Server
Management Studio.

F I GU R E 1. 9 The SQL Server 2000 Enterprise Manager used in earlier versions of
SQL Server

c01.indd 30c01.indd 30 16-05-2013 7:49:4816-05-2013 7:49:48

SQL Server’s Role 31

SSMS incorporated a query window into the management environment. Now, instead
of switching between the Enterprise Manager and the Query Analyzer during testing and
optimization efforts, you can use one tool to get the job done.

Of course, everything is not perfect in the new management tools—at least for those of
us who used the earlier tools extensively. One example is the Object Browser in the Query
Analyzer that shipped with SQL Server 2000. The Object Browser allowed you to easily
browse through T-SQL functions to locate the one you needed by category. SSMS does
not support this same Object Browser; although it does offer dynamic help, this feature
requires that you remember the function name. You can always create a favorite link in
Books Online (the SQL Server help system) to the T-SQL functions page, but you might
miss the Object Browser just the same.

Database Mail

In versions of SQL Server before SQL Server 2005, sending mail from the server was an
arduous task. Oddly, you had to install Outlook on the server (although standard docu-
mentation suggested only the need to install “a MAPI client”). This was not because SQL
Server used Outlook to send email but because you had to install Outlook to get a needed
Control Panel applet for the confi guration of SMTP accounts. By putting Outlook on the
server, you were creating yet one more component to update and secure. The old way can
be summarized by saying it was kludgy at best.

SQL Server 2005 solved the problem by introducing Database Mail, which provides direct
sending of SMTP mail messages. This component can be used to send email from your jobs
or applications. The component that actually does the sending runs outside of the memory
space of SQL Server, and it simply checks in with the SQL Server periodically to see whether
messages are waiting to be sent. The Service Broker component is used to queue the mail mes-
sages. Confi guring Database Mail is as simple as stepping through a wizard (see Figure 1.11)
and entering the parameters for your available SMTP servers. For your reference, the execut-
able that sends the mail is DatabaseMail90.exe in SQL Server 2005. The new Database Mail
solution is both more effi cient and less annoying than the older SQL Mail alternative.

F I GU R E 1.10 The Query Analyzer from SQL Server 2000

c01.indd 31c01.indd 31 16-05-2013 7:49:4816-05-2013 7:49:48

32 Chapter 1 ■ Understanding SQL Server’s Role

F I GU R E 1.11 The SQL Server 2005 Database Mail Configuration Wizard

Dedicated Administrator Connection

The dedicated administrator connection (DAC) allows you to connect to a SQL Server sys-
tem that is not responding to normal connections. The DAC was made available through
the new SQLCMD command-prompt tool and could be initiated only by the members of the
sysadmin server role. Once connected, you could execute standard diagnostic commands,
such as basic DBCC commands and potentially data-query commands.

SQL Server listens for DAC connections on a different TCP port than used for normal
connections. The default instance of SQL Server usually listens on TCP port 1433, but the
DAC listens on TCP port 1434 by default.

SQL Server Integration Services

Data Transformation Services (DTS) provided an extraction, transformation, and load-
ing (ETL) tool in SQL Server 2000. The tool was simple and to the point. This simplicity,
however, also meant that it lacked the power for more advanced ETL procedures. With
SQL Server Integration Services (SSIS), you have one of the most powerful ETL tool sets

c01.indd 32c01.indd 32 16-05-2013 7:49:4916-05-2013 7:49:49

SQL Server’s Role 33

in existence and certainly one of the best bundled ETL tool sets available with any data-
base management system. With SSIS, you can do everything you did in DTS (you can
even run an old DTS package if necessary) and a whole lot more. Figure 1.12 shows the
SSIS interface.

F I GU R E 1.12 SQL Server Integration Services showing a sample project

Database Snapshots

Database snapshots allow you to capture a point-in-time view of your entire database.
The snapshots are created using sparse fi les on NTFS volumes, so they are created very
quickly. In fact, the initial snapshot fi le contains 0 bytes of actual data. Before informa-
tion changes in the database, the old information is copied into the snapshot fi le. This
implementation allows several snapshots to exist at the same time without a tremendous
burden on the server. Snapshots are useful for several practical functions, including
these:
■ Viewing and reporting on data as it existed at a point in the past

■ Selectively restoring data to a specifi c point in time, such as restoring the Customers
table to the state it was in before a user accidentally set everyone’s email address to the
same value

■ Reverting the entire database to the state in the snapshot

c01.indd 33c01.indd 33 16-05-2013 7:49:4916-05-2013 7:49:49

34 Chapter 1 ■ Understanding SQL Server’s Role

Database Mirroring

If you want to confi gure a warm or hot standby server, database mirroring is a potential
solution. Standby servers are covered in detail in Chapter 23, “Database Mirrors and
Snapshots.” Database mirroring allows you to mirror one database or several databases
from one SQL Server onto another. The primary server will receive all changes, and those
changes are then immediately transferred to the mirror database server transactionally
(based on changes and not simply accesses). The latency is very low with database mirror-
ing, which means that in the event of a failure, very little data should be lost.

Database mirroring can be implemented in two ways: warm standby and hot standby.
In warm standby implementations, the mirror database cannot automatically be promoted
to become the primary database. Some DBA intervention will be required. In hot standby
implementations, the mirror database can automatically be promoted to become the pri-
mary database. However, to implement a hot standby mirroring solution, a third server is
required. It is known as the witness server and ensures that the mirror server does not pro-
mote itself unless the primary server is really down.

Failover Clustering for Analysis Services

Failover clustering provides fault tolerance for SQL Server. Earlier versions of SQL Server
supported failover clustering for the database engine, but it was not supported for the other
services. With the release of SQL Server 2005, failover clustering was supported for SQL
Server Analysis Services (SSAS) as well. SSAS is used for data warehousing, data analysis,
and various data management and storage operations. Failover clustering allows one server
to act as the primary server and another server to automatically take over should the pri-
mary server fail. In addition to SSAS, failover clustering is also supported for Notifi cation
Services and Replication servers.

Online Indexing

SQL Server 2005 fi rst introduced online indexing. The concept is simple: you can create
an index on a table while users are accessing that table for reads and writes. This feature
means you do not have to wait for a nonbusy window to create indexes. In previous ver-
sions of SQL Server, it was common to schedule index creation during downtimes, such as
12 a.m. to 5 a.m. The only problem was that it was very diffi cult to fi nd an inactive time
window in 24/7 shops.

Consultants often spend a large portion of their consulting time optimizing existing
databases. One key optimization strategy is the creation of indexes (and the deletion of
unneeded indexes). The ability to create indexes on the fl y without the need for downtime
is priceless—not just to consultants but to their clients as well. They no longer have to care-
fully schedule consulting windows or prepare a mirror server that matches their production
server for performance testing. A performance analysis can usually be scheduled to run on
the server while users are accessing the data, and then that information can be analyzed
offl ine. Next, proper indexes can be created, and the performance analysis can be run
again to determine whether the desired outcome was accomplished. You’ll learn all about
this process in Chapter 15, “Performance Monitoring and Tuning.”

c01.indd 34c01.indd 34 16-05-2013 7:49:4916-05-2013 7:49:49

SQL Server’s Role 35

Security Enhancements

Many security enhancements were introduced in SQL Server 2005, including these:

Storage Encryption Data can be encrypted in the database. SQL Server 2005 requires
that the application be aware of the encryption and implement code to both encrypt and
decrypt the data. Storage encryption helps protect your data if the backup media is stolen
or an attacker otherwise steals the entire database fi le.

Password Policies for SQL Logins SQL logins have been a negative issue for SQL Server
for years. The authentication process is not the most secure, and it is hampered even more
by the use of weak passwords. Password policy association allows you to require that users’
passwords meet the policy requirements established in the Windows domain or on the local
server. Users can be required to select passwords greater than a specifi ed length and requir-
ing complexity in character types.

Separated Owners and Schemas Before SQL Server 2005, if you made a user the owner
of a table, that table was placed in the user’s schema. You would end up with table names
such as fred.sales and jose.marketing. Needless to say, this structure was less than ideal.
Because of this functionality, most DBAs chose to use the dbo schema for everything and,
therefore, ensured that the dbo owned everything. With the release of SQL Server 2005,
schemas became usable—in a practical way—for the fi rst time. A user can own a table, and
that table can remain in the assigned schema.

Surface Area Configuration Tool The Surface Area Confi guration tool is used to lock
down a SQL Server installation. The tool allows you to control the SQL Server services and
enable or disable features as needed. Figure 1.13 shows the Surface Area Confi guration for
Features interface.

F I GU R E 1.13 The Surface Area Configuration for Features dialog box

c01.indd 35c01.indd 35 16-05-2013 7:49:4916-05-2013 7:49:49

36 Chapter 1 ■ Understanding SQL Server’s Role

Reporting Services

Reporting Services was fi rst introduced as an add-on for SQL Server 2000. The product
was not supplied on the SQL Server 2000 distribution CDs but was an after-the-fact down-
load or could be purchased on a CD. As the name implies, Reporting Services provides
reporting features for your database deployments. Be careful not to be fooled by the fact
that Reporting Services “comes with” SQL Server 2005 and newer. You must still license
the product separately from your SQL Server deployment. Each Reporting Services server
requires SQL Server licenses—either per processor or a server license, plus client access
license (CAL) for each user who accesses the reports.

SQL Server 2005’s implementation of Reporting Services added a new reporting tool.
The Report Builder application provides simplifi ed report creation for users. Because the
Report Builder uses concepts familiar to those who use Microsoft Offi ce 2003 and older,
the learning curve is reduced. You can format, preview, print, and publish reports from the
Report Builder.

Of course, Reporting Services not only comes with SQL Server 2012 today, but Express
Edition with Advanced Services even includes a limited version of Reporting Services.

New Development Features in SQL Server 2005
The enhancements for those developing applications for SQL Server were also important in
the release of SQL Server 2005. They are briefl y listed here and are covered in more detail
in the appropriate locations throughout the book.

.NET Integration

The integration of .NET and CLR capabilities into SQL Server means that developers can
code stored procedures, triggers, and functions in the many modern languages supported
by .NET. Additionally, the integration of .NET into the memory space of SQL Server
improves performance and provides improved security. Because .NET integration is more
of a programming feature than an administration feature, it is not covered in detail in this
book.

Transact-SQL Changes

Every version of SQL Server has introduced changes to the T-SQL language. Sometimes
these changes add support for new commands and capabilities, and sometimes they remove
support for older commands that are no longer needed or for which Microsoft simply chose
to end support. SQL Server 2005 made improvements in the area of error handling, support
for new database engine features (such as database snapshots), and recursive query capabili-
ties. Chapter 5 covers T-SQL in depth.

Enhanced Development Tools

The development tools that shipped with SQL Server 2005 were a huge leap over what was
available in SQL Server 2000. Most developers used third-party tools or extra Microsoft
tools to get the job done. With SQL Server 2005, many developers found that the built-in tools
provided suffi cient capabilities to accomplish their objectives. The Business Intelligence

c01.indd 36c01.indd 36 16-05-2013 7:49:4916-05-2013 7:49:49

SQL Server’s Role 37

Development Studio is a key component among these development tools. Figure 1.13 ear-
lier in the chapter shows the BIDS environment while developing an SSIS solution. The
enhancements to the administrative and development tools are covered in Chapter 3.

HTTP Endpoints

SOAP is a communications protocol used to allow applications to interact based on XML
data. If you wanted to implement an HTTP endpoint for use with SOAP development
in SQL Server 2000, you had to install Internet Information Services (IIS) on the SQL
Server. SQL Server 2005 introduced HTTP endpoints. These endpoints can be created
without requiring IIS on the server, and they are more secure by default. For example, you
can control which stored procedures are permitted for execution through the endpoint.
HTTP endpoints are not commonly created by administrators, but they are important for
some development projects using older versions of SQL Server before SQL Server 2012.
SQL Server 2012 no longer supports XML web services endpoints.

XML Support Improvements

The XML support in SQL Server 2000 was minimal. You could store XML data in col-
umns with a text data type, but your application had to retrieve the data as text and then
parse it as XML. No support existed for direct querying of the XML data within the SQL
Server. However, you were able to return SELECT statement result sets as XML using the
FOR XML clause. SQL Server 2005 takes XML support to the next level. You can store the
data in an XML data-typed column, and you can use the XQuery subset of the SQL/T-SQL
language in order to retrieve only the XML values you require. Chapter 10, “Data Types
and Table Types,” will cover the XML data type in more detail.

Service Broker

You’re probably used to databases working in a synchronous manner. The client submits
a request to the SQL Server and waits for the server to respond. The server receives the
request from the client and processes it as quickly as the current workload allows and then
responds to the client. This traditional database communications model does not scale well
when a customer submits an order at a website and that order must update an inventory
system, a shipment system, a billing system, and a website tracking system. Service Broker
provides asynchronous communications without the need for building the entire core
communications engine. It provides queuing, queue processing, and other services that
allow a more scalable application. Service Broker is primarily an application development
architecture and is not covered in detail in this book. To learn more, search: http://msdn
.microsoft.com for Server Broker SQL Server 2012.

Notification Services

If you’ve used SQL Server for any amount of time, you’ve probably used operators and had
notifi cations sent to you when a backup completes or when a job fails. Notifi cation Services
provides similar notifi cations to your users. For example, Notifi cation Services provides
the framework to allow a sales representative to subscribe to a change in pricing. Imagine
a customer who is ready to buy 50,000 units of item number 2043978 as soon as the price

c01.indd 37c01.indd 37 16-05-2013 7:49:4916-05-2013 7:49:49

38 Chapter 1 ■ Understanding SQL Server’s Role

drops below $0.70 per unit. The salesperson can confi gure a notifi cation so that she is noti-
fi ed immediately when the price-drop takes place. Notifi cation Services is no longer in SQL
Server 2012. Instead, most developers use Reporting Services to provide the same notifi ca-
tion capabilities.

Core Features of SQL Server
In addition to the special features introduced with SQL Server 2005, 2008, and 2012, core
features have existed in the product going all the way back to SQL Server 6.5 and earlier.
These important features include the following:

Support for Concurrent Users Support for concurrent users is provided using worker
threads and connections. Each connection receives its own process ID and can be managed
individually (for example, a single connection can be killed). The number of concurrent
users that can be supported will be determined by the resources available in the server—for
example, as memory, processors, network cards, and hard drives.

Transactional Processing Transactional processing ensures that the database maintains
consistency. For example, in a banking application, you would not want to allow a trans-
fer from savings to checking to take place in such a way that the money is removed from
savings but doesn’t make it into checking. Transactional processing ensures that the entire
transaction is successful or none of the transaction components are allowed. Transactions
can be implicit or explicit, and all changes are treated as transactions.

Large Database Support SQL Servers support large databases. SQL Server 2000 allowed
database sizes as large as 1,048,516 terabytes, which is equivalent to 1 exabyte in size,
which is very large. Of course, fi nding hardware that can handle a database that size is
a different story. Interestingly, according to Microsoft’s documentation, the maximum
allowed database size was reduced in SQL Server 2005 and 2008 to 524,272 terabytes.
This size constraint is still very large at 524 petabytes, so it will not likely be a problem
soon. Very few databases exceed 5 terabytes in size today. The database size constraints
imposed in SQL Server 2005 and 2008 remain the same in SQL Server 2012.

Advanced Storage Mechanisms The storage mechanisms provided by SQL Server allow
databases to be stored in single fi les or multiple fi les. The database can be spread across
multiple fi les located on multiple storage volumes. By using fi legroups, the DBA can control
on which fi le which tables will be placed. The storage mechanisms are far more advanced
than those available in a simple database system such as Microsoft Access.

Large Object Support Large objects, up to 2GB, can be stored in SQL Server databases.
Depending on the application, however, it may be better to store the large objects (LOBs)
outside of the database and simply reference them in the database; however, internal stor-
age is supported. You can store large amounts of text (up to 2GB) in the text data type. You
can store any binary data in the image data type, which also allows up to 2GB of data to be
stored in a single record.

c01.indd 38c01.indd 38 16-05-2013 7:49:4916-05-2013 7:49:49

SQL Server’s Role 39

Replication Sometimes you need to distribute your data to multiple locations. You may
need to provide localized reporting servers at branch offi ces, or you may need to aggregate
new data from several remote offi ces into a central reporting server. Whatever the motiva-
tion behind data distribution, SQL Server offers replication as a solution. SQL Server 6.5
supported basic replication features. With each version since then, more capabilities have
been added. For example, SQL Server 2005 added support for replication over the HTTP
protocol, and SQL Server 2008 adds a new graphical tool for creating peer-to-peer replica-
tion maps and an enhanced version of the Replication Monitor tool.

These core features, and more, have been with SQL Server for well over 10 years, and
they continue to evolve and improve. They have a tremendous impact on the roles that SQL
Server can play within your organization and can help you decide between it and other
database systems—particularly single-user database systems.

Many people have been waiting for SQL Server 2012 to upgrade their SQL
Server 2000 installations. If you’re one of those people, don’t forget about
the features that were deprecated in SQL Server 2005 and 2008; they may
be gone now in SQL Server 2012. To locate such features, search for SQL
Server 2005 deprecated features or SQL Server 2008 deprecated features in
your favorite search engine. Several sites provide information about these
removed features.

SQL Server Roles
Now that you’ve explored the many features and capabilities of databases in general and
SQL Server specifi cally, let’s quickly explore the roles that SQL Servers can play in your
organization. This section will cover the following roles:

■ Enterprise database servers

■ Departmental database servers

■ Web database servers

■ Reporting servers

■ ETL servers

■ Analysis and decision support servers

■ Intermediary servers

■ Standby servers

■ Local databases

This list may be longer than you expected, but believe it or not, it’s not exhaustive. More
roles exist, but these are the most common roles played by SQL Servers.

c01.indd 39c01.indd 39 16-05-2013 7:49:4916-05-2013 7:49:49

40 Chapter 1 ■ Understanding SQL Server’s Role

Enterprise Database Servers
Enterprise database servers provide data access to the entire organization. These servers
usually house enterprise resource planning (ERP) applications, customer resource manage-
ment (CRM) applications, and other applications that are accessed by individuals from
practically every department in the organization. The databases tend to be very large and
must usually be distributed across multiple servers.

As an example, consider a SharePoint implementation that is used as a company portal.
Each department may have a section on the SharePoint server, but the portal is there for the
entire company. With an implementation this large, the SharePoint installation would most
likely be a farm-based installation with one or more backend SQL Servers. This implemen-
tation qualifi es as an enterprise database server implementation.

Common SQL Server features and concepts used on enterprise database servers include
the following:

■ Failover clustering

■ Log shipping or database mirroring

■ 64-bit implementations for increased memory support

■ Replication

■ Encryption

■ Third-party backup software

■ ETL packages

■ Reporting Services

■ Windows domain membership

■ RAID or SAN data storage

Departmental Database Servers
Many times an application is needed only for a single department. For example, the engi-
neering group may need a database server for the management of their drawings, or the
marketing group may need a database server to track their marketing efforts. While this
information could be stored in an enterprise server, if the server will be heavily used by the
department, it may be more effi cient to use a dedicated server. The hardware may be identi-
cal to that which is commonly implemented for enterprise servers. The only difference is
usually the number of users who access the server.

Departmental servers tend to utilize features and concepts such as the following:

■ Built-in backup software

■ Log shipping or database mirroring

■ Reporting Services

■ Windows domain membership

■ RAID data storage

c01.indd 40c01.indd 40 16-05-2013 7:49:4916-05-2013 7:49:49

SQL Server’s Role 41

Web Database Servers
Web database servers are used to provide data for websites. The data is frequently repli-
cated or otherwise merged into the web database server from other internal servers. Web
database servers are usually less powerful than enterprise servers, with the obvious excep-
tion of web-based companies such as eBay or Amazon.com.

Web database servers tend to utilize features and concepts such as the following:

■ Built-in backup software

■ Reporting Services

■ RAID data storage

■ Explicitly no Windows domain membership

Reporting Servers
Dedicated reporting servers are used to gather report information from enterprise,
 departmental, and other database servers. A dedicated reporting server usually houses the
reporting databases locally but accesses all other data from remote database servers.

Reporting servers tend to utilize features and concepts such as the following:

■ Built-in backup software

■ Reporting Services

■ RAID data storage

■ Windows domain membership

ETL Servers
Dedicated ETL servers are used to perform nightly or periodic data moves, data transfor-
mations, and even data destruction. Because of licensing costs, dedicated ETL servers are
usually found only on very large-scale deployments. Many smaller deployments simply use
SSIS on existing database servers.

Analysis and Decision Support Servers
Analysis, or decision support, servers are used by business analysts to determine the state of
operations within an organization. Analysis servers may run Microsoft’s Analysis Services,
or they may run third-party tools as well. These servers get their data from other servers in
the environment. Depending on the size of deployment, the transaction processing servers
may send data to a warehouse from which the analysis servers retrieve it, or the data may
be housed entirely within the analysis server.

Intermediary Servers
Intermediary servers are becoming more common. These servers exist between two or more
servers. An example of an intermediary server is a replication distributor server. The distribu-
tor sits between the publisher and the subscriber. The subscriber pulls information from the
distributor that was fi rst pulled by the distributor from the publisher. A model that deploys
intermediary servers can often scale to be much larger than a single-server model.

c01.indd 41c01.indd 41 16-05-2013 7:49:4916-05-2013 7:49:49

42 Chapter 1 ■ Understanding SQL Server’s Role

Standby Servers
Standby servers include log-shipping receiver servers, database mirror servers, and any
server that is not actively used unless the primary server fails. Standby servers fall into
three primary categories: cold standby, warm standby, and hot standby. These standby
solutions are categorized by two factors.

The fi rst factor is the latency of updates. A hot standby server receives updates at the
same time as (or within seconds of) the primary server. A warm standby server may receive
updates within minutes, and a cold standby server may receive updates only every few
hours.

The second factor is the amount of time it takes to bring the standby server online. A
hot standby server comes online immediately when the primary server fails. A cold standby
server will never come online without manual intervention. A warm standby server may
require manual intervention, or it may simply delay before coming online.

Local Databases
The fi nal role that SQL Server can play is the local database role. Many assume that only
SQL Server Express edition is used as a local database; however, because of the size con-
straints of SQL Server Express (the maximum database size is 4GB), some applications
require SQL Server Standard edition to be installed for a local database. The good news is
that no client access licenses will be required; the bad news is that there is some expense,
which is the price of the SQL Server Express edition.

Enterprise Databases and 64-Bit Computing

When choosing the role of your SQL Server implementation, remember to also choose the
proper edition. I was working with an organization that used SQL Server for a very large
database application. Both performance and stability problems were prevalent, and we had
to fi nd a solution. I went through the normal performance and confi guration analysis proce-
dures and found no signifi cant changes that could be made with the existing hardware.

In the end, we decided to upgrade the system to a 64-bit server running Windows Server
2003 Enterprise edition 64-bit. We also installed the 64-bit version of SQL Server 2005.
What do you think happened? If you guessed that both the performance problems and
the stability problems disappeared, you are correct. The culprit was, as it often is,
memory—and the 64-bit version provided us with much more memory to utilize. Don’t
forget this when considering your implementation.

At the same time, it is important to ensure that your applications will run on a 64-bit
installation of SQL Server. Many application vendors still develop extended stored proce-
dures, which are basically DLL fi les called by the SQL Server. If these DLLs are provided
only in 32-bit versions, they may or may not work with a 64-bit edition of SQL Server.
Yes, there is much involved, but selecting the right edition and bit level is very important.
Chapter 2, “Installing SQL Server 2012,” explores this choice in more detail.

c01.indd 42c01.indd 42 16-05-2013 7:49:4916-05-2013 7:49:49

Chapter Essentials 43

Summary
The goal of this chapter was to lay a solid foundation on which to build the information
contained in the rest of this book. You learned about the role played by databases in gen-
eral and the specifi c roles that Microsoft recommends for SQL Server. You also learned
the defi nitions of several important terms and concepts and found out what features were
introduced in SQL Server 2005, 2008, and 2012. Now you’re ready to begin installing
and working with SQL Server.

Chapter Essentials

Understanding Information Technology’s Many Components Database servers make up
one part of information technology (IT); however, they are a very important part. After all,
they are the permanent locations where most of your data is stored.

Understanding Databases’ Many Flavors Both server-based and local databases are com-
mon. Server-based databases provide advanced features such as support for concurrent
users, improved security, and improved availability.

Understanding SQL Server’s Evolution Over the years the SQL Server product line has
matured into a very stable and feature-rich database solution. SQL Server 2005 was a big
upgrade over SQL Server 2000, and SQL Server 2008 took the product to even greater
heights. SQL Server 2012 adds to these capabilities in the areas of availability, manage-
ment, and programmability.

Understanding SQL Server’s Many Roles From enterprise servers to local databases, the
SQL Server product can be utilized throughout an organization. Choosing the appropriate
edition for the intended role is essential for performance and stability.

c01.indd 43c01.indd 43 16-05-2013 7:49:4916-05-2013 7:49:49

c01.indd 44c01.indd 44 16-05-2013 7:49:4916-05-2013 7:49:49

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

		2013-05-17T06:04:12-0400
	Certified PDF 2 Signature

