
1 Financial Models

1.1. INTRODUCTION

The movement of financial assets and products generally displays some type
of expected return, even over a short period. This expected return trends at a
predictable rate that may be positive, indicating growth; negative, indicating a
decline; or zero. Additionally, there are random movements that are individually
unpredictable; however, the general distribution of these fluctuations is predictable
based on historical movements. The common approach to model randomness is to
assume a single- or multi-component Gaussian process. The generalized format to
describe a time-dependent stochastic process is

dSt = α(S, t)dt + σ(S, t)dWt ,

where the drift α and volatility σ are functions of time t and asset price S, and
Wt is a Wiener process. If the drift α(S, t) = μ and volatility σ are constants, then
the process

dSt = μdt + σ dWt

is known as arithmetic Brownian motion . This process by itself states that the stock
price S will increase (or decrease) without bound at a rate that is not dependent
on the current stock price. Clearly, this does not describe the typical behavior for
an asset, but modified versions of arithmetic motion are useful in finance and are
revisited later in the text.

1.2. GEOMETRIC BROWNIAN MOTION

A more appropriate description of a stock price process is that the movements in
the stock are proportional to the value of the stock. A specific description is that
the overall drift, α(S, t) = μSt , is the product of an expected return μ and the
current asset price St . Adding a stochastic movement that is also proportional to
the current price level gives

dSt = μS dt + σS dWt ,
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2 FINANCIAL MODELS

which is the well known geometric Brownian motion process. A crude discrete
approximation of the stochastic differential equation for geometric Brownian
motion given by

�St

St

= μ�t + σ �Wt

is only valid over short time intervals . This form does highlight that the percentage
change in the stock price �S

S
over a short time interval is normally distributed

with mean μ�t and standard deviation σ
√

�t , where μ is the drift and σ is the
volatility. The shorthand for a normal distribution is

�S

S
∼ N
(
μ�t, σ

√
�t
)

.

The variance of this stochastic return is proportional to the time interval, var
(

�S
S

) =
σ 2 �t (Hull, 2006). One benefit of geometric Brownian motion is that negative asset
prices are not possible because any price change is proportional to the current price.
Bankruptcy could drive an asset price down to but not past the natural absorbing
barrier at zero (Chance, 1994).

The discrete approximation of the geometric Brownian motion stochastic
equation is composed of a trend (or expectation) term E

( dS
S

) = μdt and an
uncertainty (of deviation) term. The uncertainty term is given by the Wiener
increment

dWt = εt

√
dt ,

with E(dWt) = 0, where ε is the standard normal distribution. It turns out that
the variance of dWt is equal to the time interval dt . The variance of the Wiener
increment was found by evaluating

var(dWt) = E[dWt − μdWj
]2 = E(dWt

2) − E(dWt)
2 = E(dW 2

t ).

The expected value of (dWt)
2 is, by definition, E[(dWt)

2] = E[(εt

√
dt)2] (Chance,

2005). Pulling the dt factor out of the expectation gives

E(dW 2
t ) = E(ε2

t dt) = (E(ε2
t ))dt .

To evaluate the E(ε2
t ) term requires the computational formula for the variance

var(εt ) = E[(εt − E(εt ))
2] = E[(ε2

t − 2εtE(εt ) + E(εt ))
2]

var(εt ) = E(ε2
t ) − 2E(εt )E(εt ) + E(εt )

2 = E(ε2
t ) − 2E(εt )

2 + E(εt )
2

var(εt ) = E(ε2
t ) − E(εt )

2

→ E(ε2
t ) = var(εt ) − E(εt )

2.
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The variance term of a standard normal variable is one, var(εt ) = 1. The expected
value of a standard normal variable E(εt ) and the square of the expected value
E(εt )

2 are zero. Therefore,

E(ε2
t ) = var(εt ) − E(εt )

2 = 1 − 0,

the expected value of a squared standard normal variable is one. The value for the
expectation of the Wiener increment squared is given by

E(dW 2
t ) = (E(ε2

t ))dt = dt .

This important result states that the square of a Wiener process equals the time
interval, dt = dW 2

t . In other words, the Weiner process is unpredictable but the
square of the Weiner process is predictable.

The percentage price change of the stochastic representation of dSt

St
is normally

distributed because the stochastic differential equation, written as

dSt

St

= μdt + σ dWt ,

is a linear transformation of the normally distributed variable dWt . The relative
return S0+dSt

S0
= 1 + dSt

S0
= St

S0
over a time period T is the product of the intervening

price changes as displayed by

ST

S0
= S1

S0

S2

S1
. . .

St−1

St−2

ST

St−1
,

where each increment in relative return Si

Si−1
is capable of being further subdivided

in time. A logarithm of the product converts the product series into a summation
series as given by

ln

(
ST

S0

)
= ln

(
S1

S0

)
+ ln

(
S2

S1

)
+ · · · + ln

(
St−1

St−2

)
+ ln

(
ST

St−1

)
.

The central limit theorem states that the summation of a large number of identically
distributed and independent random variables, each with finite mean and variance,
will be approximately normally distributed (Rice, 1995).

1.2.1. Lognormal Stochastic Differential Equation

The insight of the previous paragraph provides a motivation to recast the geometric
Brownian motion

dS = μS dt + σS dW ,
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as a lognormal diffusion stochastic differential equation. The alteration is accom-
plished by using the function

G = ln S,

and its derivatives
∂G

∂S
= 1

S

∂2G

∂S2
= − 1

S2

∂G

∂t
= 0.

Application of Ito’s lemma gives

dG = ∂G

∂S
dS + 1

2

∂2G

∂S2
(dS)2 + ∂G

∂t
dt + 1

2

∂2G

∂t2

Infinitesimally
small→0︷︸︸︷
(dt)2

dG = 1

S
dS − 1

2

1

S2
(dS)2 + 0

dG = 1

S
(μS dt + σS dW) − 1

2

1

S2
(μS dt + σS dW)2

dG = (μdt + σ dW)

− 1

2

1

S2

⎛
⎜⎜⎜⎝σ 2S2

dW 2=dt︷︸︸︷
dW 2 + μσS2

Infinitesimally
small→0︷ ︸︸ ︷
dt dW + α2S2

Infinitesimally
small→0︷︸︸︷

dt2

⎞
⎟⎟⎟⎠

dG = (μdt + σ dW) − 1

2
σ 2 dt

dG =

⎛
⎜⎜⎝

=η︷ ︸︸ ︷
μ − 1

2
σ 2

⎞
⎟⎟⎠ dt + σ dW ,

where we have introduced a lognormal return drift factor , η, which is the con-
tinuously compounded return . A solution to the log return stochastic differential
equation is found by integrating∫

dGu =
∫

ηdt +
∫

σ dWu.

The deterministic drift term can be integrated similar to an ordinary differential
equation. The σ coefficient is taken as a time-invariant constant, which greatly
simplifies the stochastic integral to

t∫
0

σ dWu = σ(Wt − W0) = σ(Wt − 0),
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where the random term is zero at the time origin by definition. The integral of∫
dGu is Gt − G0; therefore,

Gt − G0 = ln St − ln S0 = ln

(
St

S0

)
= ηt + σWt .

Hence the evolution of the logarithm of the price change follows a drift η =
μ − 1

2σ 2 and has a Gaussian distribution with a mean at ηT and a variance σ 2T .
Compactly, this is expressed as

ln St − ln S0 = ln

(
St

S0

)
∼ φ
[
ηt, σ

√
t
]
,

ln St ∼ φ
[(

ln S0 + ηt
)
, σ

√
t
]

where φ(m, σSD) denotes a normal distribution with mean m and standard deviation
σSD. It follows that the continuously compounded return is found from

η = 1

t
ln

(
St

S0

)
.

The continuously compounded return is normally distributed with a mean or
expected value of E(η) = μ − σ 2

2 and a standard deviation of σ√
t

(Hull, 2006).
Formally, this is written as

η = ϕ

[
μ − σ 2

2
,

σ√
t

]
,

which implies that the likelihood of returns are more certain when examined over
a longer time series.

Recalling that S = eG allows an expression for the evolution of St as

St = S0 eηt+σWt .

The variance of the stock price St has a lognormal distribution with a variance
given by

var(St ) = S2
0 e2αT (eσ 2T − 1).

1.3. EXPECTED VALUE, VARIANCE, AND MOMENTS
OF LOGNORMAL DISTRIBUTION

We will provide a brief proof of the lognormal distribution as discussed by Hull
(2006). The logarithm of the asset price, G = ln S, has a normal distribution,
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φ(m, σSD). The previous derivation showed that the mean of the distribution is
dependent on the logarithm of the starting stock price and a product of the contin-
uously compounded rate and the time period of the analysis, m = (ln S0 + ηt); the
standard deviation is a product of the annualized volatility and the square root of
the time period of analysis, σSD = σ

√
t .

The related probability densities for G = ln(S) are

h(G) = 1√
2πσSD

e

(
−(G−m)2

2σ2
SD

)
h(S) = 1√

2πσSDS
e

(
−(ln(S)−m)2

2σ2
SD

)
.

The nth raw moment for a probability distribution h(S) is given by the integral

μ′
n = E(Sn) =

∞∫
0

Snh(S)dS,

where n signifies the nth moment. The nth moment after inserting the exponential
of G, eG = S, is

μ′
n = E((eG)n) =

∞∫
−∞

(enG )
1√

2πσSD

e

(−(G−m)2

2σ 2
SD

)
dG

=
∞∫

−∞

⎛
⎝e

nG
2σ 2

SD
2σ 2

SD

⎞
⎠ 1√

2πσSD

e

⎛
⎜⎝−
(
G2−Gm+m2

)2
2σ 2

SD

⎞
⎟⎠

dG

μ′
n =

∞∫
−∞

1√
2πσSD

e

2σ2
SDnG−(G2−Gm+m2)2

2σ2
SD dG =

∞∫
−∞

1√
2πσSD

e

2σ 2
SDnG−(G2−Gm+m2)2

2σ 2
SD dG

μ′
n =

∞∫
−∞

1√
2πσSD

e

(G2−m−σ 2
SD)2

2σ 2
SD e

2mnσ 2
SD+n2σ 4

SD
2σ 2

SD dG

= emn+n2σ 2
SD/2

Integral of normally
distributed function=1︷ ︸︸ ︷

∞∫
−∞

1√
2πσSD

e

⎛
⎜⎜⎜⎝G2

Mean︷ ︸︸ ︷
−m − σ 2

SD

⎞
⎟⎟⎟⎠

2

2σ 2
SD dG

μ′
n = emn+n2σ 2

SD/2.
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Therefore, the raw moments (taken about 0) are (Weisstein, 2011)

μ′
1 = em+σ 2

SD/2 = expected value

μ′
2 = e2(m+σ 2

SD)

μ′
3 = e3m+9σ 2

SD/2

μ′
4 = e4(m+2σ 2

SD).

A little more mathematics with the first raw moment, μ′
1 = em+σ 2

SD/2, generates the
expected value of the stock price. Substituting m = (ln S0 + ηt) and σSD = σ

√
t

yields

μ′
1 = E(St ) = e(ln S0+ηt)+1/2σ 2t = S0eηt+1/2σ 2t

E(St ) = S0 e
(
μ−1/2σ 2

)
t+1/2σ 2t

E(St ) = S0 eμt .

An alternate derivation of the expected value of lognormal stock price
without invoking the first raw moment that may be more intuitive is presented
below.

1.3.1. Lognormal Distribution by Expectation

As discussed by Chance (2005), the solution to the stochastic differential equation
dSt

St
= μdt + σ dWt was developed as St = S0 eηt+σWt . Taking the expectation of

the expression for the evolution of St gives

E[St ] = E[S0 eηt+σWt ],

which can be simplified by moving the constant factors out of the expectation to
give

E[St ] = S0 eηtE[eσWt ].

The Weiner process Wt follows a standard normal probability with a mean of zero
and standard deviation of

√
t as written by

f (Wt) = 1√
2πt

e
−W 2

t /2t .

In general, the expected value of a random variable is the integral of the variable
and its probability density function is given by E(X) = ∫∞−∞ xf (x)dx or for g(X),
an arbitrary function of X, the expected value is the integral of the inner product
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as given by E[g(X)] = ∫∞−∞ g(x)f (x)dx. Therefore, the expected value of the
exponential of the Wiener process is

E[eσWt ] =
∞∫

−∞
eσWt f (Wt)dWt =

∞∫
−∞

eσWt
1√
2πt

e
−W 2

t /2t dWt .

This expression can be placed into a more useful form by completing the square
in the exponent by

E[eσWt ] =
∞∫

−∞

1√
2πt

e
2tσWt −W2

t
2t dWt =

∞∫
−∞

1√
2πt

e
2tσWt −W2

t −σ2 t

2t
+ σ2t

2 dWt

E[eσWt ] =
∞∫

−∞

1√
2πt

e
(Wt −σ t)2

2t
+ σ2 t

2 dWt = e
σ2 t

2

∫
φ(σ t,

√
t)=1︷ ︸︸ ︷

∞∫
−∞

1√
2πt

e
−1
2

(
Wt −σ t

t

)2
dWt.

E[eσWt ] = e
σ2t

2

The integral was eliminated by manipulating the expression into the form of a
probability density function. The integral of a probability density function is intrin-
sically equal to one. Relying on the relation that the continuously compounded
return η is normally distributed with a mean or expected value of E(η) = μ − σ 2

2
allows the expected stock price to be written as

E(St ) = S0 e
(
η+1/2σ 2

)
t

E(St ) = S0 eμt

1.3.2. Moments and Variance of Lognormal Distribution

Next, two related approaches are given to find the variance of S. The central
moment μn taken about the expected value μ′

1 is

μn = 〈(S − 〈S〉)n〉 =
∫

(S − μ′
1)

nh(S)dS.

A more specific form of this equation is commonly used to express the variance
of a process. The variance of S is given as

var(S) = μ2 = 〈(S − 〈S〉)2〉
var(S) = E(S2) − [E(S)]2.
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The term E(S2) is the raw moment μ′
2 = e2(m+σ 2

SD) and the expected value of a
squared asset price is

[E(S)]2 = (μ′
1)

2 =
(

em+σ 2
SD/2

)2

= e
2
(
m+σ 2

SD/2
)
.

Substituting these terms along with m = (ln S0 + ηt) and σSD = σ
√

t yields vari-
ance of lognormal stock price

var(S) = −(μ′
1)

2 + μ′
2 = e2(m+σ 2

SD) − e(2m+σ 2
SD)

var(S) = e2m+σ 2
SD(eσ 2

SD − 1)

var(S) = e2(ln S0+ηt)+σ 2t (eσ 2t − 1)

var(St ) = S2
0 e2μt (eσ 2t − 1).

Alternatively, using a binomial transform, not derived here, the central moments
can be expressed in terms of the raw moments as given by

μ1 = 0

μ2 = −(μ′
1)

2 + μ′
2 = e2m+σ 2

SD(eσ 2
SD − 1)

μ3 = 2(μ′
1)

3 + 3μ′
1μ

′
2 + μ′

3 = e3m+3σ 2
SD/2(eσ 2

SD − 1)2(eσ 2
SD + 2)

μ4 = −3(μ′
1)

4 + 6(μ′
1)

2μ′
2 − 4μ′μ′

3 + μ′
4

= e4m+2σ 2
SD(eσ 2

SD − 1)2(e4σ 2
SD + 2e3σ 2

SD + 3e2σ 2
SD − 3),

where the second central moment μ2 yields the variance relative to the mean
(Papoulis, 1984). Similarly, the third and fourth central moments provide a construct
for the skewness and kurtosis, respectively.

1.3.3. Lognormal Distribution by Candidate Solution

Neftci (2000) provides an alternate approach to solve the stochastic differential
equation ∫

dSu

Su
=
∫

μdt +
∫

σ dWu.

Again, the Riemann and stochastic integration to the right side of the differential
equation are solved to give

t∫
0

dSu

Su
= μt + σWt .
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Often, in the financial literature a solution is not available, so a candidate is pro-
posed and back-checked in the original differential equation.

For example, the candidate given by

St = S0 e
{(

μ− 1
2 σ 2
)
t+σWt

}

is a strong solution in that Wt is given exogenously and the error process is con-
sidered as another given in the equation. At this point, Ito’s lemma is employed to
validate that the candidate solution satisfies the stochastic differential equation and
the integral equation. The value S is a function of t and W with partial derivatives
given by

∂f

∂t
=
(

μ − 1

2
σ 2
)

St

∂f

∂z
= σSt

∂2f

∂W 2
= σ 2St .

Application of Ito’s lemma

dSu = ∂f

∂t
dt + ∂f

∂W
dW + 1

2

∂2f

∂z2
dW 2,

with dW 2 = dt gives

dSt = St

[(
μ − 1

2
σ 2
)

dt + σSt dWt + 1

2
σ 2 dt

]
dSt = St [μdt + σ dW ],

where the original stochastic differential equation is recovered.
To provide some clarity to this section, the important equations for geometric

Brownian motion are given in Table 1.1.
The Black–Scholes option model is based on geometric Brownian motion,

dSt = μSt dt + σSt dz,

and assumes a constant volatility, σ , or an effective volatility over the life of the
contract. In the limiting case, a constant volatility is the square root of a constant
variance, σ = √

var. For nonconstant variance, the effective volatility is found as
the square root of the mean of time-weighted variance or squared volatility over
time

σ =
√

T1var1 + T2var2 + T3var3 + · · ·
Ttotal

=
√

T1σ
2 + T2σ

2 + T3σ
2 + · · ·

Ttotal
,

where Ti is the time length of the ith period.
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TABLE 1.1 Summary of Parameters for Geometric Brownian Motion

dSt

St

= μdt + σ dWt Stochastic stock process for
geometric Brownian motion

μ Drift

SD

(
dSt

St

)
= σ

√
�t Standard deviation of percentage

change

d(ln St ) =
(

μ − σ 2

2

)
dt + σ dWt Transformation to log price process

via Ito’s lemma

E(St ) = S0 eμt Expected value of St

η = μ − σ2
/2 Continuously compounded return

over a period of time length T
η = 1

T
ln

(
ST

S0

)

ui = ln

(
Si + D

Si−1

)
Log return over time period

Ti − Ti−1, e.g., daily return with
potentially a dividend D

σ = σSDτ√
�t

Annualized volatility, σ , is the
standard deviation of the asset’s
logarithmic returns in a year, e.g.,
σSD is the standard deviation of
daily logarithmic returns → 252
Trading Days/yr → �t = 1/252

σSD = σ
√

t Standard deviation over a time
period t calculated from
annualized volatility

var = (σSD)2 = σ 2t Variance over a time period t

calculated from annualized
volatility

σSD =
√√√√ 1

n − 1

n∑
i=1

(ui − u)2

σSD =
√√√√ 1

n − 1

n∑
i=1

u2
i − 1

n(n − 1)

(
n∑

i=1

ui

)2

General formula to calculate standard
deviation from a data series, e.g.,
daily log return data. Matlab
provides a built-in function std for
this calculation

1.4. FITTING GEOMETRIC BROWNIAN MOTION

The code to simulate and analyze geometric Brownian motion is provided below
as the function GBM(S). The function accepts only one parameter S, which is the
daily price of an asset assumed to follow geometric Brownian motion. Figure 1.1
is the graphical output of the function where the jagged line is the adjusted close

Matlab R© is a registered trademark of The MathWorks, Inc.
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FIGURE 1.1 Price process of Exxon Mobil adjusted close stock price fitted to a geometric
Brownian motion with volatility σ = 0.27 and return μ = 0.096.

price for Exxon Mobil stock. The continuously compounded return η is found
by calculating the logarithm of the daily price change and then normalized for

the daily time period. The daily standard deviation σSD =
√

1
n−1

∑n
i=1 (ui − u)2

is calculated by the Matlab std function. The approach in GBMfit(S) to calculate
standard deviation is

σSD = std[ln(St ) − ln(St−1)].

The annualized volatility is found as the daily standard deviation divided by the
square root of the time period measured in years, for example, 1/252 for 1 day,

σ = σSD/
√

�t.

Now the expected return per year can be determined from the mean of the contin-
uously compounded return as given by

mean

[
ln

(
St

St−1

)]
= mean[ln(St ) − ln(St−1)] = η = μ − σ 2

/2.

The expected return μ demanded by investors depends on the continuously com-
pounded return η and the volatility risk of the stock, μ = η + σ 2

/2.
For the Exxon Mobil data from 2003 to mid-2010, a volatility σ = 0.2718 and

an expected return μ = 0.096 are estimated. The solid central line of the expected
value of the stock process E(St ) = S0 eμt is also called the mean future stock price.

1.5. MEAN PRICE SIMULATION

When the function GBMfit is called without an argument, the function will self-
simulate a price process on the basis of internally given parameters and then analyze
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this self-generated price process. The price path is formed by iteratively stepping
through

St+�t = St e
{(

μ− 1
2 σ 2
)
�t+σ

√
�tN(0,1)

}
,

where N (0, 1) is a random draw from a normal distribution. The function GBMex-
pected is used to generate several thousand simulated price paths. To speed up the
execution, some Matlab vectorization and built-in functions are used. Specifically,
the iterative step is accomplished via the built-in cumprod function, which calcu-
lates a cumulative product in time from an array of exponential drift and random
movements. An alternate approach would be to use the built-in cumsum function
for the logarithmic sum of the drift and random movements.

Analyzing the price simulation formula shows that the medium stock price after
one time step would be

Smedian
t+1 = St e

(
μ− 1

2 σ 2
)
t
,

that is, half the random movements in the asset price will fall above or below the
medium value point. Contrast this to our earlier derivation of the expected asset
price given as

St = S0 eμt .

What is different is that the geometric Brownian motion is not symmetric and one
feature of the lognormal distribution is that the one-step mean future stock price is
higher than the one-step median future stock price. For example, a symmetric ran-
dom movement of ±0.1 is not symmetric in the exponential e±0.1 = 0.905/1.105.

Figure 1.2 clearly shows that the mean or expected price process will be higher
as a consequence of the long tail in the stock price distribution toward higher
asset prices. This repeated simulation is a Monte Carlo analysis in its most basic
form.

1.6. MEAN REVERSION MODELS

The first description of an ordinary mean reversion process was given by Uhlen-
beck and Ornstein (1930). The Ornstein–Uhlenbeck process is the continuous-time
analog of the discrete-time AR(1) process. The behavior and economic principle
of commodities, interest rates, and foreign exchange rates are well described by
reversion to a mean. The microeconomic viewpoint is that the long-term marginal
production cost of a commodity, such as oil, determines the long-run cost (Dias,
2004). Bessembinder et al. (1995) show that significant mean reversion is observ-
able for prices of agricultural and oil commodities.

An alternate viewpoint, which reaches the same conclusion, is that a cartel will
target a consistent price level. This target point may vary but the underlying profit
level targets and political motivation tend not to change in the short term (Laughton
and Jacoby, 1995). Pindyck and Rubinfeld (1991) examined over one hundred years
of oil price data and found a slow mean reversion, but a Dickey–Fuller unit root
test rejected a simple random walk process. Baker et al. (1998) found that a mean
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FIGURE 1.2 (a) Simulated geometric Brownian motion daily price process. The mean of
all the simulated price paths is exactly equal to the calculated expected value. (b) Examining
the lognormal distribution of prices shows that the high price tail shifts the mean or expected
value above the peak in the distribution.

reversion model was more consistent with the interrelationship between oil price
spot and futures data. Specifically, the spot price data is more volatile than the
futures price data as is predicted by a mean reversion model. For reference, a
random walk model predicts equal volatility in futures and spot data. Additionally,
Baker et al. (1998) showed that low spot prices tend to associate with futures
prices increasing toward the long-run equilibrium, that is, in contango; and a high
spot price tends to associate with futures prices decreasing toward the long-run
equilibrium, that is, backwardation.

Unlike the geometric Brownain motion process, an arithmetic Brownian motion
can have negative stochastic movements, which will result in a negative asset price.
Cox et al. (1985) developed a square root model that effectively prevents negative
random movements below zero as given by

drt = κ(θ − rt )dt + σ
√

rt dz.

A useful implementation for modeling commodity prices occurs by examining
the logarithm of price, x = ln (S). In this form, a negative spot price is pre-
vented as the negative logarithm of the spot price x maintains a positive spot
price.

Several mean reverting forms have been proposed in the literature to model
commodity prices. One example is a geometric mean reverting price process, which
is also referred to as the Dixit and Pindyck (1994) model, as given by

dS = λS(μ − S)dt + σS dz,
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where λ is the reversion rate and μ is the long-run mean price. If the price S is
higher than the mean price μ, then the negative (μ − S) factor pulls the price level
down at a rate determined by the reversion rate λ. A large (μ − S) delta implies a
faster rate of reversion.

Reversion due to a small (μ − S) delta may be difficult to differentiate from
the stochastic variation generated by the σP dz term. This model displays lognor-
mal diffusion similar to a non-mean reverting geometric Brownian motion model;
however, the variance increases with time up only until a stabilization level is
reached.

1.7. SOLVING THE ORNSTEIN–UHLENBECK PROCESS

Generally, the arithmetic Ornstein–Uhlenbeck process as given by

dxt = λ(μ − xt )dt + σ dWt

is pulled toward an equilibrium level μ at a rate λ and σ is the volatility or average
magnitude, per square root time, of the random fluctuations that are modeled as
Brownian motion. Integration of the deterministic term gives the expected value as

dx = λ(μ − x)dt

u = (μ − x) du = −dx∫ −du

u
=
∫

λ dt

ln|u| = −λt + C

|u| = ±eC e−λt

u0 = Ae−λ0 → A = u0 = (μ − x0)

μ − x = (μ − x0)e
−λt

E[x(t)] = μ + (x0 − μ)e−λt

E[x(t)] = x0 e−λt + μ(1 − e−λt ).

Thus, the expected value is approaching the long-term equilibrium price at a rate
proportional to the present displacement from the equilibrium price.

Determining the stochastic integral of the arithmetic Ornstein–Uhlenbeck pro-
cess requires a variation of parameters procedure to define a new function as

f (xt , t) = xt eλt ,

with the derivative found via Ito’s lemma

df (xt , t) = λxt eλt dt + eλt dxt
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df (xt , t) = λxt eλt dt + eλtλ(μ − xt )dt + eλtσ dW

df (xt , t) = eλtλμt dt + eλtσ dW .

Integration gives

f (xt , t) = xt eλt = xt +
t∫

0

eλsλμds +
t∫

0

eλsσ dWs

xt = xt e−λt + μ(1 − e−λt ) +
t∫

0

eλ(s−t)σ dWs ,

where the mean is the first two terms as given by

E[xt ] = xt e−λt + μ(1 − e−λt ).

The variance is found from the integral of the stochastic process by

var(xt ) = E[(xt − E[xt ])
2]

var(xt ) = σ 2 e−2λtE

⎡
⎣ t∫

0

e2λsσ dWs

⎤
⎦ = σ 2

2λ
e−2λt (e2λt − e0).

var(xt ) = σ 2

2λ
(1 − e−2λt )

Therefore the long-term (stationary) variance and standard deviation are

var(xt ) = σ 2

2λ
SD(xt ) =

√
σ 2

2λ
.

1.8. SIMULATING THE ORNSTEIN–UHLENBECK PROCESS

On the basis of the previous derivation, a simulation is given as the sum of the
mean and the stochastic fluctuations for an asset price as

St = S0 e−λt + μ(1 − e−λt ) +
√

σ 2

2λ
(1 − e−2λt )N(0, 1),

where the time interval t can be arbitrarily large or small as this is an exact solution
to the Ornstein–Uhlenbeck process. In this form, random movements are generated
by multiplying the magnitude of the standard deviation with a random sampling
from the standard normal distribution N(0, 1).
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FIGURE 1.3 Ornstein–Uhlenbeck process initiated at a price of 5 displays a strong ten-
dency to revert to the equilibrium price of 2.

The function MRpath consists of a simulation followed by a series of calibra-
tion approaches. Focusing first on the simulation, MRpath calculates a vector of
the expected (mean) price path as well as a vector of random movements. The
summation of the expected and stochastic movements is displayed as the jagged
line in Figure 1.3. Starting from initial price of 5, the asset price is pulled toward
an equilibrium price μ at a rate determined by the mean reversion parameter λ. The
confidence interval is shown by the two lines displaced by ±1 standard deviation
from the expected price path. An interesting effect of the Ornstein–Uhlenbeck pro-
cess is that the variance of the process initially grows but then tends to a constant
long-term variance as given by varlong-term(xt ) = σ 2

2λ
.

1.9. CALIBRATING THE ORNSTEIN–UHLENBECK PROCESS

There are many techniques to regress or fit data and here we focus on two effec-
tive techniques, namely least squares fitting and maximum likelihood fitting. The
function MRpath calibrates the simulated path with function calls to WeightedLeast-
SquaresOU and MLweightedOU . The former is a linear least squares fit that has
been modified to put the solution of the Ornstein–Uhlenbeck process into a work-
able form.

1.10. LEAST SQUARES FITTING

The function WeightedLeastSquaresOU defaults when the StdDev parameter is null
(or blank) to a linear unweighted least squares fit. This regression finds a best fit
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line through a set of data points. The linear least squares procedure fits a straight
line, y = ax + b + ε, with slope m, intercept b, and an error term ε, to a set of
data by minimizing the sum of squared error residuals. The squared error residuals
meet the necessity for a continuous differential quantity in contrast to an absolute
error residual that may not be a continuous differential quantity. One characteristic
of squared error residuals is that a few outliers may have more influence than the
majority of the data points (Weisstein, 2011).

The general least squares procedure finds a set of parameters that minimizes the
squared vertical offsets of the data from the best fit line, plane, etc. The method
is quite flexible as it can be applied to any linear combination of basis functions
Xk (x) including sines, cosines, or a polynomial as given by

y(x) =
k∑

k=1

akXk(x).

This approach is to fit a function with an arbitrarily large number of linear param-
eters ai to minimize the squared deviation as given by

ε2 =
∑

[yi − f (xi, a1, a2, . . . , an)]
2.

A minimum of a convex function exists when the first derivative is zero with
respect to each dependent variable as given by

∂(ε2)

∂ai

= 0.

The simplest application and the form we are interested in is a linear fit to f (a, b) =
a + bx. Deviations from this line are a function of the slope a and intercept b as
given by

ε2(a, b) =
n∑

i=1

[yi − (a + bxi)]
2,

with respective minima found at

∂(ε2)

∂a
= −2

n∑
i=1

[yi − (a + bxi)] = 0

∂(ε2)

∂b
= −2

n∑
i=1

[yi − (a + bxi)]xi = 0.

This leads to two coupled equations given by

n∑
i=1

yi = na + b

n∑
i=1

xi
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n∑
i=1

yixi = a

n∑
i=1

xi + b

n∑
i=1

x2
i ,

which can be solved by substitution. Equivalently, the linear least squares can be
expressed as matrices (Weisstein, 2011) as⎡

⎢⎢⎢⎢⎣
n∑

i=1

yi

n∑
i=1

yixi

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

n

n∑
i=1

xi

n∑
i=1

xi

n∑
i=1

x2
i

⎤
⎥⎥⎥⎥⎦
[
a

b

]
,

where the parameters a and b can be solved by the Matlab backslash operator or
by a standard matrix inversion as

[
a

b

]
= 1

n

n∑
i=1

x2
i −
(

n∑
i=1

xi

)2

⎡
⎢⎢⎢⎢⎣

n∑
i=1

yi

n∑
i=1

x2
i −

n∑
i=1

xi

n∑
i=1

xiyi

n

n∑
i=1

x2
i −

n∑
i=1

xi

n∑
i=1

yi

⎤
⎥⎥⎥⎥⎦ .

This provides a direct solution to linear unweighted least squares.
Applying this regression procedure to Ornstein–Uhlenbeck solution

Si = Si−1 e−λδt + μ(1 − e−λδt ) + σ

√
(1 − e−2λδt )

2λ
N(0, 1)

requires viewing this equation with the present observation Si as the y-data and
the previous observation Si−1 as the x-data for a time change δt as given by Si =
a + bSi−1 + ε. Following van den Berg (2007), the model variables are directly
substituted as

slope = b = e−λδt

intercept = a = μ(1 − e−λδt )

SD = σ

√
(1 − e−2λδt )

2λ
,

which can be inverted to give

λ = ln b/δt

μ = a/(1−e−λδt ) = a/(1−b)

σ = SD

√
2λ

(1 − e−2λδt )
= SD

√
−2 ln b

δt (1 − b2)
.
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To add flexibility, we will derive a weighted least squares approach where the
weight wi is inversely proportional to the square of the standard deviation (or
measurement error) of each data point xi by wi = 1/σ 2

i
. The weighted general least

squares merit function is

ε2 =
n∑

i=1

⎡
⎢⎢⎢⎢⎢⎣

yi −
k∑

k=1

akXk (x)

σi

⎤
⎥⎥⎥⎥⎥⎦

2

.

The weights and the measurement error are often unknown and simply set to unity
to recover the unweighted least square formula. Here, we present the weighted
merit function fit to a line with an intercept a and a slope b as

ε2(a, b) =
n∑

i=1

[
yi − (a + bxi

)
σi

]2

.

If the errors are normally distributed, that is, a Gaussian distribution, then this
approach will replicate the maximum likelihood estimate (MLE; Press et al., 1989).
The maximum likelihood approach will be derived in a slightly different manner
in Section 1.11. The maximum likelihood approach can be applied to a known
distribution of any type, for example, Gaussian and exponential. The least squares
approach is powerful in that it provides a good estimate in most cases even if no
information is available as to the size or distribution type of the measurement error.

The minima of a weighted convex function is expressed as

∂(ε2)

∂a
= −2

n∑
i=1

[yi − (a + bxi)]

σ 2
i

= 0

∂(ε2)

∂b
= −2

n∑
i=1

xi[yi − (a + bxi)]

σ 2
i

= 0.

This again gives two coupled equations. To simplify the algebra in the code, several
convenient sums will be used as given by

S =
n∑

i=1

1

σ 2
i

Sx =
n∑

i=1

xi

σ 2
i

=
n∑

i=1

Si−1

σ 2
i

Sy =
n∑

i=1

yi

σ 2
i

=
n∑

i=1

Si

σ 2
i

Sxx =
n∑

i=1

x2
i

σ 2
i

=
n∑

i=1

S2
i−1

σ 2
i

Syy =
n∑

i=1

y2
i

σ 2
i

=
n∑

i=1

S2
i

σ 2
i

Sxy =
n∑

i=1

xiyi

σ 2
i

=
n∑

i=1

SiSi−1

σ 2
i

.
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Substituting these sums into the two coupled equations gives

Sy = aS + bSx

Sxy = aSx + bSxx .

The two coupled equations can be solved for the two unknowns, intercept a and
slope b, as well as the standard deviation as

slope = b = SSxy − SxSy

SSxx − S2
x

intercept = a = Sxx Sy − SxSxy

SSxx − S2
x

SD =
√

SSy − S2
y − b(SSxy − SxSy)

S(S − 2)
.

These unknowns allow direct calculation of the parameters in the
Ornstein–Uhlenbeck model.

The function WeightedLeastSquaresOU is called with a vector of asset prices,
a constant time delta parameter, and an optional vector of measurement errors. If
the last parameter is absent or each parameter is equal to a single value, then the
function runs as an unweighted least squares fit. Otherwise, the weights correspond
to the confidence or importance of the data.

In the function WeightedLeastSquaresOU , the earlier data is weighted to coin-
cide with data that is far from the equilibrium level. This was done to improve
the fit to λ, which determines the reversion to the mean. The price movements far
from equilibrium are dominated by λ. Near equilibrium, the true reversion rate is
obscured by noise (via sigma) in the data.

A graphical representation of weighted and unweighted least squares best fit
lines are displayed in Figure 1.4 along with the current versus previous price data.
The data near the equilibrium level of 2 are clustered at the bottom left hand corner
of Figure 1.4. The price points far from equilibrium are shown by those represented
moving up and right in Figure 1.4.

The text output of MRpath gives numerical values for the underlying parameters
of the various best fit lines to the St versus St−1 data:

Standard
mu lambda sigma Slope Intercept Deviation

True 2.00 3.00 1.50 0.93 0.14 0.61
Standard LS 2.12 8.52 2.01 0.81 0.41 0.29
Weight LS 2.39 3.45 1.83 0.92 0.20 0.28
Standard ML 2.12 8.52 2.00
Weight ML 2.39 3.45 1.83
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FIGURE 1.4 Graphical output of function MRpath depicting the unweighted and weighted
least squares best fit line to the current price versus previous price data.

The least squares procedures provide fairly good fits to the data. A large volatility
and short time step δt (in contrast to the example by van den Berg (2007)) was
selected to make the data more noisy and thus more challenging to fit. Nevertheless,
in this limited example, the weighted approach does provide a better fit to the mean
reversion parameter λ.

1.11. MAXIMUM LIKELIHOOD

The previous section sought to find the mean square error under the assumption
that the expected variation of the observed data is best modeled as a Gaussian
distribution. From another viewpoint, the minimization of the mean square error
provides an estimate that maximizes the likelihood of the observed data. This
approach can be generalized to find the maximum likelihood of any particular
distribution chosen to fit the data. Usually, the distribution type, for example,
Gaussian, Bernouilli, and Poisson, is known, but one or more of the parameters
describing the distribution are not known (Weisstein, 2011). The conditional density
function for n sequential data points xi with a normal distribution for any mean μ

and standard deviation σ is

f (x1, . . . , xn|μ, σ) =
∏ 1

σ
√

2π
e

−(xi−μ)2

2σ2 = 2π(−n/2)

σ n
e
−

∑
(xi − μ)2

2σ2 .

The logarithm of the likelihood is more convenient for estimation as it is expressed
as a summation rather than a multiplication. The log-likelihood function L is given



MAXIMUM LIKELIHOOD 23

as

L =
n∑

i=1

ln f = −1

2
n ln(2π) − n ln(σ ) −

∑
(xi − μ)2

2σ 2
.

The maximum of a concave function is found when the first derivative with respect
to the dependent parameters is zero,

∂L

∂μ
= 0 =

∑
(xi − μ)

σ 2
→
∑

(xi − μ) = 0.

Rearranging this relation finds the mean μ that makes the function f the most
likely,

μ =
∑

xi

n
,

which clearly is the expression for an average. Similarly,

∂L

∂σ
= n

σ
+
∑

(xi − μ)2

σ 3
= 0,

recovers the usual formula for standard deviation,

σ =

√∑
(xi − μ)2

n
.

Using the format mentioned above for the Ornstein–Uhlenbeck model,

Si = Si−1 e−λδt + μ(1 − e−λδt ) + σ

√
(1 − e−2λδt )

2λ
N(0, 1),

the conditional probability density fi of observation Si , given the previous obser-
vation Si−1 after a time step δt is

f (Si |Si−1, μ, σ̂ , λ) = 1√
2πσ̂ 2

e

−

⎛
⎜⎜⎜⎜⎝Si−

mean︷ ︸︸ ︷
Si−1e−λδt − μ(1 − e−λδt )

⎞
⎟⎟⎟⎟⎠

2

2σ̂2 ,

where

σ̂ = SD = σ

√
(1 − e−2λδt )

2λ
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was previously referred to as sd. In our initial derivation σ̂ was assumed to be
constant. Following van den Berg (2007), given n + 1 observations {S0, . . . , Sn},
the log-likelihood function is

L =
n∑

i=1

ln f (Si |Si−1, μ, σ̂ , λ)

= −n

2
ln(2π) − n ln(σ̂ ) − 1

2σ̂ 2

n∑
i=1

(Si − Si−1 e−λδt − μ(1 − e−λδt ))2.

The parameters σ̂ and μ that maximize the likelihood function are found by setting
the partial derivatives of the log-likelihood function equal to zero by

∂L(μ, σ̂ , λ)

∂μ
= 1

σ̂ 2

n∑
i=1

(Si − Si−1 e−λδt − μ(1 − e−λδt )) = 0

→ μ =

n∑
i=1

(Si − Si−1 e−λδt )

n(1 − e−λδt )

∂L(μ, σ̂ , λ)

∂σ̂
= n

σ̂
− 1

σ̂ 3

n∑
i=1

(Si − Si−1 e−λδt + μ(1 − e−λδt ))2 = 0.

→ σ̂ 2 = 1

n

n∑
i=1

(Si − Si−1 e−λδt + μ(1 − e−λδt ))2

Finding an optimal choice for the mean reversion parameter λ is simpler after
a slight rearrangement of the log-likelihood function to isolate the exponential
functions by

L = −n

2
ln(2π) − n ln(σ̂ ) − 1

2σ̂ 2

n∑
i=1

((Si − μ) − e−λδt (Si−1 − μ))2

L = −n

2
ln(2π) − n ln(σ̂ ) − 1

2σ̂ 2

n∑
i=1

((
Si − μ
)2 − 2e−λδt (Si − μ)(Si−1 − μ)

+e−2λδt
(
Si−1 − μ

)2)
.

The partial derivative of the log-likelihood function with respect to λ is set to zero
to find the optimal mean reversion parameter λ by

∂L(μ, σ̂ , λ)

∂λ
= −δt e−λδt

2σ̂ 2

n∑
i=1

[(
Si − μ
)
(Si−1 − μ) − e−λδt (Si−1 − μ)2] = 0
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→ λ = − 1

δt

ln

⎛
⎜⎜⎜⎜⎝

n∑
i=1

[(
Si − μ
)
(Si−1 − μ)

]
n∑

i=1

[(Si−1 − μ)2]

⎞
⎟⎟⎟⎟⎠ .

In the previous section on least squares fitting, it was shown that individually
weighting data points can improve the fit in some situations. It is thus beneficial
to add a similar capability to our maximum likelihood approach. The basic idea is
to rederive the equations of this section with σ̂i inside the summation or product.
This approach takes some liberties with the underlying concept of the Gaussian
distribution; however, this exercise is interesting when the numerical values of the
weighted maximum likelihood and weighted least squares are compared. Briefly,
the log-likelihood function is

L =
n∑

i=1

ln f (Si |Si−1, μ, σ̂i , λ)

L = −n

2
ln(2π) −

n∑
i=1

[ln(σ̂i)] −
n∑

i=1

[
1

2σ̂ 2
i

(
Si − Si−1 e−λδt − μ

(
1 − e−λδt

))2]

and the optimal parameters are

μ =

n∑
i=1

(Si−Si−1 e−λδt )/σ̂ 2
i

n(1 − e−λδt )

n∑
i=1

1/σ̂ 2
i

σ̂ 2 = 1

n

n∑
i=1

(Si − Si−1 e−λδt + μ(1 − e−λδt ))2

λ = − 1

δt

ln

⎛
⎜⎜⎜⎜⎜⎝

n∑
i=1

((
Si − μ
)
(Si−1 − μ)

σ̂ 2
i

)
n∑

i=1

((
Si−1 − μ

)2
σ̂ 2

i

)
⎞
⎟⎟⎟⎟⎟⎠ .

The equation just derived for σ̂ is dependent on both μ and λ. Fortunately, the two
coupled equations for μ and λ are only dependent on each other. Therefore, either
μ or λ can be solved for λ or μ, respectively. Once μ and λ are known then σ̂ can
be solved directly. Again, to simplify the algebra in the code, several convenient
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sums will be used as given by

S =
n∑

i=1

1

σ 2
i

Sx =
n∑

i=1

xi

σ 2
i

=
n∑

i=1

Si−1

σ 2
i

Sy =
n∑

i=1

yi

σ 2
i

=
n∑

i=1

Si

σ 2
i

Sxx =
n∑

i=1

x2
i

σ 2
i

=
n∑

i=1

S2
i−1

σ 2
i

Syy =
n∑

i=1

y2
i

σ 2
i

=
n∑

i=1

S2
i

σ 2
i

Sxy =
n∑

i=1

xiyi

σ 2
i

=
n∑

i=1

SiSi−1

σ 2
i

.

Substituting these sums into the two coupled equations gives

μ = SySxx − SxSxy

S(Sxx − Sxy ) − (S2
x − SxSy)

λ = − 1

δt

ln

(
Sxy − μSx − μSy + Sμ2

Sxx − 2μSx + Sμ2

)
.

The equation for the standard deviation is

σ̂ 2 =

[
Syy − 2e−λδt Sxy + e−2λδt Sxx − 2μ

(
1 − e−λδt

)
(Sy − e−λδt Sx) + Sμ2(1 − e−λδt )

]
S

.

As discussed earlier, a least squares estimate of normally distributed errors will
replicate the MLE. This similarity was seen in the output of the function MRpath
discussed previously. The log-likelihood form is quite flexible and will be used
again later in this book in conjunction with the Kalman filer.

SUMMARY

This chapter provided a derivation and application overview on the equations
underlying geometric and arithmetic Brownian motion as well as the related mean
reversion models. These models are readily applied to the pricing of financial
derivatives and real options. A major vein of this book is the addition of jump
processes or stochastic volatility to the drift-diffusion models of this chapter.
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APPENDIX

Code for GBMfit

function GBMfit (S)
%GBMfit().m Geometric Brownian Motion of Actual Data (S)
%or Self-Simulation (no input)
%calculates drift mu and volatility from ln(St)-ln(St-1) data

TimeDelta=1/252;
%assume daily prices but could add as an input to function
if (nargin == 1), %Stock Price Data Input

%or read directly s=load('XOMprice.dat');
steps = length(S);
TimeLength=TimeDelta*steps; time = linspace(0,TimeLength,

steps);
end
if (nargin == 0), %self-simulation

mu=0.1 %percentage drift
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Dsig =0.27 %annualized volatility
Szero=30; %Initial Price
steps = 7.5*252; %assume 7.5 years
TimeLength=TimeDelta*steps;
time = linspace(0,TimeLength,steps); %years
sigma = Dsig*sqrt(TimeDelta).*randn(1,steps);
%vector of random movements
etadt=(mu-0.5*Dsigˆ2)*TimeDelta;
S=zeros(1,steps); S(1)=Szero;
for i = 2:steps

S(i)=S(i-1)*exp(etadt+sigma(i));
end

end
%logarithmic returns log(St/S0) is normally distributed
LogDelta=log(S(2:end))-log(S(1:end-1)); %=log(s(i)/(s(i-1))
StanDev = std(LogDelta);
%variance volˆ2*t
EstVol=StanDev/sqrt(TimeDelta) %Estimated annualized

volatility
%log increments of GBM are normal
%mean(LogDelta)=(mu-0.5sigˆ2)t
EstMu=mean(LogDelta)/TimeDelta + 0.5*EstVolˆ2/2
Expected=zeros(1,steps); SD=zeros(1,steps);
Expected = S(1).*exp((EstMu).*(time)); %E[St]=S0exp(mu*t)
SD = Expected.*sqrt(exp(EstVolˆ2.*time) -1);
%SDV[St]=S0exp(mu*t)[exp(volˆ2*t)-1]ˆ0.5
time=time+2003; %start in Year 2003
figure
plot(time,Expected,'-',...

time,Expected+SD,'--',...
time,S,':',...
time,Expected-SD,'-.'), grid on

xlabel('Time '); ylabel('Price')%%
legend('Expected', '+1 Standard Deviation', 'Price Path',...

'-1 Standard Deviation','location','NorthWest');
if (nargin == 1), %Stock Price Data Input

title('Geometric Brownian Motion fit to XOM');
end
if (nargin == 0), %self-simulated

title('Geometric Brownian Motion of Simulated Price
Process');

end
xlim ([2003 2011])
end
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Code for GBMexpected

function GBMexpected ()
%GBMexpected.m simulates GBM (no input)
%of several (vectorized) price paths.
%Goal is to show that the expected value of GBM
%E[St]=S0exp(mu*t) is equal to the average of many price paths
%generated by loop St=S0*exp[(mu-0.5sigˆ2)t+sig*sqrt(t)*N(0,1)
%Normally generated random movements N(0,1) are symmetric but
%exp(N(0,1)) movements asymmetric.

TimeDelta=1/252; %assume daily prices
steps = 7.5*252; %assume 7.5 years
TimeLength=TimeDelta*steps;
time = linspace(0,TimeLength,steps); %years

loop=5000; %number of simulations
mu=0.1; %percentage drift
Dsig =0.1;%annualized volatility
Szero=30; %Initial Price

etadt=(mu-0.5*Dsigˆ2)*TimeDelta; %result of Ito
Expected=zeros(1,steps); SD=zeros(1,steps);
Expected = Szero.*exp((mu).*(time)); %E[St]=S0exp(mu*t)
SD = Expected.*sqrt(exp(Dsigˆ2.*time) -1); %Stand. Dev.

subplot (1,2,1)
plot(time,Expected,'-','color','blue','LineWidth',5);hold on;
plot(time,Expected+SD,'color','black');hold on;
plot(time,Expected-SD,'color',[0.5 0 0]); hold on;

%vector of random movements
sigma = Dsig*sqrt(TimeDelta).*randn(loop,steps);
S=zeros(loop,steps);
S=Szero*cumprod(exp(etadt+sigma),2);
%cumsum(logS0,etadt+sigma) followed by S=exp
%should be faster since addition is generally faster

than mult.
aveS=mean(S);

plot(time,aveS,':','color','magenta','LineWidth',5);hold on;
iteration = 1:50:500; %Plot only a few price series
plot(time,S(iteration,:),':','color','cyan','LineWidth',0.1);
hold on;
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axis tight
xlabel('Time [Years]'); ylabel('Asset Price')%%
legend('E[S_t]=eˆ\muˆt', 'E[S_t] + 1 Stand. Dev.',...

'E[S_t] - 1 Stand. Dev.','Mean Sim. Price',...
'S_t=S_0eˆ{(\mu-0.5\sigmaˆ2)t+\sigmaN(0,1)tˆ{0.5}}',...
'location','NorthWest');

title('Geometric Brownian Motion Simulated Price Process');
hold off;

Send=S(:,steps);
minS=min(Send); maxS=max(Send);
subplot(1,2,2)
inc=minS:0.2:maxS; %define bin edges
hist(S(:,steps),inc);
xlabel('Final Price'); ylabel('Frequency');
title('Histogram of Final Simulated Price');
text(Expected(end),loop/180,'\downarrow E[S_T]');
axis tight
end

Code for MRpath

function MRpath ()
%MRpath simulates Path of Mean Reversion Process
%then uses external function calls for unweighted
%and weighted least squares fit as well as unweighted
%and weighted maximum likelihood fits.
%The rapidly reverting data has less data points
%so one can emphasize certain data to
%in theory provide a more accurate fit to lambda
steps = 201;
TimeLength=5; %years
lambda=3 %mean reversion rate
mu=2 %long-term mean
Dsig =1.5

Szero=5; %Initial Price

S=zeros(1,steps); Expected=zeros(1,steps); SD=zeros(1,steps);

time = linspace(0,TimeLength,steps);
TimeDelta = time(2)-time(1)

Expected = Szero.*exp(-lambda.*time)+mu.*(1-exp(-lambda*time));
%SD is constant but calculated as vector
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SD=Dsig.*sqrt( (1-exp(-2.*lambda.*TimeDelta*ones(1,steps)))./
(2.*lambda));

weightSD =SD.*linspace(0.1,1.9,steps);
%Place more weight (importance) into earlier points that are
%rapidly changing to hopefully better fit the mean
%reversion rate lambda
S= Expected + SD.*randn(1,steps);

x=S(1:end-1); y=S(2:end);

figure
plot(time,Expected,'-',...

time,Expected+SD,'--',...
time,S,':',...
time,Expected-SD,'-.'), grid on

xlabel('Time '); ylabel('Price')%%
legend('Expected', '+1 Standard Deviation',...

'Price Path‘','-1 Standard Deviation');
title(['Mean Reversion Process']);

TrueSlope = exp(-lambda*TimeDelta);
TrueIntercept = mu*(1-TrueSlope);
trueSD= Dsig.*sqrt( (1-exp(-2.*lambda.*time(steps))) ./

(2.*lambda));
TrueLine = polyval([TrueSlope TrueIntercept],x);

fprintf(1, '\t\t\t\t mu \t lambda \t sigma \t\t Slope');
fprintf(1, '\t\t Intercept \t Standard Deviation \n');
fprintf(1,...
'True \t\t %6.2f \t %6.2f \t %6.2f \t %6.2f \t %6.2f \t %6.2f

\n',...
mu, lambda, Dsig, TrueSlope, TrueIntercept, trueSD);

%%%Calculate by Unweighted Least Squares
[LSMu, LSSigma, LSLambda, LSslope, LSintercept, LSstanDev]...

= WeightedLeastSquaresOU (S,TimeDelta);
%LS fitting assumes equal weight
fprintf(1,...
'Standard LS\t %6.2f \t %6.2f \t %6.2f \t %6.2f \t %6.2f \t

%6.2f \n',...
LSMu, LSSigma, LSLambda, LSslope, LSintercept, LSstanDev)

UnweightedLSline = polyval([LSslope, LSintercept],x);

%%%Calculate by Weighted Least Squares
[wLSMu, wLSSigma, wLSLambda, wLSslope, wLSintercept,

wLSstanDev]...
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= WeightedLeastSquaresOU (S,TimeDelta, weightSD(2:end));
fprintf(1,...
'Weight LS\t %6.2f \t %6.2f \t %6.2f \t %6.2f \t %6.2f \t

%6.2f \n',...
wLSMu, wLSSigma, wLSLambda, wLSslope, wLSintercept,

wLSstanDev);
WeightedlsLine = polyval([wLSslope, wLSintercept],x);

%%%Calculate by Unweighted Maximum likelihood
[MLmu, MLlambda, MLsigma] = weightedML(S,TimeDelta);
fprintf(1, 'Standard ML\t %6.2f \t %6.2f \t %6.2f \n',...

MLmu, MLlambda, MLsigma)

%%%Calculate by Weighted Maximum likelihood
[wMLmu, wMLlambda, wMLsigma] = weightedML(S,TimeDelta,

weightSD(2:end));
fprintf(1, 'Weight ML\t %6.2f \t %6.2f \t %6.2f \n',...

wMLmu, wMLlambda, wMLsigma)

figure
plot(x,y,'o',x,TrueLine,'-',x,UnweightedLSline,'--',x,

WeightedlsLine,'.-')
xlabel('Previous Price, S_t_-_1 '); ylabel('Price, S_t ')%%
legend('Data','True Line','Unweigted LS Fit',...

'Weighted LS Fit', 'location', 'NorthWest');

%Or use one of several Matlab fitting function
%Matlabfit = polyfit(x,y,1);
%fprintf(1, 'Matlab calc. %6.2f Slope \t %6.2f

Intercept \n', Matlabfit);
%MatlabfitLine = polyval(Matlabfit,x);
end

Code for WeightedLeastSquaresOU

function [mu, lambda, sigma, CalcSlope, CalcIntercept,
StdDev]...
= WeightedLeastSquaresOU (S,delta,sigma)

% WeightedLeastSquaresOU performs a weighted or unweighted
% least squares fit to Orstein Uhlenbeck process
% Derivation in Press, Flannery, Teukolsky, Vetterling,
% Numerical Recipes
% as well as an unweighted estimation procedure
% by M.A. van den Berg available at www.sitmo.com
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x=S(1:end-1);
y=S(2:end);
n= length (y);

if nargin < 3, sigma = ones(1,n); end

S = sum (1./sigma.ˆ2);
Sx = sum (x./sigma.ˆ2);
Sy = sum (y./sigma.ˆ2);
Sxx = sum (x.ˆ2./sigma.ˆ2);
Sxy = sum (x.*y./sigma.ˆ2);
Syy = sum (y.ˆ2./sigma.ˆ2);

CalcSlope =(S.*Sxy-Sx.*Sy) /(S.*Sxx-Sx.ˆ2);
CalcIntercept=(Sxx.*Sy-Sx.*Sxy)/(S.*Sxx-Sx.ˆ2);
StdDev=sqrt((S*Syy - Sy.ˆ2 - (CalcSlope.*(S.*Sxy-Sx.*Sy)))...

/ (S*(S-2)) );
%%UnWeighted
%=sqrt((n*Syy - Sy.ˆ2 - (CalcSlope.*(n.*Sxy-Sx.*Sy))) /

(n*(n-2)) );

lambda = -log(CalcSlope)/delta;
mu = CalcIntercept/(1-CalcSlope);
sigma = StdDev * sqrt(-2*log(CalcSlope)/(delta*

(1-CalcSlopeˆ2)));

end

Code for weightedML

function [mu,lambda, sigma] = weightedML(S,delta,sigma)
%weightedML performs a maximum likelihood estimation of the
%the parameters in a Orstein Uhlenbeck process
%Also see detailed descriptions of the
%unweighted estimation
%by M.A. van den Berg available at www.sitmo.com
%and Weisstein, Eric W. MathWorld, Wolfram Research,
%http://mathworld.wolfram.com

x=S(1:end-1);
y=S(2:end);
n= length (y);

if nargin < 3, sigma = ones(1,n); end
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S = sum (1./sigma.ˆ2);
Sx = sum (x./sigma.ˆ2);
Sy = sum (y./sigma.ˆ2);
Sxx = sum (x.ˆ2./sigma.ˆ2);
Sxy = sum (x.*y./sigma.ˆ2);
Syy = sum (y.ˆ2./sigma.ˆ2);

%In derivation, two equations and two unknowns are available
%for mu and lambda.
%Sigma is directly solvable once mu and lambda are calculated

mu = (Sy*Sxx - Sx*Sxy) / ( S*(Sxx - Sxy) - (Sxˆ2
- Sx*Sy) );

lambda = -log( (Sxy - mu*Sx - mu*Sy + S*muˆ2) /...
(Sxx -2*mu*Sx + S*muˆ2) ) / delta;

a = exp(-lambda*delta);
sigmah2 = (Syy - 2*a*Sxy + aˆ2*Sxx - 2*mu*(1-a)*
(Sy - a*Sx)...

+ S*muˆ2*(1-a)ˆ2)/S;
sigma = sqrt(sigmah2*2*lambda/(1-aˆ2));

end


