Chapter 1: Automation with Other
Office Programs

In This Chapter

v Getting up to speed on Automation
+ Working with Object Libraries

1 Adding a contact to Outlook

+~ Merging data with a Word document
v+~ Exporting data to Excel

n Book VIII, we show you Visual Basic for Applications (VBA) and present
some of the wonderful ways you can take control of your Access data-
base. You can use VBA to open and close forms, print reports, loop through

tables and change data, and modify form properties.

Well, VBA isn’t there just for Access. You can also use VBA to control other
Microsoft Office applications, including Outlook, Excel, Word, and PowerPoint.
With VBA, the possibilities are virtually endless when you consider what
some advanced users do in these Office applications on a daily basis. This
chapter explains Automation and gives several examples of how Access can
interact with other Office programs.

Understanding Automation

Automation (with a lowercase a) came about during the Industrial Revolution
to replace tasks performed by humans with faster, more efficient methods.
Phone operators no longer plug and unplug wires manually to make connec-
tions; large systems handle connections automatically. People don’t do all
the work of assembling cars on assembly lines; industrial robots now handle
the bulk of the duties. We humans just get in the way.

In the world of VBA, Automation (with a capital A) refers to the capability
of a program to expose itself (make itself available) to VBA so that VBA can
control it behind the scenes, with little or no human interaction. Humans
just slow the process anyway. Other programming languages (such as VB.NET,
C++, and C#) use Automation as well, but because VBA is the language of
Access, we focus in this chapter on using VBA.

65 4 Working with Object Libraries

NG/
M
&

Automation with other Microsoft Office programs works only when you have
those programs installed on your computer. If you don’t have Word, Excel,
or Outlook installed, you won’t be able to control them from Access.

Working with Object Libraries

To use VBA to control another program, you need to have access to that
program’s object library. Each program has its own properties and methods
that allow VBA to control it. Just as each object (such as a form, text box, or
button) has its own properties and methods, each application — including
Access — has a set of properties and methods, collectively referred to as the
object library.

To access another program’s object library, you first have to tell VBA
where to find it. To add an object library to your VBA project, choose
Tools=>References in Visual Basic Editor and then add the desired object
libraries, as shown in Figure 1-1.

For more information on using Visual Basic Editor, see Book VIII, Chapter 1.

References - Bookd9Chap1 ==
Avsilable References: G
: %aﬁﬂ?’:‘%;::ﬁ Data Cb‘icctds Eoé Library o = ij
v I (e 14,04 i jecl
i Microsolt Vil Besi For Aplrations Exnsbiy 5. Brows... |
i Microsoft Excel 15.0 Object. Libra
— Sl Microsoft Office 15,0 Obect Library l]
fwl picrozoft Qutlook 15.0 Object Library 3
1 -1 W Microsoft ‘wioed 15,0 Object Lise. o
Flgure1 1. ;«;mzzsgél\nﬁer;cintlsl.otggjjeftrrihrary GalELly Help
Choose it 5
H AcroBroterLil
ObJeCt Dc:glﬂdd;clr 1.0Type Lbrar_y i
libraries Pl —— '
from the Microsoft Office 15.0 Object Liorary
References Location: CH\Program Fles\Common FlesiMicrosoft Shared\ OFFICEISIM
dla|Og bOX Language: Standard
In Figure 1-1, we chose Microsoft Excel 15.0 Object Library, Microsoft Office
15.0 Object Library, Microsoft Outlook 15.0 Object Library, Microsoft Word 15.0
Object Library, and Microsoft PowerPoint 15.0 Object Library. Selected
items appear at the top of the list when you open the References dialog box,
so they may not always appear in the same order.
<P If you have multiple versions of a program installed on your computer (Excel

2007 and Excel 2013, for example), you see different versions of the Excel object
library in the References dialog box (refer to Figure 1-1). If you're sure that
you’ll be working only in the latest version, choose the version with the
highest number. Applications in Office 2013 are version 15.0, whereas appli-
cations in Office 2010 are version 14.0.

R\‘\:ERE’VQ

Figure 1-2:
Use the
Object
Browser
toviewa
program’s
object
model.

Working with Object Libraries 055

Exploring object libraries

After adding a reference to a program’s object model, you can explore that
program’s objects, properties, and methods through the Object Browser.

To open the Object Browser from Visual Basic Editor, choose View=>Object
Browser or press F2. When you open the Object Browser, it shows the
objects for everything VBA has access to. To limit the list to a specific
library, choose the library’s name from the Project/Library drop-down menu
in the top-left corner of the Object Browser window. In Figure 1-2, we chose
Excel to show only the classes and members related to Microsoft Excel, and
then chose Application from the list of Classes to display the members of the
Application class.

For more information on object models and object libraries, see Book VIII,
Chapter 1.

-
%% Object Browser ===
Excel v 4 v Bt @
- #([7]
Search Results
Library Class Member
| Classes Members of Application’
@ =globals> - | pctivateMicrosoftApp =
B Abovedverage [1 B ActiveCal
B Action [ActiveChart
B Actions B ActiveEncryptionSes sion
B Addin ActivePrintar
B Adding [ActiveProte ctecdiswindow
B addinsz i activeShest
& Adjustments BE Activelindaw
B MlowEditRange Activeorkbook A
= AddCustomList 4
B Addins
Addins2
B AtoCorrect £ AfterCalculate
B autoFiner T alentBefore Overwriting
3 AutoRecover ' AnstartupPath
B hues MwaysUseClearType
0 fric T annlicatinn z
Froperty Acthre¥Workbook As Workbook -
read-only F
Member of Excel Application

Each application exposes a lot of objects to VBA — way too many for you (or
any sane person) to remember. We don’t have enough room in this book to
define every property and every method for each Office application. We’d
probably need a book just for each application, which wouldn’t make too
many trees very happy, would it? Instead, you have to be able to get the
information you need when you need it.

Book IX
Chapter 1

sweiboid

aalyQ 18110
y}IM uonewony

65 7 Working with Object Libraries

WMBER
@&
&

To find out more about a selected object, property, or method in the Object
Browser, click the Help icon — the yellow question mark — in the Object
Browser window (refer to Figure 1-2).

Using the Application object

Each application exposes its own set of objects to VBA, but one object that
all applications have in common is Application. The Application object
exposes a program’s objects, properties, and methods to VBA. When a program
is open, its objects are available to VBA. If VBA opens a Word document, for
example, everything in that Word document is also exposed. VBA can do any-
thing in the Word document that a human can do from the Word Ribbon.

To take control of an application, you first have to create an instance of the
application in VBA. Creating an instance is basically the same as opening the
program from the Windows Start menu. When you start Microsoft PowerPoint
on your computer, for example, you're creating an instance of PowerPoint on
your computer.

To create an instance of an application in VBA, you have to declare a variable
that references that object. The variable can have any name you like, but

you should attempt to give it a meaningful name. The syntax for declaring an
object variable is

Dim objectVariable as New program.Application

For more information on declaring and using variables, see Book VIII,
Chapter 3.

The objectVariable in the preceding example is the name of the variable.
The programis a reference to one of the Office applications (such as Word,
Excel, or Outlook). The Application part refers to the Application
object of that program. The New keyword ensures that VBA creates a new
instance of the program. Here are some examples of declaring new instances
of the Office programs:

Dim XL as New Excel.Application

Dim Wrd as New Word.Application

Dim Olk as New Outlook.Application
Dim PPT as New PowerPoint.Application

After you declare the object variable for the desired program, you can control
that program. To take control of the program, you must open the program
from VBA. The syntax for opening a program in VBA is

Set objectVariable as CreateObject ("program.Application")

<MBER

Adding Contacts to Outlook 0657

where the objectVariable is the same name you specified in the Dim
statement and program is the name of the application. When you use the
Dim statements described in this section, the corresponding Set statements
for opening the applications are

Set XL as CreateObject ("Excel.Application")

Set Wrd as CreateObject ("Word.Application")

Set Olk as CreateObject("Outlook.Application")
Set PPT as CreateObject ("PowerPoint.Application")

To control another program with VBA, you must first add the program’s
object library to VBA, using the References dialog box (refer to “Working
with Object Libraries,” earlier in this chapter).

In the next few sections, you see how Access can share information with
Outlook, Word, and Excel — oh, my!

Adding Contacts to Outlook

Figure 1-3:
Changing
an Access
formto let
users add
contacts to
Outlook.

Suppose that you're working on an Access program, and your users suggest
that it would be a good idea to give them the capability to add contacts from
the Access database to Microsoft Outlook. You could be mean and tell them to
type the contacts themselves, or you can impress them by adding a button to
a form that lets them add the current contact to their Outlook contacts.

Adding the contact button and code

Consider the form shown in Figure 1-3. This form is a basic customer contact
form that you might find in any of your applications, with one exception: the
addition of an Add to Outlook Contacts button.

2| frmCisstomer Contacd

o R

~=| Customers

ustio 1 Country Usa,

Flrsthlame arl Fhane 995-1012

LastMame Fines Fax [E13)355-4343

DO Py arpar Clessies Frriail Tor@arparelassics.com

Address] 345 Pacific Coast Hyy ssteEntered | 7f21/7012

city Dzl ndar TasFuempt B

StateProy s TasFremphiD | 373-40-2039

2iPtode 9e76s [Bacid ta cutlaok Contacts L
Record: A 1of35 | F H Search

Book IX
Chapter 1

sweiboig

aalyQ 18110
y}M uonewolny

658 Adding Contacts to Outlook

Now, just adding the button doesn’t accomplish much; you also have to

add code to the button’s Click event procedure. In the form’s Design view,
double-click the button to show the property sheet, click the Event tab, click
the ellipsis button to the right of the On C1ick event property, and then
click Code Builder to open Visual Basic Editor to the button’s C1ick event
procedure. The code looks something like this:

Private Sub cmdOutlook_Click()

'Open Instance of Microsoft Outlook
Dim Olk As Outlook.Application
Set Olk = CreateObject("Outlook.Application")

'Create Object for an Outlook Contact
Dim OlkContact As Outlook.ContactItem
Set OlkContact = Olk.CreateItem(olContactItem)

'Set Contact Properties and Save

With OlkContact
.FirstName = Me.FirstName
.LastName = Me.LastName
Me.Email.SetFocus
.EmaillAddress = Me.Email.Text
.CompanyName = Me.Company
.BusinessAddressStreet = Me.Addressl
.BusinessAddressCity = Me.City
.BusinessAddressState = Me.StateProv
.BusinessAddressPostalCode = Me.ZIPCode
.BusinessTelephoneNumber = Me.Phone
.BusinessFaxNumber = Me.Fax
.Save

End With

'Let User know contact was added
MsgBox "Contact Added to Outlook."

'Clean up object variables
Set OlkContact = Nothing
Set Olk = Nothing

End Sub

This example may look like a lot of code, but it’s really just a series of small
steps. In layman’s terms, this procedure creates and sets a variable for the
Outlook application, creates and sets a variable for an Outlook contact, sets
the properties of the Outlook contact object to values from the form, saves
the Outlook contact, displays a message box, and cleans up the object vari-
ables. In the following section, we give you a detailed look at this example.

Adding Contacts to Outlook 05 9

Examining the contact-form code

The first two statements below the first comment declare an object variable
named Olk and set it to an open instance of Microsoft Outlook:

'Open Instance of Microsoft Outlook
Dim Olk As Outlook.Application
Set Olk = CreateObject("Outlook.Application")

The Application object for Outlook lets you create items within Outlook,
just as though you’d opened Outlook and navigated through the program.
The second comment and the next two lines are as follows:

'Create Object for an Outlook Contact
Dim OlkContact As Outlook.ContactItem
Set OlkContact = Olk.CreateItem(olContactItem)

These lines declare an object variable named 0O1kContact and create that
contact by using the CreateItem method of the Outlook Application object.
This code is VBA’s way of clicking Contacts and then clicking the Click Here
to Add a New Contact line at the top of the Outlook window.

Now look at the next block of code:

'Set Contact Properties and Save

With OlkContact
.FirstName = Me.FirstName
.LastName = Me.LastName
Me.Email.SetFocus
.EmaillAddress = Me.Email.Text
.CompanyName = Me.Company
.BusinessAddressStreet = Me.Addressl
.BusinessAddressCity = Me.City
.BusinessAddressState = Me.StateProv
.BusinessAddressPostalCode = Me.ZIPCode
.BusinessTelephoneNumber = Me.Phone
.BusinessFaxNumber = Me.Fax
. Save

End With

The wWith..End With block of code sets the properties of the Outlook
ContactItem. The ContactItem object has many properties that you can
see via the Object Browser. This example uses only a few of these properties
and sets them to the values from the form. Everything that uses the Me key-
word reads a value from the form shown in Figure 1-3, earlier in this chapter.

The last few statements tell the user that the contact was added and reset
the object variables.

Book IX
Chapter 1

sweiboig

aalyQ 18110
y}M uonewolny

660 Adding Contacts to Outlook

Figure 1-4:
A contact
added to
Outlook
from VBA.

The one tricky part of the code lies in how Access stores an e-mail address.
Access doesn’t just store the e-mail address as text; it stores additional infor-
mation along with the e-address. So when VBA finds the e-mail address on
the form, you want it to read only the text component of the e-mail address
field. To direct VBA to read this property on the form, you must use the
SetFocus method of the Email text box to make sure that the control has
the focus — that is, the cursor is in that field.

The Save method of the ContactItem object saves the contact in Outlook.
The remaining code displays a message to let you know that the contact was
added to Outlook; then it cleans up the variables before the c1ick event
procedure ends. Figure 1-4 shows the contact in Outlook.

The code in this section and throughout this chapter is designed to show you
how to use the object libraries of other Office components. Error messages
may appear for various reasons, such as null values or typos. For more
information on handling errors in VBA, see Book VIII, Chapter 6.

[Mame
Tori Pines

COMNTACT WOTES

@ Emai Linked Contacts
Email Cutlook (Cantacts)
Tori@arborclassics.com ~

®Work
tj\;P' ane Company
- Arbor Classics
Work
555-1212

@ Address
Work Fax ‘Wark address

(618) 555-4343 345 Pacific Coast Hwy -
Del Mar, CA 98785

.ji.:. It -

@ Birthday

Save Cancel

Merging Data with a Word Document 001

<P Outlook’s object library exposes many more objects and methods than we Book IX
describe here. You can do anything from VBA that you can do from the Chapter 1
Outlook program, such as compose and send e-mail messages, create and

schedule calendar items, and build tasks and to-do lists. To find out more >
about these objects, properties, and methods, open the Object Browser, and -2 E‘
choose Outlook from the Project/Library drop-down menu in the top-left é E 3
corner. S oS
5 33

“8 s

-

Merging Data with a Word Document

Microsoft Word is probably the most widely used word-processing program
in the world, if not the universe. If you have Microsoft Office installed, you
almost certainly have Word installed as well. Many people in any given work
environment know how to use and edit Word documents, but they may not
know how to create and modify an Access report. Using Automation, you
can enable some users to edit the body of a form letter in Word and then
print that letter from Access. This section shows you how.

e To control Word 2013 with VBA, you must first add the Microsoft Office

Word 15.0 Object Library to VBA by using the References dialog box (see

“Working with Object Libraries,” earlier in this chapter).

Creating a Word template

To put data from Access in a Word document, you have to tell Access where
in the Word document to put that data. One method is to create bookmarks in
the Word document; later, Access can replace these bookmarks with data
from the database. A bookmark in Word is just a placeholder. If you do this
in a Word template file (. dotx file), you can easily create new documents
based on this template.

First, use Word to create a new document, and format the document however
you want. You can add a company logo and other letterhead information,
and type the body of the letter. This task should be pretty easy. When you
save the file, choose Filer>Save As to open the Save dialog box, and from the
Save As Type drop-down menu, choose Word Template (*.dotx).

Viewing and inserting bookmarks

When you get the document ready, you need to add bookmarks where you
want the data from Access to go. Bookmarks in Word are usually hidden, so
you need to start by displaying them so that you can see what you’re doing.
Follow these steps:

1. In Microsoft Word, choose File=>Options.
2. Click the Advanced option on the left side of the Word Options window.

062 Merging Data with a Word Document

3. Scroll down to the Show Document Content section, and select the
Show Bookmarks option.

4. Click OK.
Now you can insert bookmarks into your Word template.

5. Move the cursor to where you want the bookmark to appear in the
Word document.

6. Type a short, meaningful name for the bookmark.

The name can’t contain spaces or punctuation, and it must start with a
letter.

7. Select the text by double-clicking the name you just typed, and copy it
to the clipboard by pressing Ctrl+C.

8. On the Word Ribbon, click the Insert tab and then click Bookmark in
the Links group.

The Bookmark dialog box appears, as shown in Figure 1-5.

E [
HOMZ | INSERT | DISISM PAGELAVOUT REFEREMSIS MAILINGS 30MEW wEW - &
j Covor Page - [1 o Tismarat o &, Fyaering L Heater - 7= | quicerare = ¥ -+ T Ecvatior =
0 A5 et —u |* Rk are : [Fester = l_l 4 wieedart= B L) savbal -
b Powes Dnlne Sepes sapsfor Sulre | b el
- idres - esedowenshots e T o Floosenhereer ooy B ovage s s 00 A voaem -
ages Tkl Ihttion: Spps Medis Lek: Comeis Hde &Foct e skl -
YOUR LOGO i
= n_ & 45 s :
ot ey
Your Company Nam ot |
The Address of your e |
- City, Stat ')
Figure 1-5:
H [CurzniCas]
Adding
[ressnating]
bookmarks
to a Word CeerfcresaSautid -
template Thenksfor choosing aur zompany 1 do brsinsss e th, Waealoomay]
Sl R Bl 354 SO ATTEIT
(. dOtX) MdTata
. bl
file.

M M M-+ om

9. Paste the typed name into the Bookmark Name field by pressing
Ctrl+V.

10. Click the Add button to create the bookmark.

Square brackets appear around the text to indicate the bookmark.

For this example, create three bookmarks — CurrentbDate,
AccessAddress, and AccessSalutation — and then save the . dotx file
in the same folder as your database.

Figure 1-6:
Adding
another
button to
send data to
Word.

Merging Data with a Word Document 663

Adding the merge button

Now that the Word template is ready to go, create another button on the
Customer form that sends data from the form to Word. You might call it
Send Welcome Letter, as shown in Figure 1-6.

4]
[

2| frmCisstomer Contacd
EI Customers [[Whsend welcome Letter

a2 fo]

CustiD 1 Country Lsa,
Flrsthlzme ari Phane 595-1112
Lastheme Fires Fax [613)355-4343

oorclassics. com

corpany arpar Clessies Frriail T

Agidress] 345 Pacifie Coast Hwy steEntered
city Del dar Tasfyempt B

State®roy [y TaxEremptiD | 3723-40-2039

ZIPCode AETES [©dacdd Lo Sutlnak Sortacts

Record: A 1of35 | F H Search

Entering the merge code

When the button is on the form, you can add the following code to this but-
ton’s Click event procedure to send the data to the Word document:

Private Sub cmdWord_Click()
'Declare Variables
Dim sAccessAddress As String

Dim sAccessSalutation As String

'Build sAccessAddress

sAccessAddress = FirstName & " " & LastName & _
vbCrLf & Company & vbCrLf & Addressl & _
vbCrLf & City & ", " & StateProv & " " & ZIPCode

'Build sAccessSalutation
sAccessSalutation = FirstName & " " & LastName
'Declare and set Word object variables

Dim Wrd As New Word.Application

Set Wrd = CreateObject ("Word.Application")

'Specify Path to Template

Dim sMergeDoc As String

sMergeDoc = Application.CurrentProject.Path & _
"\WordMergeDocument .dotx"

'Open Word using template and make Word visible

Book IX
Chapter 1

sweiboig

aalyQ 18110
y}M uonewolny

664 Merging Data with a Word Document

Wrd.Documents.Add sMergeDoc
Wrd.Visible = True

'Replace Bookmarks with Values
With Wrd.ActiveDocument .Bookmarks
.Item("CurrentDate") .Range.Text = Date

.Item("AccessAddress") .Range.Text = sAccessAddress
.ITtem("AccessSalutation") .Range.Text = sAccessSalutation
End With

'Open in Print Preview mode, let user print
Wrd.ActiveDocument.PrintPreview

'Clean Up code
Set Wrd = Nothing

End Sub

Again, this example has a lot of code, but that code breaks down into several
sections. It declares the variables you're going to use, sets the address and
salutation variables, opens Word (using the template you created), replaces
the bookmarks with values from Access, and shows the Print Preview view
for the document. The following section takes a closer look at some key
components of this code.

Examining the merge code

After declaring the string values, you set the sAccessAddress variable to
a concatenated string of values from the form. You use the line-continuation
character (an underscore) as well as the vbCrLf keyword, which starts a
new line in the string variable, as follows:

'Build sAccessAddress

sAccessAddress = FirstName & " " & LastName & _
vbCrLf & Company & vbCrLf & Addressl & _
vbCrLf & City & ", " & StateProv & " " & ZIPCode

You also build the sAccessSalutation variable by combining the first-
name and last-name fields from the form, with a space in between:

'Build sAccessSalutation
sAccessSalutation = FirstName & " " & LastName

gMBER

Merging Data with a Word Document 065

Next, use the syntax described in “Using the Application object,” earlier in
this chapter, to open an instance of Microsoft Word. Here’s the code:

'Declare and set Word object variables
Dim Wrd As New Word.Application
Set Wrd = CreateObject ("Word.Application")

After opening an instance of Word, set the location of the Word template
that created earlier (see “Creating a Word template,” earlier in this chapter).
You use the Path property of Application.CurrentProject to get the
location and then concatenate it with the filename. For this example, we
named the Word template file WordMergeDocument . dotx, as follows:

'Specify Path to Template

Dim sMergeDoc As String

sMergeDoc = Application.CurrentProject.Path & _
"\WordMergeDocument .dotx"

This code assumes that you saved the Word template file in the same folder
as the Access database.

Next, use the Add method of the Application.Documents object to create
a new document based on the template file. After creating a new Word docu-
ment, set the Visible property of the Wrd object to true, letting the user
see Word. When you open Word from VBA, it’s invisible to the user unless
you specify otherwise, as follows:

'Open Word using template and make Word visible
Wrd.Documents.Add sMergeDoc
Wrd.Visible = True

After viewing the document, use the Bookmarks collection within the
ActiveDocument to add the values from Access. Replace the CurrentDate
bookmark with the system date, using the Date () function. Then replace
the AccessAddress and AccessSalutation bookmarks with the variables
set earlier in the code, as follows:

'Replace Bookmarks with Values
With Wrd.ActiveDocument .Bookmarks
.Item("CurrentDate") .Range.Text = Date

.Item("AccessAddress") .Range.Text = sAccessAddress
.Item("AccessSalutation") .Range.Text = sAccessSalutation
End With

Finally, switch to Print Preview view, and clean up the code in Word. Figure 1-7
shows the document with the bookmarks replaced by data from Access.

Book IX
Chapter 1

sweiboig

aalyQ 18110
y}M uonewolny

066 Exporting Data to Excel

By - = Documers: [Corpatibi 2y Winde] - bt zrazaft Word ? H - O x
PRINT PREVIEW - o

R s T wargins = ™ B Show Ruler
[=" : O\ a & riext Page [|

=" [* orientatien ifie-
Frint Preview Cotions Zoom 1003 08 | 2 agnifie (B or s Pag Close Print
an Prins I size = e B stk Cae Page TRSUE FERE prayiey
Prit Page Setup T Zeom Previes -
YOUR LOGO

Your Company Name Here
The Address of your company
City, State 12345

BNz

Tar Pines

Araor Classics

245 Pacific Coast Huy
Dozl War, CA O37ES

——
Daar Tani Pines:

Flgure 1-7' Thanks {orc,hcsi'\c{ our company to do buginess with, We welcome you as &
- naw customat and A you shauld éer nead any assiglance please cortac our
The final g parlnenl @ (123 ER5- 125 Wie pride nthisand thal and
sarme of e olhes thing s that Lt sk of nghl oo aad sall finish Gtes
merged
documentin
Word.

Just like the Outlook object library, the Word object library contains many
more properties and methods that allow you to control Word as though you
were clicking the various Ribbon commands and typing in the Word window.
For assistance on all of these commands, use the Object Browser (choose
Viewr>Object Browser or press F2 in Visual Basic Editor).

Exporting Data to Excel

Many Office users who are familiar with Excel just don’t understand the
power and flexibility of Access, and many executives are used to viewing
and printing tables of data from an Excel spreadsheet. So even though you're
convinced that everyone in your organization (and, perhaps, the world)
should use Access instead of Excel, you'll still come across quite a few
people who’d rather see the data in Excel than open an Access database.

Sure, you can export data to Excel (or other formats) from the Export group
on the External Data tab, but that task requires one of those pesky humans
to know what to do. As a compromise, you can automate the process by
writing VBA code to export the data — and do several formatting tasks as well.

Adding the export button and code

Pretend that you’re going to create a spreadsheet of phone numbers in the
Customer table. You also want to add a meaningful title that includes the

Exporting Data to Excel 067

date when the phone numbers were exported. You can create a button any- Book IX
where in your application to do this, so we’ll just show you the code: Chapter 1
'Declare and set the Connection object =
Dim cnn As ADODB.Connection oS
Set cnn = CurrentProject.Connection 2.’::;—‘5
S o2

'Declare and set the Recordset object 5 = e
Dim rs As New ADODB.Recordset ©“ 3 s
rs.ActiveConnection = cnn =

'Declare and set the SQL Statement to Export
Dim sSQL As String
SSQL = "SELECT FirstName, LastName, Phone FROM Customers"

'Open the Recordset
rs.Open sSQL

'Set up Excel Variables

Dim X1 As New Excel.Application
Dim Xlbook As Excel.Workbook
Dim Xlsheet As Excel.Worksheet

Set X1 = CreateObject ("Excel.Application")
Set Xlbook = X1.Workbooks.Add
Set Xlsheet = Xlbook.Worksheets (1)

'Set Values in Worksheet

Xlsheet .Name = "Phone List"
With Xlsheet.Range("Al")
.Value = "Phone List " & Date

.Font.Size = 14

.Font.Bold = True

.Font.Color = vbBlue
End With

'Copy Recordset to Worksheet Cell A3
Xlsheet.Range ("A3") .CopyFromRecordset rs

'Make Excel window visible
X1.Visible = True

'Clean Up Variables
rs.Close

Set cnn = Nothing

Set rs = Nothing

Set Xlsheet = Nothing
Set Xlbook = Nothing
Set X1 = Nothing

068 Exporting Data to Excel

As you can see, the code is starting to grow. It’s not out of control, but pro-
cedures commonly grow to pages in length. Don’t be afraid; as long as you
break code into small chunks, it’s not so hard to understand. The following
section gives you the breakdown for this code.

The code in this section requires the ActiveX Data Objects Library to be
selected in the References dialog box. For more information on ActiveX, see
Book VIII, Chapter 5.

Examining the export code
The first chunk of code sets up the Recordset object with a simple SQL
Select statement that gets the first name, last name, and phone number
from the Customers table, as follows:

'Declare and set the Connection object
Dim cnn As ADODB.Connection
Set cnn = CurrentProject.Connection

'Declare and set the Recordset object
Dim rs As New ADODB.Recordset
rs.ActiveConnection = cnn

'Declare and set the SQL Statement to Export
Dim sSQL As String
SSQL = "SELECT FirstName, LastName, Phone FROM Customers"

'Open the Recordset
rs.Open sSQL

For more information on using recordsets and creating SQL statements in
VBA code, see Book VIII, Chapter 5.

The next chunk of VBA code initializes the Excel objects so that you can
manipulate them. You have three objects to declare when you’re working
with Excel: Application, Workbook, and Worksheet. By default, when you
open Excel from the Start menu, the program opens to a new workbook, and
each workbook contains at least one worksheet. Here’s the code:

'Set up Excel Variables

Dim X1 As New Excel.Application
Dim Xlbook As Excel.Workbook
Dim Xlsheet As Excel.Worksheet

Set X1 = CreateObject ("Excel.Application")

WMBER
@&
&

Exporting Data to Excel 669

After opening the Excel Application object, use the Add method of the
Workbooks collection to create a new workbook stored in the X1book
variable, as follows:

Set Xlbook = X1.Workbooks.Add

After adding a new Workbook to the Excel Application, set the X1sheet
variable to the first Worksheet of the Workbook object, using the
Worksheets collection:

Set Xlsheet = Xlbook.Worksheets (1)
Now that the worksheet is initialized and set, it’s time to start playing around.
First, set the Name of the worksheet to something other than Sheetl1. Then
change cell A1 to a meaningful heading that includes the date, and format the

cell to use a larger, bolder, more colorful font, as follows:

'Set Values in Worksheet

Xlsheet .Name = "Phone List"
With Xlsheet.Range("Al")
.Value = "Phone List " & Date

.Font.Size = 14

.Font.Bold = True

.Font.Color = vbBlue
End With

Now it’s time to take the data from the Recordset object and put it into the
spreadsheet. There’s no looping through the recordset here; just use the
CopyFromRecordset method to copy the contents of a recordset into a
particular range of cell. For this example, copy the data from the recordset
starting with cell A3, as follows:

'Copy Recordset to Worksheet Cell A3
Xlsheet.Range ("A3") .CopyFromRecordset rs

Finally, make the Excel application visible so that you can see your data in
Excel (as shown in Figure 1-8), and clean up the variables.

You can add much more code to this routine to fully customize the look of
the spreadsheet. You can change the column widths, change the cells’ back-
ground colors, and sort the data.

If you can perform a task with the mouse and keyboard in the Excel window,
you can find a way to do it with VBA.

Book IX
Chapter 1

sweiboig

aalyQ 18110
y}M uonewolny

670 Exporting Data to Excel

Figure 1-8:
The Excel
worksheet
with
customer
phone
numbers.

B s o
HOME [MEERT

Framkly Unctuous [B53] 555
Wargarel angstrar [713] 555
Simpzon Sarah [B28)
[200] 555-£530

10 |Horensa Higgleber [£45] 555- 7544
11 |Penny Lopes [752) 355-807L
12 |Matilca Starbuck |[712] 355-0502
13 |Seaott and Schurnack [431) 555-7058
14 |Linda Peterson [532] 555-6331
15 [Ino Yasha [212) 3nb-50a7
Phone List @

1
a
5 |Wilma Wannsoe [§18] 355-3203
3
€

Automating Access with other Office programs can seem overwhelming at
first, but when you know where to find help and examples, you’ll be well on
your way to beefing up your Access applications — and relying less and less
on other humans to perform these tasks.

Eookl - Microzof Eecel

PAGE LAYVOUT

X calibi M|
En- B I U~ g & = -
Faste 8 AAE=ES=
- W |- D-A- SRS)
Clipknad e Font Migarnent
£31 - | Al
A E o 0 3
Phone List 8/29/2012
Tari Pines §559-1312
mMariloa Widcalf [914730) 555-1231

FORMULAS

=3

B -

o E Concdonal Formating =

Mumker

I2¥ rornzt a5 Table «

DAaTA

REWVIZW

D Cell Styles =

4

Byles

VIEW

L]
Editng

ol

READY B O ™M -——+ 100

