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First steps

1.1 Preliminaries

This book focuses on a class of random evolutions, in discrete time (by successive
steps) on a discrete state space (finite or countable, with isolated elements), which
satisfy a fundamental assumption, called the Markov property. This property can
be described informally as follows: the evolution “forgets” its past and is “regen-
erated” at each step, retaining as sole past information for its future evolution its
present state. The probabilistic description of such an evolution requires

• a law (probability measure) for drawing its initial state and

• a family of laws for drawing iteratively its state at the “next future instant”
given its “present state,” indexed by the state space.

Such a random evolution will be called a Markov chain.
Precise definitions can be found in the Appendix, Section A.3, but we give

now the probabilistic framework. A probability space (Ω, ,ℙ) will be considered
throughout. When  is discrete, usually its measurable structure is given by the
collection of all subsets, and all functions with values in  are assumed to be mea-
surable.

A random variable (r.v.) with values in a measurable state space  is a measur-
able function

X ∶ 𝜔 ∈ Ω → X(𝜔) ∈  .
Intuitively, the output X(𝜔) varies randomly with the input 𝜔, which is drawn in Ω
according to ℙ, and the measurability assumptions allow to assign a probability to
events defined through X.

For the random evolutions under investigation, the natural random elements are
sequences (Xn)n∈ℕ taking values in the same discrete state space , which are called
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2 MARKOV CHAINS

(random) chains or (discrete time) processes. Each Xn should be an r.v., and its law
𝜋n on the discrete space  is then given by

𝜋n(x) = 𝜋n({x}) = ℙ(Xn = x) , x ∈  ,

𝜋n(A) = ℙ(Xn ∈ A) =
∑
x∈A

𝜋n(x) , A ⊂  ,

and hence can be identified in a natural way with (𝜋n(x))x∈ .

Finite-dimensional marginals More generally, for any k ≥ 1 and n1,… , nk in ℕ,
the random vector

(Xn1
,… ,Xnk

)

takes values in the discrete space k, and its law 𝜋n1,…,nk
can be identified with the

collection of the

𝜋n1,…,nk
(x1,… , xk) = ℙ(Xn1

= x1,… ,Xnk
= xk) , x1,… , xk ∈  .

All these laws for k ≥ 1 and 0 ≤ n1 < · · · < nk constitute the family of the
finite-dimensional marginals of the chain (Xn)n≥0 or of its law.

Law of the chain The r.v.

(Xn)n≥0 ∶ 𝜔 → (Xn(𝜔))n≥0

takes values in ℕ, which is uncountable as soon as  contains at least two ele-
ments. Hence, its law cannot, in general, be defined by the values it takes on the
elements of ℕ. In the Appendix, Section A.3 contains some mathematical results
defining the law of (Xn)n≥0 from its finite-dimensional marginals.

Section A.1 contains some more elementary mathematical results used through-
out the book, and Section A.2 a discussion on the total variation norm and on weak
convergence of laws.

1.2 First properties of Markov chains

1.2.1 Markov chains, finite-dimensional marginals, and laws

1.2.1.1 First definitions

We now provide rigorous definitions.

Definition 1.2.1 Let  be a discrete state space. A matrix P = (P(x, y))x,y∈ is a
transition matrix on  , or also a Markovian or stochastic matrix, if

P(x, y) ≥ 0 ,
∑
y∈

P(x, y) = 1.
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A sequence (Xn)n≥0 of -valued random variables is a Markov chain on  with
matrix P and initial law 𝜋0 if, for every n in ℕ and x0,… , xn in  ,

ℙ(X0 = x0,… ,Xn = xn) = 𝜋0(x0)P(x0, x1)P(x1, x2) · · ·P(xn−1, xn).

Note that, by iteration, (Xn)n≥0 is a Markov chain on  with matrix P if and only if
for every n in ℕ and x0,… , xn, y in  ,

ℙ(X0 = x0,… ,Xn = xn,Xn+1 = y) = ℙ(X0 = x0,… ,Xn = xn)P(xn, y),

and that this is trivially true if ℙ(X0 = x0,… ,Xn = xn) = 0.

Markov chain evolution A family P(x, ⋅) of laws on  indexed by x ∈  is
defined by

P(x,A) =
∑
x∈A

P(x, y) , A ⊂  .
The evolution of (Xn)n≥0 can be obtained by independent draws, first of X0 accord-
ing to 𝜋0, and then iteratively of Xn+1 according to P(Xn, ⋅) for n ≥ 0 without taking
any further notice of the evolution before the present time n or of its actual value.

Inhomogeneous Markov chains A more general and complex evolution can be
obtained by letting the law of the steps depend on the present instant of time, that
is, using the analogous formulae with P(n; xn, y) instead of P(xn, y); this corre-
sponds to a time-inhomogeneous Markov chain, but we will seldom consider this
generalization.

Markov chain graph The graph of the transition matrix P, or of a Markov chain
with matrix P, is the oriented marked graph with nodes given by the elements of
 and directed links given by the ordered pairs (x, y) of elements of  such that
P(x, y) > 0 marked by the value of P(x, y). The restriction to the graph to x ≠ y in
 is of the form [if P(x, x)P(x, y)P(y, x)P(y, y) ≠ 0]

xP (x, x) P (y, y)y

P (y, x)

P (x, y)

.

The graph and the matrix are equivalent descriptors for the random evolution.
The links from x to x in the graph are redundant as they are marked by P(x, x) =
1 −

∑
y≠xP(x, y) > 0, but illustrate graphically the possible transitions from x.

1.2.1.2 Conditional formulations

The last formula in Definition 1.2.1 can be written as

ℙ(Xn+1 = y | X0 = x0,… ,Xn = xn) = P(xn, y) (1.2.1)
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which is often used as the definition. Moreover, if f is nonnegative or bounded then

𝔼( f (Xn+1) | X0 = x0,… ,Xn = xn) = 𝔼xn
( f (X1)) =

∑
y∈

P(xn, y)f (y).

For the sake of mathematical efficiency and simplicity, nonconditional expressions
will be stressed, before possibly being translated into equivalent conditional for-
mulations. As an example, Definition 1.2.1 immediately yields by summing over
x0,… , xn−1 that

ℙ(Xn+1 = y | Xn = xn) =
ℙ(Xn = xn,Xn+1 = y)

ℙ(Xn = xn)
= P(xn, y) ,

which is not quite so obvious starting from (1.2.1).

1.2.1.3 Initial law, instantaneous laws

For a Markov chain (Xn)n≥0, the law of 𝜋n of Xn is called the instantaneous law at
time n and 𝜋0 the initial law. The notations ℙ and 𝔼 implicitly imply that 𝜋0 is given
and arbitrary, ℙ𝜇 and 𝔼𝜇 for some law 𝜇 on  indicate that 𝜋0 = 𝜇, and ℙx and 𝔼x
indicate that X0 = x. By linearity,

ℙ𝜇 =
∑
x∈

𝜇(x)ℙx , 𝔼𝜇 =
∑
x∈

𝜇(x)𝔼x.

A frequent abuse of notation is to write ℙx(⋅) = ℙ(⋅ | X0 = x), and so on.

Lemma 1.2.2 Let (Xn)n≥0 be a Markov chain with matrix P and initial law 𝜋0.
Then,ℙ(Xn+1 = y | Xn = x) = P(x, y) for n inℕ and x, y in , and the instantaneous
laws 𝜋n = (𝜋n(x))x∈ are given by

𝜋n(x) = ℙ(Xn = x) =
∑

x0,…,xn−1∈
𝜋0(x0)P(x0, x1)P(x1, x2) · · ·P(xn−1, x)

or in matrix notation
𝜋n = 𝜋n−1P = · · · = 𝜋0Pn.

Moreover, (Xnk)k≥0 is a Markov chain with matrix the nth matrix power of P

Pn = (Pn(x, y))x,y∈ .

Proof: This follows readily from Definition 1.2.1. ◾

1.2.1.4 Law on the canonical space of the chain

The notions in the Appendix, Section A.3.4, will now be used.
Definition 1.2.1 is actually a statement on the law of the Markov chain (Xn)n≥0,

which it characterizes by giving an explicit expression for its finite-dimensional
marginals in terms of its initial law 𝜋0 and transition matrix P.
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Indeed, some rather simple results in measure theory show that there is unique-
ness of a law on the canonical probability space ℕ with product 𝜎-field having a
given finite-dimensional marginal collection.

It is immediate to check that this collection is consistent [with respect to (w.r.t.)
projections] and then the Kolmogorov extension theorem (Theorem A.3.10)
implies that there is existence of a law ℙ𝜋0

on the canonical probability space ℕ

with the product 𝜎-field such that the canonical (projection) process (Xn)n≥0 has
the given finite-dimensional marginal collection, which hence is a Markov chain
with initial law 𝜋0 and transition matrix P (see Corollary A.3.11).

The Kolmogorov extension theorem follows from a deep and general result in
measure theory, the Caratheodory extension theorem.

1.2.2 Transition matrix action and matrix notation

1.2.2.1 Nonnegative and signed measures, total variation
measure, andnorm

A (nonnegative) measure 𝜇 on  is defined by (and can be identified with) a collec-
tion (𝜇(x))x∈ of nonnegative real numbers and, in the sense of nonnegative series,

𝜇 ∶ A ⊂  → 𝜇(A) ∶=
∑
x∈A

𝜇(x) ∈ [0,∞] ∶= ℝ+ ∪ {∞}.

A measure 𝜇 is finite if its total mass 𝜇() is finite and then 𝜇(A) < ∞ for all A ⊂  .
A measure is a probability measure, or a law, if 𝜇() = 1.

For r in ℝ, let r+ = max(r, 0) and r− = max(−r, 0) denote the nonnegative and
nonpositive parts of r, which satisfy r = r+ − r− and |r| = r+ + r−.

For 𝜇 = (𝜇(x))x∈ with 𝜇(x) ∈ ℝ, the measures 𝜇+, 𝜇−, and |𝜇| can be defined
term wise. Then,

𝜇 = 𝜇+ − 𝜇−

is the minimal decomposition of 𝜇 as a difference of (nonnegative) measures, which
have disjoint supports, and |𝜇| = 𝜇+ + 𝜇−

is called the total variation measure of 𝜇.
If 𝜇 is such that |𝜇| is finite (equivalently, if both 𝜇+ and 𝜇− are finite), then we

can extend it to a signed measure 𝜇 acting on subsets of  by setting, in the sense
of absolutely converging series,

𝜇 ∶ A ⊂  → 𝜇(A) ∶= 𝜇+(A) − 𝜇−(A) =
∑
x∈A

𝜇(x) ∈ ℝ ,

and we can define its total variation norm by

‖𝜇‖var = |𝜇|() =∑
x∈
|𝜇(x)| < ∞.

Note that 𝜇(A) ≤ |𝜇|(A) ≤ ‖𝜇‖var for all A ⊂  .
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The space  ∶= () of all signed measures, furnished with the total varia-
tion norm, is a Banach space, which is isomorphic to the Banach space 𝓁1 ∶= 𝓁1()
of summable sequences with its natural norm.

Probability measures or laws The space of probability measures

1
+ ∶= 1

+() = {𝜇 ∈  ∶ 𝜇 ≥ 0, ‖𝜇‖var = 1}

is the intersection of the cone of nonnegative measures with the unit sphere. It is a
closed subset of  and hence is complete for the induced metric.

Some properties of  and 1
+ are developed in the Appendix, Section A.2.

Note that, according to the definition taken here, nonnegative measures with infinite
mass are not signed measures.

Complex measures Spectral theory naturally involves complex extensions. For
its purposes, complex measures can be readily defined, and the corresponding space
( ,ℂ), where the modulus in ℂ is again denoted by | ⋅ |, allows to define a total
variation measure ‖𝜇‖ and total variation norm ‖𝜇‖var = ‖𝜇‖() for 𝜇 in( ,ℂ).
The Banach space is isomorphic to 𝓁1( ,ℂ). The real and imaginary parts of a
complex measure are signed measures.

1.2.2.2 Line and column vectors, measure-function duality

In matrix notation, the functions f from  to ℝ are considered as column vectors
( f (x))x∈ , and nonnegative or signed measures 𝜇 on  as line vectors (𝜇(x))x∈ ,
of infinite lengths if  is infinite. The integral of a function f by a measure 𝜇 is
denoted by 𝜇f , in accordance with the matrix product

𝜇f =
(
· · · 𝜇(x) · · ·

) ⎛⎜⎜⎝
⋮

f (x)
⋮

⎞⎟⎟⎠ =
∑
x∈

𝜇(x)f (x) ,

defined in [0,∞] in the sense of nonnegative series if𝜇 ≥ 0 and f ≥ 0 and inℝ in the
sense of absolutely converging series if 𝜇 ∈  and f ∈ L∞ = L∞() = L∞( ,ℝ),
the Banach space of bounded functions on  with the uniform norm.

For A subset of  , the indicator function 1lA is defined by

1lA(x) = 1 , x ∈ A , 1lA(x) = 0 , x ∈  − A.

For x in  , the Dirac mass at x is the probability measure 𝛿x such that 𝛿x(A) = 1lA(x),
that is,

𝛿x(A) = 1 , x ∈ A , 𝛿x(A) = 0 , x ∈  − A.

For x and y in  , it holds that

𝛿x(y) = 1l{x}(y) = 1 , x = y , 𝛿x(y) = 1l{x}(y) = 0 , x ≠ y ,

but 𝛿x will be represented by a line vector and 1l{x} by a column vector.
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If 𝜇 is a nonnegative or signed measure, then

𝜇(A) = 𝜇1lA.

Duality and total variation norm A natural duality bracket between the Banach
spaces  and L∞ is given by

(𝜇, f ) ∈  × L∞ → 𝜇f ∈ ℝ ,

and for 𝜇 in , it holds that

𝜇f ≤ ‖𝜇‖var‖f‖∞ , ‖𝜇‖var = 𝜇+() + 𝜇−() = 𝜇(1l{x∶𝜇(x)>0} − 1l{x∶𝜇(x)<0}) ,

and hence that ‖𝜇‖var = max
f∈L∞, ‖f‖∞≤1

𝜇f . (1.2.2)

Thus,  can be identified with a closed subspace of the dual of L∞ with the strong
dual norm, which is the norm as an operator on L∞.

The space L∞ can be identified with the space 𝓁∞ = 𝓁∞() = 𝓁∞( ,ℝ) of
bounded sequences, and this duality between  and L∞ to the natural duality
between 𝓁1 and 𝓁∞.

The operations between complex measures and complex functions are
performed by separating the real and imaginary parts.

1.2.2.3 Transition matrices, actions on measures, and functions

A matrix P is a transition matrix if and only if each of its line vectors P(x, ⋅)
corresponds to a probability measure. Then, its column vector P(⋅, y) defines a non-
negative function, which is bounded by 1.

A transition matrix can be multiplied on its right by nonnegative functions and
on its left by nonnegative measures, or on its right by bounded functions and on
its left by signed measures. The order of these operations does not matter. The
function Pf , the nonnegative or signed measure 𝜇P, and 𝜇Pf ∈ ℝ ∪ {∞} are given
for x ∈  by

Pf (x) = P(x, ⋅)f =
∑
y∈

P(x, y)f (y) = 𝔼x( f (X1)) ,

𝜇P(x) = 𝜇P(⋅, x) =
∑
z∈

𝜇(z)P(z, x) = ℙ𝜇(X1 = x) ,

𝜇Pf =
∑

x,y∈
𝜇(x)P(x, y)f (y) = 𝔼𝜇( f (X1)) ,

in which the notations ℙ𝜇 and 𝔼𝜇 are used only when 𝜇 is a law.
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In matrix notation,

Pf =
⎛⎜⎜⎝
⋱ ⋮ ⋱
· · · P(x, y) · · ·
⋱ ⋮ ⋱

⎞⎟⎟⎠
⎛⎜⎜⎝

⋮
f (y)
⋮

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎝

⋮
Pf (x) =

∑
y∈

P(x, y)f (y)

⋮

⎞⎟⎟⎟⎠ ,
𝜇P =

(
· · · 𝜇(z) · · ·

) ⎛⎜⎜⎝
⋱ ⋮ ⋱
· · · P(z, x) · · ·
⋱ ⋮ ⋱

⎞⎟⎟⎠
=
(

· · · 𝜇P(x) =
∑
z∈

𝜇(z)P(z, x) · · ·
)
,

𝜇Pf =
(

· · · 𝜇(x) · · ·
) ⎛⎜⎜⎝

⋱ ⋮ ⋱
· · · P(x, y) · · ·
⋱ ⋮ ⋱

⎞⎟⎟⎠
⎛⎜⎜⎝

⋮
f (y)
⋮

⎞⎟⎟⎠
=
∑

x,y∈
𝜇(x)P(x, y)f (y).

Intrinsic notation The linear mapping

P ∶ f ∈ L∞ → Pf ∈ L∞

has matrix P in the canonical basis. Its dual, or adjoint, mapping on , w.r.t. the
duality bracket (𝜇, f ) → 𝜇f , is given by

P∗ ∶ 𝜇 ∈  → 𝜇P ∈  ,

and has the adjoint (or transpose) matrix, also denoted by P∗. In order to respect
the vector space structure and identify linear mappings and their matrices in the
canonical bases, we could write P∗𝜇 instead of 𝜇P and ⟨𝜇, f ⟩ instead of 𝜇f and⟨𝜇,Pf ⟩ = ⟨P∗𝜇, f ⟩ instead of 𝜇Pf .

1.2.2.4 Transition matrix products, many-step transition

If P and Q are both transition matrices on  , then it is easy to check that the matrix
product PQ with generic term

PQ(x, y) =
∑
z∈

P(x, z)Q(z, y)

is a transition matrix on  . Let

P0 ∶= I (identity matrix), Pn ∶= Pn−1P = PPn−1 , n ≥ 1.

Then,
Pn(x, y) =

∑
x1,…,xn−1∈

P(x, x1)P(x1, x2) · · ·P(xn−1, y)
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is the probability for (Xnk)k≥0 to go in one step from x to y, and hence for (Xk)k≥0 to
do so in n steps. In particular,

𝜋0 = 𝛿x ⇒ 𝜋n(y) = Pn(x, y).

Chapman–Kolmogorov formula As Pn = PkPn−k for 0 ≤ k ≤ n, this yields the
Chapman–Kolmogorov formula

Pn(x, y) =
∑
z∈

Pk(x, z)Pn−k(z, y).

Probabilistic interpretation These algebraic formulae have simple probabilistic
interpretations: the probability of going from x to y in n steps can be obtained as
the sum of the probabilities of taking every n-step path allowing to do so, as well
as the sum over all intermediate positions after k steps.

1.2.3 Random recursion and simulation

Many Markov chains are obtained in a natural way as a random recursion, or ran-
dom iterative sequence, as follows.

Theorem 1.2.3 Let (Fk)k≥1 be a sequence of independent identically distributed
(i.i.d.) random functions from  to  . For instance, for some not necessarily dis-
crete space  and f ∶  ×  →  and i.i.d. r.v. (𝜉k)k≥1 with values in  ,

Fk ∶ x ∈  → f (𝜉k, x) ∈  .
If X0 is any -valued r.v. independent of (Fk)k≥1, then (Xn)n≥0 given for n ≥ 1 by

Xn = Fn(Xn−1) = · · · = Fn∘ · · · ∘F1(X0) ,

and more precisely by

Xn(𝜔) = Fn(𝜔)(Xn−1(𝜔)) = · · · = Fn(𝜔)∘ · · · ∘F1(𝜔)(X0(𝜔)) , 𝜔 ∈ Ω ,

is a Markov chain on  with matrix P given by

P(x, y) = ℙ(F1(x) = y) , x, y ∈  .

Proof: For x0, x1,… , xn in  , it holds that

ℙ(X0 = x0,X1 = x1 … ,Xn = xn)

= ℙ(X0 = x0,F1(x0) = x1,… ,Fn(xn−1) = xn)

= ℙ(X0 = x0)ℙ(F1(x0) = x1)…ℙ(F1(xn−1) = xn).

Thus, Definition 1.2.1 is satisfied for the above matrix P. ◾
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When a random sequence (Xn)n∈ℕ is defined in some particular way, there
is often a natural interpretation in terms of a random recursion of the previous
kind. This allows to prove that a (Xn)n∈ℕ is a Markov chain, without having to
directly check the definition, or even having to explicit its matrix. Moreover, such
a pathwise representation for the Markov chain may be used for its study or its
simulation.

Any Markov chain, with arbitrary initial law 𝜋0 and transition matrix P, can
be thus represented, using an i.i.d. sequence (𝜉k)k≥1 of uniform r.v. on  ∶= [0, 1].
The state space is first enumerated as  = {xj ∶ j = 0, 1,…}.

Let 𝜔 ∈ Ω. For the initial value, if j is determined by

𝜋0(x0) + · · · + 𝜋0(xj−1) < 𝜉0(𝜔) ≤ 𝜋0(x0) + · · · + 𝜋0(xj−1) + 𝜋0(xj),

then X0(𝜔) = xj. For the transitions, for n ≥ 1, if j is determined by

P(Xn−1(𝜔), x0) + · · · + P(Xn−1(𝜔), xj−1)

< 𝜉n(𝜔) ≤ P(Xn−1(𝜔), x0) + · · · + P(Xn−1(𝜔), xj−1) + P(Xn−1(𝜔), xj),

then Xn(𝜔) = xj.

In theory, this allows for the simulation of the Markov chain, but in practice this
is not necessarily the best way to do so.

Note that this representation yields a construction for an arbitrary Markov
chain, starting from a rigorous construction of i.i.d. sequences of uniform r.v. on
[0, 1], without having to use the more general Kolmogorov extension theorem
(Theorem A.3.10).

Remark 1.2.4 Very different random recursions can be associated with the same
transition matrix, and result in diverse pathwise behavior, notably w.r.t. changes in
the initial value.

1.2.4 Recursion for the instantaneous laws, invariant laws

The instantaneous laws (𝜋n)n≥0 satisfy the recursion

𝜋n = 𝜋n−1P

with solution 𝜋n = 𝜋0Pn. This is a linear recursion in dimension Card(), and the
affine constraint

∑
x∈𝜋n(x) = 1 allows to reduce it to an affine recursion in dimen-

sion Card() − 1. Note that Pn(x, y) = 𝜋n(y) for 𝜋0 = 𝛿x.
An elementary study of this recursion starts by searching for its fixed points.

These are the only possible large n limits for the instantaneous laws, for any topol-
ogy such that 𝜇 → 𝜇P is continuous.

By definition, a fixed point for this recursion is a law (probability measure) 𝜋
such that 𝜋 = 𝜋P, and is called an invariant law or a stationary distribution for (or
of) the matrix P, or the Markov chain (Xn)n∈ℕ.
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Stationary chain, equilibrium If 𝜋 is an invariant law and 𝜋0 = 𝜋, then 𝜋n = 𝜋

for all n inℕ, and (Xn+k)k∈ℕ is again a Markov chain with initial law 𝜋 and transition
matrix P. Then, (Xn)n∈ℕ is said to be stationary, or in equilibrium.

Invariant measures and laws In order to find an invariant law, one must:

1. Solve the linear equation 𝜇 = 𝜇P.

2. Find which solutions 𝜇 ≠ 0 are nonnegative, that is, such that 𝜇 ≥ 0.

3. Normalize such 𝜇 by setting 𝜋 = 𝜇∕‖𝜇‖var, which is possible only if‖𝜇‖var ∶=
∑
x∈

𝜇(x) < ∞ (always true for finite ) .
A nonnegative measure 𝜇 ≠ 0 such that 𝜇 = 𝜇P is called an invariant measure. An
invariant measure is said to be unique if it is unique up to a multiplicative factor,
that is, if all invariant measures are proportional (to it).

Algebraic interpretation The invariant measures are the left eigenvectors for
the eigenvalue 1 for the matrix P acting on nonnegative measures, that is, for the
adjoint (or transposed) matrix P∗ acting on nonnegative vectors. Note that the con-
stant function 1 is a right eigenvector for the eigenvalue 1, as

𝜋1 =
∑
x∈

𝜋(x) = 1.

The possible convergence of (𝜋n)n≥0 to an invariant law 𝜋 is related to the moduli
of the elements of the spectrum of the restriction of the action of P on the signed
measures of null total mass.

More generally, the exact or approximate computation of Pn depends in a more
or less explicit way on a spectral decomposition of P.

1.3 Natural duality: algebraic approach

An algebraic study based on the natural duality between the space of signed mea-
sures  ≃ 𝓁1 and the space of bounded functions L∞ ≃ 𝓁∞ will provide some
structural results. These results are quite complete for finite state spaces  . The
complete study for arbitrary discrete  will be done later using probabilistic tech-
niques. A reader for which this is the main interest may go directly to Section 1.4.

1.3.1 Complex eigenvalues and spectrum

1.3.1.1 Some reminders

The eigenvalues of the operator

P ∶ f → Pf on L∞

are given by all 𝜆 ∈ ℂ such that 𝜆I − P is not injective as an operator on L∞( ,ℂ).
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The eigenspace of 𝜆 is the kernel

ker (𝜆I − P) ∈ L∞( ,ℂ) ,
and its nonzero elements are called eigenvectors. Hence, f in L∞( ,ℂ) − {0} is an
eigenvector of 𝜆 if and only if

Pf = 𝜆f ,

and then
Pnf = 𝜆nf , n ≥ 1.

The generalized eigenspace of 𝜆 is given by⋃
k≥1

ker ((𝜆I − P)k) ∈ L∞( ,ℂ).

If it contains strictly the eigenspace, then it contains some f and some eigenvector
g such that

Pf = 𝜆f + g ,

and then
Pnf = 𝜆nf + n𝜆n−1g , n ≥ 1.

An eigenvalue is said to be

• semisimple if the eigenspace and generalized eigenspace coincide,

• simple if these spaces have dimension 1.

Similar definitions involving ( ,ℂ) are given for the adjoint operator

P∗ ∶ 𝜇 ∈  → 𝜇P ∈ .

Its eigenspaces are often said to be eigenspaces on the left, or left eigenspaces, of
P. Those of

P ∶ f ∈ L∞ → Pf ∈ L∞

may accordingly be called eigenspaces on the right, or right eigenspaces, of P.
Hence, 𝜇 ∈ ( ,ℂ) is a left eigenvector of 𝜆 if and only if

𝜇P = 𝜆𝜇 ,

and then
𝜇Pn = 𝜆n𝜇 , n ≥ 1.

If the generalized left eigenspace of 𝜆 contains strictly the eigenspace, then it con-
tains some 𝜇 and some left eigenvector 𝜈 such that

𝜇P = 𝜆𝜇 + 𝜈 ,



FIRST STEPS 13

and then
𝜇Pn = 𝜆n𝜇 + n𝜆n−1𝜈 , n ≥ 1.

The spectrum 𝜎(P) of P on L∞ is given by

𝜎(P) = {𝜆 ∈ ℂ ∶ 𝜆I − P not invertible in L∞( ,ℂ)}.
It is a simple matter to check that, using ( ,ℂ) in the definition,

𝜎(P∗) = 𝜎(P)

and mentions of “left” or “right” are useless.
The spectrum 𝜎(P) contains both the left and right eigenvectors. In finite dimen-

sions, invertibility of an operator is the same as injectivity, and hence the spectrum,
the left eigenspace, and the right eigenspace coincide, but it is not so in general.

If 𝜆 ∈ ℂ is in the spectrum of an operator on a real vector space, such as P or
P∗, then �̄� is also in the spectrum, and if moreover 𝜆 is an eigenvalue, then �̄� is an
eigenvalue, and the corresponding (generalized) eigenspaces are conjugate.

If 𝜆 ∈ ℝ, then L∞ = L∞( ,ℝ) can be considered instead of L∞( ,ℂ) in all
definitions. Moreover, the real and complex (generalized) eigenspaces have same
dimension.

1.3.1.2 Algebraic results for transition matrices

Theorem 1.3.1 Let P be a transition matrix on  .

1. The operator P ∶ f → Pf on L∞( ,ℂ) and its dual operator P∗ ∶ 𝜇 → 𝜇P
on ( ,ℂ) are bounded and have operator norm 1.

2. The spectrum 𝜎(P) is included in the complex unit disk, every left or right
eigenvalue of modulus 1 is semisimple, and the constant function 1 is a right
eigenvector of eigenvalue 1 for P.

3. If 𝜇 ∈ ( ,ℂ) and 𝜇P = 𝜆𝜇 for |𝜆| = 1, then the total variation measure|𝜇| = (|𝜇|(x))x∈ satisfies |𝜇|P = |𝜇| and hence is an invariant measure.

Proof: If f ∈ L∞( ,ℂ), then clearly

‖Pf‖∞ = sup
x∈

||||||
∑
y∈

P(x, y)f (y)
|||||| ≤ ‖f‖∞.

If f ≡ 1, then Pf ≡ 1. If |𝜆| > 1, then the series

(𝜆I − P)−1 = 𝜆−1(I − 𝜆−1P)−1 = 𝜆−1(I + 𝜆−1P + (𝜆−1P)2 + · · · )

converges in operator norm on L∞, which is given by ‖Q‖op = sup‖f‖∞≤1‖Qf‖∞.
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If an eigenvalue 𝜆 is not semisimple, then there exists f in the generalized
eigenspace and g in the eigenspace such that

Pnf = 𝜆nf + n𝜆n−1g , n ≥ 1 ,

and ‖Pnf‖∞ ≤ ‖f‖∞ then implies that |𝜆| < 1.
The corresponding results for P∗ can be obtained in a similar way, or by duality.
In particular, P∗ has operator norm 1, and hence if 𝜇 ∈ ( ,ℂ), then∑

x∈
|𝜇|P(x) ∶= ‖ |𝜇|P ‖var ≤ ‖ |𝜇| ‖var ∶=

∑
x∈
|𝜇(x)| ,

and if moreover 𝜇P = 𝜆𝜇 for |𝜆| = 1, then

|𝜇|P(x) =∑
y∈
|𝜇(y)|P(y, x) ≥ ||||||

∑
y∈

𝜇(y)P(y, x)
|||||| = |𝜇P(x)| = |𝜆𝜇(x)| = |𝜇(x)|

and necessarily |𝜇|P(x) = |𝜇(x)| = |𝜇|(x) for every x. ◾

1.3.1.3 Uniqueness for invariant laws and irreducibility

A state x in  is absorbing if P(x, x) = 1 and then 𝛿x is an invariant law for P.
If  contains subsets i for i ∈ I such that P(x,i) = 1 for every x ∈ i, these

are said to be absorbing or closed. The restriction of P to each i is Markovian; if it
has an invariant measure 𝜇i, then any convex combination

∑
i∈Ici𝜇i is an invariant

measure on  , and if the 𝜇i are laws then
∑

ici𝜇i is an invariant law. (By abuse of
notation, 𝜇i denotes the extension of the measure to  vanishing outside of i.)

Hence, any uniqueness result for invariant measures or laws requires adequate
assumptions excluding the above situation.

The standard hypothesis for this is that of irreducibility: a transition matrix P
on  is irreducible if, for every x and y in  , there exists i ∶= i(x, y) ≥ 1 such
that Pi(x, y) > 0. Equivalently, there exists in the oriented graph of the matrix a
path covering the whole graph (respecting orientation). This notion will be further
developed in due time.

Lemma 1.3.2 Let ℙ be an irreducible transition matrix. If a measure 𝜇 satisfies
𝜇P = 𝜇, then either 𝜇 = 0 or 𝜇 > 0.

Proof: Assume that there exists a state x such that 𝜇(x) > 0. For any state y, there
exists i ≥ 1 such that Pi(x, y) > 0. By iteration 𝜇 = 𝜇P = · · · = 𝜇Pi, and hence,

𝜇(y) =
∑
z∈

𝜇(z)Pi(z, y) ≥ 𝜇(x)Pi(x, y) > 0.

Hence, either 𝜇 > 0 or 𝜇 = 0. ◾
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Theorem 1.3.3 Let ℙ be an irreducible transition matrix. If P∗ ∶ 𝜇 ∈  → 𝜇P
has 1 as an eigenvalue, then it is a simple eigenvalue, and its eigenspace is gener-
ated by an invariant law 𝜋, which is positive and unique.

Proof: Let 𝜇 ≠ 0 be in ( ,ℝ) and satisfy 𝜇P = 𝜇. (This is enough, as 𝜆 = 1 is
in ℝ.) Theorem 1.3.1 implies that |𝜇| is an invariant measure. As 𝜇 ≠ 0 and hence|𝜇| ≠ 0, Lemma 1.3.2 yields that |𝜇| > 0, and an everywhere positive invariant law
is given by

𝜋 = |𝜇||𝜇|() .
Moreover,

𝜇+ = 1
2
(|𝜇| + 𝜇) , 𝜇− = 1

2
(|𝜇| − 𝜇) ,

are invariant measures or are zero and cannot be both zero. Lemma 1.3.2 yields that
𝜇+ > 0 or 𝜇− > 0, that is, that 𝜇 > 0 or 𝜇 < 0.

Hence, if 𝜋 and 𝜋′ are two invariant laws, then 𝜋 − 𝜋′ = (𝜋 − 𝜋′)P and hence
either 𝜋 − 𝜋′ = 0 or 𝜋 − 𝜋′ > 0 or 𝜋 − 𝜋′ < 0. As (𝜋 − 𝜋′)() = 0, we conclude
that 𝜋 − 𝜋′ = 0, hence the invariant law is unique.

The eigenvalue 1 is semisimple (see Theorem 1.3.1), hence it is simple. ◾

This proof heavily uses techniques that are referred under the terminology “the
maximum principle,” which we will try to explain in Section 1.3.3.

1.3.2 Doeblin condition and strong irreducibility

A transition matrix P is strongly irreducible if there exists i ≥ 1 such that Pi > 0.

Theorem 1.3.4 (Doeblin) Let P be a transition matrix  satisfying the Doeblin
condition: there exists k ≥ 1 and 𝜀 > 0 and a law �̂� on  such that

Pk(x, y) ≥ 𝜀�̂�(y) , ∀x, y ∈  .
Then, there exists a unique invariant law 𝜋, which satisfies 𝜋 ≥ 𝜀�̂�. Moreover, for
any 𝜇 ∈  such that 𝜇() = 0, it holds that

‖𝜇Pn‖var ≤ (1 − 𝜀)⌊n∕k⌋‖𝜇‖var ≤ 2(1 − 𝜀)⌊n∕k⌋‖𝜇‖var , n ≥ 1 ,

which yields the exponential bounds, uniform on the initial law,

sup
x∈
∑
y∈
|Pn(x, y) − 𝜋(y)| ≤ sup

𝜋0∈1
+

‖𝜋0Pn − 𝜋‖var ≤ 2(1 − 𝜀)⌊n∕k⌋ , n ≥ 1.

The restriction of P to {𝜋 > 0} ∶= {x ∈  ∶ 𝜋(x) > 0} is an irreducible transition
matrix, which is strongly irreducible if {𝜋 > 0} is finite.
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Proof: Let us first assume the Doeblin condition to hold for k = 1. Let 𝜇 ∈  be
such that 𝜇() ∶= ∑x∈𝜇(x) = 0. Then,

‖𝜇P‖var =
∑
y∈

|||||
∑
x∈

𝜇(x)P(x, y)
||||| (by definition)

=
∑
y∈

|||||
∑
x∈

𝜇(x)(P(x, y) − 𝜀�̂�(y))
||||| (as 𝜇() = 0)

≤∑
y∈
∑
x∈
|𝜇(x)|(P(x, y) − 𝜀�̂�(y)) (as P(x, y) ≥ 𝜀�̂�(y))

≤ ‖𝜇‖var(1 − 𝜀) (changing summation order).

Moreover,

𝜇P() =∑
y∈
∑
x∈

𝜇(x)P(x, y) =
∑
x∈

𝜇(x)
∑
y∈

P(x, y) = 0

and iteration yields that

‖𝜇Pn‖var ≤ ‖𝜇‖var(1 − 𝜀)n , n ≥ 1.

If the Doeblin condition holds for an arbitrary k ≥ 1, Theorem 1.3.1 and the result
for k = 1 applied to Pk yield that

‖𝜇Pn‖var = ‖𝜇(Pk)⌊n∕k⌋Pn−k⌊n∕k⌋‖var ≤ ‖𝜇(Pk)⌊n∕k⌋‖var ≤ ‖𝜇‖var(1 − 𝜀)⌊n∕k⌋.
For any laws 𝜋0 and 𝜋′

0, it holds that (𝜋0 − 𝜋′
0)() = 0, and thus

‖𝜋0Pn − 𝜋′
0Pn‖var ≤ (1 − 𝜀)⌊n∕k⌋‖𝜋0 − 𝜋′

0‖var ≤ 2(1 − 𝜀)⌊n∕k⌋
and this bound for arbitrary 𝜋0 and 𝜋′

0 = 𝜋0P implies that (𝜋0Pn)n≥0 is a Cauchy
sequence in the complete metric space 1

+ (by an exponential series bound).
Hence (𝜋0Pn)n≥0 converges to some law 𝜋, which by continuity must satisfy 𝜋 =

𝜋P, and hence is an invariant law; this convergence also implies that the invariant
law is unique.

Taking 𝜋′
0 = 𝜋 and arbitrary 𝜋0 or 𝜋0 = 𝛿x for arbitrary x in  yield the bounds,

which are uniform on the initial law. Moreover, for every y,

Pn(x, y) =
∑
z∈

Pn−1(x, z)P(z, y) ≥ 𝜀�̂�(y)
∑
z∈

Pn−1(x, z) = 𝜀�̂�(y)

and taking the limit yields that 𝜋(y) ≥ �̂�(y).
If 𝜋(x) > 0 and P(x, y) > 0, then 𝜋(y) ≥ 𝜋(x)P(x, y) > 0, and hence the restric-

tion of P to {𝜋 > 0} is Markovian.
If 𝜋(y) > 0, then, as limn→∞Pn(x, y) = 𝜋(y) for every x, there exists some

i(x, y) ≥ 1 such that Pi(x, y) > 0 for i ≥ i(x, y), hence this restriction is irreducible;
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if moreover {𝜋 > 0} is finite, then for i ≥ maxx,y∈{𝜋>0}i(x, y) it holds that Pi > 0
on {𝜋 > 0}, and hence the restriction of P is strongly irreducible. ◾

Note that 𝜀 ≤ 1 and that 𝜀 = 1 only in the trivial case in which (Xn)n≥1 is a
sequence of i.i.d. r.v. of law �̂�.

The Doeblin Condition (or strong irreducibility) is seldom satisfied when the
state space  is infinite. For a finite state space, Section 4.2.1 will give verifiable
conditions for strong irreducibility. The following result is interesting in these per-
spectives.

Corollary 1.3.5 Let P be a strongly irreducible matrix on a finite state space  .
Then, P satisfies the Doeblin Condition (see Theorem 1.3.4) for

k ≥ 1 such that Pk > 0 , 𝜀 =
∑
y∈

min
x∈ Pk(x, y) > 0 , �̂�(y) = 1

𝜀
min
x∈ Pk(x, y) ,

and the conclusions of Theorem 1.3.4 hold with 𝜋 > 0 on  .

Proof: The proof is immediate. ◾

1.3.3 Finite state space Markov chains

1.3.3.1 Perron–Frobenius theorem

If the state space  is finite, then the vector spaces () and L∞() have finite
dimension Card().

Then, the eigenvalues and the dimensions of the eigenspaces and generalized
eigenspaces of P, which are by definition those of P and P∗, are identical, and the
spectrum is constituted of the eigenvalues.

A function f is harmonic if Pf = f . It is a right eigenvector for the eigenvalue 1.

Theorem 1.3.6 Perron–Frobenius Let  be a finite state space and P a transi-
tion matrix on  .

1. The spectrum 𝜎(P) of P is included in the complex unit disk, the eigenvalues
with modulus 1 are semisimple, the constant functions are harmonic, and
there exists an invariant law 𝜋.

2. If P is irreducible, then the invariant law 𝜋 is unique and everywhere positive,
the only harmonic functions are constant, and there exists an integer d ≥ 1,
called the period of P, such that the only eigenvalues with modulus 1 the dth
complex roots of 1, and these eigenvalues are simple.

3. If P is strongly irreducible, then d = 1.

Proof: The beginning of the proof is an application of Theorem 1.3.1. The fact that
P1 = 1 implies that 1 is an eigenvalue and that the constant functions are harmonic.
As the dimension is finite, it further implies that there exists a right eigenvector
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𝜇 ∈  for the eigenvalue 1, that is, satisfying 𝜇P = 𝜇, and Theorem 1.3.1 implies
that the law 𝜋 = |𝜇|∕|𝜇|() is invariant.

If P is irreducible, then Theorem 1.3.3 yields that the invariant law 𝜋 is unique
and satisfies 𝜋 > 0, hence the eigenvalue 1 is simple, and as the dimension is finite,
any harmonic function is a multiple of the constant function 1 and thus is a constant.

If P is strongly irreducible, then Corollary 1.3.5 holds. Let 𝜆 ∈ ℂ satisfy |𝜆| =
1, and 𝜇 ∈  be such that 𝜇P = 𝜆𝜇. Then, for n ≥ 1,

𝜇Pn = 𝜆n𝜇 , 𝜇Pn = (𝜇 − |𝜇|𝜋)Pn + |𝜇|𝜋Pn = (𝜇 − |𝜇|𝜋)Pn + |𝜇|𝜋 ,

and letting n go to infinity in the exponential bounds in Theorem 1.3.4 for 𝜇 − |𝜇|𝜋,
which satisfies (𝜇 − |𝜇|𝜋)() = 0, shows that 𝜇 = |𝜇|𝜋 and that 𝜆 = 1, i.e., that the
eigenvalue 1 is simple and that any other eigenvalue has modulus strictly <1.

If P is irreducible, then there exists d ≥ 1 such that Pd is strongly irreducible
on each class of a partition of  , which allows to prove the result on the dth com-
plex roots of 1 (see Section 4.2.1), in particular Definitions 4.2.1 and 4.2.6 and
Theorems 4.2.4 and 4.2.7. ◾

Theorem 4.2.7 will provide an extension of these results for infinite  , by
wholly different methods. (Saloff-Coste, L. (1997), Section 1.2) provides a detailed
commentary on the Doeblin condition and the Perron–Frobenius theorem.

Maximum principle This terminology comes from the following short direct
proof of the fact that if the state space  is finite and P is irreducible, then every
harmonic function is constant. If f is harmonic on  , then it attains its maximum
in at least a state x. Moreover,

max f = f (x) = Pif (x) =
∑
y∈

Pi(x, y)f (y) , i ≥ 1 ,

and as Pi(x, ⋅) is a probability measure, f (y) = max f for all y such that Pi(x, y) >
0. Thus, irreducibility yields that f (y) = max f for every y ∈  , and thus that f is
constant.

1.3.3.2 Computation of the instantaneous and invariant laws

We are now going to solve the recursion for the instantaneous laws (𝜋n)n≥0, and see
how the situation deteriorates in practice very quickly as the size of the state space
increases.

The chain with two states Let us denote the states by 1 and 2. There exists 0 ≤
a, b ≤ 1 such that the transition matrix P and its graph are given by

11 – a

a

2

b

1 – b .1 – a
b

a
1 – b ,
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The recursion formula 𝜋n = 𝜋n−1P then writes

(𝜋n(1), 𝜋n(2)) = (𝜋n−1(1), 𝜋n−1(2))
(

1 − a a
b 1 − b

)
= ((1 − a)𝜋n−1(1) + b𝜋n−1(2), a𝜋n−1(1) + (1 − b)𝜋n−1(2))

and the affine constraint 𝜋n(1) + 𝜋n(2) = 1 allows to reduce this linear recursion in
dimension 2 to the affine recursion, in dimension 1,

𝜋n(1) = (1 − a − b)𝜋n−1(1) + b.

If a = b = 0, then P = I and every law is invariant, and P is not irreducible
as Pn = I. Else, the unique fixed point is b

a+b
, the unique invariant law is 𝜋 =(

b
a+b

,
a

a+b

)
, and

𝜋n(1) =
(
𝜋0(1) −

b
a + b

)
(1 − a − b)n + b

a + b

and the formula for 𝜋n(2) is obtained by symmetry or as 𝜋n(2) = 1 − 𝜋n(1).
If a = b = 1, then P =

(
0 1
1 0

)
has eigenvalues 1 and −1, the latter with eigenvec-

tor
(

1
−1

)
, and the chain alternates between the states 1 and 2 and 𝜋n(1) is equal to

𝜋0(1) for even n and to 1 − 𝜋0(1) for odd n.
If (a, b) ∉ {(0, 0), (1, 1)}, then limn→∞𝜋n(1) =

b
a+b

and lim
n→∞

𝜋n = 𝜋 with geo-
metric rate with reason 1 − a − b.

The chain with three states Let us denote the states by 1, 2, and 3. There exists
a, b, c, d, e, and f in [0, 1], satisfying a + b ≤ 1, c + d ≤ 1, and e + f ≤ 1, such that
the transition matrix P and its graph are given by

1 – a – b

1 – e – f

1 – c – d

1 – a – b
c
e

a
1 – c – d

f

b
d

1 – e – f
,

3

e

f

1

a

b

2
c

d .

As discussed above, we could reduce the linear recursion in dimension 3 to an affine
recursion in dimension 2. Instead, we give the elements of a vectorial computation
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in dimension 3, which can be generalized to all dimensions. This exploits the fact
that 1 is an eigenvalue of P and hence a root of its characteristic polynomial K(X) =
det(XI − P). Hence,

K(X) =
||||||

X + a + b − 1 −a −b
−c X + c + d − 1 −d
−e −f X + e + f − 1

||||||
= (X + a + b − 1)(X + c + d − 1)(X + e + f − 1) − ade − bcf

− ac(X + e + f − 1) − be(X + c + d − 1) − df (X + a + b − 1)

and by developing this polynomial and using the fact that 1 is a root, K(X) factor-
izes into

(X − 1)(X2 + (a + b + c + d + e + f − 2)X

+ ad + ae + af + bc + bd + bf + ce + cf + de − a − b − c − d − e − f + 1).

The polynomial of degree 2 is the characteristic polynomial of the affine recur-
sion in dimension 2. It has two possible equal roots 𝜆1 and 𝜆2 in ℂ, and if 𝜆1 ∈
ℂ −ℝ, then 𝜆2 = �̄�1. Their exact theoretical expression is not very simple, as the
discriminant of this polynomial does not simplify in general, but they can easily be
computed on a case-by-case basis.

In order to compute Pn, we will use the Cayley–Hamilton theorem, according
to which K(P) = 0 (nul matrix). The Euclidean division of Xn by K(X) yields

Xn = Q(X)K(X) + anX2 + bnX + cn , Pn = anP2 + bnP + cnI ,

and in order to effectively compute an, bn, and cn, we take the values of the poly-
nomials for the roots of K(X), which yields the linear system⎧⎪⎨⎪⎩

an + bn + cn = 1

𝜆2
1an + 𝜆1bn + cn = 𝜆n

1

𝜆2
2an + 𝜆2bn + cn = 𝜆n

2.

This system has rank 3 if the three roots are distinct.
If there is a double root 𝜆 (be it 1 or 𝜆1 = 𝜆2), then two of these equations are

identical, but as the double root is also a root of K′(X), a simple derivative yields a
third equation 2𝜆an + bn = n𝜆n−1, which is linearly independent of the two others.

If the three roots of K(X) are equal, then they are equal to 1 and Pn = P = I.
If P is irreducible, then there exists a unique invariant law 𝜋, given by

𝜋(1) =
ce + cf + of

ad + ae + af + bc + bd + bf + ce + cf + of
,

𝜋(2) =
ae + af + bf

ad + ae + af + bc + bd + bf + ce + cf + of
,

𝜋(3) = ad + bc + bd
ad + ae + af + bc + bd + bf + ce + cf + of

.
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The chain with a finite number of states Let d = Card(). The above-mentioned
method can be extended without any theoretical problem.

The Euclidean division Xn = Q(X)K(X) + an,d−1Xd−1 + · · · + an,1X + an,0 and
K(P) = 0 yield that

Pn = an,d−1Pd−1 + · · · + an,1P + an,0I.

If 𝜆1,… , 𝜆r are the distinct roots of K(X) and m1 ≥ 1,… ,mr ≥ 1 are their mul-
tiplicities, then

K(𝜆i) = 0 ,… ,K(mi−1)(𝜆i) = 0 , 1 ≤ i ≤ r ,

is a system of d =
∑r

i=1 mi linearly independent equations for the d unknowns
an,d−1,… , an,0, which thus has a unique solution.

The enormous obstacle for the effective implementation of this method for com-
puting Pn is that we must compute the roots of K(X) first. The main information we
have is that 1 is a root, and in general, computing the roots becomes a considerable
problem as soon as d ≥ 4. Once the roots are found, solving the linear system and
finding the invariant laws is a problem only when d is much larger.

This general method is simpler than finding the reduced Jordan form J for P,
which also necessitates to find the roots of the characteristic polynomial K(X), and
then solving a linear system to find the change-of-basis matrix M and its inverse
M−1. Then, Pn = (MJM−1)n = MJnM−1, where Jn can be made explicit.

1.4 Detailed examples

We are going to describe in informal manner some problems concerning random
evolutions, for which the answers will obviously depend on some data or parame-
ters. We then will model these problems using Markov chains.

These models will be studied in detail all along our study of Markov chains,
which they will help to illustrate.

In these descriptions, random variables and draws will be supposed to be inde-
pendent if not stated otherwise.

1.4.1 Random walk on a network

A particle evolves on a network , that is, on a discrete additive subgroup such as
ℤd. From x in, it chooses to go to y = x + (y − x) inwith probability p(y − x) ≥
0, which satisfies

∑
z∈p(z) = 1. This can be, for instance, a model for the evolution

of an electron in a network of crystals.
Some natural questions are the following:

• Does the particle escape to infinity?

• If yes, at what speed?
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• With what probability does it reach a certain subset in finite time?

• What is the mean time for that?

1.4.1.1 Modeling

Let (𝜉k)k≥1 be a sequence of i.i.d. random variables such that ℙ(𝜉1 = z) = p(z), and

Xn = Xn−1 + 𝜉n = · · · = X0 + 𝜉1 + · · · + 𝜉n.

Theorem 1.2.3 shows that (Xn)n≥0 is a Markov chain on , with a transition
matrix, which is spatially homogeneous, or invariant by translation, given by

P(x, y) = ℙ(𝜉1 = y − x) = p(y − x) , x, y ∈ .

The matrix P restricted to the network generated by all z such that p(z) > 0 is
irreducible. The constant measures are invariant, as∑

x∈
P(x, y) =

∑
x∈

p(y − x) =
∑
z∈

p(z) = 1 , ∀y ∈ .

If 𝔼(|𝜉1|) < ∞, then the strong law of large numbers yields that

Xn = n𝔼(𝜉1) + o(n) , a.s.,

and for 𝔼(𝜉1) ≠ 0 the chain goes to infinity in the direction of 𝔼(𝜉1). The case
𝔼(𝜉1) = 0 is problematic, and if 𝔼(|𝜉1|2) < ∞, then the central limit theorem shows
that Xn∕

√
n converges in law to  (0,Cov(𝜉1)), which gives some hints to the

long-time behavior of the chain.

Nearest-neighbor random walk For  = ℤd, this Markov chain is called a
nearest-neighbor random walk when P(x, y) = 0 for |x − y| > 1, and the symmet-
ric nearest-neighbor random walk when P(x, y) = 1∕2d for |x − y| = 1. These
terminologies are used for other regular networks, such as the one in Figure 1.1.

1.4.2 Gambler’s ruin

Two gamblers A and B play a game of head or tails. Gambler A starts with a for-
tune of a ∈ ℕ units of money and Gambler B of b ∈ ℕ units. At each toss, each
gambler makes a bet of 1 unit, Gambler A wins with probability p and loses with
probability q = 1 − p, and the total of the bets is given to the winner; a gambler
thus either wins or loses 1 unit.

The game continues until one of the gamblers is ruined: he or she is left with
a fortune of 0 units, the global winner with a fortune of a + b = N units, and the
game stops. This is illustrated in Figure 1.2.

When p = q = 1∕2, the game is said to be fair, else to be biased.
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Figure 1.1 Symmetric nearest-neighbor random walk on regular planar triangu-
lar network.

0 1 2 T n

0

a

N

Xn

p

q

Figure 1.2 Gambler’s ruin. Gambler A finishes the game at time T with a gain
of b = N − a units starting from a fortune of a units. The successive states of his
fortune are represented by the • and joined by dashes. The arrows on the vertical
axis give his probabilities of winning or losing at each toss.

As an example, Gambler A goes to a casino (Gambler B). He decides to gamble
1 unit at each draw of red or black at roulette and to stop either after having won
a total of b units (what he or she would like to gain) or lost a total of a units (the
maximal loss he or she allows himself).

Owing to the 0 and (most usually) the double 0 on the roulette, which are neither
red nor black, the game is biased against him, and p is worth either 18∕37 ≃ 0.4865
if there is no double 0 or 18∕38 ≃ 0.4737 if there is one.

From a formal point of view, there is a symmetry in the game obtained by
switching a and b = N − a simultaneously with p and q = 1 − p. In practice, no
casino allows a bias in favor of the gambler, nor even a fair game.
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A unilateral case will also be considered, in which a ∈ ℕ and b = N = ∞. In
the casino example, this corresponds to a compulsive gambler, who will stop only
when ruined. In all cases, the evolution of the gambler’s fortune is given by a
nearest-neighbor random walk on ℤ, stopped when it hits a certain boundary.

Some natural questions are the following:

• What is the probability that Gambler A will be eventually ruined?

• Will the game eventually end ?

• If yes, what is the mean duration of the game?

• What is the law of the duration of the game (possibly infinite) ?

1.4.2.1 Stopped random walk

In all cases, the evolution of the gambler’s fortune is given by a nearest-neighbor
random walk on ℤ stopped when it hits a certain boundary.

1.4.2.2 Modeling

The evolution of the fortune of Gambler A can be represented using a sequence
(𝜉k)k≥1 of i.i.d. r.v. satisfying ℙ(𝜉1 = 1) = p and ℙ(𝜉1 = −1) = q = 1 − p by

Xn = Xn−1 + 𝜉n1l{0<Xn−1<N} , n ≥ 1 ,

where X0 is its initial fortune a, or more generally a r.v. with values in {0, 1,… ,N}
and independent of (𝜉k)k≥1. Gambler B’s fortune at time n ≥ 0 is N − Xn.

Theorem 1.2.3 yields that (Xn)n≥0 is a Markov chain on  = {0, 1,… ,N} with
matrix and graph given by

P(0, 0) = P(N,N) = 1; P(x, x + 1) = p, P(x, x − 1) = q, 0 < x < N,

01 1

p

q
2

p

q
···

q

p

q
N – 1

p

N 1 ,

(1.4.3)

the other terms of P being 0.
The states 0 and N = a + b are absorbing, hence P is not irreducible. The

invariant measures 𝜇 are of the form 𝜇(x) = 0 if 0 < x < N with 𝜇(0) and 𝜇(N)
arbitrary, and uniqueness does not hold (uniqueness being understood as “up to
proportionality”).
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1.4.3 Branching process: evolution of a population

We study the successive generation of a population, constituted for instance of
viruses in an organism, of infected people during an epidemic, or of neutrons during
an atomic reaction.

The individuals of one generation disappear in the following, giving birth there
each to k descendants with probability p(k) ≥ 0, with

∑
k∈ℕp(k) = 1. A classic sub-

case is that of a binary division: p(2) = p > 0 and p(0) = 1 − p > 0.
The result of this random evolution mechanism is called a branching process.

It is also called a Galton–Watson process; the initial study of Galton and Watson,
preceded by a similar study of Bienaymé, bore on family names in Great Britain.

Some natural questions are the following:

• What is the law of the number of individuals in the nth generation?

• Will the population become extinct, almost surely (a.s.), and else with what
probability?

• What is the long-time population behavior when it does not become extinct?

1.4.3.1 Modeling

We shall construct a Markov chain (Xn)n≥0 corresponding to the sizes (numbers of
individuals) of the population along the generations.

Let (𝜉n,i)n,i≥1 be i.i.d. r.v. such that ℙ(𝜉1,1 = k) = p(k) for k in ℕ. We assume
that the Xn−1 individuals of generation n − 1 are numbered i ≥ 1 and that the ith
one yields 𝜉n,i descendants in generation n, so that

Xn =
Xn−1∑
i=1

𝜉n,i , n ≥ 1.

(An empty sum being null by convention.)
Figure 1.3 illustrates this using the genealogical tree of a population, which

gives the relationships between individuals in addition to the sizes of the genera-
tions, and explains the term “branching.”

The state space of (Xn)n≥0 is ℕ, and Theorem 1.2.3 applied to 𝜉n = (𝜉n,i)i≥1
yields that it is a Markov chain. The transition matrix is given by

P(0, 0) = 1 , P(x, y) =
∑

k1+···+kx=y

p(k1) · · · p(kx) , x ≥ 1 , y ≥ 0 ,

and state 0 is absorbing. The matrix is not practical to use under this form.
It is much more practical to use generating functions. If

g(s) =
∑
k∈ℕ

p(k)sk = 𝔼(s𝜉1,1)
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(a)

(b) (c)

Figure 1.3 Branching process. (b) The genealogical tree for a population during
six generations; • represent individuals and dashed lines their parental relations.
(a) The vertical axis gives the numbers n of the generations, of which the sizes figure
on its right. (c) The table underneath the horizontal axis gives the 𝜉n,i for n ≥ 1 and
1 ≤ i ≤ Xn−1, of which the sum over i yields Xn.

denotes the generating function of the reproduction law, the i.i.d. manner in which
individuals reproduce yields that∑

y∈
P(x, y)sy ∶= 𝔼x(sX1) = 𝔼1(sX1)x = g(s)x.

For n in ℕ, let
gn(s) =

∑
x∈ℕ

ℙ(Xn = x)sx = 𝔼(sXn)

denote the generating function of the size of generation n. An elementary proba-
bilistic computation yields that, for n ≥ 1,

gn(s) = 𝔼
(

s
∑Xn−1

i=1 𝜉n,i

)
=
∑
x∈ℕ

𝔼
(

s
∑x

i=1 𝜉n,i 1l{Xn−1=x}

)
=
∑
x∈ℕ

𝔼
(

s
∑x

i=1 𝜉n,i

)
ℙ(Xn−1 = x)

=
∑
x∈ℕ

g(s)xℙ(Xn−1 = x)

and hence that

gn(s) = gn−1(g(s)) = · · · = gon(g0(s)) = g(gn−1(s)).

We will later see how to obtain this result by Markov chain techniques and then
how to exploit it.
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Figure 1.4 The Ehrenfest Urn. Shown at an instant when a particle transits from
the right compartment to the left one. The choice of the particle that changes com-
partment at each step is uniform.

1.4.4 Ehrenfest’s Urn

A container (urn,… ) is constituted of two communicating compartments and con-
tains a large number of particles (such as gas molecules). These are initially dis-
tributed in the two compartments according to some law, and move around and can
switch compartment.

Tatiana and Paul Ehrenfest proposed a statistical mechanics model for this phe-
nomenon. It is a discrete time model, in which at each step a particle is chosen
uniformly among all particles and changes compartment. See Figure 1.4.

Some natural questions are the following:

• starting from an unbalanced distribution of particles between compartments,
is the distribution of particles going to become more balanced in time?

• In what sense, with what uncertainty, at what rate?

• Is the distribution going to go through astonishing states, such as having all
particles in a single compartment, and at what frequency?

1.4.4.1 Microscopic modeling

Let N be the number of molecules, and let the compartments be numbered by 0
and 1.

A microscopic description of the system at time k ≥ 0 is given by

Xk = (Xi
k)1≤i≤N with values in {0, 1}N ,

where the ith coordinate Xi
k is the number of the compartment in which the ith

particle is located.
Starting from a sequence (𝜉k)k≥1 of i.i.d. r.v. which are uniform on {1,… ,N},

and an initial r.v. X0 independent of this sequence, we define recursively Xk for
k ≥ 1 by changing the coordinate of rank 𝜉k of Xk−1. This random recursion is a
faithful rendering of the particle dynamics.
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Theorem 1.2.3 implies that (Xk)k≥0 is a Markov chain on {0, 1}N with matrix
given by

P(x, y) = 1
N

if
N∑

i=1

|xi − yi| = 1 , P(x, y) = 0 else.

This is the symmetric nearest-neighbor random walk on the unit hypercube {0, 1}N .
This chain is irreducible.

Invariant law This chain has for unique invariant law the uniform law 𝜋 with
density 1

2N
.

As the typical magnitude of N is comparable to the Avogadro number 6.02 ×
1023, the number 2N of configurations is enormously huge. Any computation, even
for the invariant law, is of a combinatorial nature and will be most likely untractable.

1.4.4.2 Reduced macroscopic description

According to statistical mechanics, we should take advantage of the symmetries of
the system, in order to stop following individual particles and consider collective
behaviors instead.

A reduced macroscopic description of the system is the number of particles in
compartment 1 at time k ≥ 0, given in terms of the microscopic description by

Sk =
N∑

i=1

Xi
k , with values in {0, 1,… ,N} ,

The information carried by Sk being less than the information carried by Xk, it
is not clear that (Sk)k≥0 is a Markov chain, but the symmetry of particle dynamics
will allow to prove it.

For x = (xi)1≤i≤N ∈ {0, 1}N , let 𝜎x be the permutation of {1,… ,N} obtained by
first placing in increasing order the i such that xi = 1 and then by increasing order
the i such that xi = 0. Setting

𝜉′k = 𝜎Xk−1(𝜉k) ,

it holds that
Sk = Sk−1 − 1l{Sk−1≤𝜉′k} + 1l{Sk−1>𝜉

′
k}
, k ≥ 1.

For some deterministic fk and gk, using the random recursion for (Xk)k≥0,

Xk = fk(X0, 𝜉1,… , 𝜉k) , (X0, 𝜉
′
1,… , 𝜉′k) = gk(X0, 𝜉1,… , 𝜉k) ,

and hence, for all a ∈ {0, 1}N × {1,… ,N}k and z ∈ {1,… ,N},

ℙ((X0, 𝜉
′
1,… , 𝜉′k) = a, 𝜉′k+1 = z)

=
∑

(x,z1,…,zk)∈g−1
k (a)

ℙ((X0, 𝜉1,… , 𝜉k) = (x, z1,… , zk),



FIRST STEPS 29

𝜎fk(x,z1,…,zk)(𝜉k+1) = z)

=
∑

(x,z1,…,zk)∈g−1
k (a)

ℙ((X0, 𝜉1,… , 𝜉k) = (x, z1,… , zk))
1
N

= ℙ((X0, 𝜉
′
1,… , 𝜉′k) = a) 1

N

as 𝜉k+1 is uniform and independent of X0, 𝜉1,… , 𝜉k. Hence, 𝜉′k+1 is uniform on
{1,… ,N} and independent of (X0, 𝜉

′
1,… , 𝜉′k). By a simple recursion, we conclude

that the (𝜉′k)k≥1 are i.i.d. r.v. which are uniform on {1,… ,N} and independent of X0
and hence of S0.

Thus, Theorem 1.2.3 yields that (Sk)k≥0 is a Markov chain on {0, 1,… ,N} with
matrix Q and graph given by

Q(x, x + 1) = N − x
N

, Q(x, x − 1) = x
N
, 0 ≤ x ≤ N,

(1.4.4)

0

1

1 ··· x ··· N ,

N – 1

N

2 1
N

1
N

1

N

N – x

N

x + 1
N

N – x + 1

N

x
N

all other terms of Q being zero. As (Xk)k≥0 is irreducible on {0, 1}N , it is clear that
(Sk)k≥0 is irreducible on {0, 1,… ,N}, and this can be readily checked.

Invariant law As the uniform law on {0, 1}N , with density 1
2N

, is invariant for
(Xk)k≥0, a simple combinatorial computation yields that the invariant law for (Sk)k≥0
is binomial (N, 1∕2), given by

𝛽 = (𝛽(x))x∈{0,1,…,N} , 𝛽(x) = 1
2N

(
N
x

)
.

This law distributes the particles uniformly in both compartments, and this is pre-
served by the random evolution.

1.4.4.3 Some computations on particle distribution

At equilibrium, that is, under the invariant law, the Xk are uniform on {0, 1}N and
hence, the Xi

k for i = 1,… ,N are i.i.d. uniform on {0, 1}. The strong law of large
numbers and the central limit theorem then yield that

Sk

N

a.s.
−→

N→∞

1
2
,

√
N

(
Sk

N
− 1

2

)
in law
−→

N→∞
 (0, (1∕2)2).
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Hence, as N goes to infinity, the instantaneous proportion of molecules in each
compartment converges to 1∕2 with fluctuations of order 1∕

√
N. For instance,

ℙ𝜋(|Sk − N∕2| ≥ a
√

N) −→
N→∞

2∫
∞

2a
e−

x2

2
dx√
2𝜋

,

and as a numerical illustration, as ∫ 4,5
−∞ e−

x2

2
dx√
2𝜋

≃ 0, 999997, the choice 2a = 4, 5

and N = 6 × 1023 yields that a
√

N ≃ 1, 74 × 1012 and hence

ℙ𝜋(|Sk − 3 × 1023| ≥ 1, 74 × 1012) ≃ 6 × 10−6.

For an arbitrary initial law, for 1 ≤ i ≤ N and k ≥ 1,

ℙ(Xi
k = 1) = ℙ(Xi

k−1 = 1)N − 1
N

+ ℙ(Xi
k−1 = 0) 1

N

= ℙ(Xi
k−1 = 1)N − 2

N
+ 1

N

and the solution of this affine recursion, with fixed point 1∕2, is given by

ℙ(Xi
k = 1) = 1

2
+
(
ℙ(Xi

0 = 1) − 1
2

)(N − 2
N

)k

.

Then, at geometric rate,

Xi
k

in law
−→
k→∞

1
2
(𝛿0 + 𝛿1) , 𝔼

( 1
N

Sk

)
∶= 1

N

N∑
i=1

ℙ(Xi
k = 1) −→

k→∞

1
2
,

The rate N−2
N

seems poor, but the time unit should actually be of order 1∕N, and(N − 2
N

)Nk

−→
N→∞

e−2k.

Explicit variance computations can also be done, which show that 1
N

Sk converges
in probability to 1∕2, but in order to go further some tools must be introduced.

1.4.4.4 Random walk, Fourier transform, and spectral decomposition

The Markov chain (Xk)k≥0 on {0, 1}N (microscopic representation) can be obtained
by taking a sequence (Uk)k≥1 of i.i.d. r.v. which are uniform on the vectors of the
canonical basis, independent of X0, and setting

Xk = Xk−1 + Uk (mod 2) , k ≥ 1.

This is a symmetric nearest-neighbor random walk on the additive group
{0, 1}N ∶= ( ℤ

2ℤ
)N , and we are going to exploit this structure, according to a

technique adaptable to other random walks on groups.
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For b and x in {0, 1}N and for vectors v = (v(x))x∈{0,1}N and w = (w(x))x∈{0,1}N ,
the canonical scalar products will be respectively denoted by

b ⋅ x ∶=
∑

1≤i≤N

bixi , ⟨v,w⟩ ∶= ∑
x∈{0,1}N

v(x)w(x).

Let us associate to each r.v. X on {0, 1}N its characteristic function, which is
the (discrete) Fourier transform of its law 𝜋X given by, with the notation eb =
((−1)b⋅x)x∈{0,1}N ,

FX ∶ b ∈ {0, 1}N → 𝔼((−1)b⋅X) =
∑

x∈{0,1}N

ℙ(X = x)(−1)b⋅x = ⟨𝜋X , eb⟩.
For b ≠ c in {0, 1}N and any 1 ≤ i ≤ N such that bi ≠ ci,⟨eb, eb⟩ = ∑

x∈{0,1}N

(−1)2b⋅x = 2N ,

⟨eb, ec⟩ = ∑
x∈{0,1}N ∶ xi=0

(−1)b⋅x+c⋅x(1 + (−1)) = 0 ,

hence (eb)b∈{0,1}N is an orthogonal basis of vectors, each with square product 2N .
This basis could easily be transformed into an orthonormal basis.

Fourier inversion formula From this follows the inversion formula

𝜋X = 1
2N

∑
b∈{0,1}N

FX(b)eb ,

𝜋X(x) =
1

2N

∑
b∈{0,1}N

FX(b)(−1)b⋅x = 1
2N
⟨FX , ex⟩ , x ∈ {0, 1}N .

Fourier transform and eigenvalues For b ∈ {0, 1}N , setting

𝜆(b) = FU1
(b) = 1

N

N∑
i=1

(−1)bi = 1
N

N∑
i=1

(1 − 2bi) =
N − 2

∑N
i=1 bi

N
,

it holds that
FXk

(b) = 𝜆(b)FXk−1
(b) = · · · = 𝜆(b)kFX0

(b)

and thus eb is an eigenvector for the eigenvalue 𝜆(b) for the transition matrix. There
are N + 1 distinct eigenvalues

𝜆j =
N − 2j

N
, 0 ≤ j ≤ N ,

of which the eigenspace of dimension
(N

j

)
is generated by the eb such that b has

exactly j terms taking the value 1.
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Spectral decomposition of the transition matrix This yields the spectral decom-
position of P in an orthogonal basis and

𝜋Xk
= 1

2N

∑
b,y∈{0,1}N

𝜆(b)k⟨𝜋X0
, eb⟩eb ,

𝜋Xk
(x) = 1

2N

∑
b,y∈{0,1}N

𝜆(b)k𝜋X0
(y)(−1)b⋅(x+y) , x ∈ {0, 1}N .

Long-time behavior This yields that FXk
(b) is ((N−2

N
)k) for b ∉ {0, 1} (constant

vectors) and that

FXk
(0) = 1 , FXk

(1) = (−1)kFX0
(1) = (−1)k(ℙ(S0 ∈ 2ℕ) − ℙ(S0 ∈ 2ℕ + 1)).

For 𝛼 = 2p − 1 ∈ [−1, 1] ⇐⇒ p = 1+𝛼
2

∈ [0, 1], let F𝛼 be such that F𝛼(0) = 1,
F𝛼(1) = 𝛼 and F𝛼(b) = 0 for b ∉ {0, 1}, and 𝜋𝛼 be the corresponding laws. Then,
F𝛼 = pF1 + (1 − p)F−1 and thus 𝜋𝛼 = p𝜋1 + (1 − p)𝜋−1 and

𝜋1(x) =
1

2N
(1 + (−1)1⋅x) , 𝜋−1(x) =

1
2N

(1 − (−1)1⋅x) , x ∈ {0, 1}N ,

that is, 𝜋1 and 𝜋−1 are the uniform laws respectively on{
x ∈ {0, 1}N ∶ 1 ⋅ x =

N∑
i=1

xi ∈ 2ℕ

}
,

{
x ∈ {0, 1}N ∶

N∑
i=1

xi ∈ 2ℕ + 1

}
Let

𝛼 = ℙ(S0 ∈ 2ℕ) − ℙ(S0 ∈ 2ℕ + 1) = 2ℙ(S0 ∈ 2ℕ) − 1.

The law 𝜋𝛼 is the mixture of 𝜋1 and𝜋−1, which respects the probability that S0 be
in 2ℕ and in 2ℕ + 1, and 𝜋−𝛼 the mixture that interchanges these. If X0 is of law
𝜋𝛼 , then Xk is of law 𝜋(−1)k𝛼 and thus

FXk
(b) − F(−1)k𝛼(b) = 𝜆(b)k(FX0

(b) − F𝛼(b))

and, as FX0
(0) = F𝛼(0) and FX0

(1) = F𝛼(1), for the Hilbert norm associated with⟨⋅, ⋅⟩ it holds that

‖𝜋Xk
− 𝜋(−1)k𝛼‖2 = 1

2N

∑
b∈{0,1}N

𝜆(b)2k(FX0
(b) − F𝛼(b))2

≤ (N − 2
N

)2k‖𝜋X0
− 𝜋𝛼‖2.

In particular, the law of X2n converges exponentially fast to 𝜋𝛼 and the law of X2n+1
to 𝜋−𝛼 .
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Periodic behavior The behavior we have witnessed is related to the notion of
periodicity: S2n is even or odd the same as S0, and S2n+1 has opposite parity than
S0. This is obviously related to the fact that −1 is an eigenvalue.

1.4.5 Renewal process

A component of a system (electronic component, machine, etc.) lasts a random
life span before failure. It is visited at regular intervals (at times n in ℕ) and
replaced appropriately. The components that are used for this purpose behave in
i.i.d. manner.

1.4.5.1 Modeling

At time 0, a first component is installed, and the ith component is assumed to have
a random life span before replacement given by Di, where the (Di)i≥1 are i.i.d. on
{1, 2,…} ∪ {∞}. Let D denote an r.v. with same law as Di, representing a generic
life span. It is often assumed that ℙ(D = ∞) = 0.

Let Xn denote the age of the component in function at time n ≥ 0, with Xn = 0
if it is replaced at that time. Setting

T0 = 0 , Tk = Tk−1 + Dk = D1 + · · · + Dk , k ≥ 1 ,

it holds that Xn = n − Tk−1 sur Tk−1 ≤ n < Tk (Figure 1.5).
The Xn are defined for all n ≥ 0 as ℙ(D ≥ 1) = 1. If ℙ(D = ∞) = 0, then all Tk

are finite, a.s., else if ℙ(D = ∞) > 0, then there exists an a.s. finite r.v. K such that
DK = ∞ and TK = TK+1 = · · · = ∞.

This natural representation in terms of the life spans is not a random recursion
of the kind discussed in Theorem 1.2.3. We will give a direct proof that (Xn)n≥0 is
a Markov chain and give its transition matrix.

0 1 T1 T2 Tk–1 n
D1 D2 Dk

0

1

Xn

n – Tk–1

Figure 1.5 Renewal process. The • represent the ages at the discrete instants
on the horizontal axis and are linearly interpolated by dashes in their increasing
phases. Then, Xn = n − Tk−1 if Tk−1 ≤ n < Tk = Tk−1 + Dk. The ∘ represent the two
possible ages at time n + 1, which are Xn+1 = Xn + 1 if Dk > Xn + 1 and Xn+1 = 0
if Dk = Xn.
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Note that ℙ(X0 = x0,… ,Xn = xn) = 0 except if x0 = 0 and xk is in {0, xk−1 + 1}
for 1 ≤ k ≤ n. These are the only cases to be considered and then

{X0 = x0,… ,Xn = xn} = {D1 = d1,… ,Dk−1 = dk−1,Dk > xn},

where k is the number of 0 in (x0,… , xn) and 0, t1 = d1, t2 = d1 + d2, … , tk−1 =
d1 + · · · + dk−1 are their ranks (Figure 1.5). This can be written as

k =
n∑

i=0

1l{xi=0} , dj = inf{i ≥ 1 ∶ xd1+···+dj−1+i = 0} , 1 ≤ j ≤ k − 1.

The independence of (D1,… ,Dk−1) and Dk yields that

ℙ(X0 = x0,… ,Xn = xn,Xn+1 = xn + 1)

= ℙ(D1 = d1,… ,Dk−1 = dk−1,Dk > xn,Xn+1 = xn + 1)

= ℙ(D1 = d1,… ,Dk−1 = dk−1,Dk > xn + 1)

= ℙ(D1 = d1,… ,Dk−1 = dk−1)ℙ(Dk > xn + 1)

= ℙ(D1 = d1,… ,Dk−1 = dk−1,Dk > xn)
ℙ(Dk > xn + 1)
ℙ(Dk > xn)

= ℙ(X0 = x0,… ,Xn = xn)
ℙ(D > xn + 1)
ℙ(D > xn)

.

Moreover,

ℙ(X0 = x0,… ,Xn = xn,Xn+1 = 0)

= ℙ(X0 = x0,… ,Xn = xn)
ℙ(D = xn + 1)
ℙ(D > xn)

is obtained similarly, or by complement to 1.
Hence, the only thing that matters is the age of the component in function, and

(Xn)n≥0 is a Markov chain on ℕ with matrix P and graph given by

P(x, x + 1) = ℙ(D > x + 1)
ℙ(D > x)

= ℙ(D > x + 1|D > x) ∶= px,

P(x, 0) = ℙ(D = x + 1|D > x) = 1 − px, x ∈ ℕ,

0 1 2 ··· x ··· .1 – p0

p0 p1 p2 px – 1 px

1 – p1

1 – p2
1 – px

(1.4.5)
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This Markov chain is irreducible if and only if ℙ(D > k) > 0 for every k ∈ ℕ and
ℙ(D = ∞) < 1.

A mathematically equivalent description Thus, from a mathematical perspec-
tive, we can start with a sequence (px)x∈ℕ with values in [0, 1] and assume that
a component with age x at an arbitrary time n ∈ ℕ has probability px to pass the
inspection at time n + 1, and else a probability 1 − px to be replaced then. In this
setup, the law of D is determined by

ℙ(D > x) = p0 · · · px−1 , x ≥ 0.

This formulation is not as natural as the preceding one. It corresponds to a random
recursion given by a sequence (𝜉n)n≥1 of i.i.d. uniform r.v. on [0, 1], independent of
X0, and

Xn = Xn−1 +
∑
x≥0

1l{Xn−1=x}(1l{𝜉n≤px} − x1l{𝜉n>px}) , n ≥ 1.

The renewal process is often introduced in this manner, in order to avoid the previ-
ous computations. It is an interesting example, as we will discuss later.

Invariant measures and laws An invariant measure 𝜇 = (𝜇(x))x∈ℕ satisfies∑
x≥0

𝜇(x)(1 − px) = 𝜇(0) , 𝜇(x − 1)px−1 = 𝜇(x) , x ≥ 1 ,

thus 𝜇(x) = 𝜇(0)p0 · · · px−1 = 𝜇(0)ℙ(D > x) that yields uniqueness, and existence
holds if and only if

ℙ(D = ∞) ∶= lim
x→∞

p0 · · · px−1 = 0.

This unique invariant measure can be normalized, in order to yield an invariant law,
if and only if it is finite, that is, if

𝔼(D) ∶=
∑
x≥0

ℙ(D > x) ∶=
∑
x≥0

p0 · · · px−1 < ∞ ,

and then
𝜋(x) = ℙ(D > x)

𝔼(D)
=

p0 · · · px−1∑
y≥0 p0 · · · py−1

, x ≥ 0.

Renewal process and Doeblin condition A class of renewal processes is one
of the rare natural examples of infinite state space Markov chains satisfying the
Doeblin condition.

Lemma 1.4.1 Assume that there exists m ≥ 0 such that infx≥m(1 − px) > 0 . Then,
the Markov chain satisfies the Doeblin condition for k = m + 1 and 𝜀 = infx≥m(1 −
px) and �̂� = 𝛿0, and the conclusions of Theorem 1.3.4 hold.

Proof: This can be checked easily. ◾
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1.4.6 Word search in a character chain

A source emits an infinite i.i.d. sequence of “characters” of some “alphabet.” We
are interested in the successive appearances of a certain “word” in the sequence.

For instance, the characters could be 0 and 1 in a computer system, “red” or
“black” in a roulette game, A, C, G, T in a DNA strand, or ASCII characters for a
typewriting monkey. Corresponding words could be 01100010, red-red-red-black,
GAG, and Abracadabra.

Some natural questions are the following:

• Is any word going to appear in the sequence?

• Is it going to appear infinitely often, and with what frequency?

• What is the law and expectation of the first appearance time?

1.4.6.1 Counting automaton

A general method will be described on a particular instance, the search for the
occurrences of the word GAG.

Two different kinds of occurrences can be considered, without or with overlaps;
for instance, GAGAG contains one single occurrence of GAG without overlaps but
two with. The case without overlaps is more difficult, and more useful in applica-
tions; it will be considered here, but the method can be readily adapted to the other
case.

We start by defining a counting automaton with four states ∅, G, GA, and GAG,
which will be able to count the occurrences of GAG in any arbitrary finite character
chain. The automaton starts in state ∅ and then examines the chain sequentially term
by term, and:

• In state ∅: if the next state is G, then it takes state G, else it stays in state ∅,

• In state G: if the next state is A, then it takes state GA, if the next state is G,
then it stays in state G, else it takes state ∅,

• In state GA: if the next state is G, then it takes state GAG, else it takes state ∅,

• In state GAG: if the next state is G, then it takes state G, else it takes state ∅.

Such an automaton can be represented by a graph that is similar to a Markov
chain graph, with nodes given by its possible states and oriented edges between
nodes marked by the logical condition for this transition (Figure 1.6).

This automation is now used on a sequence of characters given by an
i.i.d. sequence (𝜉n)n≥1 such that

ℙ(𝜉1 = A) = pA , ℙ(𝜉1 = G) = pG , ℙ(𝜉1 ∉ {A,G}) = 1 − pA − pG ,

satisfying pA > 0, pG > 0, and pA + pG ≤ 1.
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1 – pG

1 – pA – pG

1– pG

1 – pG

pG

pG

pG

pGpA

Gθ GA GAG

Figure 1.6 Search for the word GAG: Markov chain graph. The graph for the
automaton is obtained by replacing pA by “if the next term is A,” pG by “if the next
term is G,” 1 − pG by “if the next term is not G,” and 1 − pA − pG by “if the next
term is neither A nor G.”

Let X0 = ∅, and Xn be the state of the automaton after having examined the nth
character. Theorem 1.2.3 yields that (Xn)n≥0 is a Markov chain with graph, given in
Figure 1.6, obtained from the automaton graph by replacing the logical conditions
by their probabilities of being satisfied.

Markovian description All relevant information can be written in terms of
(Xn)n≥0. For instance, if T0 = 0 and Ti denotes the time of the ith occurrence
(complete, without overlaps) of the word for i ≥ 1, and Nk the number of such
occurrences taking place before k ≥ 1, then

Ti = inf{n > Ti−1 ∶ Xn = GAG} , Nk =
k∑

n=1

1l{Xn=GAG}.

The transition matrix P = (P(x, y))x,y∈{∅,G,GA,GAG} is irreducible and has for
unique invariant law

𝜋 =

(
1 − pG − pAp2

G

1 + pApG
,

pG

1 + pApG
,

pApG

1 + pApG
,

pAp2
G

1 + pApG

)
.

Occurrences with overlaps In order to search for the occurrences with overlaps,
it would suffice to modify the automaton by considering the overlaps inside the
word. For the word GAG, we need only modify the transitions from state GAG: if
the next term is G, then the automaton should take state G, and if the next term is A,
then it should take state GA, else it should take state ∅. For more general overlaps,
this can become very involved.

1.4.6.2 Snake chain

We describe another method for the search for the occurrences with overlaps of a
word c1 · · · c𝓁 of length 𝓁 ≥ 1 in an i.i.d. sequence (𝜉n)n≥1 of characters from some
alphabet  .
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Setting Zn = (𝜉n,… , 𝜉n+𝓁−1), then

Ti = inf{n > Ti−1 ∶ Zn−𝓁+1 = (c1,… , c𝓁)}

is the time of the ith occurrence of the word, i ≥ 1 (with T0 = 0), and

Nk =
k∑

n=𝓁
1l{Zn−𝓁+1=(c1,…,c𝓁)}

is the number of such occurrences before time k ≥ 𝓁. In general, (Zn)n≥1 is not i.i.d.,
but it will be seen to be a Markov chain.

More generally, let (Yn)n≥0 be a Markov chain on  of arbitrary matrix P and
Zn = (Yn,… , Yn+𝓁−1) for n ≥ 0. Then, (Zn)n≥0 is a Markov chain on 𝓁 with matrix
P𝓁 with only nonzero terms given by

P𝓁((x1,… , x𝓁), (x2,… , x𝓁 , y)) = P(x𝓁 , y) , x1,… , x𝓁 , y ∈  ,

called the snake chain of length 𝓁 for (Yn)n≥0. The proof is straightforward if the
conditional formulation is avoided.

Irreducibility If P is irreducible, then P𝓁 is irreducible on its natural state space

𝓁 = {(x1,… , x𝓁) ∈ 𝓁 ∶ P(x1, x2) · · ·P(x𝓁−1, x𝓁) > 0}.

Invariant Measures and Laws If 𝜇 is an invariant measure for (Yn)n≥0, then 𝜇𝓁
given by

𝜇𝓁(y1,… , y𝓁) = 𝜇(y1)P(y1, y2) · · ·P(y𝓁−1, y𝓁)

is immediately seen to be an invariant measure for (Zn)n≥0. If further 𝜇 is a law,
then 𝜇𝓁 is also a law.

In the i.i.d. case where P(x, y) = p(y), the only invariant law for (Yn)n≥0 is
given by 𝜋(y) = p(y), and the only invariant law for (Zn)n≥0 by the product law
𝜋𝓁(y1,… , y𝓁) = p(y1) · · · p(y𝓁).

1.4.7 Product chain

Let P1 and P2 be two transition matrices on 1 and 2, and the matrices P1 ⊗ P2
on 1 × 2 have generic term

P1 ⊗ P2((x1, x2), (y1, y2)) = P1(x1, y1)P2(x2, y2).

Then, P1 ⊗ P2 is a transition matrix on 1 × 2, as in the sense of product laws,

P1 ⊗ P2((x1, x2), ⋅) = P1(x1, ⋅)⊗ P2(x2, ⋅).

see below for more details. See Figure 1.7.
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ν1
x1 y1

ν2

x2

y2

P2 (x2, y2)

P1 (x1, y1)

•

•

P1 ⊗ P2 ((x
1, x2), (y1, y2))

   = P1 (x
1, y1) P2 (x

2, y2)

Figure 1.7 Product chain. The first and second coordinates are drawn indepen-
dently according to P1 and P2.

The Markov chain (X1
n ,X

2
n)n≥0 with matrix P1 ⊗ P2 is called the product chain.

Its transitions are obtained by independent transitions of each coordinate according,
respectively, to P1 and P2. In particular, (X1

n)n≥0 and (X2
n)n≥0 are two Markov chains

of matrices P1 and P2, which conditional on (X1
0 ,X

2
0) are independent, and

(P1 ⊗ P2)n = Pn
1 ⊗ Pn

2 , n ≥ 0.

1.4.7.1 Invariant measures and laws

Immediate computations yield that if 𝜇1 is an invariant measure for P1 and 𝜇2 for
P2, then the product measure 𝜇1 ⊗ 𝜇2 given by

(𝜇1 ⊗ 𝜇2)(x1, x2) = 𝜇1(x1)𝜇2(x2)

is invariant for P1 ⊗ P2. Moreover,

‖𝜇1 ⊗ 𝜇2‖var = ‖𝜇1‖var × ‖𝜇2‖var

and thus if 𝜇1 and 𝜇2 are laws then 𝜇1 ⊗ 𝜇2 is a law.

1.4.7.2 Irreducibility problem

The matrix P =
(

0 1
1 0

)
on {1, 2} is irreducible and has unique invariant law the uni-

form law, whereas a Markov chain with matrix P ⊗ P alternates either between
(1, 1) and (2, 2) or between (1, 2) and (2, 1), depending on the initial state and is not
irreducible on {1, 2}2. The laws

1
2
(𝛿(1,1) + 𝛿(2,2)) ,

1
2
(𝛿(1,2) + 𝛿(2,1)) ,

are invariant for P ⊗ P and generate the space of invariant measures.
All this can be readily generalized to an arbitrary number of transition matrices.
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Exercises

1.1 The space station, 1 An aimless astronaut wanders within a space station,
schematically represented as follows:

0 1

23

4

5 6

The space station spins around its center in order to create artificial gravity
in its periphery. When the astronaut is in one of the peripheral modules,
the probability for him to go next in each of the two adjacent peripheral
modules is twice the probability for him to go to the central module. When
the astronaut is in the central module, the probability for him to go next in
each of the six peripheral modules is the same.

Represent this evolution by a Markov chain and give its matrix and
graph. Prove that this Markov chain is irreducible and give its invariant law.

1.2 The mouse, 1 A mouse evolves in an apartment, schematically represented
as follows:

1

2
3 4

56

The mouse chooses uniformly an opening of the room where it is to go into
a new room. It has a short memory and forgets immediately where it has
come from.

Represent this evolution by a Markov chain and give its matrix and
graph. Prove that this Markov chain is irreducible and give its invariant law.

1.3 Doubly stochastic matrices Let P = (P(x, y))x,y∈ be a doubly stochastic
matrix on a state space  : by definition,∑

x∈
P(x, y) =

∑
y∈

P(x, y) = 1.

a) Find a simple invariant measure for P.
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b) Prove that Pn is doubly stochastic for all n ≥ 1.

c) Prove that the transition matrix for a random walk on a network is doubly
stochastic.

1.4 The Labouchère system, 1 In a game where the possible gain is equal
to the wager, the probability of gain p of the player at each draw typically
satisfies p ≤ 1∕2 and even p < 1∕2, but is usually close to 1∕2, as when
betting on red or black at roulette. In this framework, the Labouchère system
is a strategy meant to provide a means for earning in a secure way a sum
S ≥ 1 determined in advance.

The sum S is decomposed arbitrarily as a sum of k ≥ 1 positive terms,
which are put in a list. The strategy then transforms recursively this list, until
it is empty.

At each draw, if k ≥ 2 then the sum of the first and last terms of the list
are wagered, and if k ≥ 1 then the single term is wagered. If the gambler
wins, he or she removes from the list the terms concerned by the wager. If
the gambler loses, he or she retains these terms and adds at the end of the list
a term worth the sum just wagered. The game stops when k = 0, and hence,
the sum S has been won.

(Martingale theory proves that in realistic situations, for instance, if
wagers are bounded or credit is limited, then with a probability close to 1
the sum S is indeed won, but with a small probability a huge loss occurs,
large enough to prevent the gambler to continue the game and often to ever
gamble in the future.)

a) Represent the list evolution by a Markov chain (Ln)n≥0 on the set

 =
⋃
k≥0

ℕk

of words of the form n1 · · · nk. Describe its transition matrix Q and its
graph. Prove that if Ln reaches ∅ (the empty word), then the gambler wins
the sum S.

b) Let Xn be the length of the list (or word) Ln for n ≥ 0. Prove that (Xn)n≥0
is a Markov chain on ℕ and give its matrix P and its graph.

1.5 Three-card Monte Three playing cards are lined face down on a cardboard
box at time n = 0. At times n ≥ 1, the middle card is exchanged with prob-
ability p > 0 with the card on the right and with probability q = 1 − p > 0
with the one on the left.

a) Represent the evolution of the three cards by a Markov chain (Yn)n≥0.
Give its transition matrix Q and its graph. Prove that (Yn)n≥0 is irreducible.
Find its invariant law 𝜌.
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b) The cards are the ace of spades and two reds. Represent the evolution of
the ace of spades by a Markov chain (Xn)n≥0. Give its transition matrix P
and its graph. Prove that it is irreducible. Find its invariant law 𝜋.

c) Compute Pn in terms of the initial law 𝜋0 and p and n ≥ 1. Prove that
the law 𝜋n of Xn converges to 𝜋 as n goes to infinity, give an exponential
convergence rate for this convergence, and find for which value of p the
convergence is fastest.

1.6 Andy, 1 If Andy is drunk one evening, then he has one odd in ten to end
up in jail, in which case will remain sober the following evening. If Andy is
drunk one evening and does not end up in jail, then he has one odd in two
to be drunk the following evening. If Andy stays sober one evening, then he
has three odds out of four to remain sober the following evening.

It is assumed that (Xn)n≥0 constitutes a Markov chain, where Xn = 1 if
Andy on the n-th evening is drunk and ends up in jail, Xn = 2 if Andy then
is drunk and does not end up in jail, and Xn = 3 if then he remains sober.

Give the transition matrix P and the graph for (Xn)n≥0. Prove that P is
irreducible and compute its invariant law. Compute Pn in terms of n ≥ 0.
What is the behavior of Xn when n goes to infinity?

1.7 Squash Let us recall the original scoring system for squash, known as
English scoring. If the server wins a rally, then he or she scores a point and
retains service. If the returner wins a rally, then he or she becomes the next
server but no point is scored. In a game, the first player to score 9 points wins,
except if the score reaches 8-8, in which case the returner must choose to
continue in either 9 or 10 points, and the first player to reach that total wins.

A statistical study of the games between two players indicates that the
rallies are won by Player A at service with probability a > 0 and by Player B
at service with probability b > 0, each in i.i.d. manner.

The situation in which Player A has i points, Player B has j points, and
Player L is at service is denoted by (i, j, L) in  = {0, 1,… , 10}2 × {A,B}.

a) Describe the game by a Markov chain on  , assuming that if the score
reaches 8-8 then they play on to 10 points (the play up to 9 can eas-
ily be deduced from this), in the two following cases: (i) all rallies are
considered and (ii) only point scoring is considered.

b) Trace the graphs from arriving at 8-8 on the service of Player A to end
of game.

c) A game gets to 8-8 on the service of Player A. Compute in terms of a and
b the probability that Player B wins according to whether he or she elects
to go to 9 or 10 points. Counsel Player B on this difficult choice.

1.8 Genetic models, 1 Among the individuals of a species, a certain gene can
appear under K ≥ 2 different forms called alleles.
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In a microscopic (individual centered) model for a population of N ≥
1 individuals, these are arbitrarily numbered, and the fact that individual i
carries allele ai is coded by the state

(ai)1≤i≤N ∈ {1,… ,K}N .

A macroscopic representation only retains the numbers of individuals
carrying each allele, and the state space is

{(n1,… , nK) ∈ ℕK ∶ n1 + · · · + nK = N}.

We study two simplified models for the reproduction of the species, in
which the population size is fixed, and where the selective advantage of
every allele a w.r.t. the others is quantified by a real number c(a) > 0.

1. Synchronous: Fisher–Wright model: at each step, the whole popula-
tion is replaced by its descendants, and in i.i.d. manner, each new indi-
vidual carries allele a with a probability proportional both to c(a) and to
the number of old individuals carrying allele a.

2. Asynchronous: Moran model: at each step, an uniformly chosen indi-
vidual is replaced by a new individual, which carries allele a with a prob-
ability proportional both to c(a) and to the number of old individuals
carrying allele a.

a) Explain how to obtain the macroscopic representation from the micro-
scopic representation

b) Prove that each pair representation-model corresponds to a Markov
chain. Give the transition matrices and the absorbing states.

1.9 Records Let (Xi)i≥1 be i.i.d. r.v. such that ℙ(Xi = 1) = p > 0 and ℙ(Xi =
0) = 1 − p > 0, and Rn be the greatest number of consecutive 1 observed in
(X1,… ,Xn).
a) Show that (Rn)n≥0 is not a Markov chain.

b) Let X0 ∶= 0, and

Dn = inf{k ≥ 0 ∶ Xn−k = 0} , n ≥ 0.

Prove that (Dn)n≥0 is a Markov chain and give its transition matrix P.
Prove that there exists a unique invariant law 𝜋 and compute it.

c) Let k ≥ 0,

Sk = inf{n ≥ 0 ∶ Dn = k} , Zn = Dn if n ≤ Sk , else Zn = Dn.

Prove that (Zn)n≥0 is a Markov chain on {0, 1,… , k} and give its transition
matrix Pk.
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d) Express ℙ(Rn ≥ k) in terms of Zn, then of Pk. Deduce from this the law
of Rn.

e) What is the probability of having at least 5 consecutive heads among 100
fair tosses of head-or-tails? One can use the fact that for p = 1∕2,

P100
5 =

⎛⎜⎜⎜⎜⎜⎜⎝

0, 09659 0, 04913 0, 02499 0, 01271 0, 00647 0, 81011
0, 09330 0, 04746 0, 02414 0, 01228 0, 00625 0, 81658
0, 08683 0, 04417 0, 02247 0, 01143 0, 00581 0, 82929
0, 07412 0, 03770 0, 01918 0, 00976 0, 00496 0, 85428
0, 04913 0, 02499 0, 01271 0, 00647 0, 00329 0, 90341

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
.

1.10 Incompressible mixture, 1 There are two urns, N white balls, and N black
balls. Initially N balls are set in each urn. In i.i.d. manner, a ball is chosen
uniformly in each urn and the two are interchanged. The white balls are
numbered from 1 to N and the black balls from N + 1 to 2N. We denote by
An the r.v. with values in

 = {E ⊂ {1,… , 2N}: Card(E) = N}

given by the set of the numbers in the first urn just after time n ≥ 0 and by

Sn =
N∑

i=1

1l{i∈An}

the corresponding number of white balls.

a) Prove that (An)n∈ℕ is an irreducible Markov chain on and give its matrix
P. Prove that the invariant law 𝜋 is unique and compute it.

b) Do the same for (Sn)n≥0 on {0, 1,… ,N}, with matrix Q and invariant law
𝜎.

c) For 1 ≤ i ≤ 2N find a recursion for ℙ(i ∈ An), and solve it in terms of n
and ℙ(i ∈ A0). Do likewise for 𝔼(Sn). What happens for large n?

1.11 Branching with immigration The individuals of a generation disappear
at the following, leaving there k descendants each with probability p(k) ≥ 0,
and in addition, i ∈ ℕ immigrants appear with probability q(i) ≥ 0, where∑

k≥0p(k) =
∑

k≥0q(k) = 1. Let

g(s) =
∑
k∈ℕ

p(k)sk , h(s) =
∑
k∈ℕ

q(k)sk , 0 ≤ s ≤ 1 ,

be the generating functions for the reproduction and the immigration laws.
Similarly to Section 1.4.3, using X0 with values in ℕ and 𝜉n,i and 𝜁n for

n ≥ 1 and i ≥ 1 such that ℙ(𝜉n,i = k) = p(k) and ℙ(𝜁n = k) = q(k) for k in ℕ,
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all these r.v. being independent, let us represent the number of individuals in
generation n ∈ ℕ by

Xn = 𝜁n +
Xn−1∑
i=1

𝜉n,i.

Let Gn be the generating function of Xn.

a) Prove that (Xn)n∈ℕ is a Markov chain, without giving its transition matrix.

b) Compute Gn in terms of g, h, and Gn−1, then of h, g, n, and G0.

c) If x = 𝔼(𝜉n,i) < ∞ and z = 𝔼(𝜁n) < ∞, compute 𝔼(Xn) in terms of x, z, n,
and 𝔼(X0).

1.12 Single Server Queue Let (An)n≥1 be i.i.d. r.v. with values in ℕ, with gen-
erating function a(s) = 𝔼(sA1) and expectation m = 𝔼(A1) < ∞, and let X0
be an independent r.v. with values in ℕ. Let

Xn = (Xn−1 − 1)+ + An , gn(s) = 𝔼(sXn).

a) Prove that (Xn)n≥0 is a Markov chain with values inℕ, which is irreducible
if and only if ℙ(A1 = 0)ℙ(A1 ≥ 2) > 0.

b) Compute gn in terms of a and gn−1.

c) It is now assumed that there exists an invariant law 𝜋 for (Xn)n≥0, with
generating function denoted by g. Prove that

g(s)(s − a(s)) = 𝜋(0)(s − 1)a(s)

and that 𝜋(0) = 1 − m.

d) Prove that necessarily m ≤ 1 and that m = 1 only in the trivial case where
ℙ(An = 1) = 1.

e) Let 𝜇 =
∑

x∈ℕ𝜋(x)x. Prove that 𝜇 < ∞ if and only if 𝔼(A2
1) < ∞, and then

that for 𝜎2 = Var(A1), it holds that 𝜇 = 1
2

(
m + 𝜎2

1−m

)
.

1.13 Dobrushin mixing coefficient Let P be a transition matrix on  , and

𝜌n = 1
2
sup

x,y∈
‖Pn(x, ⋅) − Pn(y, ⋅)‖var , n ∈ ℕ.

a) Prove that 𝜌n ≤ 1 and that, for all laws 𝜇 and 𝜇,

‖𝜇Pn − 𝜇Pn‖var ≤ 2𝜌n.

b) Prove that

𝜌n+m ≤ 𝜌n𝜌m , m, n ≥ 0 , 𝜌n ≤ 𝜌
⌊n∕k⌋
k , k ≥ 1.

One may use that infc∈ℝsupx∈M|g(x) − c| ≤ 1
2
supx,y∈M|g(x) − g(y)|.
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c) Prove that if k ≥ 1 is such that 𝜌k < 1, then (𝜇Pn)n∈ℕ is a Cauchy
sequence, its limit is an invariant law 𝜋, and

‖𝜇Pn − 𝜋‖var ≤ 2𝜌n ≤ 2𝜌⌊n∕k⌋
k .

d) Assume that P satisfies the Doeblin condition: there exists k ≥ 1 and 𝜀 >

0 and a law �̂� such that Pk(x, ⋅) ≥ 𝜀�̂�. Prove that 𝜌k ≤ 1 − 𝜀. Compare
with the result in Theorem 1.3.4.

e) Let (Fi)i≥1 be a sequence of i.i.d. random functions from to , and Xx
0 =

x ∈  and Xx
n+1 = Fn+1(Xx

n) for n ≥ 0, so that P is the transition matrix of
the Markov chain induced by this random recursion, see Theorem 1.2.3
and what follows. Let

Tx,y = inf{n ≥ 0 ∶
x
X
n
= Xy

n}.

Prove that
𝜌k ≤ sup

x,y∈
ℙ(Tx,y > k).


