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Part I
Part Surfaces
The design, production and implementation of parts for products are common practice for most
mechanical and manufacturing engineers. Any part can be understood as a solid bounded by
a certain number of surfaces. Two kinds of bounding surfaces are recognized in this text: they
can be either working surfaces of a part, or not working surfaces of the part. The consideration
below is focused mostly on the geometry of working part surfaces.

All part surfaces are reproduced on a solid. Appropriate manufacturing methods are used
for these purposes. Therefore, part surfaces are often referred to as engineering surfaces, in
contrast to those surfaces which cannot be reproduced on a solid, and which can exist only
virtually [30, 33, 34, 36, 45].

Interaction with the environment is the main purpose of all working part surfaces. Therefore,
working part surfaces are also referred to as dynamic surfaces. Air, gases, fluids, solids and
powders are good examples of the environments which part surfaces commonly interact with.
Moreover, part surfaces may interact with light and other electromagnetic fields, with sound
waves, etc. Favorable parameters of part surface geometry are usually outputs of a solution to
complex problems in aerodynamics, hydrodynamics, contact interaction of solids with other
solids, or solids with powders, etc.

In order to be able to design and produce products with favorable performance, the design
and manufacture of part surfaces having favorable geometry is of critical importance. An
appropriate analytical description of part surfaces is the first step to better understanding of
what we need to design and how a desired part surface can be reproduced on a solid or, in
other words, how a desired part surface can be manufactured.
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1
Geometry of a Part Surface

The number of different kinds of part surfaces approaches infinity. Planes, surfaces of rev-
olution, cylinders of general type (including, but not limited to, cylinders of revolution)
and screw surfaces of constant axial pitch can all be found in the design of parts pro-
duced in industry. Examples of part surfaces are illustrated in Fig. 1.1. This figure shows
part surfaces featuring simple geometry. Most surfaces of such types allow for sliding over
themselves [33].

Part surfaces of complex geometry are widely used in practice as well. The working surface
of an impeller blade is a perfect example of a part surface having complex geometry. Part
surfaces of this kind are commonly referred to as sculptured part surfaces or free-form part
surfaces. An example of a sculptured part surface is depicted in Fig. 1.2.

Sculptured part surfaces do not allow for sliding over themselves. Moreover, the parameters
of local geometry of a sculptured part surface at any two infinitesimally close points within
the surface patch differ from each other.

More examples of part surfaces of complex geometry can be found in various industries, in
the field of design and in the production of gear cutting tools in particular [35].

1.1 On the Analytical Description of Ideal Surfaces

A smooth regular surface could be specified uniquely by two independent variables. Therefore,
we give a surface P (Fig. 1.3), in most cases, by expressing its rectangular coordinates
X P , YP and Z P as functions of two Gaussian coordinates, UP and VP , in a certain closed
interval:

rP = rP (UP , VP ) =

⎡
⎢⎢⎣

X P (UP , VP )
YP (UP , VP )
Z P (UP , VP )

1

⎤
⎥⎥⎦ ; (U1.P ≤ UP ≤ U2.P ; V1.P ≤ VP ≤ V2.P ) (1.1)
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4 Geometry of Surfaces

Figure 1.1 Examples of smooth regular part surfaces: a plane (1); an outer cylinder of revolution (2);
an inner cylinder of revolution (3); a cone of revolution (4); a torus (5). Reproduced with permission
from Industrial Model, Inc.

Here we define:

rP – position vector of a point of the surface P
UP and VP – curvilinear (Gaussian) coordinates of the point of the surface P
X P , YP , Z P – Cartesian coordinates of the point of the surface P
U1.P , U2.P – boundary values of the closed interval of the UP -parameter
V1.P , V2.P – boundary values of the closed interval of the VP -parameter

A Sculptured Part Surface

Figure 1.2 Working surface of impeller is an example of a smooth regular sculptured part surface.
Reproduced from Somani Engineering.
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Figure 1.3 Analytical description of an ideal part surface P (adapted from [33]).

The parameters UP and VP must enter independently, which means that the matrix

M =

⎡
⎢⎢⎣

∂ X P

∂UP

∂ YP

∂UP

∂ Z P

∂UP

∂ X P

∂VP

∂ YP

∂VP

∂ Z P

∂VP

⎤
⎥⎥⎦ (1.2)

has rank 2. Positions where the rank is 1 or 0 are singular points; when the rank at all points
is 1, then Eq. (1.1) represents a curve.

The following notations will be convenient in the consideration below.
The first derivatives of rP with respect to the Gaussian coordinates UP and VP are desig-

nated ∂ rP
∂ UP

= UP and ∂ rP
∂ VP

= VP , and for the unit tangent vectors uP = UP
|UP | and vP = VP

|VP |
correspondingly.

The unit tangent vector uP (as well as the tangent vector UP ) specifies a direction of the
tangent line to the UP -coordinate curve through the given point m on the surface P . Similarly,
the unit tangent vector vP (as well as the corresponding tangent vector VP ) specifies a direction
of the tangent line to the VP -coordinate curve through that same point m on the surface P .

The significance of the unit tangent vectors uP and vP becomes evident from the consider-
ations immediately following.

First, the unit tangent vectors uP and vP allow for an equation of the tangent plane to the
surface P at m:

Tangent plane ⇒

⎡
⎢⎢⎢⎢⎢⎣

[r t.p − r(m)
P ]

uP

vP

1

⎤
⎥⎥⎥⎥⎥⎦

= 0 (1.3)
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Here we define:

r t.P – position vector of a point of the tangent plane to the surface P at m
r(m)

P – position vector of the point m on the surface P

Second, the unit tangent vectors uP and vP allow for an equation of the perpendicular, NP ,
and of the unit normal vector, nP , to the surface P at m:

NP = UP × VP (1.4)

nP = NP

| NP | = UP × VP

| UP × VP | = uP × vP (1.5)

When the order of multipliers in Eq. (1.4) [as well as in Eq. (1.5)] is chosen properly, then
the unit normal vector nP is pointed outward from the body side bounded by the surface
P . (It should be pointed out here that the unit tangent vectors uP and vP , as well as the
unit normal vector nP , are dimensionless parameters of the geometry of the surface P .
This feature of the unit vectors uP , vP and nP is convenient when performing practical
calculations.)

1.2 On the Difference between Classical Differential Geometry and
Engineering Geometry of Surfaces

Classical differential geometry has been developed mostly for the purpose of investigation of
smooth regular surfaces. Engineering geometry also deals with smooth regular surfaces. What
is the difference between these two geometries?

The difference between classical differential geometry and engineering geometry of surfaces
is due mostly to how surfaces are interpreted.

Only phantom surfaces are investigated in classical differential geometry. Surfaces of this
kind do not exist physically. They can be understood as a zero-thickness film of appropriate
shape. Such a film can be accessed from both sides of the surface. This causes the following
indefiniteness.

As an example, consider a surface, at a certain point m, with Gaussian curvature GP of
the surface having positive value (GP > 0). Classical differential geometry gives no answer
to the question of whether the surface P is convex or concave in the vicinity of the point
m. In the first case (when the surface P is convex), the mean curvature MP of the surface
P at the point m is of positive value, MP > 0, while in the second case (when the surface
P is concave), the mean curvature MP of the surface P at the point m is of negative value,
MP < 0.

A similar situation is observed when the Gaussian curvature GP at a certain surface point
is of negative value (GP < 0).

In classical differential geometry, the answer to the question of whether a surface is convex
or concave in the vicinity of a certain point m can be given only by convention.

In turn, surfaces that are treated in engineering geometry bound a solid – a machine part
(or machine element). This part can be called a real object (Figs 1.1 and 1.2). The real object
is the bearer of the surface shape.
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Figure 1.4 Open and closed sides of a part surface P (adapted from [33]).

Surfaces that bound real objects are accessible only from one side, as illustrated schemat-
ically in Fig. 1.4. We refer to this side of the surface as the open side of a part surface. The
opposite side of the surface P is not accessible. Because of this, we refer to the opposite side
of the surface P as the closed side of a part surface.

The positively directed unit normal vector +nP is pointed outward from the part body, i.e. it
is pointed from the body side to the void side. The negative unit normal vector −nP is pointed
oppositely to +nP .

The existence of the open and closed sides of a part surface P eliminates the problem of
identifying whether a surface is convex or concave. No convention is required in this respect.

The description of a smooth regular surface in differential geometry of surfaces and in
engineering geometry provides more differences between surfaces treated in these two different
branches of geometry.

1.3 On the Analytical Description of Part Surfaces

Another principal difference in this respect is due to the nature of the real object. We should
point out here again that a real object is the bearer of a surface shape. No real object can
be machined/manufactured precisely without deviations of its actual shape from the desired
shape of the real object. Smaller or larger deviations in shape of the real object from its desired
shape are inevitable in nature. We won’t go into detail here on the nature of the deviations. We
should simply realize that such deviations always exist.

As an example, let’s consider how the surface of a round cylinder is specified in differential
geometry of surfaces and compare it with that in engineering geometry.

In differential geometry of surfaces, the coordinates of the current point m of the surface of a
cylinder of revolution can be specified by the position vector r m of the point m [Fig. 1.5(a)]. In
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Figure 1.5 Specification of (a) an ideal and (b) a real part surface.

the case under consideration, the position vector r m of a point within the surface of a cylinder
of radius r , and having the Z -axis as its axis of rotation, can be expressed in matrix form as

r m(ϕ, Zm) =

⎡
⎢⎢⎣

r cos ϕ

r sin ϕ

Zm

1

⎤
⎥⎥⎦ (1.6)

Here, the surface curvilinear coordinates are denoted by ϕ and Zm , accordingly. They are
equivalents of the curvilinear coordinates UP and VP in Eq. (1.1).

Mechanical engineers have no other option than to treat a desired (nominal) part surface P ,
which is given by the part blueprint, and which is specified by the tolerance for the surface P
accuracy.

As manufacturing errors are inevitable, the current surface point mact actually deviates from
its desired location m. The position vector ract

m of a current point mact of the actual part surface
deviates from r m for an ideal surface point m. Without loss of generality, the surface deviations
in the direction of the Z -axis are ignored. Instead, the surface deviations in the directions of
the X - and Y -axes are considered.

The deviation of a point mact from the corresponding surface point m that is measured per-
pendicular to the desired part surface P is designated as δm [Fig. 1.5(b)]. Formally, the position
vector ract

m of a current point mact of the actual part surface can be described analytically in
matrix form as

ract
m (ϕ, Zm) =

⎡
⎢⎢⎣

(r + δm) cos ϕ

(r + δm) sin ϕ

Zm

1

⎤
⎥⎥⎦ (1.7)
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where the deviation δm is understood as a signed value. It is positive for points mact located
outside the surface [see Eq. (1.6)] and negative for points mact located inside the surface [see
Eq. (1.6)].

Unfortunately, the actual value of the deviation δm is never known. Thus, Eq. (1.7) cannot
be used for the purpose of analytical description of real part surfaces.

In practice, the permissible deviations δm of surfaces in engineering geometry are limited to
a certain tolerance band. An example of a tolerance band is shown schematically in Fig. 1.5(b).
The positive deviation δm must not exceed the upper limit δ upper, and the negative deviation
δm must not be greater than the lower limit δlower. That is, in order to meet the requirements
specified by the blueprint, the deviation δm must be within the tolerance band

δlower ≤ δm ≤ δ upper (1.8)

The total width of the tolerance band is equal to δm = δ upper + δlower. In this expression for
the deviation δm , both limits δ upper and δlower are signed values. They can be either of positive
value, or of negative value, as well as equal to zero.

Under such a scenario not only does the desired part surface Pdes meet the requirements
specified by the part blueprint, but any and all actual part surfaces P ac located within the
tolerance band δlower ≤ δ ≤ δupper meet the requirements given by the blueprint. In other
words, if a surface P +

δ is specified by a tolerance band δupper, and a surface P −
δ is specified by

a tolerance band δlower, then an actual part surface P ac is always located between the surfaces
P +

δ and P −
δ . And, of course, the actual part surface P ac always differs from the desired part

surface Pdes . However, the deviation of the surface P ac from the surface Pdes is always the
tolerance band δlower ≤ δ ≤ δupper.

An intermediate summarization is as follows: we know everything about ideal surfaces,
which do not exist in reality, and we know nothing about real surfaces, which exist physically
(or, at least, our knowledge about real surfaces is very limited).

In addition, the entire endless surface of the cylinder of revolution is not considered in
engineering geometry. Only a portion of this surface is of importance in practice. Therefore,
in the axial direction, the length of the cylinder is limited to an interval 0 ≤ Zm ≤ H , where
H is a pre-specified length of the cylinder of revolution.

With that said, we can now proceed with a more general consideration of the analytical
representation of surfaces in engineering geometry.

1.4 Boundary Surfaces for an Actual Part Surface

Owing to the deviations, an actual part surface Pact deviates from its nominal (desired) surface
Pdes (Fig. 1.6). However, the deviations are within pre-specified tolerance bands. Otherwise,
the real object could become useless. In practice, this particular problem is easily solved by
selecting appropriate tolerance bands for the shape and dimensions of the actual surface Pact .

Similar to measuring deviations, the tolerances are also measured in the direction of the unit
normal vector nP to the desired (nominal) part surface P . Positive tolerance δ+ is measured
along the positive direction of the vector nP , while negative tolerance δ− is measured along
the negative direction of the vector nP . In a particular case, one of the tolerances, either δ+ or
δ−, can be zero.
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Figure 1.6 Analytical description of an actual part surface Pact located between the boundary surfaces
P + and P − (adapted from [33]).

Often, the values of the tolerance bands δ+ and δ− are constant within the entire patch
of the surface P . However, in special cases, for example when machining a sculptured part
surface on a multi-axis NC machine, the actual values of the tolerances δ+ and δ− can be set
as functions of the coordinates of the current point m on the surface P . This results in the
tolerances being represented in terms of UP - and VP -parameters of the surface P , say in the
form δ+ = δ+(UP , VP ) and δ− = δ−(UP , VP ).

The endpoint of the vector δ+ · nP at a current surface point m produces the point m+.
Similarly, the endpoint of the vector δ− · nP produces the corresponding point m−.

The surface P+ of upper tolerance is represented by the loci of the points m+ (i.e. by
the loci of the endpoints of the vector δ+ · nP ). This makes it possible to have an analytical
representation of the surface P+ of upper tolerance in the form

r+
P (UP , VP ) = rP + δ+ · nP (1.9)

Usually, the surface P+ of upper tolerance is located above the nominal part surface P .
Similarly, the surface P− of lower tolerance is represented by the loci of the points m−

(i.e. by the loci of the endpoints of the vector δ− · nP ). This also makes it possible to have an
analytical representation of the surface P− of lower tolerance in the form

r−
P (UP , VP ) = rP + δ− · nP (1.10)

Commonly, the surface P− of lower tolerance is located beneath the nominal part surface P .
The surfaces P+ and P− are the boundary surfaces. The actual part surface Pact is located

between the surfaces P+ and P−, as illustrated schematically in Fig. 1.6.
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The actual part surface Pact cannot be represented analytically. Actually, the surface Pact is
unknown – any surface that is located between the surfaces of upper tolerance P+ and lower
tolerance P− meets the requirements of the part blueprint, and thus every such surface can be
considered as an actual surface Pact . The equation of the surface Pact cannot be represented
in the form ract

P = rP + δact · nP , because the actual value of the deviation δact at the current
surface point is not known. CMM data yields only an approximation for δact as well as the
corresponding approximation for Pact . Moreover, the parameters of the local topology of the
surface P considered above cannot be calculated for the surface Pact . However, owing to
the tolerances δ+ and δ− being small enough to compare the normal radii of curvature of the
nominal surfaces P , it is assumed below that the surface Pact possesses the same geometrical
properties as the surface P , and that the difference between the corresponding geometrical
parameters of the surfaces Pact and P is negligibly small. In further consideration, this allows
for a replacement of the actual surface Pact with the nominal surface P , which is much more
convenient for performing calculations.

The consideration in this section illustrates the second principal difference between classical
differential geometry and engineering geometry of surfaces.

Because of these differences, engineering geometry of surfaces often presents problems that
were not envisioned in classical (pure) differential geometry of surfaces.

1.5 Natural Representation of a Desired Part Surface

The specification of a surface in terms of the first and second fundamental forms is commonly
called the natural kind of surface representation. In general form, it can be represented by a
set of two equations

Natural form of a surface P
parameterization

∣∣∣∣

⇒ P = P(�1.P ,�2.P )

{
�1.P = �1.P (EP , FP , G P )
�2.P = �2.P (EP , FP , G P , L P , MP , NP )

(1.11)

It was proven by Bonnet1 (1867) that specification of the first and second fundamental forms
determines a unique surface if the Gaussian2 characteristic equation3 and the Codazzi4–
Mainardi5 relationships of compatibility6 are satisfied, and those two surfaces that have iden-
tical first and second fundamental forms must be congruent to one another [1]. (It should be
mentioned here that two surfaces with identical first and second fundamental forms might
also be symmetrical to one another. The interested reader is referred to special literature on
differential geometry of surfaces for details about this issue.) This statement is commonly
considered as the main theorem in the theory of surfaces.

1 Pierre Ossian Bonnet (December 22, 1819–June 22, 1892) – a French mathematician.
2 Johan Carl Friedrich Gauss (April 30, 1777–February 23, 1855) – a famous German mathematician and physical
scientist.
3 The Gauss equation of compatibility that follows from his famous theorema egregium is considered in detail in
Chapter 8 [see Eq. (8.12)].
4 Delfino Codazzi (March 7, 1824–July 21, 1873) – an Italian mathematician.
5 Gaspare Mainardi (June 27, 1800–March 9, 1879) – an Italian mathematician.
6 The Codazzi–Mainardi equations of compatibility are considered in detail in Chapter 8 [see Eqs (8.13) and (8.14)].
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We should make clear what the first and second fundamental forms of a surface stand for.
Both of them relate to the intrinsic geometry in the differential vicinity of a surface point.

1.5.1 First fundamental form of a desired part surface

The first fundamental form �1.P of a smooth regular surface describes the metric properties
of the surface P . Usually, it is represented as the quadratic form

�1.P ⇒ ds2
P = EP dU 2

P + 2FP dUP dVP + G P dV 2
P (1.12)

Here we define:

sP – linear element of the surface P (sP is equal to the length of a segment of
a certain curve line on the surface P)

EP , FP , G P – fundamental magnitudes of first order

Equation (1.12) is known from many advanced sources.
In engineering geometry of surfaces another form of analytical representation of the first

fundamental form �1.P is proven to be useful:

�1.P ⇒ ds2
P = [dUP dVP 0 0] ·

⎡
⎢⎢⎣

EP FP 0 0
FP G P 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

dUP

dVP

0
0

⎤
⎥⎥⎦ (1.13)

This kind of analytical representation of the first fundamental form �1.P was proposed by
Radzevich [32]. The practical advantage of Eq. (1.13) is that it can easily be incorporated into
computer programs in which multiple coordinate system transformations are used. The last is
vital for many CAD/CAM applications.

The fundamental magnitudes of the first order EP , FP and G P can be calculated from the
following equations:

EP = UP · UP (1.14)

FP = UP · VP (1.15)

G P = VP · VP (1.16)

The fundamental magnitudes EP , FP and G P of the first order are functions of UP - and
VP -parameters of the surface P . In general, these relationships can be represented in the form

EP = EP (UP , VP ) (1.17)

FP = FP (UP , VP ) (1.18)

G P = G P (UP , VP ) (1.19)
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The fundamental magnitudes EP and G P are always positive (EP > 0, G P > 0), while the
fundamental magnitude FP can be equal to zero (FP ≥ 0). This results in the first fundamental
form always being non-negative (�1.P ≥ 0).

The first fundamental form �1.P yields computation of the following major parameters of
geometry of the surface P:

(a) length of a curve–line segment on the surface P;
(b) square of the surface P portion bounded by a closed curve on the surface;
(c) angle between any two directions on the surface P .

Owing to the first fundamental form representing the length of a curve-line segment, it is
always non-negative, i.e. the inequality �1.P ≥ 0 is always observed.

The discriminant HP of the first fundamental form �1.P can be calculated from the equation

HP =
√

EP G P − F2
P (1.20)

It is assumed here and below that the discriminant HP is always non-negative, i.e. HP =
+

√
EP G P − F2

P .
Having the fundamental magnitudes of the first order EP , FP and G P calculated makes

possible easy calculation of the following parameters of geometry of a part surface P .
The length s of a curve segment UP = UP (t), VP = VP (t), t0 ≤ t ≤ t1 is given by the

equation

s =
t∫

t0

√
EP

(
dUP

dt

)2

+ 2FP
dUP

dt

dVP

dt
+ G P

(
dVP

dt

)2

dt (1.21)

The value of the angle θ between two specified directions through a certain point m on the
surface P can be calculated from one of the following equations:

cos θ = FP√
EP G P

(1.22)

sin θ = HP√
EP G P

(1.23)

tan θ = HP

FP
(1.24)

For the calculation of square SP of a surface patch �, which is bounded by a closed line on
the surface P , the following equation is commonly used:

SP =
∫

�

∫ √
EP G P − F2

P dUP dVP (1.25)
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The fundamental form �1.P remains the same while the surface is bending. This is another
important feature of the first fundamental form �1.P . The feature can be employed to design
3D CAM for finishing of a turbine blade with an abrasive strip as a cutting tool.

1.5.2 Second fundamental form of a desired part surface

The second fundamental form �2.P describes the curvature of a smooth regular surface P .
Consider a point K on a smooth regular part surface P (Fig. 1.7). The location of the

point K is specified by the coordinates UP and VP . A line through the point K is located
entirely within the surface P . A nearby point m is located within the line through the point
K . The location of the point m is specified by the coordinates UP + dUP and VP + dVP as it
is infinitesimally close to the point K . The closest distance of approach of the point m to the
tangent plane through the point K is expressed by the second fundamental form �2.P . Torsion
of the curve K m is ignored. Therefore, the distance a is assumed equal to zero (a = 0).

Usually, it is represented as the quadratic form (Fig. 1.7)

�2.P ⇒ −drP · dnP = L P dU 2
P + 2MP dUP dVP + NP dV 2

P (1.26)

Equation (1.26) is known from many advanced sources.

PZ

PXPY

*m

P

The Tangent Plane

m , PPPP dVVdUU ++

, PP VU

K

0a =

*m

m

K
*m

Figure 1.7 Definition of second fundamental form � 2.P of a smooth regular part surface P .
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In engineering geometry of surfaces another form of analytical representation of the second
fundamental form �2.P is proven to be useful:

�2.P ⇒ [dUP dVP 0 0] ·

⎡
⎢⎢⎣

L P MP 0 0
MP NP 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

dUP

dVP

0
0

⎤
⎥⎥⎦ (1.27)

This kind of analytical representation of the second fundamental form �2.P was proposed by
Radzevich [32]. Similar to Eq. (1.13), the practical advantage of Eq. (1.27) is that it can easily
be incorporated into computer programs in which multiple coordinate system transformations
are used. The last is vital for many CAD/CAM applications.

In Eq. (1.27), the parameters L P , MP and NP designate fundamental magnitudes of the
second order.

The fundamental magnitudes of the second order can be computed from the following
equations:

L P =
∂UP
∂UP

× UP · VP√
EP G P − F2

P

(1.28)

MP =
∂UP
∂VP

× UP · VP√
EP G P − F2

P

=
∂VP
∂UP

× UP · VP√
EP G P − F2

P

(1.29)

NP =
∂VP
∂VP

× UP · VP√
EP G P − F2

P

(1.30)

The fundamental magnitudes L P , MP and NP of the second order are also functions of UP -
and VP -parameters of the surface P . These relationships in general can be represented in the
form

L P = L P (UP , VP ) (1.31)

MP = MP (UP , VP ) (1.32)

NP = NP (UP , VP ) (1.33)

The discriminant TP of the second fundamental form �2.P can be computed from the
equation

TP =
√

L P NP − M2
P (1.34)

Implementation of the first, �1.P , and of the second, �2.P , fundamental forms of a smooth
regular part surface P makes possible a significant simplification when performing calculation
of parameters of the surface geometry.
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Figure 1.8 Screw involute surface of a helical gear tooth (adapted from [33]).

1.5.3 Illustrative example

Let’s consider an example of how an analytical representation of a surface in a Cartesian
coordinate system can be converted into the natural parameterization of that same surface [33,
34, 36].

A screw involute surface G of a gear tooth is described analytically in a Cartesian coordinate
system XgYg Zg (Fig. 1.8).

The equation of the screw involute surface G is represented in matrix form as

r g(Ug, Vg) =

⎡
⎢⎢⎣

rb.g cos Vg + Ug cos ψb.g sin Vg

rb.g sin Vg − Ug sin ψb.g sin Vg

rb.g tan ψb.g − Ug sin ψb.g

1

⎤
⎥⎥⎦ (1.35)

where we define:

rb.g – radius of the base cylinder of the screw involute surface G of the gear tooth
ψb.g – base helix angle of the screw involute surface G of the gear tooth
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This equation allows for calculation of the two tangent vectors Ug(Ug, Vg) and Vg(Ug, Vg)
that are correspondingly equal:

Ug =

⎡
⎢⎢⎣

cos ψb.g sin Vg

− cos ψb.g cos Vg

− sin ψb.g

1

⎤
⎥⎥⎦ (1.36)

Vg =

⎡
⎢⎢⎣

−rb.g sin Vg + Ug cos ψb.g cos Vg

rb.g cos Vg + Ug cos ψb.g sin Vg

rb.g tan ψb.g

1

⎤
⎥⎥⎦ (1.37)

Substituting the calculated vectors Ug and Vg into Eqs (1.14) through (1.16), one
can come up with formulae for the calculation of fundamental magnitudes of the first
order:

Eg = 1 (1.38)

Fg = − rb.g

cos ψb.g
(1.39)

Gg = U 2
g cos4 ψb.g + r2

b.g

cos2 ψb.g
(1.40)

These equations can be substituted directly into Eq. (1.12) for the first fundamental
form:

�1.g ⇒ dU 2
g − 2

rb.g

cos ψb.g
dUgdVg + U 2

g cos4 ψb.g + r2
b.g

cos2 ψb.g
dV 2

g (1.41)

The calculated values of the fundamental magnitudes Eg , Fg and Gg can also be substituted
into Eq. (1.13) for the quadratic form �1.g . In this way, the matrix representation of the first
fundamental form �1.g can be obtained. The interested reader may wish to complete this
formulae transformation on his/her own.

The discriminant Hg of the first fundamental form �1.g of the surface G can be calculated
from the formula

Hg = Ug cos ψb.g (1.42)

In order to derive an equation for the second fundamental form �2.g of the gear tooth surface
G , the second derivatives of r g(Ug, Vg) with respect to Ug- and Vg-parameters are required.
The equations for the vectors Ug and Vg derived above make possible calculation of the
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required derivatives:

∂Ug

∂UP
=

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ (1.43)

∂Ug

∂Vg
≡ ∂Vg

∂Ug
=

⎡
⎢⎢⎣

cos ψb.g cos Vg

cos ψb.g sin Vg

0
1

⎤
⎥⎥⎦ (1.44)

∂Vg

∂Vg
=

⎡
⎢⎢⎣

−rb.g cos Vg − Ug cos ψb.g sin Vg

−rb.g sin Vg + Ug cos ψb.g cos Vg

0
1

⎤
⎥⎥⎦ (1.45)

Further, substitute these derivatives [see Eqs (1.43) through (1.45)] and Eq. (1.20) into
Eqs (1.28) through (1.30). After the necessary formulae transformations are complete,
Eqs (1.28) through (1.30) cast into a set of formulae for the calculation of fundamental
magnitudes of the second order of the screw involute surface G :

Lg = 0 (1.46)

Mg = 0 (1.47)

Ng = −Ug sin ψb.g cos ψb.g (1.48)

After substituting Eqs (1.46) through (1.48) into Eqs (1.28) through (1.30), one can obtain
an equation for the calculation of the second fundamental form of the screw involute surface
G of a gear tooth:

�2.g ⇒ −dr g · d Ng = −Ug sin ψb.g cos ψb.gdV 2
g (1.49)

Similar to the derivation of Eq. (1.41), the calculated values of the fundamental magnitudes
Lg , Mg and Ng can be substituted into Eq. (1.27) for the quadratic form �2.g . In this way,
the matrix representation of the first fundamental form �2.g can be calculated as well. The
interested reader may wish to complete this formulae transformation on his/her own.

The discriminant Tg of the second fundamental form �2.g of the screw involute surface G

is equal to

Tg =
√

Lg Mg − N 2
g = 0 (1.50)



JWST260-c01 JWST260-Radzevich Printer: Yet to Come December 2, 2012 8:12 Trim: 244mm × 168mm

Geometry of a Part Surface 19

The derived set of six equations for the calculation of the fundamental magnitudes

Eg = 1 Lg = 0

Fg = − rb.g

cos ψb.g
Mg = 0

Gg = U 2
g cos4 ψb.g + r 2

b.g

cos2 ψb.g
Ng = − Ug sin ψb.g cos ψb.g

represents a natural kind of parameterization of the part surface P . All major elements of
geometry of the gear tooth surface can be calculated based on the fundamental magnitudes of
the first �1.g and of the second �2.g order. Location and orientation of the surface G are the
two parameters that remain indefinite as yet.

Once a surface is represented in natural form, i.e. is expressed in terms of six fundamental
magnitudes of the first and second order, then further calculation of the parameters of the sur-
face P gets much easier. In order to demonstrate a significant simplification of the calculation
of the parameters of the geometry of the surface P , numerous useful equations are presented
below within the body of the text as an example.

1.6 Elements of Local Geometry of a Desired Part Surface

Part surfaces of various complexities are used in present practice. Some part surfaces feature
simple geometry, such as cylinders of revolution, cones of revolution, planes, some kinds of
surfaces of revolution, some kinds of screw surfaces. Other part surfaces, for example sculp-
tured part surfaces, feature complex geometry. It often happens that the analytical description
of the local geometry of sculptured part surfaces works perfectly when evaluating their per-
formance capability. Bearing this in mind, the main elements of a surface local geometry are
outlined briefly below.

1.6.1 Unit tangent vectors

At any point m of a smooth regular surface P , unit tangent vectors uP and vP can be
constructed.

In case a part surface P is given by an equation in matrix representation [see Eq. (1.1)],
tangent vectors UP and VP to the surface P at an arbitrary point m can be expressed in terms
of the first derivatives of the position vector of a point r P with respect to the curvilinear
coordinates UP and VP accordingly:

UP = ∂ rP

∂ UP
(1.51)

VP = ∂ rP

∂ VP
(1.52)
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Having the tangent vectors UP and VP calculated makes it possible to calculate the unit
tangent vectors uP and vP respectively:

uP = UP

|UP | (1.53)

vP = VP

|VP | (1.54)

The unit tangent vector uP (as well as the tangent vector UP ) specifies a direction of the
tangent line to the UP -coordinate curve through the given point m on the surface P . Similarly,
the unit tangent vector vP (as well as the corresponding tangent vector VP ) specifies a direction
of the tangent line to the VP -coordinate curve through that same point m on the surface P .

The significance of the unit tangent vectors uP and vP becomes evident from the consider-
ations immediately below.

1.6.2 Tangent plane

The calculated unit tangent vectors uP and vP allow for an equation of the tangent plane to
the surface P at m:

⎡
⎢⎢⎣

[r t.p − r(m)
P ]

uP

vP

1

⎤
⎥⎥⎦ = 0 (1.55)

Here we define:

r t.P – position vector of a point of the tangent plane to the surface P at m
r(m)

P – position vector of the point m on the surface P

1.6.3 Unit normal vector

At any point of a smooth regular surface P , the unit normal vector nP can be constructed. The
calculated unit tangent vectors uP and vP allow for an equation of the unit normal vector nP

to the surface P at m:

nP = NP

| NP | = UP × VP

| UP × VP | = uP × vP (1.56)

When the order of the multipliers in Eq. (1.56) is chosen properly, the unit normal vector
nP points outward from the body side bounded by the surface P .
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1.6.4 Unit vectors of principal directions on a part surface

At any point m on a smooth regular surface P there exist two directions, in which the normal
curvature of the surface reaches extreme values. These directions are commonly called the
principal directions on a surface P .

Commonly, the vectors of the principal directions on a surface P are designated T 1.P and
T 2.P . The vectors T 1.P and T 2.P are located within a tangent plane through the point m. They
are perpendicular to one another (T 1.P⊥T 2.P ).

The normal curvature of the surface P in the direction specified by the tangent vector T 1.P

is of maximum value, while the normal curvature of that same surface in the direction specified
by the tangent vector T 2.P is of minimum value.

For the calculation of vectors T 1.P and T 2.P of principal directions through a given point m
on the surface P , the fundamental magnitudes of the first order EP , FP , G P and of the second
order L P , MP , NP are used.

The vectors T 1.P and T 2.P of principal directions can be calculated as roots of the equation

∣∣∣∣
EP dUP + FP dVP FP dUP + G P dVP

L P dUP + MP dVP MP dUP + NP dVP

∣∣∣∣ = 0 (1.57)

The first principal plane section C1.P is orthogonal to P at m, and passes through the vector
T 1.P of the first principal direction. The second principal plane section C2.P is orthogonal to
P at m, and passes through the vector T 2.P of the second principal direction.

In engineering geometry of surfaces it is often preferred not to use the tangent vectors T 1.P

and T 2.P of the principal directions, but to treat the unit tangent vectors t1.P and t2.P of the
principal directions instead. The unit tangent vectors t1.P and t2.P are calculated from the
equations

t1.P = T 1.P

|T 1.P | (1.58)

t2.P = T 2.P

|T 2.P | (1.59)

respectively.

1.6.5 Principal curvatures of a part surface

Two normal curvatures of a surface P measured in the principal plane sections C1.P and C2.P

are commonly referred to as principal curvatures of the surface. Principal curvatures of a
smooth regular surface P are denoted by k 1.P and k 2.P accordingly. We should stress here that
the inequality

k 1.P > k 2.P (1.60)

is always observed at any and all regular points on a part surface P .
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In degenerate cases, e.g. at all points on a sphere, as well as at all points on a plane,
all normal curvatures at a surface point are equal to one another. In these degenerate cases
principal directions on a surface cannot be identified.

At a specified point m on a smooth regular part surface P , the principal curvatures k 1.P and
k 2.P of the surface are calculated as roots of the square equation

∣∣∣∣
L P − EP kP MP − FP kP

MP − FP kP NP − G P kP

∣∣∣∣ = 0 (1.61)

In exploded form, Eq. (1.61) can be rewritten as

(EP G P − F2
P )k2

P − (EP NP − 2FP MP + G P L P )kP + (L P NP − M2
P ) = 0 (1.62)

The principal radii of curvature R 1.P and R 2.P are reciprocal to the corresponding principal
curvatures k 1.P and k 2.P of the surface P at that same point m. Thus, the principal radii of
curvature R 1.P and R 2.P can be expressed in terms of the corresponding principal curvatures
k 1.P and k 2.P accordingly:

R 1.P = 1

k 1.P
(1.63)

R 2.P = 1

k 2.P
(1.64)

Use of Eqs (1.63) and (1.64) makes it possible to compose an equation for the calculation of
principal radii of curvature R 1.P and R 2.P similar to Eq. (1.61) that is used for the calculation
of the principal curvatures k 1.P and k 2.P of the surface P at a point m. In exploded form, such
an equation can be rewritten as

R2
P − EP NP − 2FP MP + G P L P

TP
RP + HP

TP
= 0 (1.65)

Here, HP is the discriminant of the first order [see Eq. (1.20)] and TP is the discriminant of
the second order [see Eq. (1.34)] of the surface P at a point m. (Reminder: algebraic values
of the radii of principal curvature R1.P and R2.P are related to each other byR2.P > R1.P .)

The normal curvature kP of a surface P at an arbitrary direction through a point m can be
calculated from the equation

kP = � 2.P

� 1.P
(1.66)

In case an angle θ between the normal plane section CP through the point m and the first
principal plane C 1.P is known, then the Euler7 equation for the calculation of kP

kP = k 1.P cos2 θ + k 2.P sin2 θ (1.67)

7 Leonhard Euler (April 15, 1707–September 18, 1783) – a famous Swiss mathematician and physicist.
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can conveniently be used (here, θ is the angle that the normal plane section CP makes with
the first principal plane section C1.P ; in other words, θ = ∠(tP , t1.P ) with tP designating the
unit tangent vector within the normal plane section CP ).

Equation (1.67) can also be rewritten in the form

kP = HP + k 1.P − k 2.P

2
cos 2θ (1.68)

One more equation is of practical importance:

τP = (k2.P − k1.P ) sin θ cos θ (1.69)

This equation is commonly called the Sophie Germain equation (or Bertrand8 equation in
another interpretation). In this equation, the torsion τP of a surface point m is expressed in
terms of the principal curvatures k 1.P and k 2.P , and of the angle θ .

The curvature of a surface in a plane section at an angle υ in relation to the corresponding
normal plane section can be calculated from the Meusnier9 formula

kP.υ = kP

cos υ
(1.70)

This equation can also be expressed in terms of corresponding radii of curvature:

RP.υ = RP cos υ (1.71)

1.6.6 Other parameters of curvature of a part surface

In addition to the normal curvature kP , and to the principal curvatures k 1.P and k 2.P at a point
m of a smooth regular part surface P , several other parameters of curvature of a part surface
are used in practice.

Mean curvature of a surface

The mean curvature at a surface point is defined as half the sum of the principal curvatures at
that same surface point m. Some researchers prefer to define the mean curvature not as half
the sum, but as the sum of principal curvatures at a surface point m. Under such a scenario the
mean curvature MP is specified as MP = k1.P + k2.P . An equation for MP that is equivalent
to Eq. (1.73) can be rewritten in the form MP = EP NP −2 FP MP +G P L P

(EP G P −F2
P )

.

By definition, the mean curvature MP is equal to

MP = k1.P + k2.P

2
(1.72)

8 Joseph Louis François Bertrand (March 11, 1822–April 5, 1900) – a French mathematician.
9 de La Place Jean Baptiste Marie Meusnier (June 19, 1754–June 13, 1793) – a French mathematician.
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The mean curvature can also be expressed in terms of fundamental magnitudes of the first
and second order:

MP = EP NP − 2 FP MP + G P L P

2 (EP G P − F2
P )

(1.73)

Gaussian curvature of a surface

The Gaussian curvature (or, in other words, full curvature) at a surface point is defined as
a product of principal curvatures at that same surface point m. By definition, the Gaussian
curvature GP is equal to

GP = k1.P · k2.P (1.74)

The Gaussian curvature can also be expressed in terms of fundamental magnitudes of the
first and second order:

GP = L P NP − M2
P

EP G P − F2
P

(1.75)

Equation (1.73) for mean curvature MP together with Eq. (1.75) for Gaussian curvature
GP makes it possible to compose a quadratic equation

k2
P − 2 MP kP + GP = 0 (1.76)

for the calculation of principal curvatures k 1.P and k 2.P .
On solution of Eq. (1.76) with respect to k 1.P and k 2.P , the principal curvatures k 1.P and

k2.P can be expressed in terms of the mean curvature MP and of the Gaussian curvature GP :

k 1.P = MP +
√

M2
P − GP (1.77)

k2.P = MP −
√

M2
P − GP (1.78)

Absolute curvature of a surface

In some applications it could be reasonable to specify the local geometry of a surface by means
of absolute curvature. By definition, the absolute curvature ÃP at a point m of a smooth regular
part surface P is equal to

ÃP = |k 1.P | + |k 2.P | (1.79)

The absolute curvature ÃP at a point m of a smooth regular part surface P can be expressed in
terms of fundamental magnitudes of the first and second order, as well as in terms of the mean
curvature MP and Gaussian curvature GP at a surface point m [see Eqs (1.77) and (1.78)].
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Shape operator of a surface

The shape operator is a generalized measure of concavity and convexity of a surface point
m. Weingarten10 is credited with the concept of the shape operator of a surface, which is also
often referred to as the shape index or Weingarten map.

The differential structure of a surface is captured by the local Hessian matrix, which may
be approximated in terms of surface normals by

H =

⎡
⎢⎢⎣

−
(

∂ nP

∂ x

)

x

−
(

∂ nP

∂ x

)

y

−
(

∂ nP

∂ y

)

x

−
(

∂ nP

∂ y

)

y

⎤
⎥⎥⎦ (1.80)

where subscripts “x” and “y” denote the x and y components of the parameterized vector
velocity.

The principal curvatures of the part surface are the eigenvalues of the Hessian matrix, found
by solving the equation

|H − k I| = 0 (1.81)

for k, where I is the identity matrix.
By definition, the shape operator SP is the differential of the Gauss map of the surface. The

shape operator SP is a generalized measure of concavity and convexity.
The determinant of the shape operator at a point is the Gaussian curvature, but it also

contains other information, since the mean curvature is half the trace of the shape operator.
The eigenvectors and eigenvalues of the shape operator at each surface point determine the
directions in which the surface bends at each point.

Koenderink and van Doorn developed a single-value, angular measure to describe the local
surface topology in terms of the principal curvatures.

The shape operator is given in terms of the components of the first and second fundamental
forms by Weingarten equations

SP =

∣∣∣∣
G P L P − FP MP G P MP − FP NP

EP MP − FP L P EP NP − FP MP

∣∣∣∣
EP G P − F2

P

(1.82)

The shape operator can also be expressed in terms of principal curvatures at a surface
point m:

SP = − 2

π
arctan

k 1.P + k2.P

k 1.P − k2.P
(1.83)

10Julius Weingarten (March 2, 1836–June 16, 1910) – a German mathematician.
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and may be expressed in terms of the surface normal:

SP = − 2

π
arctan

(
∂ nP
∂ x

)
x
+ (

∂ nP
∂ x

)
y√[(

∂ nP
∂ x

)
x
− (

∂ nP
∂ x

)
y

]2
+ 4

(
∂ nP
∂ x

)
y

(
∂ nP
∂ x

)
x

(1.84)

The shape operator varies from −1 to +1. It describes the local shape at a surface point
independent of the scale of the surface. A shape operator value of +1 corresponds to a concave
local portion of the surface P for which the principal directions are unidentified, and thus the
normal radii of curvature in all directions are identical to each other. A shape operator of 0
corresponds to a saddle-like local portion of the surface P with principal curvatures of equal
magnitude but opposite sign.

Curvedness of a surface

The surface curvedness is another measure that is derived from the surface principal curvatures.
By definition, the surface curvedness RP is equal to

RP =
√

k2
1.P + k2

2.P

2
(1.85)

The curvedness describes the scale of the surface P , independent of its shape.
These quantities SP and RP are the primary differential properties of a smooth regular

part surface. Note that they are properties of the surface itself and do not depend upon its
parameterization, except for a possible change of sign.

In order to get a profound understanding of differential geometry of surfaces, the interested
reader may wish to go to advanced monographs in the field. Systematic discussion of the topic
is available from many sources. The author would like to direct the reader’s attention to the
monographs by doCarmo [5], Struik [52] and others.

The elements of a surface local geometry considered briefly above make it possible to
introduce a definition of the term sculptured part surface P .

Definition 1.1 The sculptured part surface P is a smooth regular surface, whose major
parameters of local geometry differ from each other in the differential vicinity of any two
points infinitely close to each other.

The given definition of the term sculptured part surface P is of critical importance for
further discussion. It is instructive to point out here that a sculptured part surface P does not
allow for sliding over itself.


