SECOND QUANTIZATION

[n the standard formulation of guantum mechanics, observables are represented by operators and
stales by functions. In the language of sccond quantization, the wave lunclions arc also expressed
in terms of operators — the ereation and annihilation operators working on the vacuum state. The
antisymmelry of the clectronic wave [unction [ollows from the algebra of these operawors and
requires no special attention. From the creation and annihilation operators, we construct also
the standard operators of first-quantization quantum mechanics such as the Hamiltonian operator,
This unified description of states and operators in terms of a single set of elementary creation
and annihilation operators reduces much of the formal manipulation ol quantum mechanics to
algchra, allowing important relationships o be developed in an clegant manner. In this chaptler, we
develop the formalism of sccond quantization, laying the foundation lor our subscquent treatment
of molecular electronic structure.

1.1 The Fock space

Let {ghpi(x)} be & basis of M orthonormal spin orbitals, where the coordinales x represent collec-
tively the spatial coordinates r and the spin coordinawe o ol the clectron. A Slater determinant
is an antisymmetrized product of onc or more spin orbitals. For cxample, a normalized Slater
determinant for & electrons may be written as

$p (X1} Ppx1) - Pp(X1)
1| @r.(X2)  @p(X2) -0 Pp(X2)

AN

lbr p. - - - P, | = (1.1.1)
pp (Xx)  @eixy) - Pp, (X))

We now introduce an abstract lincar veclor space — the Fock space — where cach determinant is
represented by an occupation-ranber (ON) vector |K),

1 ¢p occupied

0 ¢p unoccupied (1.1.2)

Thus, the eccupation nuumber kp is 1 il ¢p is present in the determinant and 0 il it is absent. For
an orthonormal sct ol spin orbitals, we deline the inner product between two ON vectors |k and

lm} as
M

klm) = m =[] Stm. (1.1.3)
=1

This definition is consistent with the overlap between two Slater determinants containing the same
number of electrons, However, the extension of (1.1.3} to have a well-defined but zero overlap
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between states with different electron numbers is a special feature of the Fock-space formulation
ol quantum mechanics that allows for a unified deseription of sysiems with variable numbers of
clectrons.

In a given spin-orbital basis, there 1s a one-to-one mapping between the Slater determinants with
spin orbitals in canonical order and the ON vectors in the Iock space, Much of the terminclogy for
Slater determinants is therefore used for ON vectors as well, Still, the ON vectors are not Slater
determinants — unlike the Slater determinants, the ON vectors have no spatial structure but are
just basis vectors in an abstract vector space. This Fock space can be manipulated as an ordinary
inner-product vector space. For example, for two general vectors or states in the Fock space

=Y culk (L.1.4)
Kk
) =) dilk} (1.1.5)
L
the inner product is given by
eld) = cpiklmidn = cpdx (1.1.6)
km k

The resolution of the identity likewise may be written in the usual manner as

| = Z k) (K| (1.1.7)
k

where the sununation is over the full set of ON vectors for all numbers of electrons.
The ON vectors in (1.1.2) constitute an orthonormal basis in the 2% -dimensional Fock space
F (M), This Fock space may be decomposed as a direct sum of subspaces I'(M, V)

FMy=FM 0 FM 1) - - FM. M) (1.1.8)

where F(M, N) contains all ON vectors oblained by distributing & clectrons among the M spin
orbitals — that is, all ON vectors for which the sum of the occupation numbers is V:

M
N=D ke (1.1.9)
ol

The subspace F(M, 0), which consists ol ON vectors with no clectrons, contains a single vee-
tor — the true vecunwm state
|vao}= |01,02‘”.,0M'} (11101

which, according to (1.1.3), is normalized to unity:
{vac|vac = | (1.1.11Y

Approximations to an exact N-electron wave function are expressed in terms of vectors in the
Fock subspace F(M. N) ol dimension cqual to the binomial cocllicient ('f)

1.2 Creation and annihilation operators
In sccond quantization, all operators and states can be constructed (rom a sct ol clementary

creation and annihilation operators. In this section we introduce these operators and explore their
basic algebraic properties,



SECOND QUANTLZATION 3

1.2.1  CREATION OPLRATORS

The M clementary creation operators arc defined by the relations

(I;|k|, k'g. P 'O;J, ey k,-’[.f} = ]";|k|. kz, ey ]p, PP kM} (121]
aplkikz, ... 1p. k) =0 (1.2.2)
where
#—1
h= ][ {1.2.3)

The phase factor I'§ is equal to +1 if there are an even number of electrons in the spin orbirals
0 < P (ie. to the left of P in the ON vector} and equal to —1 if there are an odd number of
electrons in these spin orbitals. As we shall see, this factor is necessary to obtain a representation
of wave functions and operators consistent with first quantization. The requirement (1.2.2) that ¢,
produces zero when it operates on a vector with Ap = 1 ig in agreement with the fact that a Slater
determinant vanishes if a spin orbital appears twice.

The spin orbitals that are unoccupied in an ON wvector (1.1.2) may be identified from the
specification of the occupied spin orbitals, The explicit reference to the unoccupied spin orbitals
may be avoided altogether by expressing the ON vector as a string of creation operators in the
canonical order (i.e. in the same order as in the ON vector) working on the vacunum state:

M
k) = H(a}:;)k*' |vac) (1.2.4)
F=1

We shall later see thal the phase [actor (1.2.3) is automatically kept track ol by the anticommutation
relations ol the creation operators in (1.2.4), making any reference Lo this factor unnecessary.

The propertics of the creation operators can be deduced (rom the relations (1.2.1) and (1.2.2),
which we here combine in a single defining eguation:

ablky = 8ol Blky, o Tp (1.2,

I3
N
e

Operaling twice with aI. on an ON vector, we obtain from (1.2.5)

a;a;|k} = aIJSk,”nrka. v Lo ky =0 (1.2.6)

Since the product ﬁz},a; gives zero when applied Lo any veclor, it must be identical w the
ZLTE OPEraLor:
apty =0 (1.2.7)
lior P # (), the operators ¢, and GE) may act on an ON vector in two ways. l'or (0 = P, we obtain
+ o ¥ k
apahl ke kg, ) = apbe Tl ke, T,

= 8,086,073 TG] o ey 1y {1.2.8)
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where the phase factor for £ is unaffected by the application of aa since P appears before () in

the ON vector. Reversing the order of the creation operators, we obtain
ToT \ T L \
(.'Q_,aP| cockpy kg, = aQék;,nl—‘M R PR 2 T
o , k k 1 y
= dpadol p=Tpl.. . Lo g, o {1.2.9)

The factor —l‘g arises since aP |k} — if it does not vanish — contains one more electron before spin
orbital O than does |k). Adding together (1.2.8) and (1.2.9), we obtain
(ahugy + abap)k) =0 (1.2.10)

for @ = F, Substitution of dummy indices shows that this equation is valid also for @ = £, Finally,
from {1.2.7) we see that it is true also Tor P = (). Since |k} is an arbitrary ON veclor, we conclude
that the anticommultation relation

u}uQ + f;{;a; = Ia;, {.IZ)_]_;_ =0 (1.2.11)

holdg for any pair of creation operators,

1.2.2  ANNIIITLATION OPERATORS

Having introduced the creation operators @, of second gquantization, we now proceed to the study
of their Hermitian adjoints ap. We shall see that the creation operators and their adjoints are
distinet operators and consequently that these operators arc not scll-adjoint (TTermitian).

The propertics of the adjoinl or conjugale operators e can be inferred (rom those of the creation
opcrators. Thus, [rom (1.2.1 1} the adjoint operators arc scen (0 salisfy the anticommutation relation

ttpily) + dplp = |££p, (EQ].;. =0 (1212)
To determine the action of ap on an ON vector |k}, we invoke the resolution of the identity (1.1.7);
aplky = Im)imlap |k (1.2.13)

m

The matrix clement in this expression may be wrilten as

. m . %
(mleplk) = (Klabmy* = {SM»-U' P kg =mo 3o (1.2.14)
0 otherwise

where we have used (1.2.5). From the definition of 1'% in (1.2.3) and from ko = mg + Spp, we
see that 1™ = I'K, liguation (1.2.14) may therefore be written as
0 otherwise

Hence, only one term in (1,2,13) survives and we conclude

aplk) = 8 T8k, ... Op, ...\ k) (1.2.16)

The operator ap reduces & [rom 1 10 0 il spin orbital P is occupicd and it gives O if the spin
orbital is unoccupied. It is therefore called an electron annifiifation operator. An interesting special
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case of (1.2,16) is
aplvach = 0 (1.2.17)

which states that there are no electrons to be destroved in the vacuum state,

1.2.3  ANTICOMMUTATION RELATIONS

We have seen that the creation operators anticommute among themselves {1.2,11) and that the same
is true for the anmihilation operators (1.2.12). We shall now establish the commutation relations
between creation and annihilation operators. Combining (1.2.5) and (1.2.16), wce obtain

abaplk) = 81|k (1.2.18)
apablky = 80|k} (1.2.19)

The phase lactors cancel since they appear twice. Adding these cquations together, we arrive at
the following expression:

(apap + apap)k) = (3,1 + S0 [K) = K (1.2.20)
for any ON veetor |k}, The operator (J.:.:‘:Ip + a,ua; is therclore cqual to the idenlily operator
apap + apah = 1 (1.2.21)
For P = (2, wc oblain
apag k) = =808k TR gkt .. O, Ty k), P> 0 (1.2.22)
agaplk) = 8o KIS kL, . O, Tk P Q (1.2.23)

where the minus sign arises since, in aglk), the number ol occupied spin orbitals to the left of
spin orbital P has been reduced by one. Adding these two cquations logether, we oblain

(upag + agab)k) =0, P = Q (1.2.24)
Since |k} is an arbitrary ON vector, we have the operator identity
apag + agap =0, P> Q (1.2.25)
The case P =  is oblained by aking the conjugale of this cquation and renaming the dummy
indices. Combination of (1.2.21) and (1.2.25) shows that, lor all P and Q,
ahag + agup = [ap. agly = 8pg (1.2.26)

The anticormmutation relations (1.2.11), (1.2.12), and (1.2.26) constitute the fundamental properties
of the creation and annihilation operators. In view of their importance. they are here collected and
listed in full:

[a., alle =0 (1.2.27)
[ap. dagly =0 (1.2.28)
[ah, aply = Srp (1.2.29)

I'rom these simple relations, all other algebraic properties of the second-quantization formalism
follow,
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1.3 Number-conserving operators

The creation and annihilation operators introduced in Section 1.2 change the number of particles
in a state and therelore couple ON vectors belonging o different subspaces F(M. N). We now Llurn
to operators that conserve the particle number and thus couple ON vectors in the same subspace.

1.3.1 OCCUPATION-NUMBER OPERATORS
We lirst inuroduce the gccupation-mumber (ON) operators as
Np =dpap (1.3.1)
The ON opcrator ﬁ-"p counts the number of clectrons in spin orbital
Nplkj = apaplk) = 8y, [k} = kp|K) (1.3.2)
Here we have used (1.2.18). The ON operators are Hermitian
Ny = (dpap)l = abap = Np (1.3.3)
and comniute among themselves
NoNglky = kpkolk) = kgkplk) = NN |k} (1.3.4)

The ON vectors arc thus the simultancous cigenvectors of the commuting set of Hermitian operators
N p. Moreover. the set of ON operators is complete in the sense that there is a one-to-one mapping
between the ON vectors in the Fock space and the eigenvalues of the ON operators. The eigenvalues
of the ON operators characterize the ON vectors completely, consistent with the introduction of
the ON vectors as an orthonormal basis for the Tock space.

In the spin-orbital basig, the ON operators are projection operators since, in addition to being
Hermitian (1.3.3), they are also idempotent:

s - . . : : -
Np= f;;grzpfg},(zp = fg},(l — aptplap = aptp = Np (1.3.5)

Here we have used the anticommutators (1.2.29) and (1.2.28) in that order. Applicd o a lincar
combination of ON vectors (1.1.4), the operator & leaves unallceted veclors where ¢bp 1s occupicd
and annihilates all others:

Nple) =Y aplky = 3 kpeglk) (1.3.6)

k k
Note that this property of the ON operators holds only in the spin-orbital basis where the occupa-
tions arc cither zero or one.
Using the basic anticommutation relations of crecation and annihilation operators, we oblain [or

the commutators of the ON operators with the creation operalors

R A = atded — atu

[Np, aQ] = dptipdy — dylipdp

= ap(Bpy — (I;(JP) - (IEJ:‘:II.(}P

= apdpy — (Ij;;(ifl_}ﬂp — (J.(L)(I);;(Ip

= apdpy + apapap — aganap (1.3.7)
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and therefore .
[Ve. aé] = SPQ(IQ (1.3.8)

Taking the conjugate of this equation, we obtain the corresponding commutator with the annihi-
lation operator
[.-’\'r,u, (IQ] = _(SPQ_("-Q (139]

I'ron1 these commutators, we niay also conclude that, for an arbitrary string X of creation and
annihilation operators such as

X = apagapakas (1.3.10)
the commutators with the ON operators become
[N, K] = NX (1.3.11)

where N} is the number of times a, occurs in X minus the number of times up occurs in the
same string. To arrive at relation (1.3.11). we have used the conunutator expansion (1.8.5) of
Section 1.8,

1.3.2 THE NUMBER OPERATOR

Adding together all ON operators in the l'ock space, we obtain the Hermitian operator

M
N=>alup (1.3.12)
rol
which returns the number ol clecirons in an ON vector
M
NIk =) kolk} = N|k) (1.3.1%)
Iy

and therefore is known as the particle-number operator or simply the juumber operator. From
(1.3.11), we see that the commutator of the number operator with an arbitrary string of operators
is given by

[N.X]=N"X (13.14)

where X is the excess of creation operators over annihilalion operators in the string. Tn particular,
we find that the number operator commutes with any string 7 that conlains an cqual number of
creation and annihilation operators. Such swrings arc called rember-conserving, since they conserve
the number ol particles in any vector:

NTk) = TN|k) = TNy = NT|k) (1.3.15)

In general, the application of the string X to a Fock-space vector increases the number ol electrons
by NY.

1.33 EXCITATION OPERATORS

Apart lrom the particle-number operators (1.3.12), the simplest number-conserving operatlors arc
the clementary excitation operators apty, for which we shall occasionally use the notation

X7, = apay (1.3.16)
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Applied to an ON vector, these operators give (see Exercise 1.1)

: . . kp— 1 g oA
apiglks = epT T (1 — ke + Spo)kg k; _ rsPQ> (1.3.17)
where 1 P<0
Epg = {_] P‘:é (1318)

and where the ket on the right-hand side of (1.3.17) ig an ON vector with the same occupation
nunibers as |k} except as indicated for spin orbitals £ and @, liquation (1.3.17) shows that a}',ag
cxeiles an clectron [rom spin orbital @ o spin orbital P, thus tuming |k} into another ON vector
in the same subspace F(M. N). In lact, cach ON vector in F(M, N) can be obtained from any
other ON vector in the same subspace by applying a scquence of excilation operalors a;aQ.
The application of a single such operator vields a single excitation, two operators give a double
excitation, and so on. The ‘diagonal’ excitation operators a}:a,n correspond to the occupation-
number operators (1.3.1).

In Box 1.1, we summarize the [undamentals of the second-quantization formalism. In Sce-
tion 1.4, we proceed Lo discuss the second-quantization representation of standard first-quantization
operators such as the electronic Hamiltonian,

Box 1.1 The fundamentals ol second guantization

Occupation-number vectors: Ky = k1, koo kgt kp=0,1
M
Inner products: (kjm} = H Bt mp
p=1
Creation operators: a;,l;|k,\ = (SkPU]'}Hkl, v Ipy oo kgt
p—]
k k
b= 1
o=
Annihilation operators: aplkl = 5;\.!,|]"1',‘,|k|. ey Qe R
Anticommutation relations: ai—,aQ + aQai. = dpg

dptg +agi, =10

aptig + atgap =0

Occupation-number operalors: s‘{-"p|k} = aLaMk} = kp|k}
M M
Particle-number operator: .-&-’|k} = z .-&-’,u|k} = Z kplk}
P=1 p=l
Exciration operators: )A(E, = a;,l;a(;
Vacuum state: ivac|vac) = 1

ap|lvac) =0
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1.4 The representation of one- and two-electron operators

Expectation valucs correspond o observables and should therelore be independent ol the repre-
sentation given 1o the operators and the states. Since expectation values may be expressed as sums
of matrix elements of operators, we require the matrix element of a second-quantization operator
between two ON vectors e be equal o its counterpart in first quantization. An operator in the Fock
space can thus be constructed by requiring its matrix clements between ON veclors o be cqual w
the corresponding matrix elements between Slater determinants of the first-quantization operator.

Before proceeding to determine the form of the operators in second guantization, we recall that
the matrix clements between Slater determinants depend on the spatial Torm of the spin orbitals.
Since the ON vectors are independent of the spadal form ol spin orbitals, we conclude that the
second-quantization operators — in contrast to their first-quantization counterparts — must depend
on the spatial form of the spin orbitals.

First-quantization operalors conserve the number of celectrons. Following the discussion in
Section 1.3, such operators arc in the Fock space represented by lincar combinations of operators
that contain an equal number of creation and annihilation operators. The explicit form of these
number-conserving cperators depends on whether the first-quantized operator is a one-electron
operator or a two-clectron operator. One-clectron operators are discussed in Scction 1.4.1 and two-
clectron operators in Scction 1.4.2. Finally, in Scction 1.4.3 we consider the sccond-quantization
representation of the electronic Hamiltonian operator.

1.4.1 ONLE-ELECTRON OQPERATQRS

In first quantization., one-electron operators are written as

b
FE=D0 ) (1.4.1)
il
where the summation is over the NV electrons of the system. Superscript ¢ indicates that we are
working in the coordinate representation ol first quantization. Since cach term in the operator
(1.4.1} involves a single clectron, this operator gives a vanishing matrix clement whenever the
Slater determinants differ in more than one pair of spin orbitals. The second-quantization analogue
of (1.4.1) therefore has the structure

=3 fegabug (1.4.2)

£

since the excitation operators a}:aQ shift a single electron in an ON vector. The summation is
over all pairs of spin orbitals to secure the highest possible flexibility in the description, The order
of the creation and annihilation operators in cach term ensures that the one-clectron operator ?
produces zero when it works on the vacuum state.

To deiermine the numerical paramelers f g in (1.4.2), we evaluate the matrix clements of }
between two ON veclors and compare with the usual Slater—Condon rufes Tor matrix clements
between determinants |1]. For one-electron operators there are three distinct cases.

I. The ON vectors are identical;

KIJ ) =" frplklapanlk) = kpfpn (1.4.3)

£ I
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2. The ON vectors differ in one pair of occupation numbers;

Ky = kie oo O oo Lyy oo k) (1.4.4)
LSS TTN VRN ¢ PRI 293 (1.4.5)
(ol /[y = 0% 1)) (1.4.6)

3. The ON vectors differ in more than one pair of occupation numbers:
al k) =0 (1.4.7)

In these cxpressions, we have vsed indices 7 and J lor the spin orbitals with different occupations
in the bra and ket vectors.
Let us sce how the above results are obtained. For the diagonal clement

k|flk = L\f‘pg{k|fllag|k} {1.4.8)
re
we note from the orthogonality of ON vectors that nonzero contributions can only arise when

(?P|kl\ = Zl:(?(_j“{‘;l (]4‘9)

which occurs [or P = (2 only. This obscrvation gives (1.4.3). For the ON vectors |k} and |Kk3) in
(1.4.6), the transition-mauix clement

|/ k) = [rolklapaglks) (1.4.10)
P

has nonvanishing contributions only if
Hp |k2\f = :]:{.'EQ |k1\f (1411)

This requirement is only (ulfilled for P =T and Q = 7. Substitution of these values in (1.4.10)
gives (1.4.6). Finally, the matrix clement (1.4.7) vanishes trivially since the onc-clectron operator
(1.4.2) can change only one pair of occcupation numbers,

Comparing with the Slater—Condon rules for one-electron operators, we note that the second-
quantization matrix elements (1.4.3), (1.4.6} and (1.4.7) will agree with their first-quantization
counterparts if we make the identification

fro= [@?‘a(X)f‘:(X)(ﬁQ(X) dx (1.4.12)

The recipe lor constructing a sccond-quantization represcntation of a onc-clectron operator is
therefore w use {1.4.2) with the integrals (1.4.12). For real spin orbitals, the integrals exhibit the
following permutational symmetry

fro= for (real spin orbitals) (1.4.13)

In conclusion, we note that the phase factors (1.2.3) were necessary Lo reproduce the Slater—Condon
rules for matrix elements between Slater determinants,
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1.4.2  TWO-FLICTRON OPERATORS

In first quantization, rwe-electron operators such as the elecronic-repulsion operator are given by
the expression
g0=1Y g xp) (1.4.14)

)
Other examples of two-clectron operators arce the two-clectron part of the spin—orbit operator
and the mass-polarization operator. A two-clecuron operator gives nonvanishing matrix clements
between Slater determinants if the determinants contain at least two electrons and if they differ

in the occupations of at most two pairs of electrons. The second-quantization representation of a
two-electron operator therefore has the structure

5’" = é X gpQR‘s'rl;;(JL({g(lQ (] 4]5)
PORS

The annihilation operators appear to the right of the creation operators in order to ensure that g
gives zero when it works on an ON veetor with less than two electrons. The faclor of one-hall in
(1.4.15) is conventional. Anticommuting the creation and annihilation operators and renaming the
dummy indices, we obtain

Z- toF _Z. s _Z toF :
SPORSH ptlptlstiey = SPORSUpUplUy = HREPQOH ptlptls o (1416)
PORS PORS PORS
The parameters gpppy may therelore be chosen in a symmetrie [ashion
BPURS = RSPy (1.4.17)

The numerical values of the parameters gpgry may be determined by evaluating the matrix element
of ¢ between two ON vectors and setting the result equal to the matrix element between the
corresponding Slater determinants. There are [our cascs.

1. The ON wvectors are identical:

klglk) = % Z grors (Klapupusaglk) = %Zkf’kk(gwwe — &rrir) (1.4.18)
PURS PR

2. The ON vectors differ in one pair of occupation numbers;

|kl} = |f(1. PR 0;, P |J, . !r\w\ (]4]9)

T S PR PR RN $¥2 (1.4.20)

(ks |3k} =T 1"1," Z: ki(grinn — Brens) (1.421)
A

3. The ON wvectors differ in two pairs of occupation numbers:
| SREE=N T TI { FHU ¢ PRV (PSRN FURNRRY F7 {1.4.22)
YIS 7T IR [PV PR § PRSI S¥ £1.4.23)

where F <« Jand K = L

{kalglk)) = |}‘1];|k ]‘]E_' (Girse — Zresk) (1.4.24)
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4. The ON vectors differ in more than two pairs of ccenpation numbers:
{ka|glky} =0 (1.4.25)

We have in these expressions used the indices /, J. K and L for the spin orbitals with different
occupations in the bra and ket vectors.
[.et us consider the derivation of these matrix elements in some detail. The diagonal element

kiglk) = 5 > (klajagasag|kigrgns (1.4.26)
PEARS

has nonvanishing contributions if
f;‘,raf;‘ﬂk} = j:a_gank} (142?)

This condition holds in two diflerent cascs
P=0andR=315
P=Sand Q=R (1.4.28)

If both sets of relations are fulfilled, then the expectation value of the creation and annihilation
operators vanishes. We may therelore write the diagonal matrix clement in the form

S — | : | AP
(klglk: = 5 " (klapapagar Kigrear + 5 Y (Klapaparap Kigrrer

PR nR
I s o4 . o
=2 E klupagagap|K)(gprer — gorre) (1.4.29)

P

From the definiton ol the ON operators (1.3.1) and the commutator (1.3.9), we obtain
a;(.’;(.’;\!(.';.l = a;ﬁ'ﬁap = —5;.1;(!{1";.1 =+ a'{l"pﬁ’rjg (l 430)
The diagonal element {1.4.29) therefore becomes

{Klgk) = 1 "ik| — 8ppNp + NpN ek} (gprun — gorne)

PR
= é Z: kpkp(grern — Lerre) (1.4.31)
PR

Next, we consider the case where the ON vectors (1.4.19) and (1.4.20} differ in the occupation
numbers of one pair of spin orbitals. The matrix clement

{k3|(‘:’|k1} = ’IZ Z {kg|{.'£I.L£LL£5{.’EQ|k1}gpQRg (1432)
PORS

has nonvanishing contributions if
apap|k:) = fagap|ky) (1.4.33)
This condition holds in four diflerent cascs:
P=I O=JandR=3S5
P=I5S5=Jand R=0
R=IQ=Jand P=58
R=i 5=Jand P=¢ (1.4.34)
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Since the matrix element vanishes if several of the above sets of relations hold, we obtain

. | ap | o ,
(kalglley) = £ Y kolayafanas kydgrmes + 5> (kalajagasarlkibgimns
R R

! PR ! gt
+ 5> (Kalapajapaskivgrae + 5 > _(Kalapajasaplkigres  (14.35)
# ”
Invoking the permutational symmetry (1.4.17) and the clementary anticommutation relations, we
arrive at the final expression (1.4.21)

(kalglk } = Z(kzh’i}rﬁ;ﬁf\'ﬁj IKi}(grsrr — Lrrrs)
R

N .
=} i{kelajasaganki}(grsrr — iars)
7

=17y Zfr\iﬁ(c‘?f.mﬁ — Zirns) (1.4.36)
K
It does not matter whether the occupation numbers in this expression refer to |k} or |k} since
the contributions vanish whenever the occupations differ. The matrix element between ON vectors
dilfering in two pairs of occupations (1.4.24) can be treated in the same way and is lelt as an
excreisc.
The two-electron second-quantization matrix elements {1.4.18), (1.4.21), (1.4.24) and {1.4.25)
become identical to the correspending first-quantization elements cbtained from the Slater—Condon
rules il we choose

grors = // D (%) )R (x2)8 (%1, X0 )epp (X )5 (x2) dxy dx; {1.4.37)

The recipe lor constructing a two-clectron second-quantization operator is therclore given by
expressions (1.4.15) and {1.4.37). For any intcraction between identical particles, the operator
¢(x|, x2) is svmmetric in x; and X». The integrals (1.4.37) therefore automatically exhibit the
permutational symmetry in (1.4.17), We also note the following useful permutational symmetries
for real spin orbitals:

Brones = BOrrS = §rOSR = S0PSE (real spin orbitals) {1.4.38)

Thus, for real spin orbitals there are a total of eight permutational symmetries (1.4.17) and (1.4.38)
present in the two-electron integrals, whereas for complex spin orbitals there is only one such
symmelry (1.4.17).

1.43  THIE MOLLCULAR ELECTRONIC HAMILTONIAN

Combining the results of Sections 1.4.1 and 1.4.2, we may now construct the full second-quantization
representation of the electronic Hamiltonian operator in the Bom—Oppenheimer approximation.
Although not strictly needed lor the development of the second-quantization theory in this chapter,
we present the detailed form of this operator as an cxample of the construction of operators in sccond
quantization. In the absence of external fields, the second-quantization nonrelativistic and spin-free
molecular electronic Hamiltonian is given by

I | T T E
T = ZhPQ(JLaQ +, Z Browsttpttpitseig + e (1.4.39)
ro PORS
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where in atomic units (which are always used in this book unless otherwise stated)

: 1, z
hpg = / Gh(x) (—Ev- -3 r—’ do(x)dx (1.4.40)
. ; !
SPORS = // %(xl)%‘;[xzjm’?(xl 95 (x2) dx) dx; (144D
S 12
127z o
e = 5 D » (1.4.42)

Y

Here the /; are the nuclear charges, #; the electron—nuclear separations. r); the electron—electron
scparation and ;; the internuclear separations. The summalions are over all nuclei. The scalar
term (1.4.42) represcnts the nuclear-repulsion encrgy — it is simply added to the Hamiltonian and
makes the same contribution to matrix elements as in first quantization since the inner product of
two ON vectors is identical to the overlap of the determinants. The molecular one- and two-electron
integrals (1.4.40) and (1.4.41) may be caleulated using the techniques described in Chapter 9.

The lorm of the sccond-quantization Hamiltonian (1.4.39) may be interpreted in the (ollowing
way. Applied to an electronic state, the Hamiltonian produces a linear combination of the original
state with states generated by single and double electron excitations from this state. With each
such excitation, there is an associated “amplitude’” 2pg or gpgrs. which represents the probability
ol this cvent happening. These probability amplitudes are calculated (rom the spin orbitals and
the one- and two-glectron operators according to (1.4.40) and (1.4.41),

1.3 Products of operators in second quantization

In the preceding seclion, we constructed second-quantization operators for one- and two-clectron
opcrators in such a way that the same matrix clements and hence the same expectation values
are obtained in the first and second quantizations. Since the expectation values are the only
observables in quantum mechanics, we have arrived at a new representation of many-electron
syslems with the same physical contents as the standard {irst-quantization represcntation. In the
present section., we examine this new tool in greater detail by comparing the first- and second-
quantization representations of operators, In particular, we show that, for operator products AYBY =
F*, the sceond-quantization representation of P may differ from the product of the sceond-
quantization representations ol A° and B° unless a complete basis is used.

1.5.1 OPERATOR PRODUCTS
Let A° and B° be two one-electron operators in first quantization

AC :ZAC(XJ-) (15.1)

2
—

B = ZBf(x,-) (L.5.

and let A and & be the corresponding second-gquantization representations

A=) Apgapay (1.5.3)
Py
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B =Y Bugalug (1.5.4)
g

From the construction of the sccond-quantization operators, it is clear that the first-quantization
operator ¢A* + A8, where @ and b are numbers, is represented by A 4 5B, The standard relations

)¢ (15.5)

e}l

ABCY = (4
(ABY = B'AT (1.5.6)
for linear operators in a linear vector space are also valid.

We now consider the representation of eperator products. The product of the two first-quan-
tization operators A8 can be separated into one- and two-electron parts

PO = AR = OF + T° (1.5.7)

where
OF = ATx)B(x)) (1.5.8)
TC =53 [ATx)B (x,) + A%(x,)B°(x,)] (1.5.9)

i ;—_il,'.

The two-electron operator 15 written so that it is svmmetric with respect to permutation of the
particle indices. This symmetrization is necessary since we know only how to generate the second-
quantization representation ol two-clectron operators that are symmetric in the particles.

The sccond-quantization represceniation P of P¢1is the sum of the second-quantization represen-
tations of OF and T¢:

P =3 Opgabug + 5 > Trousabugusag {1.5.10)
rg PORS
where
OPQ = [ fﬁ':; (X)AC(X)BU (X)(PQUQ dx (1.5.11)

Trous = // ()P (X DAYXIB (X)) + AKX IB (X))o (x)ps (x) dx dx’

= ApgBrs + ArsBro {1.5.12)

Inserting this cxpression for the two-clectron parameters in the two-clectron part of P, we ohtain

; = Z (A;:QHRS + ARSBPQ)(J}I;(l;»(l_g(?g = Z A;:QBR_S(?};(.I;(I_SGQ (1 5]3)

PORS PORS

Fd—

by substitution of dummy indices. Using the anticommutation relations, we may rewrite this
expression as
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T = E APQBRS(G;J{?QG;{GS — 5;2@&‘;_,(!5)

PORS
_ Z KD Z S Z Z g
= “-‘1;1(){!{,{.@ BRSURUS — _APRBRS apa_g
PO RS PS £

_AB-YT (Z A,,Rsm) dhag (1.5.14)

P R
Inserting (1.5.14) in (1.5, 10), we finally arrive at the expression
?’ :’:;II):))+Z (OPQ - Zf'lp;enf\'g)a;ﬂg (]5]5]
PO R

which shows that the second-quantization representation of AB® is in general not equal 1o the
product of the representations of AY and B°.

We shall now demonstrate that the last werm in (1.3.15) vanishes for a complee basis. We usc
the Dirac delta function 3(x — x'), defined by the relationship |2.3]

/ JFx8x —x)dx = f(x) (1.5.16)
For a complete one-clectron basis, the delia function may be writien in the [orm
o
Six—%x) = Z dp(X)Ph(X) {complete basis) (1.5.17)
F=1

Assuming that (1.5.17) holds, we may now write

Opp = /(f)}‘,(x)x‘lc(x)Bc(x)qbQ(x) dx

= // (XJ;(XjAU(x)S(x_xr)b,ctx_s)(pgtxfj dx dx’

= // Gpix)IA“(x) [Z: qf');\s(x)qf');;(x’)] B(x o (x) dx dx’

B=]

[
= ZA’"“B”Q (complcle basis) (1.3.18)
Rl

and the last term in (1.5.15) vanishes, We therefore have for a complete one-electron basis
PY =AY = P = AR (complete basis) (1.5.19}

but lor {inite basis sets this cxpression does not hold.

The second-quantization operalors are projections ol the cxact opcralors onto a basis ol spin
orbitals. For an incomplete basis, the second-quantization representation of an operator product
therefore depends on when the projection is made. l'or a complete basis, however, the represen-
tation is exact and independent of when the projection is made.
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1.5.2 THIL CANONICAL COMMUTATORS

The previous discussion suggests that commutation relations that hold for operators in first quanti-
zation, do not necessarily hold for their second-quantization counterparts in a finite basis. Consider
the canonical commulators

L. PRl =18, (1.5.20)
where we have conributions from cach of the N clectrons

A

= rt) (15.21)
=1
N

ISED IO (15.22)
=l
N

5y = Bupli) (1.5.23)
il

and Greek letiers denote Cartesian dircetions. The relationship {1.5.20) holds cxactly for first-
quantization operators. Note carclully that the operator (1.5.23) depends on the number of clectrons
and is not the usual Kronecker delta. The second-cquantization representations of the position and
momentuin operators are

Fo = > [ lpoapag (1.5.24)
g

P =Y _LpSlrpapay (1.5.25)
#i

and the commutator of these operators becomes

[P Pyl = > [rilrol pylaslapag. apas] (1.5.26)
PORS

In these expressions, square brackets around a first-quantization operator represent the one-clectron

integral of this operator in the given basis. This somewhat cumbersome notation is adopted lor

this discussion o make the dependence of the integrals on the lirsi-quantization operators explicit.
In Section 1.8, the commutator between the two excitation operators is shown to be

[aLaQ_, a;.a_q] = rSHQ_aI,a_q - S;JS‘QLGQ {1.5.27)
and the commutator (1.5.26) therclore reduces o

e Psl = ZaLng_ Z([T';]Ph’[p?i]h’g - [P?s]we[’";]:eg_] (1.5.28)
PO R
l'or a complete basis, we may use (1.5.18) and arrive at the following simplifications:

o)

X[fﬁjpﬁlp;]ﬁg = [rf,'p:ifjm {complete basis] (1.5.29)

f=]
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[&w]
L[}Jjﬁs]p;\s[r;];gg = [parglee  (complete basis) (1.5.30)
K=l
The sccond-quantization canonical commutator therelore becomes proportional (o the number
opcrator in the limit ol a complete basis:

Fo. Pyl = Z L1, p};JJPQGj-‘;(IQ =i Z: [SiﬁJan}}aQ = iﬁu_,r_;,-i’ (complete basis)  (1.5.31)
=1 Fo=I

This expression should be compared with its first-quantization counterpart (1.5.20). For f(inile
basis scts, the sccond-quantization canonical commutator wims into a general one-clectron operator
(1.5.28).

1.6 First- and second-quantization opcrators compared

In Box 1.2, we summarizc some of the characteristics of operators in the first and sccond quan-
tizations. The dependence on the gpin-orbital basis is different in the two representations. ln
first quantization, the Slater determinants depend on the spin-orbital basis whereas the operators
arc independent of the spin orbitals. In the sccond-quantization formalism, the ON vectors are
basis vectors in a linear vector space and contain no reference to the spin-orbital basis. lnstead,
the reference to the spin-orbital basis is made in the operators. We also note that, whereas the
first-guantization operalors depend explicitly on the number ol clectrons, no such dependence iy
[ound in the second-quantization operalors.

Box 1.2 First- and second-quantization operators compared

First quantization Sccond quantization
— one-electron operator; — one-electron operator;
oev -~ o, -+
2 Frx) 2 Frpapte
‘ ;.JQ
— lwo-clectron ()pCI"ElI.OTZ — two-clectron ()pCTEllU]‘Z
| c | T
3 g (x, %)) 3 Rronstippstiy
iz PORS
— operaltors arce independent of — operators depend on the spin-orbital
the spin-orbital basis basis
— operators depend on the — operators are independent of the
number of electrons number of electrons
— cxacl operalors — projected operalors

The fact that the second-guantization operators are projections of the exact operators onto the
spin-crbital basis means that a second-quantization operator times an ON vector is just another
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vector in the l'ock space. By contrast, a first-quantization operator tinies a determinant cannot be
expanded as a sum of Slater determinants in a finite basis. This fact often goes unnoticed since,
in the first quantization, we usually work dircetly with matrix clements.

The projeciled nature of the sceond-quantization operalors has many ramifications. For example,
relations that hold for exact operators such as the canonical commutation propertics of the coor-
dinate and momentwm operators do not necessarily hold for projected operators. Similarly, the
projected coordinate operator does notl commulte with the projected Coulomb repulsion operator.
It should he emphasized, however, that these problems are not peculiar 10 sccond quantization but
arise whenever a finite basis is employed. They also arise in first quantization, but not until the
matrix elements are evaluated.

Second quantization treats operators and wave functions in a unified way — they are all expressed
in terms of the elementary creation and anmihilation operators. This property of the second-
guantization formalism can, for example, be exploited to express modifications to the wave function
as changes in the operators. To illustrate the unified description ol stales and operators alTorded by
sccond quantization, we note that any ON vector may be written compactly as a string ol creation
operators working on the vacuum stale (1.2.4)

M
k) = Xy |vac) = H(a;)k*' [vac) (1.6.1)
F=I

Matrix clements may therefore be viewed as the vacuum expectation vafue of an operator

(K|O|m) = (vac|X; OX u|vac) (1.6.2)

and expectation values become linear combinations of vacuum expectation values. The unified
description of states and operators in terms of the elementary creation and annihilation operators
cnables us o carry oul most of our manipulations algebraically based on the anticommutation
relations of these operators. Thus, the antisymmetry of the clectronic wave Tunction [ollows auto-
matically [rom the algebra of the clementary operators without the need to keep track ol phase
lactors.

1.7 Density matrices

Having considered the representation of states and operators in second quantization, let us now
turn cur attention to expectation values. As in first quantization. the evaluation of expectation
values is carried out by means of density matrices [4]. Consider a general one- and two-electron
Hermitian operator in the spin-orbital basis

Q=" Qpoupag+ 5 > Qporsupakasag + 82 (1.7.1)
Pl PORS

The expectation value of this operator with respect to a normalized reference state |0} written as
a linear combination of ON vectors,

0y = adk) (1.7.2)
k

{010} =1 (1.7.3)
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1.7.1

is given by the expression

10[2(0) = ZBI’Q_QPQ_‘ +1 Z drorsSipors + S (1.7.4)
P PORS
where we have inroduced the matrix clements
Drg = {Olapap|0} {1.7.5)
drors = (U|a;f¥Lf¥.§aQ|U) (1.7.6)

Clearly, all information that is required about the wave [unction (1.7.2) [or the cvaluation of
expectation values {1.7.4) is embodied in the quantities (1.7.5} and (1.7.6) called the one- and
iwo-electron density-matrix elements, respectively. Overbars are used for the spin-orbital densities
to distinguish these [rom those that will be introduced in Chapter 2 for the orbital basis. Since the
density clements play such an important role in clectronic-structure theory, it is appropriate here
10 examine their properties within the framework of second quantization.

THE ONE-ELECTRON DENSITY MATRIX

The densities (1.7.5) constitute the clements of an M x M Tlermilian matrix — the one-electron
spin-orbital density matrix D — since the following relation is satisfied:

Do = Olapag|0)* = (Olagapl0y = Dyp (1.7.7)
For real wave functions, the matrix is synumetric:
Dpg = Dgp {real wave [unctions) {1.7.8)

The one-clectron density matrix is positive semidelinite since its clements are cither trivially equal
1o zero or inner products of states in the subspace £(M, N — 1). The diagonal elements of the
spin-orbital density matrix are the expectation values of the occupation-number operators (1.3.1)
in IF{M, N) and arc referred w0 as the occupation numbers omp ol the clectronic slate:

g = Dpp = (O|Np|0) (1.7.9)

This terminology is appropriale since the diagonal clements of D reduce Lo the usual occupation
numbers &y in (1.3.2) whenever the relerence state is an cigenlunction of the ON operators — that
is, when the reference state is an ON vector:

(k|Np|k} = kp (1.7.10)
Since the ON operators are projectors (1.3.3), we may write the cccupation nunibers in the form
@p = (0N pN [0} (17,11

where the projected electronic state is given by

Nploy = kacklk} (1.7.12)
k

The occupation numbers @y may now be written in the form

@r =y kplol” (1.7.13)
k
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and interpreted as the squared norm of the part of the reference state where spin orbital ¢p is
occupicd in cach ON veclor. The occupation numbers esp thus serve as indicators ol the importance
of the spin orbitals in the clectronic stale.

The expansion cocllicicnts satisly the normalization condition

> el =1 (1.7.14)

kL

Recalling that the occupation numbers kp of an ON vector are zero or one, we conclude that
the occupation numbers @p of an electronic state (1.7.13) are real numbers between zero and
onc — zero for spin orbitals that arc unoccupiced in all ON vectors, one for spin orbitals that arce
occupiced in all ON vectors, and nonintegral lor spin orbitals that are occupied in some but not all
OXN vectors:

0<wp =1 (1.7.15)

We also note that the sum of the occupation numbers (i.c. the trace ol the density matrix) is equal
to the total number of electrons in the system:

D= @p =Y {0140} = (0IF]0) =N (1.7.16)
£ £

Here we have vsed the definition of the particle-number operator {1.3.12).
For a state consisting of a single ON wvector, the one-electron spin-orbital density matrix has a
simple diagonal structure:
k = . .
JDPQ = {kla},ank} = bp()}{(p (l?l?)

By contrast, lor an clectronic stale containing scveral ON vectors, the densily matrix is not diagonal.
Applying the Schwarz incquality in the (& — 1)-clectron space, we obtain

[{0lapag|0})® = (0lapar|0)(0labap|0) (1.7.18)

which gives us an upper bound 1o the magnitude ol the elements of the spin-orbital density matrix
cqual 1o the geometric mean ol the occupation numbers:

|Dpyl = /Bpog (1.7.19)

Of course, since IV is a Hermitian matrix, we may eliminate the off-diagonal elements (1.7.19)
complelely by diagonalization with a unitary matrix:

D =UsCt (1.7.20)

The cigenvalues are real numbers 0 < ¥ = 1, known as the natural-ovbital occupation numbers.
The sum of the patural-orbital occupation numbers 15 again equal 1o the number of clectrons in
the system. From the eigenvectors U of the density matrix, we obtain a new set of spin orbitals
called the natural spin orbitals of the system. However, we defer the discussion of unitary orbital
transformations to Chapter 3,

1.7.2 THE TWO-ELECTRON DENSITY MATRIX

We now turn our attention to the nweo-electron density mafrix. We begin by noting that the two-
electron density-matrix elements (1.7.6) are not all independent because of the anticommutation
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relations between the creation operators and between the annihilation operators:

dpors = —drgps = —dpsag = drspg (1.7.21)
The lollowing clements are therctfore zero in accordance with the Pauli principle:
EPQ_PS = EPQRQ = EPQPQ_ =0 (1.7.22)

To avoid these redundancies in our representation, we introduce the two-electron density matrix
T with elements given by

Trors = Olapugasapl0). P> Q.R=S (1.7.23)

There are MM — 1)/2 rows and columns in this matrix with composile indices P such that
P = 0. The elements of T constitute a subset of the two-electron density elements (1.7.6) and
differ from these by a reordering of the middle indices:

TPQ.R.S' = JPR().S’_- P o= Q R=S8 (1?24)

The reason for introducing this reordering is that it allows us Lo examine the two-clectron density
matrix by analogy with the discussion of the one-clectron density in Section 1.7.1. Thus, as in the
one-electron case, we note that the two-electron density matrix T is Hermitian

T;Q:RS = {0|a;(g&a5a”|0)* = {0|(I;;,(I;(IQ:‘IP|O:' = T;g,g_yg (1.7.25)
and therclore symmetric lor real wave functions
T;sg__;\'_g = T;gs__pg {real wave functions) (1.7.26)

Also, the two-electron density matrix T is positive semidefinite since its elements are either trivially
equal to zero or inner products of states in /(M. N — 2),

We recall that the diagonal clements of D correspond to expectation values ol ON operators
(1.7.9) and are interpreted as the occupation numbers of the spin orbitals. We now examine the
diagonal elements of the two-electron density matrix:

T;:QJ:Q = '\JO|G};(.1£;](?Q(1P|0} (1 727)

Since P = {2, we may anticommule ¢p [rom the fourth to the sccond position, introduce ON
opcrators, and arrive at the following cxpression analogous to (1.7.9):

Wpg = TPQ.PQ = {0|;\'7Pf\'vg|0} (] 728]

Since the ON operators are projectors, we may now interpret the diagonal clements @y as sinuid-
taneous oceupations of pairs of spin orbitals (pair occupations). noting that wpg represents the
squared amplitude of the part of the wave function where spin orbitals ¢p and ¢¢ are simultane-
ously occupied:
NpNpl0) = L kpkpog k) (1.7.29)
k

The norm of the wave function is successively reduced by the repeated application of ON
projectors; compare (1.7.12) and (1.7.29), This observation agrees with the expectation that the
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simultanecus occupation of a given spin-orbital pair cannot exceed those of the individual spin
orbitals:
0 = Bpg = min(@p, Wg) < 1 {1.7.30)

The reader may wish to verify that a weaker upper bound to the pair occupations
Wpo == v wpddy (] 731 )

is arrived at by the application of the Schwars incquality o (1.7.28). From the trace ol the
two-electron density matrix

TrT = {0NpNgl0) = 3 D> (OINpR IO} — 3D (0[N [0}
Had e} P

= JOIN? — N10) = TNV = 1) (1.7.32)

we find that the sum ol all pair cccupations mpg is equal 1o the number of clectron pairs in the
system in the same way that the sum of all single occupations @ s cqual w the number ol clectrons
in the system (1.7.16). We may summarize these results by stating that the one-electron density
matrix probes the individual occupancies of the spin orbitals and describes how the & electrons
arc distributed among the 3 spin orbitals, whereas the two-clectron density matrix probes the
simultaneous occupations of the spin orbitals and describes how the N (N — 1)/2 electron pairs
are distributed among the M (M — 1)/2 spin-orbital pairs,

For a state containing a single ON vector, the two-electron density matrix has a particularly
simple diagonal structure with the following clements
T;GRS = {k|f’lL(}Q(}.5(}.R|k} = Sp;\!rSQ._\'kp;\'Q {] ?33)
recalling the conditions P = @ and R = S. Indeed, for such clectronic states, the two-clectron
density matrix 7 may be constructed dirceily [rom the onc-clectron density matrix

Troxs = DorDps (1.7.34)
and likewise the expectation value of any one- and two-clectron operator may be obtained directly
from the one-electron density matrix. This observation is consistent with our picture of ON vectors
(i.e. determinants) as representing an uncorrelated description of the electronic system where
the simultancous occupations of pairs ol spin orbitals arc just the products of the individual
occupations.

For a general electronic state, containing more than one ON vector and providing a correlated
treaument ol the clectronic system, the two-clectron densily matrix is in general notl diagonal and
cannot be generated directly ftom the one-clectron density clements. As in the one-clectron case
(1.7.19), we may invoke the Schwarez incquality to cstablish an upper bound o the magnitude of
the off-diagonal elements

|TPQ_‘.RS| oA Opgigy (1.7.35)

and we may in principle diagonalize T to obtain a more compact representation of the two-electron
density, but this is seldom done in praclice.
1.7.3  DENSITY MATRICES IN SPIN-ORBITAL AN COORDINATLE REPRESENTATIONS

The density matrices we have discussed so far in this section have all been given in the spin-
orbital representation. We shall now see how these matrices are represented in the coordinate
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representation of gquantum mechanics, Since we have not here developed a second-quantization
formalism appropriate for the coordinale representation, we shall draw on the equivalence between
matrix clements in the first and sccond quantizations 1o cstablish the relationship between density
matrices in the spin-orbital and coordinate representations.

We recall that, in the coordinate representation of first quantization, we may write the expectation
value ol any onc-clectron operator in the following lorm

wirw) = [Lreommen ol x i (1.7.36)
in terms of the first-order reduced density matrix
yi(x, X)) =N / WK, X, . X R X, L Xy )X - dy (1.7.37)

The density matrix in the spin-orbital representation was introduced in second quantization for the
evaluation of one-electron expectation values in the following form

01710y = " DegFry (1.7.38)
ro

where the integrals are those given in (1.4.12);
pr = /@:,(lefcfxlj(}hg(xl)Xm (I 7391
Combining (1.7.38) and {1.7.39}, we obtain

17 10) = ZDPQ /Q"i(xljfc(xl Mho(x))dx,

Figd)
= / [.fC(XUZDPqu?J(X] )bo(X) )W dx, (1.7.40)
: ] J .
X =X
and we are therelore able to make the identfication
yilx), x)) = Z Dpghin(x) o (x1) (1.7.41)
o

involving the spin-orbital density matrix D and the first-order reduced density matrix  (xq, x| ).
Since the spin orbitals arc orthonormal, we obtain the lollowing expression alter multiplication by
spin orbitals and integration

{0lahag|0) = /ﬁbl}(xl)}’l (x1, X} )¢p (%)) dx; dx, (1.7.42)

where we have used (1.7.5). This equation displays the relationship between the densily matrices
in the spin-orhital representation and in the coordinate representation. We may establish similar
relationships for the two-electron densities. Thus, introducing the second-order reduced density
MQErix

. NN-=1) f e
yaix). x2.X),X,) = s ] Wix), X2, X3, ... X T (X L, X0, X3 0L, X bdXG - - dXgy
B (1.7.43)
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we obtain the following relationships

Z d pars®p (X 1o (X1 WER(X5 s (x2) {1.7.44)

PORS

b —

4 .
yz(xthr x]_' Xz) =

]

(Olabapasap|0) = /rb}}txl)qbfé(vcz)yztxl, X2, X)L X5 1 (X Yp(Xy ) dx) dxo dx) dx)y

| (1.7.45)
analogous to {1.7.41} and (1.7.42). The simple algebraic definitions for the densities in second
guantization (as expectation values of excitation operators) should be contrasted with the more

complicated expression in terms of the reduced densities,

1.8 Commutators and anticommutators

In the manipulation of operators and matrix elements in second quantization, the commuiaior

[A, B] =AB — BA (1.8.1)
and the ariicommuiator o o
(A, Bl =AB+ BA (1.8.2)

of two opcerators are often encountered. The elementary ereation and annihilation operators satisly
the anticommutation relations (1.2.27)—(1.2.29). Referring to these basic relations, it is vsually
possible to simplify the commutators and anticommutators between strings of elementary oper-
ators considerably. Since manipulations in second quantization frequently involve complicated
operator strings, it is important to establish a good strategy for the evaluation of commutators and
anticomnutators of such strings,
Before comsidering the evaluation and simplification of commutators and anticomnutators, it
15 uselul to introduce the concepts of operator rank and rank reduction. The (particle) rank of a
string ol creation and annihilation operators is simply the number ol elementary operators divided
by 2. For cxample, the rank of a creation operator is 1/2 and the rank ol an ON operator is 1. Rank
reduction is said to oceur when the rank of a4 commutalor or anticommulator is lower than the
combined rank of the operators commuted or anticommuted. Consider the basic anticommutation
rclation .
aLaP + apczl =1 (1.8.3)

Here the combined rank of the creation and annihilation operators is 1 whercas the rank of the
anticommultator itsell is 0. Anticommutation thus reduces the rank by 1.

Rank recduction is desirable since it simplilics the expression. L would clearly be usclul if
we woere able o distinguish at a glance those commutators and anticommutators that reduce the
operator rank [rom those that do not. The lollowing simple rule is sufiicient [or this purposc: Rank
reduction follows upon anticommutation of two strings of half-integral rank and upon commutation
of all other strings. In Exercise 1.2, rank reduction is demonstrated for a commutator of two
strings of integral rank. The remaining cases mayv be proved in the same manner. The basic
anticommutation relations of the elementary operators (1.2.27)—(1.2.29) are the prototypes of rank
reduction for strings of half-integral rank.

We now retun to the evaluation of commutators and anticommutators, One useful strategy for
the evaluation of such expressions is based on their linear expansion in sinpler commutators or
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anticommutators according to the operator identities

(A, B1By) = A, BBy + Bi]A. Bo) (1.8.4)

(A, fﬁl‘-‘!ﬁ:‘,,J:i!ﬁa‘l-nﬁk A, BBy B, (1.8.5)
k=1

A, BB ) = [A. Bil By — BIIA. Bl (1.8.6)

(A, By---B,] = i:(—l)"_]fil (A Bl - By (0 even) (1.8.7)
k=1

LA, B8], = |A, BBy + BiA,. Bo]. = |A, B], B> — B (A, B (1.8.8)

(A, BB = i:(—l)"_]f)ﬁ A BB, (7 0dd) (1.8.9)

k=1

Note that the commutators and anticommutators on the right-hand side of these cxpressions contain
fewer operators than does the conunutator or the anticommutator on the left-hand side. For proofs,
see Lxercise 1.3, In deciding what identity to apply in a given case, we follow the ‘principle of
rank reduction” — that is, we try 1o expand the expression in commutators or anticommulators that,
to the greatest cxtent possible, exhibit rank reduction.

Let us consider the simplest nontrivial commutator — [a;,. a;a;\s]. Moving one ol the operators
in {.‘EZ}(JR outside the commutator according to the identities {1.8.4) or (1.8.6), we are left either
with commutators or with anticommutators of two elementary operators — strings of half-integral
rank. In order 1o reduce the rank and thus the number of operators, we choose the anticommutator
expansion (1.8.6):

[, ahatn] = [ alylate — aylug. axl- (1.8.10)
The basic anticommutation relations can now be invoked o give
[tp, upiin] = —Bpraly (1.8.11)
Proceeding in the same manner, we also obtain
lap. apar] = bpoag (1.8.12)

but we note that this expression is perhaps more casily obtlained by conjugating {1.8.11).
The conunutator relations (1.8.11) and (1.8.12) may now be used to simplify more complicated
commutators, [nvoking (1.8.4), we obtain for the commutator between two excitation operators

lahag. apas) = lab, apaslag + aplag. ayas) (1.8.13)

This commutator is cxpanded in commutators rather than anticommutators since ong of the oper-
ators on the right-hand side contains two elementary operators. Inserting (1.8.11) and (1.8.12) in
this expression, we obtain .

I_(?;(.IQ, dpas] = SQR(?;ag — 8;:_5-(?;(1@] (1.8.14)

We can now proceed 1o even more complicated commutators. The proof of the following relation-
ship is left as an exercise:

Lepeig. (1;2(15(1‘.«;1(?;\:] = Burpasdyty — Spstptioty iy + SQMa}ca‘ga},a_x — fip_,x-a}\,a_ga_,[fag (1.8.15)
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The preceding examples should suffice to illustrate the usefulness of the expansions (1.8.4}-(1.8.9)
for evaluating commutalors and anticonmmutalors involving clementary operators.

Let us finally consider nested commutators. Nested commulators may be simplified by the same
techniques as the single commutators, thus giving rise to rank reductions greater than 1. For
example, the following double commutator is easily evaluated using (1.8.14):

" @ . - o .
lapay, lagas, ayax]l = Ssudprapay — Ssydpnagay — dSpndosapas + Sandpsayay  (1.8.10)

The particle rank is reduced by 2. ITn manipulating and simplilying nested commutators, the Jacobi
identity is often uselul:

A 1B. Cl1+ [C. A B+ [B.IC. All =0 (1.8.17)

This identity is easily verified by expansion, Note that the Jacobi identity is different from the
expansions (1.8.4)—(1.8.9} in that it rclates expressions of the same rank and structure.

1.9 Nonorthogonal spin orbitals

Our discussion so lar has been concermned with the development of the sccond-quantization
formalism for an orthonormal basis. Occasionally, however, we shall find it more convenient
to work with spin orbitals that are not orthogonal, We therefore extend the formalism of second
quantization Lo deal with such spin orbitals, drawing heavily on the development in the preceding
SCClions.

Consider a sel ol nonorthogonal spin orbitals with overlap

Spo = / Gh(x)bo(x) dx (19.1)

A Fock space lor these spin orbitals can now be constructed as an abstract veclor space using ON
vectors ag basis vectors in much the same way as for orthonormal spin orbitals. The inner product
of the Fock space is defined such that, for vectors with the same number of electrons, it is equal
to the overlap between the corresponding Slater determinants. lor vectors with different particle
numbers, the inner product is zero. The inner product is thus given by

(Kimj = &y,_y,, detS¥° (1.9.2)

where N\, and ¥, arc the numbers of electrons in the ON vectors. 8™ is the matrix of overlap inle-
grals between the spin orbitals occupied in the ON vectors and det 8™ represents the determinant
of this matrix.

1.9.1 CREATION AND ANNIIIILATION OPERATORS

The creation operators dp for nonorthogonal spin orbitals are defined in the same way as for
orthonormal spin orbitals (1.2.5). As for orthonormal spin orbitals, the anticommutation relations
of the creation operators and the propertics of their Tlermitian adjoints (the annihilation opera-
tors) may be deduced [rom the delinition of the creation operawors and [rom the inner product
(1.9.2). However, it is easier to proceed in the following manner. We introduce an auxiliary set
of symmetrically orthonormalized spin orbitals



28

MOLECULAR EL ECTRONIC-STRUCTURE TIEGRY

such that X
Spy = / Fa(x)Poixydx = [$71887 ] = 8pg (1.9.4)

[For these auxiliary spin orbitalg, we next introduce a set of operators that satisfy the usnal anti-
commutation relations for orthonormal spin orbitals, As discussed in Section 3.2, the relationship
between the old and new creation operators is similar o the relationship between the old and new
orbitals (1.9.3) and becomes

7]
a} _ Z&QISLQ]QP (1.9.6)
(

The relationships between the annihilation operators are found by conjugating these expressions

ap =Y aplS™' ey (1.9.7)
¥

ap = agl8'" ey (1.9.8)
¥

We may now cvaluate the anticommutalors for the nonorthogonal creation operators
| =T rgli2 =0 ali2 2172 JLiZp ]t
lap, abli = > (@S  ]kp. I8 2Usol ) = > 1S rp[$H spla). a51 =0 (1.9.9)
S RS

and obtain the annihilation commutation relations by taking the Hermitian conjugate of this anti-
conmmulator
[ep. aplye =0 (1.9.10)

Clearly, the nonorthogonality does not affect the anticommutators between two creation operators
and berween two annihilation operators. By contrast, the anticommutator between a creation operator
and an annihilation operator becomes

[ﬂ;—n dply = Z[&L[S]"}Z]mu EJ.\”[SI"Q]LL?.‘{]+ = Z[S]""Iz]xff’[sl";2]@.5' [5;:_. ay]-

RS RS
= 1818 lostas = Y 18" 1oalS" e (L9.11)
Ry 4

We thus have the (ollowing anticommultator for nonorthogonal creation and annihilation operators

[p. agly = Sor (1.9.12)

which in general is nonzero for all pairs of operators. For orthonormal spin orbitals, this expression
recduces to the standard anticommutator (1.2,29),

Since the nonoerthogonal annihilation operators are linear combinations of orthonormal anni-
hilation operators, we note that an annihilation operator times the vacuun state vanishes as for
orthonormal spin orbitals:

aplvach =0 (1.9.13)
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The effect of an annihilation operator ¢p on an N-patrticle ON vector can therefore be written as
M
aplk = |ap, l[(az,)k‘-" [vach {1.9.14)
o=1 (+
where, in order to reduce the particle rank as discussed in Section 1.8, we introduce a commutator

for cven N and an anticommutator for odd . Using (1.8.7) or (1.8.9), we now cxpand the
(anti)commutator in (1.9.14) as a lincar combination ol clementary anticommutalors:

M
ko, Tk T ke T oakas oy
aplk) = koThta)) - Tup. (@014 -+ (@}, )} |vac)
01
A
- . _
=Y kgTHSeplke, ... 0g, .. kar) (1.9.15)
o=|
Thus, an annihiladion operator working on a single ON vector generates a lincar combination
of ON vectors, each obtained by removing one electron from the original vector. Again, for an
orthonormal basis, (1.9.15) reduces to the usual one-term expression (1,2,16),
1 is noteworthy that the corresponding expression lor a nonorthogonal creation operator working
on an ON vector is identical 1o the expression lor orthonormal spin orbitals (1.2.5)

ablky = (1 = k)%l oo, Ly k) (1.9.16)

since the nonorthogonal creation operators anticommute among themselves,

1.9.2  ONIi- AND TWO-I1LILCTRON OPERATORS

The second-quantization one- and two-electron operators in a nonorthogonal basis may be obtained
from the corresponding operators in the auxiliary orthonormal basis discussed in Section 1.4, The
onc-clectron operalor iy given by

=3 Feolpap =" (87187 ppapay (1.9.17)
PO P}

where the first expression is in the auxiliary basis, and the second expression is obtained by
expanding the creation and annihilation operators according to (1.9.5) and (1.9.7). The integrals
in the auxiliary basis are related o the integrals in the nonorthogonal basis by the cquation

Fro= / bhx) S (X)do (x)dx = |STLS™12 g (1.9.18)

Inserting this expression in (1.9.17), we obtain the final expression for onc-clectron operaters in
nonorthogonal basis:
7 =>"187"18" Ippupag (1.9.19)

£

Two-electron operators may be treated in the same way. We obtain

g = |2 z Z[S_J]m 8™ elS ™ 1ex 8™ 0y grseer ﬁ;ﬂj\sﬂsﬁg {1.9.20)
PORS NIJKL



MOLECULAR EL ECTRONIC-STRUCTURE TIEGRY

where we have used the indices /, J, K and /. for the inner summations. Clearly, the one-electron
and two-clectron operators both reduce Lo the standard expression for orthonormal spin orbitals
when the overlap matrix becomes the identity maltrix.

We now consider the effect of 2 one-electron operator )Af on an ON vector. Combining equations
(1.9.15) and {1.9.16), we obtain

k) = ZlS_lt’S_lpoaj;aQ|k}

2

= Z[S_IIS_I]PQSQ;\’SPH l—‘}‘, l"k.(l — kp + dgp ks

f(p — 1
kp — dpp

FOR
. K n kp — |
FO ¢ PO

where £pg; is delined as in (1.3.18). This expression should be compared with (1.3.17), which gives
the result of a single-excitation operator [or orthonormal spin orbitals. Although the derivation ol
the effect of a one-electron operator on an ON vector is more complicated in the nonorthog-
onal case, the final expressions look much the same sgince in {1.9.21) we were able to eliminate
one summation index by modifying the integrals. Note, however, that the integrals in the final
cxpression of (1.9.21) arc nol symmetric in the indices.

1.9.3 BIORTHOGONAL OPERATORS

It is possible to arrive at the results of Section 1.9.2 in a different way. We note that all compli-
cations due to nonorthogonalily arise (rom the anticommutator (1.9.12). We thereflore intreduce a
transformed sct of annihilation operators @ that satisly the anticommutation relation

apdio + dgap = dpg (1.9.22)
To satisly this relation, the annihilation operators are chosen as
ap =% ag[8 ' 1pg (1.9.23)
0

That these operators indeed satisly the anticommulation relation {1.9.22) can be verilied by
substitution and wvsc ol (1.9.12). The operators a;EQ behave just like cxcitation opcerators in an
orthonormal basis:

a;EQﬂs} = epply FIEJ.U ~ ket drolhe

kp — I ;
1.9.24
ky — 5PQ> ‘ )

A general one-electron operator can now be expanded in the excitation operators .y
T c— | pg—1 a—1 T ; :
f= Z[S s ]JL'QHI'QQ = Z[b MNeouptn (1.94.25)
P P

and we thus obtain (1.9.21) directly from (1.9.24) and (1.9.23). The annihilation operators @
arc said to be biorthogoneal 10 the creation operators aI. since they [ulfill the relation (1.9.22)
characterigtic of orthonormal spin orbitals [5]. Note, however, that the creation operator a; is not
the adjoint of ap.
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Exercises

EXERCISE 1.1

Show that the effect of an excitation operator on an ON vector can be written as

; . N kp — 1
apaglk) = £pgTETH(1 — kp + 8p)ky },:“) _ 5P()> (1E.1.1)

where
1 FP=
Epo = {_1 1’: 8 (1E.1.2)
and where the ket on the right-hand side of (114.1.1) is an ON vector with the same occupation

numbers as |k} excepl as indicated (or spin orbitals P and .

EXERCISE 1.2
Let 7 ., and ;’m be strings that contain # and s clementary (creation or annihilation) operators,
respectively. Show by induction that, for even » and m, [{,. /] can be reduced to a sum of
strings, each of which contains at most # + m — 2 elementary operators.

EXERCISE 1.3

Verily the following commutation and anticommutation relations:

I, 1A, B1585) = [A, B11B5 + B11A. B (113.3.1)
1l

2. TABi--B1=3" 8- BeifA BBy - B, (IE3.2)
o

30 1A BBy = (A, By By — BilAL Bl (114.3.3)
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4 A B B =) (—1"'B - [A Bl B, (n even) (1E.3.4)
Al
5. A BBy = A BB + BiAL Baly = [A, BileBa — By[A, Ba] (IE3.5)
- s -~
6. [A, By - B.ly = Z(—])’f—'BI AR By odd) (IE3.6)

L=l
EXERCISE 1.4
Let & and f be the one-clectron operalors

= kppapay (IE.4.1)

¢

Fl

=]

Froapag (1E.4.2)

e

Il
"::D/
o J

Show that the commutator [#, ] can be wrillen as & one-clectron operalor

e J1=3" [hpabag (LE.4.3)
PY
with the modified integrals
Tio = lkprfro — [ rrkrp) (1E.4.4)
"

Solutions

SOLUTION 1.1
We consider first the case P = . Using (1.2.16) and (1.2.5), we obtain

apaglk) = ap S, VBlkL o Og. oo kp o ke
= 51’:;10 51%(_,1 l"!_}]"';epg kp,---, OQ_, SR FIREEEN ;\'.-w;\-
< kp — 1
= epgT T (1 — kp)ky k; _ 0> (1S.1.1}

in agreement with (LE.1.1). The case P = @ differs from (18.1.1) only in the interpretation of
#pe. Finally, the case P = @ is covered by (1.3.2).

SOLUTION 1.2

Assume that the relation

=31, (182.1)

where each I, conrains ar most & 4/ — 2 elementary operators, holds for m = k and n = { where
k=2and { = 2, Intreducing
;‘k|2:!kbﬁ (182‘2)
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where & and ¢ are elementary operators, we obtain
Fiin, 1] = Uehe, 10 = U, 116 + Ti[be, 1) (15.2.3)

By assumption, both terms on the right-hand side contain at most & + / clementary operators.
Thus, it the assumption holds for » = & and # =/, it holds also for m = 4 4+ 2 and » = {. By
symmetry of £ and / in (18,21}, the assumption then holds for m =& and 2 =7+ 2 as well,
The prool is completed by noting that the assumption holds for £k =2 and 7 =2, as is casily
verified — for example:

[apciy. aras] = Sorapas — Spragus + Sgsunup — Spsupty (15.2.4)

SOLUTION 1.3

I. Relation (1£.3.1) is verified by expanding both sides and comparing terms.
2. Assume that (1E.3.2) holds for # = m. Using (1E.3.1), we then obtain lor 1 =m 4 1:

["rila B| et énr}nr+l] = [E'a f’)] e f’lm]f’lm-i-l + f’)] e f’lm[;is f))m-i—l]
il
=(E}ﬂ~ﬂbmamwﬁp~&qswruﬁ~ﬂa&&wn
b=l

el

=D BBl BBy BB (15.3.1)
k=1

Since (1E.3.2) holds for # = 2, the induction is complete.

3. Relation (1E.3.3) is verified by expanding both sides and comparing terms.

4. To demonstrate (1E.3.4), we [first collect the f)’,- n 1 /2 pairs: {_f)ﬁf)'g){_f)’_gf)'ﬁ;) -- . Next, we apply
(1E.3.2) 1o obtain an cxpansion aver the #/2 pairs and linally usc (1E.3.3) o resolve the wo
contributions from each pair.

5. Relation (1E.3.5) is verified by cxpanding both sides and comparing lerms.

6. Assume that {1E.3.6) holds for # = m (m odd). Using (1E.3.5), we obtain

[‘;i! f’)] s f’lm‘?’lm-l—lﬁm—l]-i— = [f%s f))l o ‘%m]—f’lm-i—lﬁ)m+2 - f))l e fgm[ﬁs l?’lm-i—lf;)m+2] (1832]

Since o i o . i o
[A-.- Bn.i+|BH'r+2] = [A~ Bn.i+| I+Bn.i+2 - BHH—I I‘L‘le Bm+21+ (1533)
it is casily scen from (15.3.2) that (1E.3.6) is valid lfor 7 = m 4 2. Since il is valid for n = 1,

we have proved (1E.3.6).

SOLUTION 1.4

[nserting the operators in the commutator and expanding, we obtain

~ T _ - - T 1 . - T o . T
[ - B [ AN Bl (£ IS ] A [,
(%, f] E &po | rslapag, apas] E kpg frs@arapay — Spsipt)
PORS PORS

= (Z [roKrr = J‘PRKRQ) apao = [hgurao (15.4.1)
FU

PU I





