
CChapptter 11

, ,Business, Functional, and Technical
Requirements
The goal of this chapter is to help you address and answer questions from the people around

you in the form of a common language. Requirements are essential for implementing Exchange

2013 successfully.

Exchange can be a daunting product to contemplate, with over 20 million lines of code. There

are many, many features from which to choose, though some have not changed signifi cantly

between Exchange versions (address book generation, for example). Furthermore, there’s a dis-

cussion of how these features are to be implemented and the entire best practices conversation,

which comes with the territory. How do you choose which features to implement and which

to leave behind? The answer is requirements. And how do you decide which best practice to

apply? Again, the answer is requirements.

Building the Foundation for Requirements
Requirements elicitation can sometimes be seen as boring, tedious, and overly complex. This

perception can often derail this most critical part of a new project. Requirements elicitation is

traditionally associated with software engineering, which implies a long list of requirements to

satisfy the discipline of creating or modifying software. With the exception of writing scripts,

most administrators who wish to implement Exchange don’t need to know or care about the

difference between a functional and a business requirement, since they’re not creating software

from scratch. However, we still need to capture the essence of “why” we are taking certain

actions, as well as the “what” and the “how” we are doing them.

This chapter is particularly important for the Exchange administrator or consultant who may

have been tasked with installing, upgrading, or migrating to Exchange for the fi rst time in a for-

mal manner and who doesn’t know where to start. Even if you have successfully implemented

Exchange, this chapter will still be of tremendous value to you if this is the fi rst time that you

are the one documenting a design.

Requirements are the core of an Exchange project. Based on the requirements, a host of other

documentation items can be affected. These may include the following:

◆ Vision and scope document

◆ The Exchange 2013 design

◆ Testing plan

◆ Migration plan

◆ The bill of materials required to implement Exchange

CO
PYRIG

HTED
 M

ATERIA
L

2 | CHAPTER 1 BUSINESS, FUNCTIONAL, AND TECHNICAL REQUIREMENTS

◆ Test case documentation

◆ Adjustments to the disaster recovery plan (DRP)

A good place to start is to learn how to identify and document requirements correctly and

with enough detail to satisfy people from different parts of IT and within the business as a whole.

A bad place to begin is by installing Exchange on the basis of a diagram only. Since we are in IT,

we often start with a diagram of something and then wind up making design changes on the fl y.

Documenting requirements is thus a critical part of the design process, as we will explore

later in this chapter. In summary, this chapter will equip you with the tools to ensure that

“why,” “what,” and “how” are addressed and documented adequately, without requiring a

degree in software engineering in order to do so.

Establishing Project Roles
Establishing roles at the outset of a project of signifi cant magnitude is critically important. Most

of you reading this book fall into one of two camps:

Camp 1: You are a highly respected individual with demonstrated competence in your fi eld.

You tend to be external to the companies you consult with, even if you are part of a multi-year

project or outsource contract.

Camp 2: You are responsible for messaging within your company, or you may be a project

manager who needs background reading for your fi rst Exchange project. You have just been

tasked with delivering an implementation of the newest version of Exchange.

Whichever camp you fall into, either external or internal to the organization, your attitude

about such a project determines its success or failure. Your mindset needs to be that of a consul-

tant toward a client. If you work inside the company, this may be harder to adopt; however, the

methods within this chapter work equally well with either camp.

Getting Started with the Exchange Design
Often we are asked to review a design, which may be technically brilliant, architecturally

sound, and mindful of the newest features introduced in the latest service pack. However,

designs are very often written without capturing the essence—or even the reason for the exis-

tence—of the design. The essence or the reason for existence for an Exchange design is docu-

mented by capturing the requirements.

Exchange designs and implementations are often driven by a version’s new features list, as

opposed to having captured and wrestled with requirements and extrapolated the features nec-

essary to satisfy the needs of the business. Having a solid set of requirements to work against,

among other reasons, makes your technology choices defensible, since designing or building

Exchange without a solid set of requirements is like going food shopping without a list and put-

ting anything that suits you into the shopping cart.

Documenting requirements also makes a document much easier to review. A structured

document may have one section summarizing the security requirements and then a separate

section encompassing the technical detail on how those security requirements are manifested

as confi guration detail or product features. This would allow the security or compliance offi cer

to sign off on that portion of the document without having to wade through the storage design,

unless of course the storage design captured a secure requirement.

REQUIREMENTS AS PART OF A LARGER FRAMEWORK | 3

When reviewing designs, we often see that the author has discussed the technology and

then made a statement that a feature or technology should be implemented in a certain way. For

example, the author may wish to implement Database Availability Groups (DAGs), which were

introduced with Exchange 2010, and allow databases to be highly available. The author may say

something like, “DAGs are great, so we’re going to implement a DAG.” However, the “why” of

implementing a DAG is not captured. The question of why you are recommending the imple-

mentation of DAGs and which requirement you are fulfi lling must be answered. Your reasons

for choosing technology should always be clearly documented.

Most designs that we reviewed have little or no longevity. That is, if you were to review

your own design in fi ve years’ time, would you understand the “why” of the design? Why did

you choose to implement a DAG in the manner that you did, and so forth? Keep this in mind

when eliciting requirements and as a continual thread throughout your document. When your

design document is reviewed, arguing that the reasons behind the design were not enumerated

because you didn’t think it through or were ignorant of other options available at the time is not

adequate for explaining why the “why” part of documentation is missing.

Requirements as Part of a Larger Framework
If you are a member of a consulting organization, then you will be quite familiar with the

following. If you are doing this for the fi rst time, then this section should be considered a primer

as to where requirements fi t into a larger framework.

There are several available methodologies from which to choose, including the Microsoft

Solutions Framework. Irrespective of which methodology you choose, the steps are often quite

similar:

Envisioning Phase This is the “thinking phase” of the project where you and others work

to blue sky the project. In its simplest form, this involves the critical people considering the

version of Exchange to be implemented and addressing such issues as how things are being

done today and why they need to be done differently.

Requirements Defi nition Phase This phase captures the requirements, which is the focus

of this chapter.

Design Phase This phase molds the requirements into something deployable and practical.

Testing Phase This is a standard phase of larger projects, and it is based entirely on the

defi ned requirements. If the requirements are clear, the tests can be written well before the

design is complete.

Deployment Phase This phase implements the design.

The fi rst three phases will naturally generate a document set, which at minimum is similar to

the following:

Vision and Scope Document This document captures the reason for the existence of the

project, and it defi nes the business’s vision of the technology to be implemented. It also

defi nes what is in and out of scope.

Functional or Technical Specifi cation Document This can be separate from the design

document. It defi nes the business requirements and lists the derived functional or tech-

nical requirements. Often, the consultant will use the scoping meeting to document the

basic scope of the project and then try to derive the business and functional or technical

4 | CHAPTER 1 BUSINESS, FUNCTIONAL, AND TECHNICAL REQUIREMENTS

requirements for further clarifi cation. We will cover this process in much greater depth

shortly.

Design Document This document captures the resulting design.

Depending on the methodology selected, many other documents, such as testing plans, will

also be expected.

If you are doing this for the fi rst time, the level of detail required for a large project may over-

whelm you. Nevertheless, as a consultant, it is likely that you are indeed working with this level

of detail. While there is a wealth of material available about the available methodologies, the

basic problem that requirements are often captured poorly, or not at all, remains.

Understanding the Types of Requirements
Classical requirements elicitation is a very deep and mysterious discipline, unless you’re a

business analyst, systems analyst, or the like. The aim of this chapter is not to address classical

requirements elicitation from a systems analysis point of view, since that would only help you

become a better systems analyst. The goal of this chapter is to determine what kinds of require-

ments are important for your Exchange design and to give you the ammunition you need to

defend your technology choices.

You may be tempted to wrestle with the nuances among some of the more esoteric require-

ments. At minimum, however, you need to examine the business and technical requirements.

We will take a moment to defi ne each of these later.

The purists among you may question why we don’t break technical requirements out into

functional and nonfunctional requirements. Functional requirements describe what a system is

required to do, while nonfunctional requirements describe how the system behaves. As mentioned

at the beginning, this chapter is focused on eliciting the requirements necessary to implement

existing software, not on writing software from the ground up.

If your project is small, the lines between functional, nonfunctional, and business and tech-

nical requirements may blur and add unnecessary complexity. Unless you fi nd a compelling

reason to include functional and nonfunctional requirements, we suggest that you focus exclu-

sively on the business and technical requirements. Once your project reaches a certain level of

complexity, however, you will need to defi ne technical requirements in much more detail. Thus,

you will then break out the functional and nonfunctional requirements aspects of the project.

Business requirements may also be captured separately in a vision document. Consulting

organizations will be familiar with this procedure, and they will require completion of a spe-

cifi c document set in order to capture this level of detail.

You may argue that you have been given a requirement, and that sounds something like,

“We need to upgrade.” This statement is, in itself, only half a requirement, and it is an insuf-

fi cient rationale for a business today to invest in your project. Now let’s examine our two chosen

requirements in more detail.

Business Requirements
In this section, we are going to discuss business requirements in the context of our upcoming

Exchange implementation. This is the “why” part of your requirements. The project sponsor or

management team member provides the business drivers for the project. You want to be sure

that you don’t get stuck in “analysis paralysis,” since business requirements tend to be broad

statements lacking the detail expected in technical requirements.

UNDERSTANDING THE TYPES OF REQUIREMENTS | 5

For our purposes, businesses tend to have a few simple drivers. These tend to fall into the

category of decreasing costs, increasing/retaining revenue, or decreasing risk. A good set of

business requirements should address all of these drivers if possible. You may not often be

in the position of being able to drive sales up by, say, 40 percent, but you are certainly able to

reduce risk by implementing a well-thought-out high-availability strategy for email, if email is a

critical business function.

Let’s look at a few examples of business requirements:

◆ Revenue requirement: A company may choose to implement a mobility app to increase

productivity of its sales staff.

◆ Risk requirement: A company needs to protect itself from a failed audit because of a lack of

support for its existing version of Exchange.

◆ Risk requirement: A company has made a strategic decision to migrate their technology

base from Lotus Notes and Domino to Microsoft Exchange and Microsoft SharePoint due

to in-house development moving to .NET based languages.

We will examine business requirements in the context of a sample customer, XYZ Bank.

Business Requirements for a Sample Exchange Upgrade

XYZ Bank has retained you to design and implement a replacement for its aging messaging system.
XYZ’s current messaging system is implemented in Exchange 2003, which was state of the art at
the time. XYZ has an extensive branch network, with many individual Exchange 2003 servers
across the country.

When it was implemented, email was not considered to be a critical application. XYZ is growing
fast, adding a branch every two to three months. XYZ has also made it known that it intends to
list itself on the stock exchange, which will subject XYZ to regular security and process audits.

Th e bank has recently decided to use email as one of the primary tools for communicating with its
customers. XYZ currently limits mailboxes to a few hundred MBs. Because of this limit, employees
are forced to move email data to PST fi les on desktops and fi le shares, exposing XYZ to risk from
theft and corruption. Even with stringent restrictions, a number of branches are complaining
that email performance is decreasing, even though the number of users on the respective servers
remains the same.

Because of its critical nature, XYZ would like email to be centralized in a datacenter alongside
its existing critical banking applications, with a similar level of redundancy and availability. Of
course, XYZ is concerned about cost, and it wishes to explore a number of storage options before
committing to purchasing a new Storage Area Network (SAN) solely for Exchange’s use. Finally,
XYZ has stated that it would like similar messaging functionality as provided by Exchange 2003
on day one of implementation while reserving the right to add features in the future.

This story is quite typical. It includes a mixture of requirements, including a clue that the

bank is researching later versions of Exchange and that it is aware that several storage options

are available. This is an indication that the bank has a number of well-defi ned feature-based

requests.

6 | CHAPTER 1 BUSINESS, FUNCTIONAL, AND TECHNICAL REQUIREMENTS

We can discern a number of business-specifi c requests from this scenario:

◆ Replace the unsupported Microsoft Exchange 2003 platform with a currently supported

Exchange 2013 environment.

◆ Increase the availability of the email environment to match the XYZ bank standard.

◆ Design for future growth.

◆ Allow for auditing administrative activity with the ability to demonstrate such processes.

Notice that the requirements are broad and contain little technical detail. The business

requirements captured as part of a design along with an executive summary, for example, allow

management and key staff to assimilate quickly the reasons why the Exchange upgrade is being

deployed without getting bogged down in technical detail. In our example, XYZ concentrates on

mitigating risk (support, availability, and auditing), while also supporting the stated goals of the

business (expansion and increased communication).

Technical Requirements
Staying with the theme of combining technical requirements with functional and nonfunctional

requirements, they are quite different from business requirements. Technical requirements are

the “what” and “how” parts of requirements. Furthermore, business requirements are writ-

ten as broad statements, while technical requirements are designed to be precise statements.

Technical requirements should be simple lists that are both individual and granular. One of the

biggest causes of confusion for implementers is ambiguity in technical specifi cations. Adding

too much explanation within the requirements can cloud the specifi cation.

When dealing with a product like Microsoft Exchange, we take a lot of functionality for

granted, and so we should. However, there is a fi ne line to walk in terms of writing specifi ca-

tions. Let’s take, for example, the last line from our XYZ Bank scenario:

Finally, XYZ has stated that it would like similar messaging functionality as provided by
Exchange 2003 on day one of implementation while reserving the right to add features in
the future.

We could take for granted how to interpret this statement. However, it is actually quite sub-

jective and needs clarifi cation. For example, taken alone, we do not know who or what XYZ is,

what “similar messaging functionality as provided by Exchange 2003” means, and what types

of features could be added in the future. There are two possible paths of interpretations of this

statement: One is broad interpretation based on our knowledge of Microsoft Exchange, and the

other is “analysis paralysis.”

An example of analysis paralysis would be to specify Exchange functionality as follows:

◆ A user must be able to generate an email.

◆ A user must be able to display the contents of an email.

◆ A user must be able to share their calendar with another user.

◆ Calendar sharing must support granular rights.

UNDERSTANDING THE TYPES OF REQUIREMENTS | 7

This would be a massive book on its own. What we want to do is to clarify what “similar

messaging functionality” means and to specify it. This may include the following:

◆ Sending and receiving of email internal to the organization

◆ Sending and receiving of Internet mail

◆ Rich client access using Outlook 2013

◆ Thin client access using Outlook Web App (OWA)

◆ Mobile client access using Exchange ActiveSync (EAS)-based compatible devices

New systems require signoff or acceptance testing criteria to be fulfi lled. Each technical

specifi cation should be capable of being tested and proved or disproved. Your technical and/

or your functional specifi cation should translate easily into testing criteria, which will allow for

a relatively easy signoff. In other words, you should be able to write a test plan based on your

technical or functional specifi cations.

If you need to break out technical requirements into a separate document listing functional

and nonfunctional requirements, consider the following example.

Based on the following business requirement, we are able to infer these functional and non-

functional requirements:

Design for future growth in mind

Functional Requirement

Hub transport server queues must be located in a separate storage area from the system

volume so that growing mail fl ow volume will not overwhelm the OS drive. (We could list

many other functional requirements that pertain to the scalability of the system.)

Nonfunctional Requirement

Infrastructure supporting email services should be designed to meet the XYZ Bank’s fore-

casted growth of 20 percent a year.

Constraints
A constraint in a design is a non-negotiable item, which has been specifi ed in advance or

required by the project. For example, you have a requirement to do X but are constrained by fac-

tor Y. Constraints have a direct bearing on the project and may have a signifi cant impact on the

fi nal result. Constraints should be listed as a separate heading in the requirements section of

your document.

Some constraints are economic, for example, when the customer has already purchased and

installed the new hardware without knowing if it will fi t the project’s ultimate requirements.

Another constraint can occur when the customer has specifi ed that Exchange must utilize an

existing investment in virtualization or storage. Other constraints may be time-based; that is,

the project must be completed within the fi nancial year, or before the change freeze period

around a given holiday, and so forth.

8 | CHAPTER 1 BUSINESS, FUNCTIONAL, AND TECHNICAL REQUIREMENTS

Whatever the constraints, make sure that they are documented in your requirements so that

you may reference them later in your design. Depending on the nature of the business, security,

risk, and compliance may pose signifi cant constraints for a new project.

Assumptions
We often see assumptions listed in documentation. However, assumptions have no place in your

documentation. When you review the documentation, endeavor to clarify such assumptions as

facts and then list them as either project requirements or constraints.

Requirements Elicitation
Now let’s discuss how to get requirements and who creates them. Notice that we use the term

requirements elicitation and not requirements gathering. Gathering implies that requirements gg
are easy to fi nd and include in your documentation. More often than not this is not the case.

Requirements elicitation is a much clearer description of what you’re trying to achieve. Elicit

means “to draw out,” which is much closer to how requirements are brought forth, that is,

through interactions with teams and individuals.

During this phase, you need to manage constantly the fi ne balance between assumption and

fact. This applies as much to you, the consultant, as to the rest of the project group. You may or

may not have been briefed before you joined the project. However, more often than not, as the

consultant you may have several assumptions that, if left unspoken, will fi lter into the design.

Your assumptions, and the assumptions of the assembled group, must be verifi ed as facts in

order to be considered valid requirements.

High availability is a classic example of the difference between an assumption and a fact.

Someone may state, “We want 99.9 percent availability.” Your assumption might be 99.9 per-

cent availability during work hours, not including scheduled downtimes. Their assumption

might be 99.9 percent availability on a 24/7/365 scale. Your job is to take the “We want 99.9

percent availability” statement and eliminate any ambiguity immediately by eliciting how

that availability is measured and then update the statement. For example, “We want 99.9 per-

cent availability on a 24/7/365 basis, not to include any scheduled downtime.” If this request

sounds unreasonable or implausible, then part of your role is to educate the group as to why

this is not feasible and drive consensus on what is stated in the fi nal requirement.

Requirements Elicitation and the Long Tail of Obsolete Best
Practices

Exchange has many features that can be implemented in many ways. Th e subset of the best ways
to implement Exchange is known as “best practice.” Best practice may be specifi c to a particular
version of Exchange. For example, Exchange 2003 and earlier mandated that data should be stored
on tier one storage, that is, fast disks and a redundant storage array of some sort.

To this day, we must often begin a storage discussion by dispelling this notion and educating our
audience about how dramatically Exchange has changed, often using the Mailbox Server Role
Requirements Calculator spreadsheet. Storage best practices as well as many others have evolved,
but it is very tempting to reference obsolete best practices as your base model when thinking about
newer versions of Exchange. Best practices, obsolete or not, may fall into the category of assump-
tions, which must be transformed into facts before they can form part of a design.

SUMMARY | 9

Summary
As you read through the subsequent chapters in this book, you will be reminded that Exchange

is a feature-rich and exciting product. However, without clearly defi ning the requirements—that

is, the “what,” “where,” and “why”—your Exchange implementation will likely not deliver the

results you hoped for. Learn to document the reasons for your choices at all times, make your

designs defensible and justifi able, and know why you wrote what you did when you review

your design document again in the future.

