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Mechanics

We start with an outline of classical mechanics, to provide a framework for the discrete ele-
ment method (DEM). While most of the material in this chapter can be found scattered in
various books on mechanics, no text seems to be available which covers concisely the con-
cepts needed for DEM simulation. This chapter is intended as a crash course in theoretical
mechanics, with an emphasis on issues relevant to computer implementation and testing. We
give a list of secondary literature that the reader may refer to for further details.

1.1 Degrees of freedom

Before discussing the dynamics of a mechanical system, we need to understand the nature of
the variables in the system. There are independent variables on the one hand, usually called
‘degrees of freedom’, and then there are dependent variables which depend on the degrees of
freedom, via algebraic relations or derivatives.

1.1.1 Particle mechanics and constraints

The concept of a ‘mass point’ means that we neglect the size of the mass and are interested
only in its trajectory. The position of a single mass point moving along the Cartesian x-axis
is described by the value of x, which corresponds to a single degree of freedom. A point
moving in the xy-plane has two degrees of freedom, rop = (x, y), and a point moving in three-
dimensional real space will have three degrees of freedom, r3p = (x, y, z). Although we can
describe the motion of a point in three-dimensional space by four ‘space—time coordinates’
using the tuple (x, y, z, #), in classical mechanics ¢ is not considered a degree of freedom but
rather a parameter, i.e. an independent variable which cannot be influenced.

Two mass points moving independently along the x-axis represent two degrees of freedom,
r; and r, (here and in the following, we assume equal masses). If we ‘glue’ these two particles
together at distance d =r; —r» as in Figure 1.1, one degree of freedom gets lost, and we are
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Figure 1.1 In two dimensions, the number of degrees of freedom ngqs for 1, 2, 3 or 4 constrained
particles with an increasing number of constraints introduced. Newly added constraints are in black;
previous constraints are in gray.

left with only a single degree of freedom; in this case we can use either of ry, r; or the average
(r1+712)/2 to determine the position of both particles uniquely. This means that one constraint
between two position variables eliminates one degree of freedom.

In two dimensions, for two point particles at r{ = (x1, y1) and ry = (x2, y») we have four
degrees of freedom, x1, y1, x2 and y,. If we again fix the distance between the particles at a
constant distance d, so that

J =02 + (n - y)? = d, (L1)

we can choose any three variables from {x1, y1, x2, y2} and the fourth will then be determined
from (1.1) by elementary geometry. Alternatively, we can introduce new variables, such as
the position of the center of mass, (x, y) = (r; + rz)/2 for particles of the same mass, the
displacement (x, y) = (x2 — x1, y2 — y1) between the particles, and the angle 6 that the
line segment between the two particles makes with the x-axis. In any case, we end up with
three independent variables to describe the positions of the two particles fully. This means
that a single constraint (1.1) reduces the number of degrees of freedom, i.e. the number of
independent variables in the system, by 1.

In three-dimensional space, for two particles at positions (x1, y1, z1) and (x2, y2, z2) as
shown in Figure 1.2, a constraint

Jo =+ (2 -2+ 2 —2)? =d (1.2)

will again reduce the number of degrees of freedom by 1, so if we want to work with the
center of mass

1
(x’ Y, Z) = E {(xlv Vi, Zl) + (-x21 Y2, Z2)}9

we need two angles, ¢ and 6 say, to describe the orientation of the ‘rod’ in space. Rotation
around the orientation of the rod is not a degree of freedom, as it does not change the positions
of the two points. In principle, it does not matter how one defines the degrees of freedom,
whether it is with six variables and one constraint (1.2), with three Cartesian coordinates for
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Figure 1.2 In three dimensions, the number of degrees of freedom ngyor for 1, 2, 3, 4 or 5 particles
constrained so that the resulting cluster has no internal degrees of freedom. Newly added constraints are
in black; previous constraints are in gray.

the center of mass and two angles, or with three Cartesian coordinates for one endpoint and
two angles. In each case the number of degrees of freedom is the same, namely 5.

1.1.2  From point particles to rigid bodies

When we introduce one more point mass at (x3, y3, z3) to our set-up, we have 9 variables in
total. If we connect this new point to both ends of our rod with the additional constraints

O —x02 (05— 3?4 (3 - 21)? =, (1.3)

Jos =202+ (3 — )2 + (i3 — 2207 = ds, (14)

we get a triangle, as in the middle diagram of Figure 1.2. Again, we can give an alternative
description of its position in space using the center of mass, and use three angles, ¢, 6 and ¥,
to describe the orientation. So the formula

(degrees of freedom) = (variables) — (constraints)

6 9 3

again holds. If we connect a fourth particle rigidly to the cluster of three particles so that it
does not lie in the plane described by the other three, as shown in the fourth diagram from
the left in Figure 1.2, then the three extra constraints exactly compensate for the additional
three coordinates (x4, ya, z4) of the new particle. In fact, for four or more spatially connected
particles, the total number of degrees of freedom is always 6. Note that the rigid body formed
by the connected particles need not be three-dimensional; for example, although a triangle
is a two-dimensional shape, if it can rotate in three dimensions, then it also has six degrees
of freedom. Through the reasoning above, we have derived that an extended rigid body has
six degrees of freedom, irrespective of its size. The angular degrees of freedom ¢, 6, ¥ are
obtained from the rectilinear degrees of freedom (x1, y1, 21), (x2, ¥2, 22), ... of the particles
upon introducing constraints of finite length between the particles.
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‘Mathematically’ one can define a point particle as an object having ‘zero extension’ and a
rigid body as one having ‘zero deformation’. A more pragmatic definition of a point particle is
an object whose extent is much smaller than the distances that it covers in the processes under
investigation; after all, the Earth is pretty extended, but the point-mass approach to describing
its trajectory around the sun works rather well. Likewise, a rigid body is an object for which
the deformations are much smaller than the scales that are of interest in the processes being
investigated.

1.1.3  More context and terminology

In principle, a ‘continuum’ has infinitely many degrees of freedom; but in order to solve
continuum problems with a computer, we have to first discretize the continuum to obtain a
finite number of degrees of freedom. We could, for instance, decompose the continuum into
representative mass points and model the elasticity by springs between the mass points. The
deformation of a spring can be computed from the positions of the bodies, so the springs
will not be degrees of freedom, while the coordinates of the mass points will be degrees
of freedom. With a finite element discretization, we decompose the elastic continuum into
a space-filling partition of elements for which elastic stress relations hold, and the degrees
of freedom are the nodes of the elements. Depending on the choice of boundary conditions,
there may be as many nodes as there are elements, or more; therefore, from the nodes one can
calculate the center of mass of the elements, but not vice versa. Describing the physics via the
motion of particles, for example of centers of mass, is called the ‘Lagrangian representation’.
This approach is natural for particulate systems, so we will adopt it in this book. Formulating
the physics for a reference system in which, e.g., density amplitudes change is called the
‘Eulerian representation’; this representation is preferable for many continuum problems. In
a Lagrangian representation, velocities of mechanical bodies are not degrees of freedom: they
can be obtained as the time derivatives of the positions on which they depend. On the other
hand, when we simulate a fluid volume where velocities are assigned to the nodes of a finite
element or finite difference approximation in ‘Eulerian representation’, it is the velocities that
are the degrees of freedom.

In the previous two subsections, we introduced constraints as algebraic relations between
positions, but we remark here that constraints (whose associated functions are usually denoted
by g in formulae) can also be imposed on velocities. For a pendulum of length / swing-
ing around the origin as in Figure 1.3(a), the constraint g(x, y) stating that the bob (whose
diameter we will neglect) stays at constant distance from the origin is

Wyt = 2, (1.5)

In § 2.8 we will discuss the numerical solution of a problem where, in addition to constraints
on x and y, constraint relations for x and y are also in effect. In undergraduate mechanics,
it is common to circumvent solving the equations of motion of a constrained system with
variables (x, y) that simultaneously satisfy (1.5) by transforming into plane polar coordinates
(¢, r) so that r is eliminated. For more complicated mechanical systems, such a simplifying
transformation may not be possible any more, for instance if the pendulum is connected with
a unidirectionally moving body as in Figure 1.3(b).
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Figure 1.3 (a) Pendulum as a constrained problem; (b) coupled pendulum—wheel-mass system, where
transformation into polar coordinates does not simplify the calculation.

1.2 Dynamics of rectilinear degrees of freedom

Labeling the coordinates with different letters such as x1, yi, z1, ... will soon become incon-
venient, so let us rename them as follows: x; = rf]), v = rfz), 71 = r1(3), Xy = rz(l), y2 =

r2(2) , 22 = r§3 ). ..., where the lower index represents the particle and the upper index in

parentheses represents the dimension. The corresponding velocities can then be obtained as
time derivatives:

‘ d . L
vi(J) — ari(J) — rl_(])'
If all the velocities vanish, we say that the system is static; if the velocities (which may be
non-zero) do not change, we say that the system is stationary. The accelerations are the time
derivatives of the velocities, or the second derivatives of the positions with respect to time:
al.(] ) = 1'1.(] ) = i"l.(] ). If the acceleration is constant, we also refer to it as ‘uniform’; in this
case the velocity changes at a constant rate. For a particle i with mass m;, Newton’s equation
of motion! expresses the relationship between the force Fi(J ) applied to the particle and the
acceleration al.(J ) in coordinate j as
Fi(J) _ mi)-c-i(J)

= mial.(j).

(1.6)

Numerical analysis prefers to deal with first-order equations, so often it is necessary to rewrite
the second-order equation (1.6) as a first-order system by defining the velocity as an auxiliary
variable:

F =mio?, (1.7)

v =i (1.8)

IThis second-order differential equation formulation is actually due to Euler. Newton wrote his second law of motion
as a first-order differential equation F = p, where p is the momentum, but mathematically this is not equivalent to
Euler’s formulation.
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Thus, instead of 3n second-order equations for n particles in three dimensions, we end up with
6n first-order equations. So, for a mechanical problem, one can choose whether to describe the
system using first- or second-order differential equations. Consequently, physicists tend to call
any equation with a first- or second-order time derivative on one side an ‘equation of motion’.
For example, the quantum-mechanical wave equations are called ‘equations of motion of the
probability’ due to their relation with probability densities [1], and the time-dependent heat
equation is sometimes called the ‘equation of motion of heat’ [2].

1.3 Dynamics of angular degrees of freedom
1.3.1 Rotation in two dimensions

In two dimensions, we have three degrees of freedom: two for translation and one for rotation.
Rotation of a vector r = (x, y)T by an angle ¢ in the xy-plane is represented by the rotation
matrix for counterclockwise rotations,

A% — (cos¢ —sin¢), (19)

singg  cos¢

so a rotated vector r becomes
/' ab. _ (COsp —sing) (x| (xcos¢ — ysing
r=A4 r_<sin¢ cos ¢ y)  \xsing + ycos¢ )’ (1.10)

The inverse transformation of a rotation by ¢ is represented by the transpose of the original
rotation matrix. That the inverse is equal to the transpose characterizes an orthogonal matrix,
a matrix whose columns are orthogonal to each other (i.e. have scalar product zero). The
determinant of an orthonormal matrix is 1, so the length of a vector » which is rotated using a
matrix of the form (1.9) does not change, and if two different vectors r and r, are rotated into

(@) (b) (c)

Figure 1.4 Original unit vectors x, y and transformed unit vectors x’, y’ for: (a) counterclockwise
rotation by 20°; (b) clockwise rotation by 20°; (c) a combination of reflection in the y = x line, such
that the order of x and y is interchanged, and counterclockwise rotation.
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r| and Iy, the angle between them will not change; see Figure 1.4(a). Matrices for clockwise
rotation are of the form

By = ( cos ¢ sind)) (L11)

—sin¢g cos¢

and also have determinant 1. Reflections, such as the one represented by the matrix

0 1
R:(l 0)' (1.12)

have determinant —1, as do compositions of reflections and rotations. In these cases, the
angles between the transformed vectors I, I> and the original vectors ry, rp, as well as their
relative orientations in the coordinate system, will change; see Figure 1.4(c).

1.3.2  Moment of inertia

With ¢ in (1.9) as the degree of freedom, the associated velocity will be the angular velocity
w = ¢. Let us next derive the inertia associated with the angular velocity  via the kinetic
energy, by way of a ‘thought experiment’ (Figure 1.5) where again we introduce constraints.
Suppose that a point mass is initially moving at constant velocity in a straight trajectory, as
shown in Figure 1.5(a); then its kinetic energy will be Eyj, = %mvz. Now let the mass be
captured by a constraint which is connected to a point at fixed distance » from the trajectory,
as in Figure 1.5(b); assuming no energy dissipation, the point mass will then rotate with the
same kinetic energy as before; see Figure 1.5(c). With v = rw, from the kinetic energy
expression for the rectilinear degree of freedom we have

1 1
Emv2 = Emrzwz. (1.13)
(@) (b) (©)
Fixed e °
point
Weightless
hook —v
®

v v
Figure 1.5 Thought experiment: (a) a mass m at the end of a weightless rigid hook is initially in linear

motion; (b) the hook is caught by a fixed point, without any change in the kinetic energy; (c) the mass
m starts to circle the fixed point with angular motion.
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So the moment of inertia for the rotation is J = mr? for a point mass. In analogy to the linear
momentum p = mv, which can be used to write the kinetic energy as Exin lin = p2 /(2m),
for angular motion we have the angular momentum L = J and the kinetic energy

Exinrot2p = L?/(2J).

A frequent source of error in calculations is use of the frequency f instead of the angular
velocity

w =2nf,

where f is computed directly from the number of turns Ny, around the center of rotation
during time 7 as

Nturn
f==m

Using f when o should be used introduces an error of factor (277)% 2 40 in calculations of
the kinetic energy.

We can compute the kinetic energy of a mass point for either the rectilinear or the angular
degree of freedom. For extended masses, we have to use the moment of inertia with respect
to the center of mass (Konig’s theorem). For a body made up of n equal point masses m at
positions r;, the moment of inertia for a rotation around the center of mass 7 = % Y riis

n
Je=mY (ri —7)*

i=1

(where the subscript ‘e’ stands for ‘equal’). For unequal point masses m;, the arithmetic mean
for the center of mass is replaced by the weighted average

D iy rim
Z?:l mi

and the moment of inertia for a body composed of these masses is

7=

Joe =Y mi(ri =) (1.14)

i=1

(where the subscript ‘ue’ stands for ‘unequal’). For a body with continuous mass distribution,
the summation in (1.14) should be replaced by an integral

J =/r2dm (1.15)

for the distance r of the infinitesimal mass element dm which depends on r.

In two-dimensional DEM simulations for homogeneous bodies, we may use a two-
dimensional density o (with units kg/mz) obtained from three-dimensional densities p (with
units kg/m?) upon multiplying by the depth of the system. With meter-long rods as particles,
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the numerical value of the three-dimensional density can be used. The calculation then
simplifies to

J= a/rz dA(r). (1.16)

As can be seen from this formula, the moment of inertia depends on the distance r from
the position of the rotation axis, so the same body will have a different moment of inertia
for different positions of the rotation axis; for example, a stick held at one end has a larger
moment of inertia than if it was held in the middle. In general, moments of inertia are tabulated
for the center of mass.

For a body with mass m and a rotation axis through an arbitrary point r; which is not
the center of mass r., we can compute its moment of inertia via the parallel axis theorem
(Steiner’s or the Huygens—Steiner theorem),

Jr = Je +mre — ro||%, (1.17)

where the norm (length) || - || of a vector r = (r{, r2) is given by

Il =/ri + 73 =r. (1.18)

Thus the moment of inertia is equal to the sum of the moments of inertia, plus the moment
of inertia of the center of mass with respect to the rotation axis. For particles of (convex)
polygonal shape in two dimensions, a decomposition into non-overlapping triangles with one
corner at the center of mass of the polygon is the easiest way to compute the moment of
inertia. With respect to the center of mass, the moment of inertia of a triangular mass with
base b and height % is given by

A

Jo =0 36
where o is the two-dimensional density. The height # can be computed as the length of the
vector rejection of the position vector of the corner opposite the base b. The moment of inertia
with respect to the corner point can then be obtained by shifting J* according to Equation
(1.17). For conventional homogeneous two-dimensional bodies, the moments of inertia for
a rotation around the center of mass in the z-direction can be obtained from Table 1.1 for
three-dimensional bodies by setting the height in the third dimension to zero.

1.3.3  From two to three dimensions

While rotations in two dimensions with only the z-axis as rotation axis behave very much
like rectilinear degrees of freedom under translations, in three dimensions the dynamics is
different. When a rigid object described by points r; undergoes a translation 7s,, the positions
of all points change by the same amount §r = 6x + 8y + 6z, so that the new points are
r; = r; + dr. We can decompose the translation into axis-parallel components 7s,, 7s, and
Tsz, which all commute:

7:3r:7:3x+7:3y+7:31:7:3x+7:32+75y:"'»
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Table 1.1 Moments of inertia [5] for various solid bodies with homogeneous density distribution and
rotation axis through the center of mass; a, b and ¢ denote the half-axes for the cylinder and ellipsoid
but full side-lengths for the other figures.

Elliptical cylinder Ellipsoid Rectangular pyramid
m m m 3h?
Jy = —(3b% + h? Jy = —(a* +b? Ty = —(b*+=—
X 12( +h*) =5 (a” +b*) ¥ =55 + 2
2
m 5 2 m, 5 2 m( 5  3h
m m m
o=@+ Jo=S®+cd) Je = 55@ +b%)
AZ
Yw di
b e
Wedge with right angle Solid cuboid Isoceles (symmetric) wedge
m m m
Jy = —(Q2h* 4 3b? Jy = — (b + h? Jy = — (2h?* + 34>
X 36( + ) X 12( + h*) X 36( + 3a“)
m m m
Jy = —(a*+h? Jy = —(a® + h? Jy = = (4h? + 3b?
y 18(61 + h?) y 12(a + h*) y 72( + )
m m m
= —(2a% 4 3b? = —(a*>+b? = —(2a®> +b?
Jz 36(61 +30°) Jz ]Z(a +07) Jz 24(61 +0°)

AZ

A

Z

~

N
=

i.e. the order of componentwise translations can be interchanged without changing the result.
Just writing the translation in Cartesian coordinates shows that it has the nature of vector
addition. Rotations, however, are different. Let us write a rotation around the x-axis by angle ¢
as R, (¢) and arotation around the y-axis by angle 6 as R (0); do R, (¢) and Ry () commute?
What happens if we try out 90° rotations of a book? In Figure 1.6 we see that we get different
final positions depending on the order in which we perform the rotations. So one has to be
much more careful with rotations than with translations.
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y
Figure 1.6 Rotations of a book by 90° around two axes: in the sequence from (a) to (c), the book is

rotated first around the z-axis and then around the x-axis; in the sequence from (d) to (f), the book is
rotated first around the x-axis and then around the z-axis.

Figure 1.7 Rotation around two of three orthogonal axes (x and y) on a globe gives a rotation around
the third axis (z).

In Figure 1.7, when we rotate the positive x-axis by 90° around the y-axis from the equator
to the north pole, and then down again by 90° around the x-axis, we get the same result as
if we had simply rotated it by 90° around the z-axis. Thus, rotations as degrees of freedom
in three dimensions behave very differently from translations: not only do they not commute
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Viewpoint on the plane, against
the direction of the z-axis Z

N

|
|
|
M Viewpoint from below the plane,
in direction of the z-axis

Figure 1.8 Rotations in the xy-plane: viewed from above the origin against the direction of the z-axis,
with the angle ¢ defined counterclockwise, a perspective which is employed in the two-dimensional
formulation of the rotation matrix; and viewed from below the origin in the direction of the z-axis, a
perspective employed in the three-dimensional formulation of the rotation matrix.

(the result is different if the order of the operations is changed), but two rotations around two
orthogonal axes may have an identical effect to a single rotation around the third axis.

1.3.4 Rotation matrix in three dimensions

In both two and three dimensions, rotations are conventionally measured counterclockwise,
but the meaning of ‘counterclockwise’ depends on the viewpoint one takes. The conventional
view in two-dimensional geometry is from above the xy-plane, against the direction of the
z-axis towards the origin; however, in three dimensions, this is the same as a clockwise rota-
tion viewed from the origin in the direction of the positive z-axis; see Figure 1.8. This means
that a rotation matrix written as

4% <cos¢ —sinq’)) (1.19)

sing  cos¢

in two dimensions is equivalent to the same rotation in the x y-plane around the z-axis in three
dimensions, but in the opposite direction; so it is written as [3, 4]

cos¢p sing O
A? = [ —sing cosp O0]. (1.20)
0 0 1

Although it looks as if the sign or direction of the angle ¢ is reversed, in fact it is the view-
point that is reversed. Apart from this difference in sign, the three-dimensional rotation matrix
around the z-axis is obtained by simply augmenting the two-dimensional rotation matrix by
putting a 1 in the lower right diagonal and zeros elsewhere, because this rotation leaves the
z-components unchanged.

While for translations the order of operations does not matter, for rotations in three dimen-
sions we have to specify the order of the elementary operations. Using the classical convention
of Euler angles, the parametrization of the three degrees of freedom is as follows: first, rotation
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by ¢ around the z-axis; second, rotation by 6 around the x-axis; third, rotation by ¥ around
the new z-axis. The rotation matrix around the x-axis by 6 has 1 as its upper left entry:

1 0 0
A =10 cos® sind
0 —sinf cosh

The final rotation by angle ¥ again looks like A?:

cosyy sinyr O
AV = —siny cosyr O,
0 0 1

but it should not be forgotten that this rotation is around the new z-axis, i.e. ¥ is measured
differently than ¢. Together, the concatenated rotations give the rotation matrix

A =AVAA?
cos ¢ cos Y — sin ¢ cos 6 sin sing cos i + cospcosfsiny  sinf siny
= | —cos¢sinyy —singcosfcosyy —singsiny + cos¢@cosdcosy  sinb cos Y
sin ¢ sin 6 —cos ¢ sinf cos
(1.21)

Three-dimensional vectors are transformed by A into the rotated coordinate system via
r' = Ar, (1.22)
and the reverse transformation is given by the transpose:

r=A"1 = AT/, (1.23)

1.3.5 Three-dimensional moments of inertia

Let us derive the three-dimensional moment of inertia via the kinetic energy [6], using rea-
soning analogous to that in § 1.3.2 for the two-dimensional case, where the kinetic energy for
a particle of mass m was

Ekin,rot,2D — %m (wr)2 )

In three dimensions, we consider the moment of inertia for the rotation around @ of a vector
r which is orthogonal to @, so the cross product x is needed:

) 1
Ekinrot.3D _ 5m((,,) X r)2.

For a continuous mass distribution, with infinitesimal mass element dm, this corresponds to

. 1
Ekm,rot,?aD — E /((x) X I')2 dm. (1.24)
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We shall use the following identities from vector analysis, which are valid for any vectors @
and r (note that here and throughout the text we do not distinguish between row and column
vectors, as this makes no sense for the cross product):

(wxr)zzw(rx(wxr)),
rx(wxr):(rzll—rr>w,

where 1 denotes the three-dimensional identity matrix. Using these identities, we can rewrite
(1.24) and extract ® from under the integral to get

%/(w x )2 dm = %wT (/(r21 —rr) dm) ®. (1.25)

Thus, the integral turns out to be the tensor of the moment of inertia
J= /(rzﬂ —rr)dm.

Writing the tensor in component form, with r = (x, y, z), yields

Ju@?+2Hdm = [ xydm — [y xzdm
J=| —[f,xydm [ P+2)dm  — [ xzdm
= fpxzdm = [ xzdm [, 67 4y dm

Jxx _ny _sz
=|-J Jy —Jy
_sz _Jyz Jzz

The axes of the coordinate system in which the tensor J is diagonal are called the principal
axes of the moment of inertia, and the diagonal elements Ji, J» and J3 are the eigenvalues of
J. The angular velocity in three dimensions is @, whose z-component w, we used (without
the subscript z) in the previous section as the two-dimensional angular velocity. The angular
momentum is

L =Jw.
The kinetic energy for the rectilinear degrees of freedom of a particle in three dimensions is

1
Eui = 5m|v|2, (1.26)

where |v|? is the scalar product of the velocity with itself. The associated kinetic energy for
three-dimensional angular motion is a quadratic form of the tensor J and the vectorial angular
velocity w:

1
Eror = 5wTJco. (1.27)

The parallel axis theorem (also known as Steiner’s theorem or the Huygens—Steiner theorem)
says that if Jicjm is the inertia tensor with respect to the center of mass, then the inertia tensor
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relative to a point separated by a = (ay, az, az) from the center of mass along the same
(principal) axes is

Jij =I5 +m (|5|23ij - aiaj> , (1.28)

where §;; is the Kronecker delta,

1 fori=j,
8ij = .,
0 fori#j.

Written explicitly in component form, this is

a% + a% —a1a; —aiaz
J=J"+m| —ajax a?+a2 -aas |. (1.29)
—aiaz —araj a12 + a%

If the axis of rotation is not along the principal axis, the tensor transforms via the rotation
matrix A to

J=AJ"AT, (1.30)

Useful three-dimensional moments of inertia with rotation axis through the center of mass
are given in Table 1.1. For polyhedral particles, it is best to use a successive decomposition into
tetrahedra; see § 8.2.3. The corresponding two-dimensional moments of inertia are obtained
by manipulating the other axis dimensions. For a thin stick of length 4, the moment of inertia
for rotation around the x-axis can be obtained from the formula for the cylinder by setting r
to 0, so that one obtains (m/ 12)h2; the moment of inertia of a sphere can be obtained from the
formula for the ellipsoid by setting all semi-axes equal to the radius, and so on. For rotation
axes not through the center of mass, the moment of inertia can be computed via the parallel
axis theorems in two and three dimensions, namely Equations (1.17) and (1.28) or (1.29).

The joint moments of inertia Ji of a shape sl that is hollowed out by another shape s2 can
be obtained by subtracting the individual moments of inertia:

J=yp'-J2 (1.31)

which is simple if one only wants to obtain numerical values. However, when one wants to
obtain scaling by the mass m of the new, hollow body, the derivations become more cumber-
some. For a cylinder with outer radius ry, we obtain its moment of inertia from the formula
for the elliptical cylinder in Table 1.1 as J, = %morg. When the cylinder is hollowed out
concentrically in the middle by a cylindrical shape so that the radius of the inner hollow is r;,
the mass becomes

= mqy — mj,
2
"o
where mj is the mass which has been removed from the original cylinder. So, for the moment
of inertia along the symmetry axis, one obtains
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Notice that the sum, not the difference, of the squares of the radii appears in the final formula.

1.3.6  Space-fixed and body-fixed coordinate systems and
equations of motion

To describe the dynamics (equations of motion) of a three-dimensional system, we will use
two particular coordinate systems in our computer simulations: space-fixed coordinate sys-
tems, where vectors e® are expanded in the unit vectors (ey, ey, ¢;) of the Cartesian ‘laboratory
frame’; and body-fixed coordinate systems, where basis vectors e” aligned with the body are
expanded in unit vectors (eg, e2, e3) chosen so that the origin is at the center of mass of the
body and their orientations are such that the tensor of inertia is diagonal; see Figure 1.9.

Torques are usually computed in space-fixed coordinates (i.e. an unrotated coordinate sys-
tem without inertia forces); we denote these by t°, and they equal the rate of change with
respect to time of the moment of inertia:

e5(0) 2

rot=0) _ € 0)
y

(0

X

Figure 1.9 Cartesian laboratory frame with axes (x,y,z) and body-fixed coordinate system
(e1, e, e3) at time 0 and at time ¢; also shown is the space-fixed orientation of the body, rg, at time
0 and at time # when the body is at a different position.
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» X

Figure 1.10 Constant angular velocity w3 around the e3-axis of a body-fixed coordinate system with
axes (eq, e2, e3) and a Cartesian laboratory frame with axes (x, y, z). The angular velocity (w1, w, ®3)
is finite but does not correspond to the time derivative of an angular coordinate in the body-fixed
system.

To obtain the corresponding equations in body-fixed (embedded) coordinates, we have to
explicitly compute the transformations to factor in the inertia forces due to rotation. We can
then obtain the space-fixed angular velocities ®* = (o}, w;, o?) from the rotation matrix A
via Equation (1.23):

o' =A"1e" = AT,

Just because the coordinate system rotates with the body does not mean that the angular
velocity in the body-fixed coordinate system is zero. Even if there is conservation of angular
momentum, so that L® = J°w® = constant, it merely implies that the ®® would be constant,
too; see Figure 1.10. Nevertheless, this angular velocity does not correspond to the change of
an angle in the body-fixed coordinate system. For the particular body-fixed coordinate system
where the tensor of inertia is diagonal, i.e.

Ji 0 O
F={0o »n o],
0o 0 &

we obtain the rate of change of the moment of inertia via the product rule:

. d
jb = " (Jiwre1 + Jranes + Jzwses)

= (Jio1e1 + Jhaner + J3ze3) + (Jiw1é) + Jowrér + J3w3€3). (1.32)
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Ao

Figure 1.11 For the rotation of a vector v from the origin of the body-fixed coordinate system with
angular velocity w, the time derivative dv/dt is orthogonal to both v and w.

For the vectors that are fixed in the body-fixed coordinate system, the time derivative is
& =0 x €, (1.33)

i.e. the changes of vectors rotating with the body are orthogonal to the angular velocity  and
the vector e itself; see Figure 1.11. The torques 7° in the body-fixed coordinate system can be
obtained from the rotation matrix (1.21) as

° = ATS. (1.34)
From Equations (1.32) and (1.33) one then obtains the ‘Euler equations of motion’
0 = J160) — (2 — J3) 0del, (1.35)
75 = hab — (5 — J1) @b, (1.36)
8 = 1303 — (J1 — o) V0, (1.37)

for the angular velocities around the respective body-fixed axes ell’, eg, eg’ through the center
of mass. The corresponding Newton equations for the velocities v; of the rectilinear degrees
of freedom,

Fi = mu;, (1.38)

are linear in the v;, whereas the Euler equations (1.35)—(1.37) for the rotations are nonlinear in
the w; (except for bodies with equal moments of inertia along the principal axes, like spheres
and symmetric polyhedra), since successive rotations around two axes are equivalent to a
rotation around the third axis, as illustrated in Figure 1.7. For rotations around a single axis
only, two components in (1.35)—(1.37), @1 and w; say, will vanish, and the remaining equation
becomes linear in the third component, w3, and is equivalent to the Newton equation (1.38).
When the nonlinear terms in the Euler equations (1.35)—(1.37) are neglected, the particle
trajectories will be different, i.e. wrong. An example for a polygon rolling down a slope is
given in Figure 1.12. Newton’s equation of motion (1.38) and the Euler equations of motion
(1.35)—(1.37) are sometimes collectively called the Newton—Euler equations of motion, to
emphasize the necessity of including the angular degrees of freedom appropriately.
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___ﬂ_____'.____\___ 0.4
0, o1 02 93

Figure 1.12 Correct trajectory (black, with Euler equations of motion) and incorrect trajectory (gray,
neglecting nonlinear terms in the Euler equations) computed over the time interval ¢ € [0, 0.6] s for a
particle with initial angular velocity @ = 107 (1, 1, 1) s~ ! and initial velocity v = (0, 0, 0.025) m s—L

1.3.7 Problems with Euler angles

The inverse of A is obtained by reversing the order of multiplication of A¥, A’ and A? and
using the opposite angle:

A=A PA AV,

This turns out to be exactly equal to the transpose of A, so that A~! = AT. As with two-
dimensional rotations, A is an orthogonal matrix, a property which is inherited from the
matrices A, A? and A?. That all is not well with Euler angles can be seen when the angles
v, 6, ¢ are again computed from a given rotation matrix

A1 Alp A
A=|Ay1 Axp Azj
Azl Azp Aszgj

One obtains the angles ¥, 0, ¢ from the A; ; through the following relations:

cos = Az 3, sinf = +v/1 — cos2 6,
A A
cosy = — _3’2, siny = — .3’1,
sin 6 sin 6
A A
cos@:ﬁ, sinq&:—,;’3
in o sin O

These equations show that a position close to 8 = /2 will lead to a divergence in the com-
putation of the Euler angles. Worse is to come when we discuss the equations of motion for
¢, 0 and . For the time derivatives ¢, 6, ¥ of the angular coordinates, we obtain (by writing
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® in terms of ¢, 6, ¥ and their time derivatives and then solving the resulting three equations
for ¢, 6, ¥r; see Greenwood ([7], p. 144)

s singcos 6 o cos ¢ cos 0

D : 1.39
¢ " dine Y sinf @z (1.39)
6= cos¢ + ) sing, (1.40)
. s sing 5 COS @

= — . 1.41
V= sin @ Y sin@ (1.41)

For 6 = 0, the equations of motion for the Euler angles become singular, too! This is definitely
bad news when we run simulations of many particles which are not constrained whatsoever:
the likelihood that an equation for some particle diverges because it comes close to 8 = 0
increases with the number of particles and the simulation time. (The widespread use of Euler
angles and their equations of motion in theoretical mechanics textbooks is due to the fact that
for many single-particle problems, such as a top constrained at its tip, the singularities can
be eliminated by a suitable choice of variables.) Allen and Tildesley [4] propose a possible
workaround that uses two coordinate systems, performing the time integration in the one
where the particle is away from § = 0, but we prefer to use quaternions (see § 1.3.9), for
which singularities in the time integration do not occur at all.

1.3.8 Rotations represented using complex numbers

In this subsection we briefly recall the basic properties of complex numbers, as an prelude
to quaternions. With the imaginary unit i = +/—1, we can define complex numbers z € C
in the form z = x + iy where x, y € R. Two complex numbers z; = x| +iy; and zo =
x2 +1y> behave exactly as vectors in R? when it comes to equality, addition and subtraction—
complex numbers ‘are’ two-dimensional vectors. What differs is the product: instead of the
inner product for two-dimensional vectors, which results in a smaller dimensionality than the
original R? vectors, complex multiplication gives

7122 = (X122 — y1y2) +i(x1y2 + x2y1).

With the complex conjugate 7 = x — iy of z = x + iy, one can write the absolute value of a
complex number (i.e. the length of the corresponding two-dimensional vector) as

lz] = VzZ = /x2 + y2. (1.42)

This also allows us to reduce division of two complex numbers to real divisions as follows:
212122 _ X tiyix—iy
2 2222 xp+iyx—iy
X1+ 1y (X2 + X2)1

X3+ 3 X5+ 3

As an alternative to Equations (1.9) and (1.10), we can rewrite the two-dimensional vector r
as complex number z = x + iy and then, using the Euler formula for a complex exponential,

exp(ip) = cos ¢ +isin ¢, (1.43)
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(@) z-axis (b)

Rotation axis v

Imaginary axis

[
y

1/
Figure 1.13 Rotation by angle ¢: (a) in two dimensions around the z-axis, via the complex exponen-
tial exp(i¢); (b) in three dimensions around an arbitrary rotation axis, via the unit quaternions (Euler
parameters) q = (cos ¢, Vsing) and —q™ = (—cos ¢, Vsin ¢). Angles are measured counterclockwise
with respect to the axis of rotation (¢ measured with respect to v, —¢ measured with respect to —v).

Diagram (b) and similar ones in the literature should be taken with a grain of salt: for Euler parameters,
it is actually ¢ /2 that is needed in the argument for a rotation by ¢.

Real axis

formulate the rotation in (1.10) as a complex multiplication; see Figure 1.13. Specifically, we
see that

exp(ip)z = (cos ¢ +isin¢) (x + iy)
= (xcos¢ —ysing) +i(ycos¢ + x sing)

is equivalent to the representation of vector rotation via matrix multiplication in Equation
(1.10). Most notably, a multiplication by the imaginary unit i corresponds to a counterclock-
wise rotation by 90°. The reason the complex exponential works so well as a replacement for
the rotation matrix (1.9) is that its eigenvalues are exp(Zi¢).

1.3.9 Quaternions

There are many possible ways to represent three-dimensional rotation, but many are cum-
bersome? or the numerical implementations of their equations of motion are unstable; see
the discussion following Equations (1.39)—(1.41). We shall use quaternions as the basis for
representing three-dimensional rotations: quaternions are illuminating in their ‘vector repre-
sentation’, and they can be implemented numerically to obtain very stable representations
of the equations of motion for the angular degrees of freedom. As the complex exponential
exp(i¢) worked so nicely to describe rotations in two dimensions, we seek an extension of the
concept to use for general rotations in three dimensions. While for the complex exponential
only the z-axis was treated as the rotation axis, in three dimensions we will have to deal with
arbitrary rotation axes, and more relations will be needed than for complex numbers. The

2For example, if one directly uses the rotation matrix, which has nine entries for the three independent rotational
degrees of freedom, then six constraints must be introduced and integrated out; likewise for the corresponding time
derivatives.
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quaternion basis elements |, J and K are chosen to satisfy the relations
I l=—1, J.J=-1, K-K=-1, (1.44)

just like the imaginary unit i. We will develop the meaning of quaternions a bit at a time.
To begin with, we warn that the basis element | is not identical to the imaginary unit i, and
the basis element J is a different variable from the tensor of inertia J and its components.
Representations of |, J and K via real and complex matrices are explored in Exercise 1.2. We
also need relations between |, J, K and their products:

I-Jd = K, J-K= | K-l = J,

(1.45)
J- 1 =—K, K-J=-I, I-K=-J.

In the upper line are the ‘cyclic permutations’ according to alphabetical order, i.e. multiplying
together two of the basis elements gives the third; the lower line contains the ‘anti-cyclic
permutations’, where multiplying together two of the basis elements gives minus the third.
The upper line is reminiscent of Figure 1.7, where successive rotations around two of the
orthogonal axes yielded rotation around the third axis. Comparing the two lines of (1.45)
shows that reversal of the multiplication order is anti-commutative (i.e. the sign of the result
is reversed if the order in the product is reversed); this is reminiscent of the cross product for
vectors. Additionally, for quaternions there is a ‘unit operation’ 1, such that

[-1=1-1=I, J-1=1-d=J, K- 1=1-K=K (1.46)

Next, we use |, J, K'and 1 to define a general quaternion q and its conjugate q* (the analogue
of the complex conjugate) as

q=wl+xl+ yd+ zK, (1.47)
q" =wl —xl—yJd —zK. (1.48)

In the following, we will drop 1 when it is not necessary. With the definitions (1.44)—(1.47),
we see that quaternion multiplication is not commutative, i.e. for two quaternions q; and qo,

q - Q@ Fq-q
in general. Nevertheless, the quaternion product is associative:
(qr-92) - 93 =q1 - (42 - q3).

The dot ‘-’ for quaternion multiplication is often omitted. Rules for quaternion conjugation
are

q)H* =q, (@ +@)" =q]+q5 (1.49)
and, similar to matrix transposition,

(@192)* = q3q7- (1.50)
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Just as for complex numbers, the absolute value |q| of a quaternion can be defined via the
quaternion’s conjugate q* as

|q|:\/q~q*:\/w2+x2+y2+z2.

A unit quaternion will be denoted by ¢ and has an absolute value of 1:

l[dl = Vaa* = q*q=1. (L.51)

So 1,1, J and K are all unit quaternions. Multiplication of a quaternion by a unit quaternion
conserves the length of the original quaternion.

In the literature, different kinds of notation for quaternions are used. For example, the w
from (1.47) is sometimes called the ‘scalar part’ s, while the triple [x, y, z] (written with or
without commas) may be called the ‘vector part’ v.> Thus, the linear combination expression
for a quaternion in (1.47) can be written in the following equivalent forms:

q=w+xl+yJ+:zK (1.52)
=[xy z w] (1.53)
= (s, V) (1.54)
= [v,s]. (1.55)

Besides the component representation in (1.52), one might see tuples of coefficients as in
(1.53), or pairs consisting of the scalar and vector parts as in (1.54) and (1.55). Most texts
use round brackets if the vector part is written after the scalar part, as in (1.54), and square
brackets when the vector part is written in front, as in (1.55). In contrast to linear algebra, it
makes no sense to distinguish between row and column vectors in quaternion notation. The
product of two quaternions q; = (s1, vi) and q2 = (s2, v2) in scalar—vector notation turns out
to be

qi - q = (5152 — Vi - V2, S{V2 + 52V + Vi X V), (1.56)

with the usual cross product x and inner (dot) product - for three-dimensional vectors. Due
to the anti-commutativity of the cross product (vi X vo = —vz X V3), the quaternion product
cannot be commutative; on the other hand, the inner product is not anti-commutative, so in
general one must assume that q; - qo # 2 - q;. Quaternions do commute with their own
conjugates, as the result is a scalar anyway, q - q* = q* - q = |q|*>. For ‘pure vectors’
r; = (0, vy) and r, = (0, v2), we have, in the notation of (1.52)—(1.55),

ry -T2 = (—Vy V2, V| X V2),

so their quaternion product contains the negative inner product in the scalar part and the cross
product in the vector part.

3The conflict that arises with three-dimensional velocity vectors in using the symbol ‘v’ is unfortunate, but choosing
a letter other than that used in the majority of texts on quaternions would not improve readability either; use of the v
notation will be limited to this section and the next, where no rectilinear velocities occur.
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In component notation, let us write

wi w2 w3

X1 X2 X3
q1 = , Q2= , Q3=

V1 y2 y3

71 22 23

w3 wy —XxX1r —yr —2 wyp
X3 _ X1 wi —21 1 X2 . (1.57)
V3 Y1 | wp  —X] 2
23 1 Ty X wi 22

Inverses can be defined in the same way as for complex numbers, via the conjugate q*:

1 1
q'=—q"= :
lql q-q

*

q*.

For unit quaternions with |q| = 1, we have q - ¢* = 1 so that ¢~' = ¢*; hence the inverse of a

unit quaternion is its conjugate. For an angle ¢ and a vector v, we can define a unit quaternion
(sometimes called an ‘Euler parameter’)

qp = (cosp, Vsing), (1.58)

which already looks a lot like the complex exponential we used in (1.43) to represent a rotation
around the z-axis. The inverse of q4 can then be written as

qgl = q;i = (cos ¢, Vsing)* = (cos ¢, —Vsing).

Next, we show how to represent vectors as quaternions. A ‘pure’ vector is a quaternion for
which the scalar part is absent, and can be written in various forms as

r=0+xl+yJ+zK
=[xy z 0]
=(0,v)

= [v,0].

This means that the quaternion conjugate of a pure vector is the negative of the vector,
r‘ = —r. (1.59)

Now we figure out how to use quaternions to represent rotations of vectors. For complex
numbers, rotation by angle ¢ is equivalent to multiplication by exp(i¢)) = cos ¢ + isin¢, so
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let’s see how far we can get with multiplying a pure vector quaternion r = x| + yJ + zK by a
unit quaternion (Euler parameter) q = cos ¢ + | sin ¢:

qr = (cos ¢ + Ising) (x| 4+ yd + zK)
= (xl + yd + zK) cos ¢ — x sin¢g + y sin K — z sin ¢J
= x(lcos¢p — sing) + y(Jcos ¢ + sin pK) + z(Kcos ¢ — sin ¢pJ). (1.60)
A rotation around the l-axis by ¢ should leave the terms with x| in v unchanged, but this is
not the case in (1.60). We can remedy this by multiplying (1.60) by ¢* from the right, which
gives
qrq® = (cos ¢ + I sin @) (x| + yJ + zK)(cos ¢ — I sin ¢)
= x|+ (ycos2¢p — zsin2¢)d + (y sin2¢ + z cos 2¢)K. (1.61)
Obviously, multiplication of r by q from the left and by q* from the right is a rotation, as
the length of r as well as the component in the direction of the rotation remain unchanged.

Since the argument in (1.61) is 2¢, we have actually rotated r by 2¢. So, in order to define a
quaternion associated with a rotation by angle ¢, we need to halve the angle, i.e. use

q¢/2 = cos% — Isin%. (1.62)

The rotated vector r is then obtained by

r= q¢/2rq(’;/2. (1.63)

Therefore, although rotations around the z-axis for complex numbers (or two-dimensional
real vectors) are expressed using a single complex multiplication by exp(i¢), a general rota-
tion in three dimensions requires multiplication by an Euler parameter qg,2 from the left and
multiplication by the conjugate parameter q;‘; 2 from the right. In general, the unit quaternion

q= (cos % vsin %) (1.64)

represents a rotation around the unit vector v; see Figure 1.13(b). General coordinate
transformations for rotations of pure vectors r with quaternions ¢ are obtained by

I = qrq®*. (1.65)
Successive rotations, first by ¢ and then by g, have to be composed in the same way:
F = dafq"q".

From the point of view of the number of degrees of freedom, the use of unit quaternions to
represent rotations means that instead of the 4-tuple of numbers (s, v) for general quaternion
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multiplications, we have an additional constraint, namely the length of the quaternion: only
unit quaternions correspond to exactly three degrees of freedom for the three-dimensional
rotation. Additionally, using Equations (1.59) and (1.50), one can show that

f=—(F)" = -(@q(-r")g"*
= ((—r*(—q")*
= (—q)r(—q)*. (1.66)

This means that rotations can be represented either by quaternions ¢, as in (1.63), or by —q,
as in (1.66). For the equations of motion, we also need the time derivatives of the quaternions
and their relationship to the angular velocity . We list these formulae together here; their
derivation will be the subject of the next subsection. The first derivative with respect to time
of a unit quaternion q due to a rotation with angular velocity o is

d 1
_ = ( = — . 1
1= 2w(t)q (1.67)

The second derivative, which is needed to write equations of motion in second order, like
Newton’s equation of motion, is
¢ = (@9 + q) (1.68)
—q=0=- (@ ). .
a2 qa=q ) q+q

Additionally, we will need the following auxiliary equations:

® = 249", (1.69)
o=J"Lxw+1), (1.70)
L=Jo, (1.71)
J=AJPAT, (1.72)
J7'=AJ"H AT, (1.73)

where the angular momentum L, angular velocity w, torque 7, and the quaternion ¢ and its
time derivatives are computed in the space-fixed coordinate system. The moment of inertia J is
also calculated in the space-fixed coordinate system, which can be obtained from the moment
of inertia in the body-fixed system JP via multiplication by the rotation matrix A from the left
and its inverse AT from the right (the ‘principal axis transform”).

At the initialization of a DEM simulation, the original orientation of a particle is chosen in
the body-fixed coordinate system where its tensor of inertia is diagonal, J = (Jy, Jy, J;). Each
particle is then rotated into the space-fixed (i.e. Cartesian, axis-aligned) coordinate system
using the value of the orientation quaternion q(z = 0) which uniquely defines the orientation
of each particle at each time-step 7. The transformation of the tensor of inertia is better made
with the rotation matrix A than with the quaternion of orientation. In the next subsection we
give a representation of A in components of ¢. The equations of motion are second-order dif-
ferential equations of unit quaternions, (1.68) in the body-fixed coordinate system, and can be
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integrated directly by the Gear predictor—corrector method, as no additional transformations
are necessary. Other representations are possible. Allen and Tildesley [4] use unit quater-
nions qP together with angular velocities @® in the body-fixed coordinate system for first-order
equations of angular motion. In their approach, torques t® are computed in the space-fixed
coordinate system as 7° and then transformed to the body-fixed coordinate system. However,
for quaternions q° in the body-fixed coordinate system, the higher-order derivatives needed
for predictor—corrector time integration schemes (in particular the backward difference for-
mulae we will recommend later) are not available, so other time integrators have to be used,
which may not have the same favorable stability properties.

1.3.10 Derivation of quaternion dynamics

In this subsection, we give several relations for unit quaternions q and their time derivatives,
and show derivations where comparing different references may lead to confusion about the
meaning of the equations. The unit quaternion q = (qo, g1, g2, ¢3) has length 1; its squared
absolute value

lagl = a5 +4qf +43 +q5 =1 (1.74)

is a constant, so its time derivative (computed componentwise) must vanish:

d ) ) ) )
aqul = qoqo + 9191 + 9242 + q343 = 0. (1.75)

The middle part of (1.75) is a scalar product of the quaternion q with its own time derivative
d. This means that q is orthogonal to its own time derivative ¢, similar to Figure 1.11, and
similar to the orthogonality in the constraint coordinates for the pendulum discussed in § 2.8.
Moreover, (1.75) implies that a quaternion and its time derivative commute: qq = qg. The
components of q can be expressed by the Euler angles 6, v, ¢ from § 1.3.4 as follows:

¢+v

qo = cos g cos > (1.76)
g1 = sinacos(t);w, (1.77)
Q= sinzsin(ﬁ;w, (1.78)
q3 :coszsinqb—;w. (1.79)

This means that the components of the unit quaternion ¢ can represent the orientation of a
particle without involving trigonometric functions of the Euler angles. As the numerical eval-
uation of trigonometric functions takes about ten times longer than multiplication or addition,
this means that unit quaternions are also computationally economical. With (1.76)—(1.79), we
can express the rotation matrix as

@+ai—a3+4a;  2q192 + qoq3) 2(9193 — q042)
A=| 2qig2—q093) af—ai+a5—a7  2(q2q3 + qoq1)
2(q193 + q0g2) 2(q293 — q091) 435 —q} — g3 + 43
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Next, we compute the time derivative q. Consider an infinitesimal rotation by a very small
angle 6 around a vector v, so that the corresponding unit quaternion is

6 N do
cos—, vsin— |~ |1, v— ). (1.80)
2 2 2

Let the rotation take place during the infinitesimal time interval d¢. The rotation experienced
by a pure vector at time 7, r(t) = (0, r), is then (see [8])

r(t +dt) =r+dr = (1, V%) (O,r)(l,—v%) (1.81)
_(.d0 do do do 182
_<v7~r—r(—v7>,r+v7xr+r(—v7>> (1.82)
= (0, r+do (vxr)). (1.83)

From (1.81) to (1.82), we multiplied out all terms and dropped the ones which are quadratic in
do; from (1.82) to (1.83), we used the fact that the vector cross product is anti-commutative,
r x v= —v x r. It follows that for the motion from r(¢) to r(z + dt),

r(t +dr) —r(t) =dr=do (v x r). (1.84)
If we divide (1.84) by d¢, we obtain

dr . do 185

dt_r_dt(vxr)_a)xr, (1.85)
because the angular velocity @ in the space-fixed system is around the direction v. Next we
want to derive the relationship between ¢ and the angular velocity @® in the body-fixed coordi-
nate system. We cannot obtain w® by simple quaternion transformations as in Equation (1.85),
because we have @ only as a factor in a vector product, not isolated on one side of an equation.
Let us consider the time derivative of r, treated as the orientation r° of the body-fixed coordi-
nate system rotated by a unit quaternion q. From the coordinate transformation in (1.65), we
obtain

= (70)
(3905 ra(3#) o ) (3)
B
(G0 @) ()

where 1P is fixed, so its time derivative vanishes. Replacing r° with the transformed r, i.e.
substituting

r° = q*rq
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into Equation (1.86), gives

d _ d b % b) d *
dtr_<dtq> (rq)+<qr a7
= () (a"rqq") + (a9"rq) (47)
= qq*r — rgq*q. (1.87)
We use that ¢* and q commute. The vectorial components (qq*)"®¢ of qq* (the components

of the ‘pure vector’) will behave like vectors in the multiplication with r, i.e. the product is
anti-commutative:

*)vecr — *)VCC

(99 —r(qq

Accordingly, we can transform the quaternion Equation (1.87) into a vector equation

d
Er — (C']q*)VCC XTI —TX (c‘[*q)VeC
= (49" xr+ (@ 9" xr

=2(G9")" xr. (1.83)
Comparing this with Equation (1.85), we see that
249 = w. (1.89)
Now we multiply (1.89) from the left by ¢* and from the right by q to obtain
q9°2(497)" g = g @y,
——
wb
924 = @°, (1.90)

so the right-hand side is the body-fixed angular velocity @°. Multiplying (1.90) from the left
by q gives

99°2§ = qo°,

§ = Lae® (1.91)
_ . ,
q=34

This result is not a contradiction to (1.87), which involved the angular frequency from
the space-fixed coordinate system, ®. The most important relations for quaternions are
summarized in Table 1.2.

1.4 The phase space

In the phase space concept, the position coordinates x (¢) and the velocities v(¢) are considered
together when analyzing a mechanical system. The mathematical theory of phase space anal-
ysis for ordinary differential equations is often called the theory of dynamical systems, and is
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Table 1.2 Summary of important quaternion relations.

q=wl+xl+yJ+:zK

Coordinate
representation =[x y z w] Pure vectors r=0+xl+yJ+zK
of quaternions =(s,V) represented as =[x y z 0]
—[v.s] quaternions — 0. v)
Conjugate . =[v,0]
quaternion ¢ =wl—xl—yJ—zK
Euler g = (cos ¢, Vsin )
Rules f w\E parameter _
Hies c.)r (q ) 1 for vector v q¢l = q;’; =q—9¢
quatermon * % *
coniueation q+9)" =q;] +q; and angle ¢, B ok
Hug and its inverse - (COS ¢, Vsin ¢)
Inverse 1 1, 1 . = (cos¢p, —Vsing)
: q =—9 =————=4
quatermon |q| q-q Rotation of a F— qor *
pure vector by ¢ q%
Quaternion q1 - qp = (5152 — V| - Va2, angle ¢
product $1V2 +$2V] + V] X V2)
No d 1
tativity 9192 7 42 - q1 ) == -w(t
commutativity Quaternion dr 1= 1 2 ()4
in general ) L
time derivatives 42
and dizq =4
Associativity @1 -92)-93 =491 - (92 - q3) angular velocity d .
Conjugate of a (al)) mn space—glxed, =3 (09 + qw)
duct Q)" = qﬁq“f ®° in body-fixed
pro coordinates) ®=24q*
1
Absolute value lal = vaq-q* = q=59@

Unit
quaternion

[w? 4+ x2 432 42

1
9=—q
qq*

lal =Vag* = Vg*q =1

a generalization of the theory of ordinary differential equations. We will use the terms ‘flow
of the differential equation’, ‘dynamical system’ and ‘phase space’ pretty synonymously. In
physics, a phase space is usually the space spanned by the coordinates and their respective
velocities or, in some cases, momenta. In mathematics, any pair of coordinates may be con-
sidered for a dynamical system. This implies a certain symmetry between coordinates and
their velocities, which is not present in the more elementary kinematics, where velocities are
‘merely’ the time derivatives of the original coordinates. The main types of flow that are of
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(a) k ) _E'_

Figure 1.14 Symbols used in mechanical engineering: (a) a spring with spring constant k; (b) vis-
cous (velocity-dependent) damping (dashpot) proportional to §x; (c) system with (Coulomb) friction
(slider) proportional to u; (d) mass dangling from a spring, the physical system corresponding to (a);
(e) mass dangling from a spring in water (viscous damping, effectively spring—dashpot), the physical
system corresponding to (b); (f) block sliding on a surface under the influence of a spring (slider—
spring), the physical system corresponding to (c). In (d)—(f) the symbols are shown as insets. Discrete
element interactions are sometimes sketched with a spring—dashpot element in the normal direction and
a slider—spring symbol in the tangential direction.

interest for discrete element systems will be discussed in the context of the linear oscillators
example (with elastic force proportional to the dislocation), for both undamped and damped
cases as well as for the case with Coulomb friction; for the symbols used in engineering and
illustrations of the corresponding physical systems, see Figure 1.14. The flow in phase space
will enable us to discriminate between static and dynamic friction, even in the case where the
sliding velocity is zero.

1.4.1 Qualitative discussion of the time dependence of linear oscillations

Here we give a brief hand-waving derivation of the phase flow as a basis for discussing the
dynamics in more depth later. Detailed time-dependent solutions for the linear oscillator can
be found, for instance, in Benenson [9]. The undamped linear oscillator, or ‘harmonic oscil-
lator’, corresponds to an ideal elastic (meaning there is no dissipation) linear spring modeled
by the differential equation

mx + kx = 0. (1.92)

Further, it corresponds to the motion of a particle in a symmetric force equilibrium. One
solution of (1.92) is x(t) = Acos(wot + ¢o), where wg = +/k/m. Apart from the phase
parameter ¢o, the corresponding velocities are v = x(f) = —Awq sinwt. Neglecting the
constant pre-factors, which is equivalent to a simple rescaling of the axis, we have

x o cos(wot), (1.93)
v & sin(wot), (1.94)
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Figure 1.15  Graph of the amplitude of the linear oscillator with m = 1 and k = 1: damped (dashed
line); viscously damped (solid gray line); and damped with Coulomb friction (solid black line), together
with the envelope for the extrema of the graph in the Coulomb friction case and the zero-amplitude
x-axis (three dotted lines).

v (1)

Figure 1.16 Graph of the velocity of the linear oscillator with m = 1 and k = 1: damped (dashed
line); viscously damped (solid gray line); and damped with Coulomb friction (solid black line), together
with the envelope for the extrema of the graph in the Coulomb friction case and the zero-velocity x-axis
(three dotted lines).

i.e. the position (dashed line in Figure 1.15) and velocity (dashed line in Figure 1.16) variables
oscillate with a phase difference of /2 between them.
For the linear oscillator with viscous damping (proportional to velocity), the differential
equation is
mX +26x + kx = 0. (1.95)

Physically, it corresponds to a linear spring which is damped in a fluid, so that the damp-
ing stays proportional to the velocity. If there were inertia effects in the fluid, the resulting
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‘Newtonian friction’ would be proportional to the square of the velocity. The solution to the
viscously damped linear oscillator equation is

k b
1) = Aexp(—5t +i/w} — 82t h ==, §=—. 1.96
x(1) exp( )exp( i/ w; ) where wg - o (1.96)

We focus on oscillatory solutions (with a)g > 821); see the solid gray curve in Figure 1.15.
The critically damped and over-damped cases can be found in Benenson [9]. The exponential
decay of the solution, x(#) o exp(—§t), leads to a similar exponential decay of the velocities
(see Figure 1.16, solid gray line). Continuum materials under vibration usually show viscous
damping patterns, too, due to the dissipation mechanisms of kinetic energies in solids. Expo-
nential decay sounds impressive, but is in fact a relatively ‘weak’ type of decay: the amplitude
never actually reaches zero.
With Coulomb friction (dry friction or sliding friction), the linear oscillator becomes

mX + psgn(x) + kx =0, (1.97)

where 1 is the product of the friction coefficient and the normal force, and we define the sgn
function as

=1, fora > 0,
sgn(a) y€[—1,1] fora =0, (1.98)
= — fora < 0,

so that the friction force exactly compensates for the external force. Note that this is different
from the usual step function definition

1 fora > 0,
sgn(a) =30 fora =0,
—1 fora < 0.

Physically, the system corresponds to a spring that is fixed to a wall and connected to a block
which slides on the floor nearby; see Figure 1.14(f). In this chapter the discussion will be in
a hand-waving fashion; we give the exact solution for v = 0 in Chapter 3. For sgn(v) =
sgn(x) = +£1, the solution is composed of solutions to one of the inhomogeneous differential
equations [10, 11]

mx + kx = —pu, (1.99)
mx + kx = +pu, (1.100)

or the amplitude stays constant when —kx is smaller than p. The solutions to Equations
(1.99) and (1.100) have the same periodicity as the solution to (1.92), with wg = /k/m,
because for a linear ordinary differential equation, introducing a non-zero term on the right-
hand side (inhomogeneity) does not change the general solution. The effect of damping with
Coulomb friction is that the piecewise solution branches between the reversals in sign of the



“Matuttis-Driv-1" — 2014/3/24 — 19:18 — page 34 — #34

34 Understanding the Discrete Element Method

velocity decay in magnitude (for both the amplitude and the velocity) within a linear envelope
(the outer dotted lines in Figures 1.15 and 1.16). This means that the relative maxima of the
positions and velocities lie along a line, and likewise for the minima, so that after a finite
time, the velocity v(z) becomes zero and the amplitude x(#) becomes constant. As can be
seen in Figure 1.15, the final amplitude does not have to be zero: when the spring force —kx
is smaller than the friction force w, the amplitude stays fixed, which is why we have to use the
inclusion definition for the sign in (1.98). From Figure 1.16 one sees that the velocity, and with
it the kinetic energy, goes to zero in finite time, so Coulomb friction is much more effective
in damping out energies or vibrations than is velocity-dependent friction, especially at small
velocities. This effect has various applications. Machine parts (e.g. running gears and wheels
of trains) are tested by tapping them with a hammer. If everything is in good condition, one
hears a nice ‘metallic’ ringing sound: the sound amplitude is damped out exponentially and
decays smoothly. If there are cracks, the contact between ragged surfaces damps the sound
much faster due to Coulomb friction, so that it comes out as a short, ugly rattling noise. One
can visualize this effect by fixing one end of a ruler on a desk and setting the other end to
vibrate; usually there will be a smooth decay in the vibration amplitude, but if the vibrating
end is in frictional contact with another object, the decay will be abrupt.

Individually, contacts in granular assemblies are equivalent to linear oscillators with
Coulomb friction. For this reason, aggregates of granular material are often much better
at damping out kinetic energies than a similar piece of continuum material would be. Jug-
glers use grain-filled balls for practice, because such balls won’t roll away when accidentally
dropped; sand slopes are used in shooting ranges to catch straying bullets, while sand sacks
are used for protection against aimed bullets.

1.4.2 Resonance

Now let us consider what happens when we drive the damped linear oscillator of Equation
(1.95) by a periodic force which oscillates with period @ and maximal amplitude fo. To
reduce the amount of algebra required for the solution, we write the periodic force in complex
exponential form, so that the equation is

¥ 4 28% 4 wix = foexp(iot) (1.101)

where wy = +/k/m. We are interested in the absolute value of the amplitude A of the
stationary solution

x(t) = Aexp(iot). (1.102)

Substituting (1.102) into (1.101) allows us to get rid of the time dependence (by canceling out
factors of exp(iwt)) and hence obtain*

—Aw® +128Aw + 0} A = f, (1.103)

4This is possible because of how we captured the time dependence with a complex exponential; to formulate a
solution using only real functions, about two pages of arithmetic and algebraic transformations are necessary; see,
for instance, Knudsen and Hjorth [12, § 15.6].
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A(w)
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T

Figure 1.17 Graph of the absolute value of the resonance amplitude, |A|, as a function of w for the
linear oscillator in Equation (1.103) with various values of §. The dashed line gives the positions of the
maxima as in formula (1.106).

with fy = fo/m, which then gives

A= fo (1.104)

—w? 4+ 128w + a)(z) '

From this, we obtain the absolute value of the complex amplitude A according to (1.42):
fo
\/(wg — w?)? + 48202

1A| = (1.105)

(The absolute value is also more meaningful in the purely real case with § = 0, as A(w)
changes sign from +o00 to —00 at @ = wyp; since we are interested in the magnitude of the
amplitude, the sign is not important.) The resulting amplitudes are plotted in Figure 1.17 for
several values of §. For damping 0 < § < 1, the maxima of the resonance amplitudes lie on
the curve

Jo

8/ (@ —52)'

For § = 0, the amplitude increases toward infinity, i.e. an undamped system excited at the
resonance frequency @ = wq would be destroyed, due to unlimited growth of the vibration
amplitude. Note that the amplitude increases only linearly in time, so that an infinite amplitude
would only be reached after an infinite amount of time; see Exercise 1.3. The right-hand side
foexp(iwt) of Equation (1.101) contains only a #-dependence, so it is an ‘external’ force;
terms with dependence on x only are the ‘internal’ forces of the system. In mathematical
terminology, systems that depend only on ‘x’ are said to be autonomous, while those which
also have a dependence on ‘¢’ are non-autonomous.

(1.106)

Amax =

1.4.3  The flow in phase space

With the results from the previous subsection, we are ready to discuss the flow of the differ-
ential equation in phase space, also called the ‘attractor’ of the system. (The flow will be used
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later in Chapter 3 to make mathematically exact distinctions between conditions for static and
dynamic friction.) In Figures 1.18-1.20, we visualize the flow in several ways. First, we plot
with solid lines the trajectories in time, (x(#), v(¢)), of the solution. We can also consider
Newton’s equation of motion in the form (1.7)—(1.8), written as

d (x v
¥ <v> _ (F/m) (1.107)

so that the right-hand side is equivalent to the directions

x(t 4 8t) — x(t)

8t )'c(t))

= (* (1.108)

w(t 4 81) — v(1) <“(f)
5t

of the flow field: these directions are depicted as arrows in Figures 1.18—1.20. Finally, it has
become traditional to discuss the transport of a set of initial conditions in phase space from
time #q to time 7:

y(to) — y (). (1.109)

-1 -08-06-04-02 0 02 04 06 08 1
X

Figure 1.18 Phase portrait (attractor) for the linear oscillator (m = 1, k = 1) without damping:
illustration of Liouville’s theorem on conservation of phase space volume.
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Figure 1.19 Phase portrait for the linear oscillator (m = 1, k = 1) with viscous damping (§ = 0.1):
the attractor is a whirl, where the phase space volume shrinks exponentially in spiral-shaped trajectories.
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Figure 1.20 Attractors for the linear oscillator (m = 1, k = 1) with Coulomb friction (u = 0.15): the
flow of an initially simply connected phase space volume is split and deposited from above and from
below at the singularity g(x,v) = (—u <x < u, v =0).
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The initial conditions usually take the shape of a cat’s head, which goes back to Arnold’s book
on mechanics [13], but is probably originally due to Delaunay.?

For the undamped linear oscillator, plotting sine against cosine from the solutions (1.93)—
(1.94) gives circular trajectories, as shown in Figure 1.18. We can see that the area of the cat’s
head does not change, i.e. it is a ‘conserved’ quantity; this illustrates Liouville’s theorem,
which says that phase space density is conserved for ‘Hamiltonian’ mechanical systems, i.e.
systems for which Newton’s equation of motion can be written as [15]

ax = m_lp,
d
al = —ViV(x),

where x denotes position, m is mass, p is momentum, and V.V (x) is the gradient of the
position-dependent potential V (x). In mathematics, such systems of ordinary differential
equations are said to be ‘symplectic’; in physics they are called ‘Hamiltonian’ or ‘canoni-
cal’ systems [3, 13, 16]. Among other things, these systems exhibit conservation of energy.
The direction field is continuous, i.e. the mapping

x(1) x(t + 8t) + 6x
(v(t)) e <v(t + 81) +8v) (1.110)
with infinitesimal 8¢, §x and Sv is continuous for all initial values of x, v > 0.

When damping is introduced, the amplitude in (1.96) decays exponentially; see Figure 1.19.
Viscous damping leads to an exponential contraction of the cat’s head, i.e. the volume spanned
by the initial condition decreases during transport of the coordinates in phase space, but the
shape stays basically the same. The exponential decay gives spiral- or vortex-shaped trajec-
tories in phase space, or whirls, as they are called in the field of dynamical systems. As for
the energy-conserving system in (1.110), the right-hand side functions in Equation (1.107) are
also continuous from one point to another in phase space, and the direction field has no singu-
larity; in other words, the direction change from an arrow at (x(¢), v(¢)) to a nearby arrow at
(x(t 4 6t) + éx, v(t 4 &t) + dv) is always smooth, and the singularity (v = 0, x = 0) cannot
be reached in finite time, so it is not part of the phase space for the problem.

The situation changes dramatically when we have Coulomb friction; see Figure 1.20. At
the beginning the attractor resembles that in the viscous damping case: for (|| > x, v = 0),
the situation for dynamic friction, the flow is continuous. Along g(x,v) = (—pu < x <
, v =0), the flow is non-smooth. In an infinitesimal region around g(x,v) = (—p < x <
uw, v = 0), flow from above or from below can occur: this is the region of static friction,
where the tension of the spring at finite displacement in Figure 1.14 is not strong enough
to overcome the friction force acting on the block. When the cat’s head approaches the line
g(x,v) = (—pu < x < p, v=0), it splits up: part of the flow is transported into g(x, v) from
above, another part from below. No flow is possible on the horizontal axis, either from left
to right or from right to left. This is a consequence of the fact that the right-hand side of the

5According to Zdravkovska et al. [14, p. 82], B. N. Delaunay (1890-1980), who taught at Moscow University where
Arnold studied, used to visualize affine transformations by ‘transformations of a picture of a kitten’.
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system (1.99)—(1.100) is not smooth: arrows coming from below face upward, arrows coming
from above face downward, and along the whole line g(x, v) = (—u < x < u, v = 0) arrows
have zero length. Note that while across the line the flow is not smooth, the line itself is part
of the phase space of the problem and corresponds to the situation in Figure 1.14(f), where
the spring is under tension but the block does not move because it is held by the friction
force. A contraction like for viscous damping has been proposed [17] for the phase space
evolution of, among other systems, sheared granular materials, which implies a flow as in
Figure 1.19. As these materials are, to all intents and purposes, assemblies of solid particles
with Coulomb friction (except in the most artificial cases), assumption of a ‘damped’ Liouville
equation

L = [iL+ A f(t) = —iLf () (1.111)

af )
ar

to describe the phase space volume, with a solution that is an exponential contraction of the
phase space f(t) = exp(—iit) fo of Equation (1.111), may be an appropriate local descrip-
tion in some cases; however, globally this approach is inappropriate, even for only a single
frictional contact, as a comparison of Figures 1.19 and 1.20 easily shows. Such a description
would easily break down for transitions from dynamic to static friction, for example from
hopper flow to clogging. This provides a more esoteric justification of why one should use
particle models with Coulomb friction: they allow us to access much more exotic flows in
phase space than do continuum approaches alone.

While physically g(x, v) = (= < x < u, v = 0) is reached in finite time in Figure 1.20,
Filippov theory [18], the standard theory for differential equations with discontinuous right-
hand sides, does not allow for singularities g(x, v) = (—u < x < u, v = 0) which have the
shape of a line in the solution domain. Instead of the attractor in Figure 1.20, for singularities
in the flow directions in (1.108), Filippov theory [18, Ch. 4] postulates transport along the
line (in our case, along the x-axis with v = 0), but this is clearly impossible in the case of
a spring with a block: the block can only change its position if its velocity is finite. If the
singularities are reached only as + — oo, this may be physically meaningful; but for the
case of Coulomb friction where singularities are reached after relatively short times, or static
friction where the singularity is reached after a finite time span, the mathematical theory is
insufficient. Nevertheless, for particles in contact, the linear oscillator with Coulomb friction
is the prototype pattern of the flow in phase space.

1.5 Nonlinearities

Nonlinearities come up frequently in DEM simulations: even when linear interaction laws
are assumed between contacting particles, the transition from non-contacting (zero force) to
contacting (linear interaction) is nonlinear. The dynamics of nonlinear oscillators differ in
various aspects from the dynamics of linear oscillators. The linear force law in Equation (1.92)
contains no dependence of the period on the amplitude. For forces that are nonlinear and which
grow more slowly than linearly in the displacement x, as in the case of the mathematical
pendulum

mXx + sin(x) = 0, (1.112)
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Figure 1.21 Relationship between period and amplitude for: the linear oscillator (dashed lines); the
nonlinear oscillator of Equation (1.113) with n = 2 (solid black lines); and the mathematical pendu-
lum of Equation (1.112) (solid gray lines). One curve of each pair has amplitude 2, and the other has
amplitude such that the period is 2.

the frequency decreases with the amplitude; see Figure 1.21. For forces that grow faster than
linearly in the displacement x, such as

mi + |x|"sgn(x) =0 (n > 1), (1.113)

the oscillation frequency increases with the amplitude; see Figure 1.21. The forces which
result from particles coming into contact with deformations are not of this type: in that case,
there is only a repulsive part, for wedge-shaped contacts with n = 2 and for spherically
shaped contacts with n = 3/2; see Johnson [19]. Still, although the attractive part of the
interaction is missing, the frequency dependence for half a period is important to know: when
the amplitudes are high (e.g. high collision velocity, large compression), the frequency is
higher and the time-scale is smaller; therefore smaller time-steps have to be used to resolve
the corresponding particle contacts. In the same way as the frequency is influenced by the
power of the displacement, the contact time for colliding DEM particles will be affected: in a
temporary collision, instead of a full sine oscillation, only a single arc of the sine curve will be
transversed by the contacting particles. Viewed in phase space, linear differential equations
leave the shape of the cat’s head as it is (Figures 1.18, 1.19 and the initial flow in Figure 1.20),
whereas nonlinear differential equations distort the shape; see Figure 1.22 and the final stage
of the flow in Figure 1.20.

1.5.1 Harmonic balance

The graphs in Figure 1.21 were produced via numerical integration. Analytical approaches
to computing the amplitude dependence of the frequency are possible via the method of har-
monic balance, i.e. by expanding the solution in a Fourier series (a sum of trigonometric
functions) and considering the leading terms. For an oscillator with a third-order term (the
Duffing oscillator)

m55+kx+lgx3:O,
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Figure 1.22 Phase flow for the mathematical pendulum of Equation (1.112): two phase space volumes
chosen as cats’ heads become distorted during their transport through phase space, due to the sin(x)
nonlinearity in (1.112).
we first rewrite the equation as

. 2 3

X+ wyx +ex” =0, (1.114)
and then approximate it by

i+ K@) =0.

For small nonlinearities, we can assume solutions similar to those of the linear oscillator, in
the form

x(t) = Acoswt,

where instead of wy we have to deal with the as-yet-unknown w. Using the trigonometric
identity

cos36 = 4cos> 6 — 3cos0,
we obtain the expansion of X (¢) in w and its powers as

- 3 1
K@) = w(z)x +exd = (a)(z) + Z€A2> A coswt + ZEA3 cos3wt.

Neglecting the third harmonic (the term with dependence on 3wr) and substituting this
expression for K (x(¢)) into Equation (1.114) yields the linearization

. o 3eA?
x-l—a)o 1-’-17 x =0. (1115)
0
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So, for the nonlinear oscillator of Equation (1.114), the amplitude dependence of the
frequency is approximately

2
® ~ w (1—§i>. (1.116)

This agrees with the amplitude—frequency behavior in Figure 1.21 (though strictly speaking
the nonlinearities in (1.113) withn = 2 and n = 3/2 cannot be expanded with leading terms in
x3): forces that grow faster than linearly lead to an increase in the frequency with increasing
amplitude, while forces growing at a weaker rate lead to a decrease in the frequency with
increasing amplitude. The resulting effect on the collision duration and the choice of time-step
have already been discussed in the previous section.

1.5.2 Resonance in nonlinear systems

Resonance in nonlinear systems can be discussed analogously to the linear case in § 1.4.2. We
make an ansatz for the solution,

x(1) = Aexp(iQ1), (1.117)

where the frequency €2 is the frequency of the external excitation, and add damping so that
from (1.114) we obtain

X 4 26% + 0ix + ex® = foexp(iQe). (1.118)

Here, due to the nonlinearity of the system, €2 will depend not only on the fundamental fre-
quency wo, the nonlinear coefficient € and the damping y, but also on the amplitude A of the
solution and the amplitude fy of the external excitation. Using the harmonic balance approach
of the previous subsection, Equation (1.118) simplifies to

. . 2 3eA? .
X +20x + oy |1+ -—5 | x = foexp(if). (1.119)
4 wj
Plugging in the ansatz from (1.117), as in the linear case, we can eliminate the dependence on

exp(i2r) and get left with
) . 9 3eA?
—AQ" +25AQ1 + wy 14—‘—‘—2 A = fo. (1.120)
0

Instead of solving for A as a function of €2, which would be a third-order equation, let us
solve the second-order equation for €2 in terms of A. This gives the two solutions

fo

3 3
Qo= AQ? +28% — ZeAZ 05+ 452 (52 — w2+ ZeA2>; (1.121)
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Figure 1.23 Curves of the relation between the amplitude A and the frequency €2 in harmonic balance
for the parameters € = O.4a)g, fo = I.Sa)(z) and various values of § in Equation (1.121). The dashed
curve represents the relation between amplitude and frequency for free, undamped oscillations, i.e. the
solution to (1.121) with y = 0 and f; = 0. For smaller €, the curve will be more upright; for negative
€, it will be tilted towards the left.
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Figure 1.24 Hysteresis curve for the resonance of the nonlinear oscillator: when the frequency sweeps
in a quasi-stationary way from lower to higher €2, the resonance curve follows the path ABCEF, whereas
from higher to lower €2 it follows the path FEDBA.

so the €21 2 indeed depend on all the other parameters in Equation (1.119). The graph for the
real parts of €212 (only these are physically meaningful) is shown in Figure 1.23. Compared
with the resonance curve for the linear oscillator, the cusp is tilted to the right for e > 0
(and it would be tilted to the left for ¢ < 0). Because the solution for A in Equation (1.121)
would be a third root, mathematically there are up to three solution points for a single value
of 2, i.e. there may be several amplitudes for the same frequency; which one of these is
assumed by the system depends on the history. In Figure 1.24, possible transitions between
the states are sketched: for an increase of 2 from point A to point F, the amplitude will
follow the path ABCEF; for a decrease of 2 from point F to point A, the amplitude will
follow path FEDBA. The amplitudes between B and D (gray dashed line in Figure 1.24)
will usually not be assumed by the system. The phenomenon of different amplitudes being
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selected in the range between Qpp and Qcg, depending on whether the control parameter €2
is increased or decreased, is called hysteresis. If we assume that a granular system is composed
of particles with the nonlinear contacts described by the equations in this section, and if we
assume that the whole system inherits the properties of the contacts, then for reasonably strong
nonlinearities it becomes likely that certain vibration amplitudes cannot be realized: either too
large or too small excitations take place. The authors have found such behavior in vibrated
granular materials even in experiments: for some vibrated systems, convection was observed
only for amplitudes that were larger or smaller than the actually desired amplitude, at which
the system stood still.

1.5.3 Higher harmonics and frequency mixing

When we investigate physical systems, we input an external influence I (e.g. a force) and
look at the response R of the system (e.g. the deformation); in the simplest case, there may be
linear dependence

R =al.

For a periodic input I = cos wt with frequency w, the displacement will follow a temporal
variation of the same frequency. When we have a nonlinear system, the nonlinear response
can be expanded as a Taylor series; for example, to second order,

R=ayl +al’. (1.122)

The response to a periodic input / = B coswt can then be rewritten via the trigonometric
identity cos?f = %(cos 20 + 1), with 6 = wt, as

R =aiBcoswt + a232 cos® wt

B? a, B?

:achosa)t—i—a2 cos 2wt + > (1.123)

In other words, the response will consist of a part with the original frequency w, another
part with doubled frequency 2w, and a displacement from the original equilibrium a, B%/2.
A striking example from optics of second-harmonic generation by frequency doubling is
the emission of blue light from an optically active target which is irradiated by a red laser
of high intensity. For mechanical systems such as granular materials, we may also obtain
an output spectrum that differs from the input spectrum (i.e. different frequencies, different
wavelengths). There is another important consequence for disordered granular materials with
nonlinear characteristics, i.e. particle contacts that obey nonlinear interaction laws: for sound
waves with different finite amplitudes B passing through the same initial configuration, there
may be a different reconfiguration of the granular matrix of magnitude a>B2/2 in (1.123),
which itself affects again the sound propagation; see [20] for a signature of such reordering
in a DEM simulation of sound propagation through a system of poyhedral particles. Due
to the strong frictional damping in granular materials, it will not be possible to reduce the
amplitude too much, or else no output signal R can be measured at all. The generation of
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higher harmonics, not only doubling the frequency, can be derived mathematically using the
trigonometric identities

c0s 30 = 4cos> 0 — 3cos b
for frequency tripling,
cos40 = 8cos*0 — 8cos?O + 1

for frequency quadrupling, and

cosnf =ncos" 0 — (;) sin 0 cos" 20 + (Z) sin*@cos" 40 — ...

L (=D (;k) sin2k 9 cos" 2k g + ...

for the general case of nth-order harmonics. If there are oscillations with more than one input
frequency w, then there will be multiplicative terms; for example, with two input frequencies
A coswit and B cos wat, the 12 term in (1.122) will become

2

(Acoswit + Bcos a)zt)2 = A? cos? wit +2AB coswit coswort + B? cos? wot,

so we have a product term cos w1t cos wyt. Using the trigonometric formula

cosf cos¢p = %(cos(@ + ¢) + cos(0 — qb)),

we obtain ‘sum frequency mixing’ with (w; + @) and ‘difference frequency mixing’ with
(w1 — wy). For many materials, nonlinear effects can often be ‘argued away’ based on small
pre-factors. However, for the granular materials that we wish to study with the discrete ele-
ment method, damping is often considerable, so one cannot work with small amplitudes, even
in small laboratory experiments. Apart from that, some granular phenomena, such as land-
slides and earthquakes, naturally come with large amplitudes. Because of all these nonlinear
effects which can modify the original frequency spectrum, it is not possible to rely on run-
time experiments with mixed frequency spectra: waves A(¢, x, ) emitted at 7y with a given
frequency into the sample at one end may be damped out and not reach the detector at the
other end of the sample at all; on the other hand, waves B(f, x, ®) in between are generated
from other frequencies and reach the target at times unrelated to #(; see Shourbagy et al. [21]
for a discussion of real data.

1.5.4 The van der Pol oscillator

An oscillator that exhibits some of the nonlinear frequency behavior discussed above is the
forced van der Pol oscillator

¥ — u(l = x)x + x = psin(wr), (1.124)
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Figure 1.25 Position x(¢) (left column), phase portrait (middle column) and power spectrum with
maximum value normalized to 1 (right column) for the van der Pol oscillator (1.124) with u© = 0.2,
® = 1.15 and the values of 1 shown at the left of each row. For computation of the power spectrum, the
gray portions of the x(¢) curves (up to r ~ 45) were omitted, and data x(¢) with ¢ up to about 1050 was
used.

where the x2% term is nonlinear, of third order. The autonomous system (without explicit time
dependence, where n = 0) oscillates with frequency w = 1 (see Figure 1.25, top row). The
graph of x(¢) is not exactly sinusoidal, so the peak of the power spectrum, i.e. the absolute
value of the Fourier transform (see § 5.2.2) is broadened around the fundamental frequency.
When for u = 0.2 the external forcing is increased to n = 0.04, we see in the middle row
of Figure 1.25 that another peak appears at a new, higher frequency, as well as a smaller one
at w = 0.85 and a tiny one at w =~ 0.7. This indicates the presence of difference frequency
mixing. For larger forcing with n = 0.4, the difference mixing spreads out over the whole
spectrum, and the peak at w = 1 nearly reaches the amplitude for the eigenfrequency w = 1 of
the unforced oscillator (Figure 1.25, bottom row). The Poincaré-Bendixson theorem prohibits
the occurrence of chaos (in the exact mathematical sense) in a continuous dynamical system
in the plane, so the van der Pol oscillator (which has only two coordinates, x and v) can
have only a discrete spectrum. The Fourier transform used in the right column of Figure 1.25
gives a peak in the spectrum for w. The peak is of finite width, even for the unique stable
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trajectory which exists when n = 0. Therefore, the Fourier transform is not the optimal tool
for analyzing whether a spectrum is continuous or not. In the next section, we will discuss a
model which indeed exhibits a continuum of states, and introduce an method of analysis that
does not require use of the Fourier transform.

1.6 From higher harmonics to chaos
1.6.1 The bifurcation cascade

As the strength of the nonlinearity increases, phenomena can occur which are unexpected
from the point of view of ‘linearized” mechanics. Such phenomena can affect the observable
computation and the accuracy with which specifications for experiment and simulation have
to be given, and there may be considerable scattering of data even when the initial conditions
are ‘nearly identical’ or if the system is perturbed a little to have ‘slightly different’ dynamics.
Even if only the time-step of computation is changed, for large enough particle numbers the
configuration may evolve along totally different trajectories. While there are many treatises
on chaos in mechanics, few are directly applicable to DEM simulations; here we shall give
an overview of phenomena that can actually affect the development of DEM programs. The
generation of higher harmonics means that for a given discrete spectrum of input frequencies
Sin = {w1, w2, ...}, the system could respond with an output spectrum Soy¢ = {@1, @2, ...}
that is different but still discrete. Beyond that, there is a possibility of going from discrete
to continuous spectra in a bifurcation scenario: as the nonlinearity parameter (called » in the
following) increases, the response parameter could split into two branches repeatedly, until a
continuum of states (‘chaos’) is reached; see Figure 1.26.

1.6.2  The nonlinear frictional oscillator and Poincaré maps

We consider the differential equation for the nonlinear friction oscillator (‘stick-slip
oscillator’),

X4+x+alpl)+pnux —1)sgn(x — 1)] = y cos(nt), (1.125)

n

Figure 1.26 Bifurcation scenario of a variable x, showing successive (not necessarily symmetric)
period-doubling up to a continuum of states as an external nonlinearity parameter 7 is increased, leading
to the development of chaos.
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Figure 1.27 A physical system with the behavior of the differential equation (1.125): a mass on a
conveyor belt with several couplings, which alternates between sliding and sticking.
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Figure 1.28 Graphs of the velocity-dependent friction law w(v) of (1.126) and different combinations
of terms in the Stribeck friction expression in Equation (1.125).

where we use 1 rather than w to represent the frequency, indicating that it will be our nonlin-
earity parameter. Here we take the sign function of (1.98), a = 10, and a velocity-dependent
friction law with

Mo — M1
n() =

= T+ 1.126
T+ o] 1 1v] ( )

where the pre-factors of the velocity dependence are Ay = 1.42 and A; = 0.01. The coeffi-
cient of static friction, uo = 0.4, is larger than the coefficient for dynamic friction, n; = 0.1.
The velocity dependence is sketched in Figure 1.28: note that p(v) is symmetric in v; the
physical dependence of the sign requires the multiplication with sgn(x — 1) in Equation
(1.125). Velocity-dependent characteristics similar to p(v) sgn(x) are sometimes referred to
as ‘Stribeck friction’; an example is the friction between violin strings and the rosin-coated
violin bow [22, p. 284]. A physical system corresponding to Equation (1.125) is depicted in
Figure 1.27: a mass connected to a spring with spring constant 1 slips or sticks on a belt, with
the mutual friction given by (1.126).

The frictional oscillator of Equation (1.126), like the van der Pol oscillator, has only a
single position coordinate x and a single velocity coordinate v, but it is not a purely two-
dimensional system. Our at-first-glance elusive definition of the sign function in (1.98), which
leaves A in the range —1 < A < 1 such that the external force can be compensated, in fact
includes an additional parameter (the ‘Conley index’; see Kunze [23]) which can act as a
further dimension to the problem. In § 3.3.2, we will show how the computation of A can
be performed in a ‘numerically exact’ manner (i.e. with controllable discretization errors,
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and without any modeling assumptions). Because of the variation of A, the system exhibits
true chaos without running afoul of the Poincaré—Bendixson theorem, which forbids chaos
in purely two-dimensional continuous systems. For discrete systems, even in one dimension,
such as for the logistic map

Xnt1 = Xy (1 = x),

chaotic behavior (in the sense of continuous distributions for the x,,1) is possible; see § 1.6.3.
The corresponding continuum model, the logistic equation

dx_ (1 )
dr = )

has the explicit solution
1

0= 1+ (xlo - 1) exp(ni)

which is not chaotic at all. This should serve as a warning to anyone who tries to model
the physical behavior of systems of discrete particles with continuum approaches: the same
dynamics is not necessarily accessible when one goes from discrete to continuous models in
a given dimension. The solutions to the nonlinear friction equation (1.125) vary strongly with
1, as can be seen from the equilibrium trajectories in Figure 1.29 (i.e. trajectories omitting the
initial part of the solution); depending on 7, the solutions may differ considerably.

One might guess that the solution is periodic, or not. To make it easier to investigate the
periodic dynamics of the system and its dependence on the parameter 7, instead of look-
ing at the Fourier transform as in § 1.5.4, we will investigate the Poincaré map (or Poincaré
cut, as it is obtained as an intersection with the plane at a given 1), which is the intersec-
tion of the trajectory in phase space with a plane defined at a certain velocity (Poincaré
section); see Figure 1.30. This reduces the effective dimension of the system by 1. Instead
of n peaks in the Fourier transform, for suitable chosen (half-)planes (we will choose v = 0

(a) (b)
1 1
0 0
. > -1
) )
-3 -3
-4 =2 0o 2 4 -4 =2 0 2 4 4
X X X

Figure 1.29 Some trajectories for different values of the parameter 7 in the nonlinear friction oscillator
equation (1.125). The cats’ heads are not shown, but they would all be contracted on the lines for the
trajectories.
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x -3 1.05 I

Figure 1.30 Selected trajectories for various values of the parameter 7 in the nonlinear friction oscil-
lator equation (1.125). Intersection points between the trajectory x () and the plane v = 0 are marked
by crosses; further (numerically computed) intersection points for this Poincaré map are marked by gray
dots and are replotted in Figure 1.31 in two dimensions.
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Figure 1.31 Return map (Poincaré map) for the nonlinear friction oscillator of (1.125), obtained from
the Poincaré section at v = 0. Values of x(#) > 0 are plotted for different values of n; the two insets
display successively magnified phase space volumes to show the fine structure.

for x > 0) one finds n intersection points between the trajectory and the plane. The return
map is plotted in Figure 1.31: the nonlinear frictional oscillator alternates between oscillat-
ing among a set of discrete values (periodic dynamics) and visiting a range of practically
continuously distributed values (chaos) at different values of n. This alternating behavior is
called intermittency. The practically continuous spectrum is a sign of mechanical chaos: ini-
tially close trajectories can diverge arbitrarily far. Attractors exhibiting this kind of behavior
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are also called ‘strange attractors’. Chaos is the most highly nonlinear form of nonlinearity.
The short-term behavior is predictable, but the long-term behavior is not. Although trajecto-
ries are unpredictable, there is a definite mathematical structure that allows one to predict in
which parameter region chaos will occur. Despite this, due to finite errors which are inherent
in modeling a system, one may obtain practically random behavior from systems which are to
all intents and purposes deterministic. Note, however, that although the distribution of values
in a chaotic system is continuous, it is by no means uniform, as can be seen from the shading
in Figure 1.31. Because, moreover, the order in which the continuum is sampled is difficult
to conceive, Poincaré maps of the chaotic regime cannot be used as, for instance, random
number generators, for which there are better alternatives (see, e.g., vol. 2 of [24]).

1.6.3 The route to chaos

The sequential growth in complexity of the dynamics with the strength of the nonlinearity, as
in the bifurcation scenario, is sometimes called the ‘route to chaos’. For a linear system, there
is a single mode (e.g. velocity, frequency, wavenumber, position, or a combination of these).
When nonlinearity is involved, additional peaks can be observed in the spectrum. Eventually
there is a transition from a spectrum of densely positioned peaks to a continuous spectrum—to
chaos. Even in the chaotic case it does not mean that the probability density of each trajectory
is the same, as can be seen from Figure 1.31, which definitely shows structure even in the
chaotic region. The classical bifurcation scenario assumes that each stage involves a doubling
of peaks, but that is not what we see for our nonlinear frictional oscillator in Figure 1.31.
Some return maps are self-similar, or fractal; this is the case for the final (stationary) values
of the discrete iteration known as the ‘logistic map’:

Xpg1 = nXn (1 = xp) (1.127)

with nonlinearity parameter 7. Self-similarity means that if one magnifies a portion of the
diagram, one sees basically (and in some cases, after transformation of the axes, exactly) the
same overall structure as the original; see Figure 1.32, where successively magnified portions
of the map are shown. The Poincaré map of the frictional oscillator in Figure 1.31 is not fractal;
the Coulomb friction seems to break the scale-invariance that is inherent to the return maps
of many nonlinear systems. This means that one has to be careful when adapting concepts of
nonlinear theory to realistic mechanical systems, especially granular materials. Particle size,
friction and other physical properties lead to characteristic dynamics at different scales, which
may be incompatible with aspects of nonlinear systems such as self-similar return maps.
While chaos itself inhibits the computation of individual trajectories in accordance with
experimental data, it may actually be an asset for the theoretical prediction of statistical
properties of many-particle systems. Molecular chaos, the assumption that velocities of col-
liding particles are uncorrelated and independent of position (Boltzmann’s ‘Stosszahlansatz’,
or collision-parameter approach) underlies many analytical methods for collision-dominated
particle systems, including granular particles at low densities. In fluid mechanics, chaos is
equivalent to turbulence, i.e. a continuous size distribution of vortices from the largest to
the smallest length scales. In fluid dynamics, ‘routes to chaos’ via bifurcation can evolve
simultaneously in the same system at different places: for the separation flow in a transitional
boundary layer with an impinging shock-wave as external forcing, the spatial and temporal
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Figure 1.32 Return map for the logistic map of Equation (1.127). Successive inserts show magni-
fied detail of the previous map; while having different scales, all three plots show the same structure,
demonstrating the fractal (self-similar) nature of the map.

development of the first vortex at the impinging point towards the vortex field further down-
stream (see [25]) follows the bifurcation cascade in Figure 1.26. It cannot be excluded that
different stages of the development of chaos might occur simultaneously in granular systems
simulated with the discrete element method.

1.6.4 Boundary conditions and many-particle systems

The character of the nonlinearity may be not only a matter of the dynamics of the physi-
cal system but also of the boundary conditions. In Figure 1.33 we contrast the trajectories
in a conventional billiard geometry and in a ‘stadium billiard’ geometry, for constant abso-
lute velocity; the dynamics is that of a single particle which gets reflected at the boundaries.
In the conventional billiard case, the trajectories are parallel, whereas in the stadium billiard
case they diverge and, for certain types of boundaries, become chaotic [26]. This means that
sharpness of corners (here, of the system boundaries) is not in itself a guarantee of the exis-
tence of nonlinearities. As the divergence of initially close trajectories may be desired, for
example when considering mixing in hoppers, one has to pay proper attention to the shape
of the boundaries. For sharp corners rather than flat edges, the character of the nonlinearity
can be assumed to increase. Especially for particle systems with low density, boundary and
initial conditions will have considerable influence on the dynamics, beyond mere interaction.
For the simulation of accretion disks via smoothed particle hydrodynamics (SPH), a symmet-
ric choice of initial positions and velocities has been found to cause axisymmetric stripes at
a later stage in the simulations [27], which overlay the inherent instabilities of the system
[28]. As SPH uses more interaction partners and stronger averaging than the discrete element
method, one has to be even more careful with ‘harder’ (more nonlinear) interactions than in
DEM simulations.

Chaos can easily occur in mechanical multi-body systems: already the double-pendulum,
which has only two degrees of freedom, can exhibit chaos [29]. In dry granular materials, there
are several aspects which contribute to the nonlinear character on the level of individual parti-
cles: the first is the transition from no interaction for separated particles to a finite interaction
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Figure 1.33 Effect of the boundary condition on the nonlinearity of the system (manifested here as
the divergence of trajectories): trajectories of a system with rigid reflection when the boundary condi-
tions are shaped according to a conventional billiard table (above) or a ‘stadium billiard’ table (below).
The same initial velocity is assumed in both cases; the time evolution of points from the set of initial
conditions (cat’s head) is shown in black, while selected trajectories are drawn in gray.

for particles in contact, which may actually be more decisive than the second aspect, which
is the detailed nonlinear power of the interaction. Computationally, chaos was discovered by
E. Lorenz, who found, in a nonlinear oscillator system with three variables, wildly different
solution trajectories from only slightly different initial conditions [30]. One should not be sur-
prised to encounter this behavior in discrete element solutions as well. The Euler equations of
motion for rotation, (1.35)—(1.37), are themselves nonlinear; we have observed in polyhedral
particle simulations that minimal changes (even a mere reduction in the step-size or choice
of a different order in the summation of the forces) could lead to a strong divergence of the
orientation of the particles, although at least in the beginning the positions of the center of
mass were not affected.

1.7 Stability and conservation laws

Stability is the notion that a system ‘does not change much’ under a perturbation. This means
that if we repeat the same experiment (or calculation, or simulation) with slightly different
initial conditions, the outcome should also not change much. Here we review some basic ideas
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Figure 1.34 Stability and instability for a pendulum resting at different stationary points. After a small
displacement § from the upper stationary point, the bob moves away from the position, which is therefore
an unstable state. The bob always returns to the lower stationary point after a small displacement, so this
position is a stable equilibrium.

from stability theory, but will not go into details: while the general notion is important for sim-
ulations of mechanical systems, almost all DEM systems will turn out to be unstable in the
sense of classical stability in mechanics, which was devised more with celestial mechanics in
mind than with the aim of describing friction- and dissipation-influenced phenomena on Earth.
Nevertheless, the concept (though not the mathematical theory) of stable and unstable quan-
tities is useful in helping us focus on appropriate observables in particle simulations. Further,
we outline which conservation laws are suitable for testing the quality of DEM simulations.

1.7.1 Stability in statics

Mechanical stability, or lack thereof, is usually defined with respect to (not necessarily one-
dimensional) stationary points xg (also called equilibrium positions [31, p. 797]) of a physical
system. If for x(¢) = x5, v(¢t) = 0, the position will stay at xg always, so x; is said to be a
stationary point. If after a small deflection § from xg, the system stays close to xg, then the
stationary point is stable; if the system moves away after a small deflection §, the stationary
point is unstable [32, p. 166]. The bob of the pendulum in Figure 1.34 has two stationary
positions, at the highest and lowest points; the upper one is unstable and the lower one is
stable.

The formal definition of stability is that for any € > 0 there exists a §(¢) > 0 such that
whenever

1x(0) — x5 <8, (1.128)
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we have
lx(®) — x| <€ (1.129)

for all # > 0. This means that solutions which start ‘close enough’ to the equilibrium (within
a distance § of it) remain ‘close’ forever (within a distance €). Note that this must be true
for any infinitesimal € > 0 that one might choose. Equations (1.128) and (1.129) have the
same mathematical form as the Weierstrass criterion for continuous functions (epsilon-delta
continuity) [31, p. 57]: a function f(¢) is continuous if for any € > 0 there exists a §(¢) > 0
such that whenever |t — a| < §, we have

lf() = fla)] <e. (1.130)

1.7.2  Stability in dynamics

We define stability in dynamics analogously to the stability of points in statics, by generalizing
from single positions to entire time-dependent trajectories x(¢), i.e. to solutions of an initial
value problem for a differential equation. Let #; denote the initial time and # the final time of
interest. We write g (t;) = ¢j and ¢(t;) = g; for two initial states, and ¢ (tf) = gf and g (tr) = g¢
for the final states on the corresponding trajectories. Then we have stability if for initially
close coordinates with

lgi — gil <6, (1.131)

the separation between the final coordinates is bounded by a function which is a power of the
time span:

lgr — Grl < € (tr — t;)”. (1.132)
If the deviation diverges exponentially,
lg(t) —q ()] = Cexp(rr) (1.133)

for some A > 0, the system is said to be Lyapunov unstable, and A is called the Lyapunov
exponent; see Figure 1.35. From this follows a definition of stability via ‘Lyapunov func-
tions’: if a solution can be constructed using exponential functions with positive exponents,
then it is unstable. Because of the symmetry between coordinates and their velocities, as
mentioned in § 1.4, velocities may be included in the norm (i.e. distance) measurements of
(1.131)—(1.133).

Strictly speaking, these definitions are valid only for trajectories which correspond to solu-
tions of ordinary differential equations that are autonomous systems without dissipation. We
have seen in the previous discussions on resonance that a periodic perturbation can generate
infinite amplitudes in the absence of damping, which makes the definition of stability more
complicated; see Merkin [33, p. 226ff]. Furthermore, one should really make a distinction
between a theory for finite times and one for infinite times (see the Introduction of [33]).
Earlier we introduced some other mathematical phenomena that can lead to instability; for
example, chaos, whereby the Poincaré map generates a continuum of points, is a type of
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Figure 1.35 Neighboring trajectories of: (a) a stable system; (b) an unstable system.

instability. Certain kinds of attractors are also indicators of instability; see the elaborate dis-
cussion in Greiner [34, p. 467ff]. If dissipation is added to stable mechanical systems, the
stability of otherwise stable structures can be destroyed [33, p. 202], which is rather coun-
terintuitive: one might expect that dissipation, which removes energy from the system and
reduces particle motion, would increase stability. However, as demonstrated by the hysteresis
jumps in the resonance curve with linear damping of Figure 1.24, damping can indeed lead to
a loss of stability. On the other hand, that the usual definitions of stability result in dissipative
systems being classified as generally unstable reflects the fact that these ideas of stability orig-
inate from celestial mechanics and have only limited applicability to terrestrial mechanics. We
might hope for a definition that could discriminate between ‘stable’ and ‘unstable’ slopes in
granular materials; however, no such theory exists.

There are other aspects of classical stability theory that make its application to particle
mechanics problems, such as the discrete element method, difficult. For instance, displace-
ments (or the corresponding perturbations to the systems) are always ‘infinitesimal’ in
mathematical stability theory; but for real systems and finite displacements, doubt remains
as to whether this mathematical theory can describe appropriately the actual stability or
instability of mechanical systems. Arnold [13, p. 121] gave a mathematical proof that while
the acrobatic (inverted) pendulum (i.e. the bob positioned at the apex of the trajectory in
Figure 1.34) is unstable, the same stationary point becomes stable if the pendulum is vibrated
vertically. An experimental realization of this scenario would be balancing a pencil by merely
moving it up and down in one’s hand. This would certainly not be sufficient to keep the pen-
cil upright, so in this case mathematical rigor is not the same as physical relevance. As any
perturbations in physical experiments are finite, but the mathematical theory assumes infinites-
imal perturbations, we would still consider the system in question as being unstable based on
everyday experience.

1.7.3  Stable axes of rotation around the principal axis

The previous discussions pertained to rectilinear degrees of freedom. For angular motion,
where different degrees of freedom are coupled, a slightly different approach than the € — §
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philosophy is needed. We show here the common analysis of which axes are stable for rotation
around the principal axis, i.e. the axis obtained from the coordinate transformation in such a
way that the tensor of inertia is diagonal. For the torque-free case, we can rewrite the Euler
equations of motion, (1.35)—(1.37), in terms of the angular momenta L}”. To do this, multiply
the first Euler equation by J»J3, the second by J;J3 and the third by J;J> (where Ji, Jo, J3
are the diagonal elements of the tensor of inertia), then replace each J; a)}’ with Ll? to obtain

JJ5LY = (1 — J3) LSLY, (1.134)
DL = (13 — J) LOLS, (1.135)
NhLY = (= k) LOLS. (1.136)

Now, if we multiply (1.134) by J; LY, (1.135) by J,LY (1.136) by J3L%, and add up the
resulting equations, we obtain

JihJ3 (L?Llf + LSLS + L'§L2> =0

Integration with respect to time then gives

((L‘;)z + (L‘g)z + (L2)2> =, (1.137)

where Cj is a constant, equal to the value of L2, the square of the total angular momentum
LP of the object in the body-fixed coordinate system. So we have shown that in the absence
of an external torque, the total angular momentum is conserved.

If we multiply (1.134) by L%, (1.135) by L5 and (1.136) by L% and then add up the resulting

equations, we obtain
b)? b\’ b)?
(1213 (L5) + 2105 (L8) + 012 (L8) ) = 0.

Integrating with respect to time and dividing by Jj J» J3 gives

2 2 2
(Ly)” Ly (LY
+ + = Cs. 1.138
( 7 7 7; 2 ( )
Recall that in the context of rectilinear degrees of freedom, for mass m, momentum p and
velocity v we have p2 = m?v? = 2T, where T is the kinetic energy; so we see that C»

must correspond to twice the kinetic energy of the intrinsic angular momentum 7', which is
also conserved. At the same time, we see that for the individual components 1, 2, 3 of kinetic
energy and angular momentum, no conservation law can be derived, as the Euler equations of
motion couple the three components together. Equation (1.138) has the same functional form
as the general equation for an ellipsoid,

[\S}
S}
[ ]

Ql%
[38)

%'
ﬁl\)lN
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2

Figure 1.36 Poinsot ellipsoid of constant kinetic energy for the intrinsic angular momentum; stable
trajectories around the principal axes 1 and 3 are plotted as solid lines, and the trajectory around the
unstable principal axis 2 is plotted as a dashed line.

for which the half-axes of lengths a, b and ¢ are aligned parallel to the Cartesian axes x, y and
z, respectively. The ellipsoid described by Equation (1.138) is called the Poinsot ellipsoid,
after L. Poinsot, who first proposed an interpretation of rotation as rolling of this ellipsoid on
a plane in angular momentum space [35]. Let us order the axes so that J1 < J, < J3. For fixed
LY, the kinetic energy for rotation around axis 1 is Trilil‘l =1b /(2J1), which is maximal, while
the kinetic energy for rotation around axis 3, Tél = LP/(2J3), is minimal. Accordingly, the
kinetic energy T is bounded by

ax

Trilin = T = Trilax'
In Figure 1.36 we plot trajectories of L for various initial conditions, along with periodic ‘tra-
jectories’ of the angular momentum. It turns out that rotations around axis 1 (corresponding to
the smallest moment of inertia J;) and around axis 3 (the largest moment of inertia J3) are sta-
ble, whereas rotations around axis 2 (intermediate moment of inertia J,, where J; < Jo» < J3)
are unstable. It is also possible to prove the Lyapunov instability analytically; see [36]. The
assumption of energy conservation is rather strong—too strong to be valid for many technical
applications. If a system is energy dissipating, a reduction in the energy will force the rotation
to be around axis 3 with the minimum kinetic energy and maximum moment of inertia. Even
satellites have been found to show enough dissipation so that axis 1 with the minimal moment
of inertia and therefore the maximal kinetic energy becomes unstable [37, p. 62ff]. This shows
that stability proofs for ‘ideal’ (e.g. frictionless) systems are not all that relevant for technical
systems, including particle systems and the discrete element method.

1.7.4 Noether’s theorem and conservation laws

Noether’s theorem (see, e.g., [38, p. 359]) asserts that where there is a symmetry in a mechan-
ical system, there is a conserved quantity. From the homogeneity of time (every time interval
looks like every other time interval) follows the conservation of total energy. From the homo-
geneity of space (every spatial interval looks like every other spatial interval) follows the
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conservation of momentum. From the isotropy of space (every direction looks like every other
direction) follows the conservation of angular momentum. Such conservation laws can be used
to test, for example, whether interaction laws have been implemented correctly in models. It
will be useful to discuss briefly what quantities can be conserved for discrete element systems.
(It is advisable to test such conservation laws first with two particles in the system to avoid
losing the overall view of the simultaneous interactions.) The total energy in a particle sys-
tem consists of kinetic energy, both for the rectilinear degree of freedom, (1.26), and for the
angular degree of freedom, (1.27), and potential energy. In the body-fixed system, the posi-
tion energy for particle systems consists of external potentials, usually gravity, and interaction
energy, which for DEM particles would be ‘elastic’ energy due to overlapping or deformed
contacts. While for gravity the potential energy is easy to compute, in the DEM case potential
energy can be difficult to estimate for anything other than linear potentials. Forces F' that are
‘conservative’, i.e. which conserve the total energy of a particle moving under their influence)
are those which can be derived from the gradient of a scalar field ®, so that

F=-Vo.

Besides for gradient potentials, energy conservation holds for rotationally symmetric poten-
tials; for collisions with other potentials, a violation of energy conservation must be expected.
In other words, for many discrete element models with non-spherical particles, there is no
energy conservation even in the absence of velocity-dependent forces. Imagine the one-
dimensional propagation of a particle through a force field which is asymmetric: from x|
to 0 the force increases linearly, and from O to x; it decreases linearly, so that it is described
by the formula

0 for x < xi,
ki(x — f

Flx) = 1(x —x1) forx; <x <O, (1.139)
kox —kjx; for0 < x < xo,

0 for x > x,

where |k1| # |k2|, k1 > 0, ko < O and |k1x1| = |kox2|; see Figure 1.37. Consider a particle
moving from a position x3 < x| to another position x4 > x,. Because the work performed on
the particle is

X4
W:/ F(x)dx > 0, (1.140)
x3

S T T
5
) ky ky
g .

X 0 X2

Position x

Figure 1.37 Sketch of the asymmetric force field given by Equation (1.139), where k| and k, are the
gradients of the force at different positions.
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Space

Time

Figure 1.38 One-dimensional collision of non-spherical particles: the kinetic energy of the rectilin-
ear degree of freedom is greater before than after the collision, even if there are no velocity-dependent
damping forces. At the approach of the contact, the interaction is via a wedge—wedge contact (propor-
tion%lll to d? where d is the deformation; see § 1.5); on separation the interaction is linear (proportional
tod").

the kinetic energy of the particle at x4 will be different than at x3. At x3 and x4, the kinetic
energy is the same as the total energy, because there is no other potential. So particles which
traverse asymmetric force fields on approach may undergo a change of their total energy
even in the absence of velocity-dependent dissipative forces. This often happens in particle
simulations of collisions involving rotations of non-spherical particles: when the particles
turn during the collision, the repulsive force on approach can be different from the force
upon separation; see Figure 1.38. This is one reason why verifying conservation of energy
is not a useful way to check whether the simulation and time integrator were implemented
correctly; another reason is the time integration method itself (see Chapter 2, in particular
§2.4). Only for spherical particles, owing to the rotational symmetry, is the energy conserved
with certainty.

Nevertheless, for asymmetric forces (without velocity-dependent dissipative forces), time
reversal is a suitable test. First, one runs the particle collision forward from initial time £ to
final time #:

(Xi, qi, Vi, wi) = (Xf, qf, Uf, ©f);

then one runs the process backward and compares the respective increase and loss of energy,
which should add up to zero. In practical terms this means running the integrator backward in
time (with negative time-step) or running the integrator with positive time-step but with the
final velocities reversed, i.e.

(Xt, qf, — Vi, —wp) — (Xi, ¢i, —Vj, —@;).

Newton'’s third law states that the forces between bodies are equal in magnitude and opposite
in direction, i.e. ‘action =reaction’. This means that if there are no forces which act on the
whole system (such as gravity), only interaction forces between particles, then momentum
should always be conserved. Thus, conservation of momentum is generally a more useful
test than energy conservation. However, as ‘action = reaction’ holds only for forces, we can-
not invoke such a law for torques when the distance between the force point and the center
of mass is different for the two bodies. The total angular momentum should be conserved
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unconditionally; it is the sum of all orbital and intrinsic angular momenta,
Ltotal — Ltotal,o + Ltotal,i

For all particles the orbital angular momenta L9, cross products of the centers of mass ry and
the momenta py, are summed:

n
L =N LY =3 "r X pr= ) myri X Vi
k k=1 k

The intrinsic angular momenta (‘spin’) are the products of the tensors of the moments of
inertia J; and the angular velocities wy:

Llotali _ ZL}c — ZJk(,)k.
k k

If angular momenta are to be compared for equality at times #; and #, (provided no external
torques act on the system), the computation has to be done in the same coordinate system.
Equality should also be taken in the numerical sense, i.e. with finite precision; see Chapter 2,
particularly the section on relative and rounding errors. While many exercises in mechanics
favor center-of-mass calculations for multi-body systems, in terms of numerical computation
these offer no advantage. Newton’s first law states that if the sum of forces acting on a body is
zero, the body’s velocity will be constant: either it stays at rest or it will move in a straight line
with constant velocity. In simulations, initial conditions that should lead to zero velocity may
actually experience motion due to small noise terms (which arise, for instance, from using
a finite time-step or from oscillatory motion generated by insufficiently damped interaction
forces). For example, a block on a slope which, according to analytical calculations, should
keep its position may slide downhill in a simulation; see § 3.1.

1.8 Further reading

A readable introduction to mechanics is the book by R.D. Gregory [38]. Merkin et al. [33]
give an overview of mathematical stability theory which is applicable to mechanical sys-
tems. A not-too-difficult introduction to Hamiltonian systems and geometrical integration is
the book by Leimkuhler and Reich [15]. An extensive analysis of the frictional oscillator
and further references can be found in the article by Kunze [23]. Solution methods for vari-
ous nonlinear oscillations are discussed in Mickens’s book [39]. For a recent monograph on
Newton—Euler dynamics, see Ardema [40]. Resonance phenomena in nonlinear systems are
treated by Manevich and Manevich [41].

Exercises

1.1 Rotations and complex numbers
a) Compute the eigenvalues of the two-dimensional rotation matrix A? of Equation (1.9).
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b) Show that multiplication of the two-dimensional vector v = (é) by the matrix A? is

equivalent to rotation of v by angle ¢.

1.2 Quaternions
a) Quaternion product. Derive the rule for quaternion products, Equation (1.92), from
the definitions in (1.44)—(1.47).
b) Real representation of quaternion basis elements. Show that the real matrices

1 000 0 1 0 O
01 00 -1 0 0 O
Bi=lo o1 0] ®=l0o 0o o 1)
0 0 0 1 0 0 -1 0
(1.141)
0 0 01 0 01 0
0 0 1 0 0 0 0 -1
Ba=lo —1 0 0of %=|-1 00 o0
-1 0 0 0 0 1 0 0
satisfy the same commutativity relations as 1, |, J and K in Equations (1.44) and

(1.45).
c) Complex representation for element quaternions. Show that the complex matrices

1 0 1 0

By = <0 1>, B = (0 —i)’
0 1 0 i
m=( o) m=(0 o)

satisfy the same commutativity relations as 1, |, J and K in Equations (1.44) and
(1.45).
d) In quantum physics, to describe objects with multiples of spin %, the Pauli matrices

0 1 0 —i 1 0
ax=<1 0), Uy:<i 0), O'Z=<0 _1> (1.143)

are used. Compute the eigenvalues of the matrices (1.143) and the 2 x 2 matrices in
(1.142). What is different?

e) Program the elementary operations for quaternions (multiplication, conjugation,
inversion) as MATLAB® functions.

(1.142)

1.3 For the undamped case of the driven linear oscillator (1.101), i.e.
X 4 wgx = fo/mexp(ion), (1.144)

check for yourself that at resonance wy = w, not only x(#) o sin(iwt) is a solution
but also x(#) o ¢sin(iwt), which means that although mathematically the resonance
amplitude can become infinite according to Equation (1.105), its growth is only linear in
time, so that the time needed to reach the infinite amplitude is also infinite.
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