CHAPTER 1

BASIC ELECTROMAGNETIC THEORY

Electrornagnetic analysis has been an indispensable part of many engineering and scientific
studies since James Clerk Maxwell published his electromagnetic theory in 1873 [17. This
is due primarily to the predictive power of Maxwell’s equations as proven over the years
and the pervasiveness of electromagnetic phenomena in modern technologies. Examples
of these technologies are radar, remote sensing, geoelectromagnetics, bioglectromagnetics,
antennas, wireless communication, optics, and high-frequency/high-speed circuits. More-
over, electromagnetic theory is valid from the static to optical regimes and from subatomic
o intergalactic length scales. Therefore, electromagnetic analysis plays an important role
in scientific research and engineering design.

The problem of electromagnetic analysis is actually a problem of solving a set of
Maxwell’s equations subject to given boundary conditions. Tn this chapter we review briefly
some basic concepts and equations of electromagnetic theory that are used frequently in
this book. Our emphasis is on the presentation of various differential equations and
boundary conditions that define boundary-value problems to be solved by finite element
analysis, The solution of Maxwell’s equations in free space is also given in the form of
an integral expression that relates the field to its source, followed by the description of
Huygens’s principle for calculating the exterior fields from the field on a closed surface.
For a complete presentation of electromagnetic theory, the reader is referred to available
textbooks [2-9]. This chapter may be skipped if the reader is familiar with the theory,
Because the entire treatment of electromagnetic theory depends on vector analysis, we first
review briefly the basic concepts and theorems of vector calculus,
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1.1 BRIEF REVIEW OF VECTOR ANALYSIS

Perhaps the most useful concepts in vector analysis are those of divergence, curl, and

gradient. In this section we present definitions and related theorems for these operations.
Assume that f is a vector function, a quantity whose magnitude and direction vary as

functions of space. The divergence of the vector function f is defined by the timit

1
V- f—&lquUA—[ﬂif‘ds], (1.1)

where s is the surface enclosing volume Av and ds is normal to s and points outward.
From the definition of divergence, we can show that

// v-de:#f-ds, (1.2)
LN ATy S

if the vector f and its first derivative are continuous in volume V as well as on its surface,
5. Equation {1.2) is known as the divergence theorem or Gauss's theorem,
The curl of the vector function f is defined as

V xf= lim —[#dsxf] (1.3)
Av—0 A

whose magnitude in the direction of 7 is given by

i (Vxf)= 1;11_}0 Ai {ff ‘dl]3 (1.4)

where ¢ is the contour that bounds surface As and 7t denotes the unit vector normal to As.
The directions of #i and ! are related by the right-hand rule. From the definition of curl, it

can be shown that
jf [fo)‘dS:ff‘dl: (1.5)
8 o)

if the vector f and its first derivalive are continuous on surface S as well as along contour
C that bounds 5. Equation (1.5} is known as Stokes’s theorem.
Now let f be a scalar function of space. The gradient of the scalar function £ is defined

Vi= Jlim < [# fdb:| (1.6)

whase magnitude in the direction of i is given by

das

fi-Vf =2 (1.7)

From the definition of gradient, we can show that

./[VVde - }’5{ fds, (L.8)

if f and its first derivative are continucus in volume V" as well as on its surface, 5. Equation
(1.8} is known as the gradient theorem.
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Two very useful identities involving the three basic vector differential operators are
Vx(Vfy=20 (1.9)
and
VoV xf)=10, o (L1DY

where f and f are any functions that are continunous with a continuous first derivative. Both
identities can be proven with the aid of the divergence and curl theorems and are easily
verified in Cartesian coordinates. Another useful identity is

V x (Vxf)=VV. f-VH, (1.11)

where V2 is known as the Laplacian. Other useful vector identities are given in Appendix
A

From the divergence theorem, one can derive some integral theorems that are used
frequently in the fermulation of the finite element method. If we substitute f = aVb into
(1.2), we obtain the first scalar Green’s theorem

/j/ (aV2b+ Va - Vb)dV = # a?—b ds, (1.12)
Jv g On

where V2f = V - Vf. Exchanging the positions of a and b and subtracting the resulting
equation from (1,12}, we obtain the second scalar Green’s theorem

//f (aV?b — bV%a)dV = # (a@ — ba—-a)dS‘ (1.13)
v Mg\ O On

If we substitute f = a x V x b into (1.2), we obtain the first vector Green's theorem
/// [(Vxa)- (Vxb)—a-(VxV xb)]dV::#(ax V x b} -adS. (1.14)
v g

Switching the positions of a and b and subtracting the resulting equation from (1.14), we
obtain the second vector Green’s theorem

/f b - {VxVxa)—a {VxVxb)dV
1/

:#(axbe—bexa)-ﬁdS‘ (1.15)
s

These are the standard Green’s theorems. They can be generalized slightly to contain
another function or parameter. These generalized theorems are given in Appendix A and
are actually more useful in the finite element formulacion.

Exercise 1.1 Derive Gauss's theorem in (1.2} trom the definition of the divergence in
{1.1). Discuss the case in which f is discontinuous.

Exercise 1.2 Derive the alternative definition of the curl in (1.4} from the original defini-
tion given in ([.3). Derive Stokes’s theorem in (1.5) from (1.4).

Exercise 1.3 Derive the alternative definition of the gradient in (1,7) from the original
definitien given in (1.6). Derive the gradient theorem in (1.8) from (1.6}.
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1.2 MAXWELLS EQUATIONS

Maxwell's equations are a set of fundamental equations that govern all macroscopic elec-
tromagnetic phenomena. The cquations can be written in both differential and integral
forms, and here we present both to illustrate applications of some of the integral theorems
discussed in the preceding section,

1.2.1 General Integral Form

For general time-varying ficlds, Maxwell’s equations in integral form are given by
1
jg E.dl=-— ]/ B.dS (Faraday’s law) {1.16)
o dt &

j{H-dl = %// D-d8 —1—// J-dS  (Maxwell-Ampére law) {1.17)
o} RUNNE b

# D-d5 = //[ odV (Gauss’s law) {1.18)
i SISy

# B.d5 =10, {Gauss’s law—magnetic) {1.19)
&

where
E = electric field intensity {volts/meter)
D = electric flux density (coulombs/meter?)
H = magnetic field intensity {amperes/ineter)
B = magnetic flux density (webers/meter?)
J = electric current density (amperes/meter?)
¢ = electric charge density (coulombs/meter®).

In (1.16} and (1.17), 5 is an arbitrary open surface bounded by contour €', whereas in
(1.18)yand (1.19), 5 is a closed surface enclosing volume V.
Another fundamental eguation, known as the equation of continuity, is

d
dS = —— V. 1.2
ﬁi.] 1S dt,[[/;;gd (1.200

This equation, which can be derived [rom (1.17) and (1.18), is the mathematical form of
the law of conservation of charge.

Equations {1.16)-(1.20) are valid in all circumstances regardless of the medium and
the shape of the integration volume, surface, and contour. They can be considered as the
fundamental cquations governing the behavior of electromagnetic fields.

1.2.2 General Differential Form

Maxwell’s equations in differential form can be derived from (1.16)—(1.20) by using Gauss’s
and Stokes’s theorems. Consider a point in space where all the field quantities and their



MAXWELLS EQUATIONS 5

derivatives are continuous. Application of Gauss’s and Stokes’s theorems to (1.16)-(1.20)
yields

VxE= —88—]? (Faraday’s law) (1.21)
VxH= %? +J (Maxwell-Ampére law) (1.22)
V-D=p | (Gauss's law) {(1.23)
V-B=10 (Gauss’s law—magnetic) (1.24)
V-J= _?)_f' {equation of continuity) (1.25)

Ameng these equations, only three are independent for the case of time-varying fields and
thus are called independent equations. Either the first three equations, (1.21)-(1.23), or
the first two equations, (1.21} and (1.22), with {1.25) can be chosen as such independent
equations, The other two equations, (1.24) and (1.25) or (1.24) and (1.23), can be derived
from the independent equations and thus are called auxiliary or dependent equations.

1.2.3 Electrostatic and Magnetostatic Fields

When the field quantities do not vary with time, the field is called static. Inthis case, (1.21),
{1.22), and (1.25) can be written as

VxE=0 (1.26)
VxH=1] (1.27)
V-J=0, (1.28)

whereas (1.23) and (1.24) remain the same. It is evident that in this case there is no
interaction between electric and magnetic fields; therefore, we can have separately either
an electrostatic case described by (1.23) and (1.26) or a magnetostatic case described by
(1.24) and (1.27), with (1.28) being a natural consequence of {1.27).

1.2.4 Time-Harmonic Fields

When field quantities in Maxwell’s equations are harmonically oscillating functions with
a single frequency, the field is referred to as time-harmonic. By using the complex phasor
notation [3], (1.21}, (1.22), and (1.23) can be written in a simplified form as

VxE=—juB (1.29)
VxH=juwD+J (1.30)
V-J = —jwg, (1L.31)

where the time convention e** is used and suppressed and w is angular frequency. It is
evident that in this case, the electric and magnetic fields must exist simultaneously, and they
interact with each other; it is also evident that the static case is the limit of the time-harmonic
case as the frequency w approaches zero,
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The use of time-harmeonic fields is not as restrictive as it first appears. By using Fourier
analysis, any time-varying field can be expressed in terms of time-harmonic components
via the Fourier transforms

E(t) = %/_w E{w) e duw (1.32)
and
E(w) = / T B et (133)

Therefore, if the time-harmonic expression of a tield is known for any w, its counterpart in
the time domain can be obtained by evaluating (1.32).

Exercise 1.4  Show that the Fourier transforms defined in {1.32) and (1.33} do not violate
causality. In other words, show that E{t;) as evaluated from (1.32) using E{w) given by
(1.33) does not depend on E{ty) for ty > 1.

1.2.5 Constitutive Relations

The three independent equations amoeng the five Maxwell's equations described earlier
are in an indefinite form because the number of equations is less than the nwmber of
unknowns. Maxwell’s equations become definite when constitutive relations between the
field quantities are specified, The constitutive relations describe the macroscopic properties
of the medium being considered, For a simple medium, they are

D =¢E (1.34)
B =uH (1.35)
J = oE. (1.36)

where the constitutive parameters ¢, p, and o denote, respectively, the permittivity (farads/
meter), permeability (henrys/meter), and conductivity (siemens/meter) of the medium.
These parameters are tensors for anisotropic media and scalars [or isotropic media. For
inhomogeneous media, they are functions of position, whereas for homogeneous media,
they are all constants.

1.3 SCALAR AND VECTOR POTENTIALS

To solve Maxwell’s equaticns, one may first convert the first-order differential equations
involving two field quantities into second-order differential equations involving only one
field quantity. This is demonstrated here by considering the electrostatic and magnetostatic
cases.

1.3.1 Scalar Potential for the Electrostatic Field

As we mentioned earlier, the electrostatic field is governed by (1.23) and (1.26). The latter
can be satisfied by representing the clectric field E as

E = -V, (1.37)
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where ¢ is called the electric scalar potential. Substituting (1.37) into (1.23) with the aid
of (1.34), one obtains

—V-(eV¢) = p, (1.38)

which is the second-order differential equation governing ¢. Equation (1.38) is the well-
known Poisson equation.

1.3.2 Vector Potential for the Magnetostatic Field

The magnetostatic field is governed by (1.24) and (1.27). Equation (1,24} can be satisfied
by representing the magnetic flux density B as

B=VxA, (1.39)

where A is called the magnetic vector potential. Substituting (1.39) into (1.27) with the
aid of (1.33) yields the second-order differential equation

V x (iv % A) = J. (1.40)

This equation, however, does not determine A uniquely becavse, if A is a solution to (1.40),
any function that can be expressed as A’ = A + V{ is also a solution, regardless of the
form of f. Thus to determine A uniquely, one must impose a condition on its divergence.
Such a condition is called a gauge condition, and a natural choice for this condition is

V-A=0 (1.41)

It is important to understand that B is always unique even if A is not. Therefore, if our
objective is to calculate B, it is not necessary to impose the gauge condition.

These discussions are pertinent to the static case. In the time-harmonic case, the electric
and magnetic fields can also be represented by introducing a scalar and a vector potential,
in a manner similar to the formulation in this section [2]. However, this will not be
discussed here because in this book we work directly with the electric and magnetic fields
for time-harmonic problems.

Exercise 1.5 Formulate time-harmonic fields in terms of a vector and a scalar potential
and discuss possible choices for a gauge condition.

1.4 WAVE EQUATIONS

As just mentioned, we deal with the time-harmonic case directly in terms of the electric and
magnetic fields. For this, it is necessary to derive from Maxwell’s equations, which involve

both electric and magnetic fields, the governing differentiat equations involving only either
field.

1.4.1 Vector Wave Equations

The differential equation for E can be obtained by eliminating H from ¢1.29) and (1.30)
with the aid of the constitutive relations (1.34)—(1.36). Doing this, one obtains

v X (lv x E) — w?eE = —jwd. (1.42)
i
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Similarly, one can eliminate E to find the equation for H as

1 1
V x (EVXH) —wyH =V x (—J). (1.43)
€
These equations are called imhomogeneous vector wave equations. It is evident that the
solution of (1.42) also salisfies (1.23). and the solution of (1.43) also satisfies (1.24),

1.4.2 Scalar Wave Equations

In electromagnetic analysis, whenever possible we simplify problems by using a two-
dimensional model to approximate a three-dimensionai problem, Assume that the fields
and the associated medium have no variation with respect to one Cartesian coordinate, say
the z-coordinate. It can then be shown that the z-components of {1.42) and (1.43) become

& (18 8 /18 ) _
1:5 (‘”—r O_J") + ()_U (’u—[%) koﬁl-jl Ez —_}k‘gZ{)Jz (144)
and

{1 a 8 {18 2 d (1 & (1
[‘5«; (;a) o (aa—y) ’“m“'f] He=5s (?.-J”) * 5y (:;*"x)* (143

respectively, where ¢, {= ¢/¢g) and p;, (= p/po) denote the relative permittivity and
refative permeability, respectively, which are assumed here to be complex scalar functions of
position; kg (= w./€pitp ) is the wavenumber in tree space; Zy (= 1/ 20/ €o ) is the intrinsic
impedance of free space; and ¢y (= 8.854 x 1072 farad/meter) and pg (= 47 x 1077
henry/meter) are the permittivity and permeability of free space. Equations of the type of
(1.44) and (1.45) are called inhomogeneous scalar wave equations or Helmholtz equations.

1.5 BOUNDARY CONDITIONS

While there are many functions that satisfy the governing differential equations in a domain
of interest, only one of them is the real solution to a specific problem. Te determine this
solution, one must know the boundary conditions associated with the domain. In other
words, a complete description of an electromagnetic problem should include information
about both differential equations and boundary conditions, In this section we present some
boundary conditions that apply to many practical problems. These can be derived from
Maxwell’s equations in integral form (1.16)—(1.19),

1.5.1 At the Interface between Two Media

At a source-free interface between two media, say medium | and medium 2, the fietds must
satisfy four conditions, given by

Ax (B —Eg) =0 (1.46)
fi-(Dy —Dy) =0 (1.47)
fix(H —Hy) =0 (1.48)

f-(By —Bg) =0, (1.49)
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Figure 1.1 Interface between two media.

where 7 is the unit vector normal to the interface pointing from medium 2 into medium
1 (Fig. 1.1}. These four equations are also known as field continuity conditions. Among
these four conditions, only two are independent; one from (1.46) and (1.49), and the other
from (L.47) and (1.48}.

Note that in (1.47) and (1.48) it is assumed that neither surface currents nor surface
charges exist at the interface. If there exists a surface electric current density J, and a
surface charge density p,, these two equations must be modified as

it (Dl — Dg) = s (]50)
7 x (Hy — Hy) = J,. (1.51)

Exercise 1.6 Derive the boundary conditions (1.50) and (1.51) from Maxwell’s equations
in integral form (1.18) and (1.17).
1.5.2 At a Perfectly Conducting Surface

The boundary conditions can be simplified when one of the media, say medium 2, becomes
a perfect conductor. Since a perfect conductor cannot sustain internal fields, (1.46) becomes

AxE=0 (1.32)
and (1.49) reduces to
in-B =0, (1.53)

where E and B are the fields exterior to the conductor and 7 is the normal pointing away
from the conductor. Note that in this case the boundary can always support a surface current
(Js = i x H) and a surface charge (ps = 1 - D).

1.5.3 At an Imperfectly Conducting Surface

When medium 2 is an imperfect conductor, it can be shown that the electric and magnetic
fields at the surface of the conductor are approximately related by

E-(n- EW=9Zyi xH (1.54)
or alternatively,

it x B =nZg [(# - H)t — HJ (1.55)
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wheres = f Jio /€02 18 the normalized intrinsic impedance of medium 210, 11]. Equation
{1.54) or {1.55) is called an impedarnce boundary condition. It can be written in a more
standard form as
1 ik
— A X (VXE) -4 x (A xE) =0 (1.56)
frt n

ar

i-ﬁ, x (VxH)—jkpax (A xH)=10, (1.57)

£r]

which is known as a mixed boundary condition or a boundary condition of the third kind.
In the two-dimensional case, the impedance boundary condition can be written as

1 0B, ik
L OB, _ kg (1.58)

ey dn 7
for the case of E = 2 E, (usually referred to as the E.-polarization case}, and

1 A4,

€1 On

= jhonH, (1.59)

for the case of H = ZH, (oflen referred Lo as the H ;-polarization case).

1.5.4 Across a Resistive and Conductive Sheet

An electrically resistive sheet is a thin sheei of electric current with density proportional
to the tangential electric field at its surface | 10]. Based on ([1.46) and (1.51). the boundary
comitions across such a sheet are

nax (B —E)=0 (1.60)
and

A x (Hy — Hy) = J, (1.61)
with

. x (A x B) = — R, (1.62)

where R is the resistivity in ohms per square. Substituting (1.62} into {1.61), we obtain
fiix (i x BYy= —R#ax {H; —Hy). (1.63)

Resistive sheets are useful in numerical simulations because they can be used to approximate
thin dielectric layers with
Zy

R= ———, 1.64
jkoler = )7 (1.64)

where ¢, is the relative permittivity and 7 is the thickness of the dielectric layer.
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The electromagnetic dual of a resistive sheet is a magnetically conductive sheet support-
ing only a magnetic current. The boundary conditions across its surface are

Ax(Hy —Hy) =0 (1.65)
and
ax (i x By =—-Ghx (E] — Eg}, (1.66)
where (7 denotes the conductivity in siemens per square. A conductive sheet is useful
because it can be used to approximate a thin magnetic layer with
_ Yo
jho(pr = )7’

where Yy = 1/Z; and p, is the relative permeability of the layer.

In general, a resistive and a conductive sheet can be combined to model a thin material
layer whaose permittivity and permeability both differ from those of the surrounding medium
[10]. Such a medel can simplify numerical analysis for engineering applications.

G (1.67)

1.6 RADIATION CONDITIONS

When the outer boundary of 4 domain recedes to infinity, the domain is called unbounded
or open. A condition must be specified at this outer boundary to obtain a unique solution
for the problem. Such a condition is referred to as a radiation condition.

Assuming that all sources and objects are immersed in free space and located within a
finite distance from the origin of a coordinate system, the electric and magnetic fields are

required to satisfy
E E
lim r | V x + Jhot % =0, {1.68)
r—o0 H H

where r = /72 + 2 + z2. Equation (1.68) is usually referred to as the Sommerfeld
radiation condition for general three-dimensional fields. For two-dimensional fields, the
Sommerfeld radiation condition becomes

| A R T 0 1.69
. -— =+ 1k =14, .
proo Ve p \ H, o H,; (69

where p = /22 + 32,

Equations (1.68) and (1.69) are exactly valid at infinity. In numerical analysis, it is
often desirable to reduce the size of a computational domain by using a finite boundary to
truncate an infinite domain. When applied at such a finite boundary, (1.68) and (1.69} can
be regarded as first-order approximations with limited accuracy. Better accuracy can be
achieved by developing higher-order approximations (Chapter 9).

1.7 FIELDS IN AN INFINITE HOMOGENEOUS MEDIUM

In a general inhomogeneous medium, (1.42) and {1.43) do not have a closed-form solution,
and a munerical method is often required to seek their approximate solution, If, however,
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the problem at hand involves an infinite homogeneous medium, where ¢ and j: are constant,
closed-form solutions may be obtained. Take free space as example, where ¢ = ¢ and
ft = pin. In such a medium, (1.42) and (1.43) become

V2E 4+ kiE = jwpd + %w (1.70)

and
V'H + kiH = -V x J, (1.71)

with the use of (1.23) and (1.24). It is important to recognize that (1.70) is equivalent
to (1.42) only when it is solved in conjunction with (1.23}; similarly, (1.71) is equiva-
lent to (1.43) only when it is solved together with (1.24). Using the principle of linear
superposition, one can find the solution to (1.70) and (1.71) as

ew = (ff [—jwms(r’) - L900")| Gote, ) v (1.72)

and
H(r) = j/j‘ [V % 30 Golr, ) AV, (1.73)
where Go{r, r’) denotes the point-source response, known as the sealar Green's function

(see Appendix C), given by

(}—jk.}lr—r'|

Golr,r') = (1.74)

dxlr — /|’

Equations (1.72) and (1.73) can also be written as

/]/ {_jw”“”rf)@ﬂ(ﬂ r') + Elo(r’)V’Go(r, r’)} v’
v 0

Eir)

il

. 1 ' .
(—}wg.f-ija + ]_u.?uvv) /j g J(I")G‘;](I‘, I‘f) (11” (]?5)

Hix) = ﬂva(r') X V' Go(rx') AV = ¥ x / /]\ IG)Golr.r) AV, (176)

with the use of vector identities and integral theorems.

Therefore, if a source is known in an infinite homogeneous medium, the fields can
readily be calculated by evaluating appropriate integrals over the source. These results are
also applicable Lo surlace or line sources provided that the volume integrals are replaced by
the corresponding surface or line integrals. They can also be reduced for two-dimensional
problems by using the relation

and

/' Golr,r')dz’ = Goip. o), (1.77)

R

where

’ 1 20 £
Galp, o) = :Hy kolp = 1), (1.78)
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Exterior medium
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Objects

Figure 1.2 Huygens's principle.

=

in which p = z& + 4% and H[(]?) (kolp — p’l) is the zeroth-order Hankel function of the
second kind.

Exercise 1.7 In a homogeneous and source-free region, (1.43) is reduced to V x (V x
H) — 2?H = 0 and (1.71) is reduced to V2H + &*H = 0. Show that H = #Hye %@
does not satisty the former equation, but satisfies the latter. Show that this ficld does not
satisfy (1.24) either. This exercise demonstrates that the solutions to (1.70) and {1.71) do
not necessarily satisfy Maxwell’s equations.

Exercise 1.8 Show that (1.75) and (1.76) are equivalent to (1.72) and (1.73) by vsing
vector identities and integral theorems.

1.8 HUYGENS’S PRINCIPLE

The preceding section provided expressions to calculate the fields radiated by a given
current source. However, in the finite element method we usunally solve for the fields
surrounding an cbject instead of the currents induced on the object. Therefore, it would
be useful to have expressions to calculate the fields everywhere based on knowledge of the
fields surrounding an object. Huygens's principle provides such relations.

Consider a surface S enclosing the source of radiation and any other objects so that the
infinite space exterior to the surface is homogeneous (Fig. 1.2). If the fields on the surface
are known, the fields outside the surface are given by

E(r) = 51% (= juwpo [2' x H(r')] Golr.x'} + [ - B(')] V' Gyl r')
+ 7 x E(r')] x V'Gy(r,r')} S’ (1.79)
and
H(r) = §) fiveo [ x EG)) Golr,') + - )] V/Gofr 1)

+[7 x H(r'}] x V'Gp(r,r')} dS, (1.80)
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where 7’ denotes the unit vector normal to S at ' and pointing toward the exterior region.
These results can be derived rigorously using Green’s theorems (Chapter 10).

If we let #' x H(x') = J,(r'), E{r') x &' = M(r'), #' - egE{r'}) = p..(r"), and
f’ - ppH(r') = pus(r'), then (1.79) and (1.80) can be written as

1
E(r} = # [_jwﬂUJs(rr)GU(rv I‘f} + G—ge_\s(r’)V’G';,(r, 1';)
5 0

— Ms(r’) x V'Gylr, r’)} ds’ {1.31)
and

H(r) = #S [Js(r’) X V' Golr.r') — jweoML(r')Golr, 1)

+ —1—91,1_5(1"‘)V’Gn(r, r’)] 4.5, {1.82)
Moo

A comparison of these two equations with (1.75) and (t.76) indicates that J, and M, are
equivalent to surface electric and magpetic currents, and g, , and g, ., are equivalent to
surface electric and magnetic charges. Because of this interpretation, (1.81) and (1.82) are
also known as the surface equivalence principle.

Again, all of these results can be reduced to two dimensions using the relation in (1.77).
In particular, for both E, - and 7, -polarization cases, we have

IR 1 9Go(p. p') _ NN
f?(p_)-—jé [oﬁ(p)*an, Golp, p') =5 [dL", (1.83)

where ¢ = E, for E,-polarization, ¢y = H, for H.-polarization, and I' is a contour that
encloses the source of the field as well as all possible objects,

Exercise 1.9 Derive (1.83) from (1.79)and (1.80) by using (1.77). Rewrite the right-hand
side of {1.83) in terms of equivalent surface currents for both F.- and H,-polarizations.

1.9 RADAR CROSS SECTIONS

One of the emphases of this book is the treatment of open-region scattering problems. An
important parameter that characterizes scattering by an object is called radar cross section
[12]. This parameter is defined for plane-wave incidence.

In the three-dimensional case, the radar cross section is defined by

: [E=(r, 0. 0)
lim 4mr? —— .
P |E111c(6lmc. (romc ) 12

Hs< ‘9 Y]
lim 4zr? | - (f , (’b)| =,
e |Hmt.(.( m(., cpnu.)lz

O‘(Q. @ ginc‘ ipi“c)

(1.84)

il

where (E*°, H1*°) denote the scattered field observed in the direction (8, 2} and (Ei"¢, H!u¢)
denote the incident field from the direction (£, iz'*"). When the incident and observation
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directions are the same, o is called the monostatic or backscatter radar cross section;
otherwise, it is referred to as the bistatic radar cross section.

The radar cross section is often normalized to either A2 or m?. The unit for /A2 is
dBsw and for ¢/m? is dBsm when expressed in the logarithmic scale. To incorporate
information about polarization, the radar cross section can also be defined by

50 2
e I iney s 2 |E; (7‘,9,99”
Tpg (91 ¥ 91“0! e () - r]i»r]f;lc: 4 IEinC(Ginc (;.'JinCJ |I;2 ’
g :

(1.85)

where p and ¢ represent either # or .

To evaluate the radar cross section, we have to compute the scattered field in the far-field
zone with r — oo using expressions such as (1.81) and (1.82). These expressions can be
simplified greatly for r — oc. For example, under this condition, (1.81) and (1.82) become

—ijkor et
4?” # {jwpef x [ x I, (x))] + jho? x M,(r)} e Td8"  (1.86)
and
—_]ko'.r 3
v # {jwen? x [ x M(r'}] — jhof x Jo(r')} /077467 (1.87)

In the two-dimensional case, the radar cross section is defined by

: [E*(p, 0}
Pt 2T e i) 2

A [H*(p, o)”
= p]il,%o 2J‘?T'Oll_linc (pinc)|2 ?

ine } _

olp, v

(1.88)

which is also referred to as scattering width or echo width in the monostatic case. It is
often normalized to A, with a unit of dBw, or m, with a unit of dBm. when expressed
in the logarithmic scale. The scattered field in the far-field zone can be evaluated vsing
expressions such as (1.83). Under the condition p — o¢, equation (1.83) can be simplified

as
~ [ Iko —jku"f o o~ L IO ikepo
d(p) = 8?Tpe 4 p-ialp) T e dr, (1.89)

by using the asymptotic expression for the Hankel function.

Exercise 1.10 Derive (1.86) and (1.87) from (1.81) and (1.82) when r — oa. Derive
{1.89) from (1.83) when p — 0.

1.10 SUMMARY

In this chapter we first reviewed the basic concepts and integral theorems in vector analysis.
We then presented Maxwell’s equations in integral form as the fundamental equations, from
which Maxwell's equations in differential form and boundary conditions were derived. The
electrostatic problem was formulated in terms of a scalar potential, and the magnetostatic
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problem was formulated in terms of a vector potential. However. the time-harmonic
problem was formulated divectly in terms of the electric or magnetic field, although it was
also possible to use scalar and vector potentiais for formulation. The corresponding partial
differential equations were derived in the form of the Poisson, Helmholtz, and vector wave
equations. This was followed by the presentation of a variety of boundary conditions and
radiation conditions. These will all be used in the finite elesnent analysis of electromagnetic
problems.

This chapter also reviewed the integral expressions that relate the field to its source in
free space and Huygens’s principle for calculating exterior fields from the field on a closed
surface. These will be used frequently in the chapters to follow. Finally, we presented the
definition of radar cross section and its calculation because it is used often to present the
results of the finite element analysis of scattering problems.

Although this chapter has not reviewed some other important concepts, such as the dual-
ity principle, uniqueness theorem, reciprocity theorem, and various equivalence principles,
a good comprehension of these concepts can help greatly in computational electromagnetics
research. The reader is encouraged to consult References 2-9 for this purpose.
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