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WHY LEARN DESIGN PATTERNS
AND WHY DO SO WITH HELP
FROM HARRY POTTER?

Design, in general, involves complex mental processes, most of them poorly understood.
However, it is commonly believed that all design entails using previously learned patterns
at some level of detail. One can certainly assume that the designers who are celebrated for
their work use patterns at a fairly low level of detail. A musical genius like Mozart probably
used any previously learned patterns for only the most basic of the sound effects he wanted
to create. On the other hand, it would be safe to say that the lesser composers of his time
(or, for that matter, of any time) have probably borrowed significantly from the harmonies
and the rhythms created by the geniuses.

Whereas the need for the content to be original in the artistic and the literary domains
necessitates that the use of existing patterns be kept to a minimum in a new design, exactly
the opposite is true for the case of software. In software design, although the need to
be original and creative is important in dealing with hitherto unseen problems, of greater
importance are the correctness and the robustness of the software produced.

If a new problem in software design is similar to one seen previously (and for which
a correct software solution is already known to exist), the previously developed solution
is preferred over what would otherwise be a new and creative way of solving the new
problem. Using a previously known trusted solution to the problem can only increase the
confidence that others place in your software.

And, should it happen that you are dealing with a large complex problem that does
not lend itself to any single previously known solution strategy, you’d be expected to be
creative in decomposing the problem into subproblems that can be solved with previously
known trusted solutions.

In general, when you decompose a large problem, the subproblems that result are likely
to be of varying levels of difficulty and detail. It is even possible that your overall decompo-
sition will be hierarchical in which the smallest of the problems can be solved by using the
well-known programming idioms in the language you are using for your software develop-
ment. And, yes, those programming idioms can also be called patterns. However, we will
not concern ourselves with such low-level design issues in this book.

On the other hand, this book is about the trusted solutions for what may loosely be
referred to as the mid-level problems you are likely to encounter in creating a software
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solution for a large problem. In particular, we will focus on the mid-level problems that
can be solved by the twenty-three patterns first proposed by four authors who are now
affectionately referred to as the Gang of Four (GoF). The book in which these patterns first
appeared is now commonly referred to as the “Bible” of the object-oriented (OO) design
patterns. The next section is devoted to this book and its contents.

1.1 THE OO DESIGN PATTERNS “BIBLE” BY GoF

The patterns movement in the software community was started by the much celebrated
book “Design Patterns — Elements of Reusable Object-Oriented Software” by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides [1]. Drawing from their collec-
tive experience with object-oriented programming, the authors succeeded in crystallizing
out twenty-three design patterns that have become, as is now universally acknowledged,
the building blocks of much modern object-oriented software. As mentioned in the previ-
ous section, these authors are known as the Gang of Four (GoF) and the book frequently
referred to as the “OO Patterns Book by GoF.”

What is amazing about the GoF book, and also what makes the book timeless, is not
only the large variety of programming problems that can be solved by its twenty-three
patterns, but also the fact that the authors had the foresight to recognize a host of basic
issues in object-oriented design that are likely to endure for all time. To grasp the reality of
the moment and to abstract from it new fundamental understandings that can serve us for a
long time into the future is no small feat.

Central to most GoF patterns is the interplay between the following four tenets of
good object-oriented programming: (1) Programming to the public interfaces declared at
the roots of class hierarchies, as opposed to calling directly the methods defined in the
implementations of those interfaces. (2) Choosing composition over inheritance if a purely
inheritance-based implementation is likely to result in an unmanageable number of classes
as you try to figure out the best way to create representations for all the different variants
of a generic object. (3) Again choosing composition over inheritance when the flexibility
made possible by the former in how the objects relate to one another is more important
than the representational efficiency provided by the latter. (4) Exploiting function overrid-
ing for runtime adaptation of the behavior of a class to the implementations provided by its
subclasses.

Here we will briefly review the intuitive underpinnings of the tenets listed above: When
the users of a class hierarchy make sure that their own code calls only the public methods
declared in the root interface of the hierarchy, folks whose business it is to provide and
maintain the implementation code in the hierarchy acquire the freedom to change that code
as long as the interface declarations remain unchanged.

Regarding the second tenet, even though inheritance is enshrined as a cornerstone of
object-oriented programming, using it without thought may result in class hierarchies that
are much too large. If you try to create a subclass for capturing every small variation from
a generic class, you could end up with too many subclasses. Why not take care of the small
variations through composition, that is, by endowing your generic class with additional
instance variables for the extra degrees of freedom that would allow you to create a larger
variety of instances from the class? Since the objects constructed from a class definition are
“composed” of the values given to the instance variables — these values may themselves
be class type objects — you can see why we use the word “composition” to describe this
alternative to inheritance.
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Favoring composition over inheritance, as in the third tenet, also makes sense in situ-
ations where there is a need to maintain programming flexibility with regard to how the
different types of objects relate to one another. Although inheritance makes for efficient
representational frameworks (since the common attributes declared in the general classes
do not need to be repeated in the specialized classes), the resulting inter-object relationships
once created become hardcoded in the code base.

The intuition behind using function overriding for runtime customization of the behav-
ior of a class, as mentioned in the fourth tenet, is just as straightforward. When you put
function overriding to use, the code you write for the methods — especially when methods
call other supporting methods defined in the same class — becomes much more efficient
from the standpoint of being able to represent a range of behaviors. The specific behavior
you elicit at runtime can then be customized by overriding the supporting methods in the
subclasses.

Getting back to the subject of the twenty-three patterns in the GoF book, those patterns
were placed by GoF in the following three categories: (1) Creational, (2) Structural, and (3)
Behavioral. And, for finer differentiation, each pattern was given a mnemonic name that
captures the essence of what that pattern is about.

The Creational Patterns examine issues in designing classes and the methods to con-
struct instances from those classes from the standpoint of a number of considerations
that frequently arise in object-oriented programming. Consider, for example, one of the
aforementioned tenets of good object-oriented programming: The users of object-oriented
software should only program to the interfaces of the class hierarchies. Keeping in mind
this tenet, here is an example of a question addressed by the Creational Patterns: Say we
have two class hierarchies, one in which we model the domain knowledge and the other
in which we have code that, using indirection, can spit out instances of the classes in the
first hierarchy. Can we still have the clients of this software adhere to the above mentioned
tenet of good object-oriented programming? The Creational Patterns also recognize that
calling willy-nilly the constructor of a class can be a dangerous thing to do if the instances
to be produced require special computational resources. Included in the lessons that these
patterns teach us is how to design a class so that it gives us some control over the instances
created from the class — control in the sense of how many of the instances are allowed to
exist at the same time.

The Structural Patterns are also about designing classes and constructing instances from
the classes, but now the representational issues related to class design are more complex. As
a case in point, let’s say that the basic representation for a problem domain as captured by a
single class must be enriched with arbitrary combinations of certain embellishments. What
is the best way to create an overall representation that would allow for efficient production
of the instances while incorporating the embellishments in them? Another representational
question important to the Structural Patterns is how to design a class hierarchy when the
problem domain calls for instantiating large objects that are made up of smaller objects,
with all the objects (including the large objects) being of the same fundamental type. The
Structural Patterns are also concerned about how to write a new class that must simultane-
ously adapt itself to the behavior of an old class while providing new services to a client
of the old class, about creating different usage views of a complex system of classes for
different categories of users, and so on.

The Behavioral Patterns are about eliciting useful runtime behaviors from a set of classes
working together. These behaviors are dynamic, in the sense that how a class (or a group
of classes working together) responds to a runtime condition (which may be created by
user input or by a change in the state of one of the objects) will, in general, depend on the
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states of all other objects relevant to the condition. A major consequence of this is that the
flow of execution for how the classes interact at runtime cannot be predicted in advance —
unlike what is the case with the Creational and the Structural Patterns. Dynamic effects
exhibited by the Behavioral Patterns include synthesizing at runtime a large behavior from
more elementary behaviors provided by support classes, regulating the interaction among
a set of classes so that it conforms to a protocol selected at runtime, rolling back the state
of an object to what it was at an earlier time, and so on.

1.2 BUT WHAT HAS HARRY POTTER GOT TO DO WITH OO DESIGN
PATTERNS?

Although some of the twenty-three design patterns are straightforward and can be under-
stood easily, several require multiple readings from the GoF book before the ideas sink in.
And, even after multiple readings, it is not until you have yourself programmed a pattern
that you can claim to have fully understood what the GoF authors have tried to convey.
The following quote from the preface to the GoF book is perhaps the best indicator of the
complexity of several of the patterns:

“A word of warning and encouragement: Don’t worry if you don’t understand this book
completely on the first reading. We didn’t understand it all on the first writing!”

The italics are by the author of this book.!

It is the complexity of the more difficult patterns that has served as a motivation for what
you will find in the rest this book: An attempt to demystify the patterns by explaining them
through the stories in Harry Potter. Thanks to the story-telling genius of J. K. Rowling, the
richness of how the various characters interact in Harry Potter can be put to use to explain
even the most complex object interactions in the OO patterns. The rest of the chapters in
this book do exactly that.

A reader who has not read the GoF book might ask as to what mode of explanation was
used by the authors of that book for the original presentation of the patterns. Or even, what
sorts of explanations have been used in the other books on OO design patterns that have
been published since the GoF book. In a majority of the explanations that the reader will
see in the existing literature, the authors have attempted to use “real-world” problems in
object-oriented software development to both motivate the reader to learn the patterns and
to demonstrate their inner workings. But, unfortunately, in practically all cases, the typical
space constraints of a book prevent a full airing out of the “real-world” problems.

Therefore, what a reader actually sees for a pattern explanation in practically all other
books are just skeletal versions of some real-world problems. For most readers, it is not
so easy to relate to the pattern explanations based on those highly abbreviated accounts of
the original real-world problems — unless they themselves happen to be working in those
problem domains. Let’s put it this way: Are we to really believe that someone who spends
all his/her time writing code for financial applications would understand all of the nuances

I This self-effacing statement by the GoF was also a reflection of their personality that placed a higher value on
learning and exploring than on hubris and hype. And that, in turn, brings to mind the quote “Knowledge begins
with humility — with wonder and with appreciation for what you don’t know. The more you learn, the more
you see how much you want and need to learn,” that was made by the Bryn Mawr College President Katharine
McBride in 1964.
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associated with a pattern that is explained with the help of a highly abbreviated version of
a problem in text format conversion or in computer-aided design?

This disconnection that a reader experiences with a pattern explanation that is based on
a brief made-up version of a real-world problem often becomes even more pronounced for
a young student who must simultaneously straddle two worlds: the world in which he/she
is still trying to come to terms with the fundamental notions of encapsulation, inheritance,
concurrency, polymorphism, and so on, and the real world used for pattern explanations.

So if skeletal versions of the so-called real-world problems are not the best medium for
explaining the patterns, how about constructing pattern explanations with generic-sounding
names for the classes, for their attributes, and for their methods? For example, for class
names, we could use letters like A, B, C, etc., and for method names we could use fooA(),
barA(), bazA(), footB(), etc. Subsequently, we could describe through method calls
what it is that an object constructed from one class does to an object constructed from
another class and weave these interactions into a narrative that explains the pattern. The
main problem with this approach is that as the number of classes and the number of inter-
actions between the classes increases, it becomes difficult to remember the roles assigned
to the different classes and the behaviors programmed into their methods.

One could, of course, give more meaningful names to the classes and their methods,
names that are evocative of their purpose. But that frequently leads to either absurd names
or absurdly long names. For example, suppose you write an explanation for a pattern that
shows how you can adapt a new class to an old class. You could try to refer to the old class
as 01dClass and the new class as NewClass. Let’s now say your explanation requires you
to name multiple such old and new classes with different roles. As an attempt at using
“meaningful” names, you could try 01dClassForRoleM, NewClassForRoleN, etc., with
the suffixes RoleM and RoleN replaced by the names of the actual roles of the classes. As
you can see, as you increase the number of classes, your explanation will sound boring,
clumsy, and dry.

Figures 1.1 and 1.2 are meant to convey the difference in the quality of the expla-
nations that can be created from a class diagram that uses arid symbolic names like
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<<interface>> 1%
Message Delivery
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Fig. 1.2

Core Functionality, Embellishment Root, etc., and a class diagram that uses
easier-to-relate-to names such as Message Delivery, Deliver Msg Thru Chimney,
Deliver Msg Thru Hagrid, and so on. As the reader will see in Chapter 10, both of these
class diagrams can be used to explain the notion of recursive nesting of class embellish-
ments in the Decorator pattern. Figure 1.1 uses boring generic names, whereas Figure 1.2
uses names that are evocative of a hilarious snippet from the first Harry Potter book in
which Mr. Dursley does everything in his power to keep the admission letter sent by
Hogwarts from reaching Harry. This connection between Figure 1.2 and a most delight-
ful episode related to Harry Potter makes the Decorator pattern both easier to understand
and easier to remember. As a measure of Figure 1.2 possessing greater explanatory power
over the more generic depiction in Figure 1.1, the former figure, with its richly evocative
class names, along with just a couple of words about what the Decorator pattern is all
about, is likely to cause a reader to immediately experience an aha moment with regard to
understanding the core idea of the pattern.

1.3 IS FAMILIARITY WITH HARRY POTTER A REQUIREMENT FOR
UNDERSTANDING THIS BOOK?

Although the book is written for a reader who is already familiar with Harry Potter, that
does not imply that the explanations presented would be inaccessible to someone who
has not read those books. Starting with the next chapter, every chapter includes a section
titled “Harry Potter Story Used to Illustrate the XYZ Pattern” that, while intended pri-
marily for a Harry Potter fan to recall the ideas used in the explanation of that pattern,
should nevertheless be understandable to others as a “brief story” in its own right. If a
reader who has no desire to read Harry Potter before launching into this book would be
indulgent enough to accept this section as a standalone account that is either related to
some magical objects or that is about an interaction between certain characters — although
by no means an account written in the same compelling style as by J. K. Rowling —
he/she should be able to use that account to understand the rest of the explanation of
the pattern.
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1.4 HOW THE PATTERN EXPLANATIONS ARE ORGANIZED

Each pattern is presented in a separate chapter, and each chapter consists of the following
sections:

* An introduction to the key thought in the pattern.
* The intent and the applicability of the pattern.
* A general introduction to the pattern.

* A section that describes which part of the Harry Potter story was used for explaining
the pattern. The title of this section is always “Harry Potter Story Used to Illustrate
the XYZ Pattern” for the pattern XYZ.

* A section titled “A Top Level View of the Pattern Demonstration” that presents
the overall class diagram and the related explanations for the pattern in question.
The explanation of the pattern in this section is an extension of the narrative in the
preceding “Harry Potter Story” section.

* The “Top Level View” section is followed by multiple sections, each devoted to
explaining one class, although, and in some cases, a single section may present
multiple classes that are closely related.

Each chapter ends in a section named “Playing with the Code” that first describes how
to compile and execute the Java code presented for the pattern and then talks about
how a reader may extend the demonstration code in order to gain additional insights
into the pattern.

1.5 THE TERMINOLOGY OF OBJECT-ORIENTED PROGRAMMING

It is possible that a casual reader skipping through the book — especially a reader with
minimal prior exposure to object-oriented programming — would be bewildered by some
of the terminology used for describing how objects are created and manipulated in software,
how they interact with one another, how the clients interact with them, and so on. The
terminology definitions shown below are meant for such a reader especially, the idea being
that it might help the reader grasp at a high level, if not in detail, the explanations of the
patterns in this book.?

The definitions shown below are specifically for the case of object-oriented program-
ming in Java — since that is the language used in the code for demonstrating the patterns.
Note, however, most of the definitions are language agnostic and apply to object-oriented
programming in general.

The words that appear italicized in the definitions are also defined in the Terminology
that follows.

abstract class: To add to the entry shown for class, a class is abstract if it is not possible
to construct instances from that class. Abstract classes play a very important role in
object-oriented programming by serving as interfaces for class hierarchies (although,

2The “definitions” shown have been excerpted from Chapter 3 of Programming with Objects [2].
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more commonly, you’d use Java interfaces for that purpose if you are programming
in Java) and as “mix-in” classes to lend specialized behaviors to other classes. They
can also be of great help in building a class hierarchy incrementally. In Java, a class
becomes abstract when it is explicitly declared to be so.

abstract method: To add to the entry for method, a method can be declared abstract
if its header includes the keyword abstract. When a method is declared abstract,
it does not come with any implementation code. You declare a method abstract in
a class because you expect the subclasses of that class to provide the implemen-
tation code for the method. A class remains abstract as long it has any abstract
methods.

access control modifiers: Each member of a class, whether it is a variable or a method,
has associated with it an access control property that for Java is one of private, public,
protected, and package.

The public members of a class can be directly accessed anywhere in the source
code. Additionally, the public members of a class are inherited by the subclasses.

On the other hand, the private members of a class are accessible only within that
class. Although the private members of a class are inherited by its subclasses, they
cannot be directly accessed in the subclasses.

The access control modifier protected is used for a variable or a method in a class
if we wish for that member of the class to be visible in only the subclasses of the
class across all packages. A protected member acts like a public member within the
same package.

When no access control modifier is mentioned for a class member in Java, that
implies package access control for that member. Such members behave like public
members within the same package but private with respect to the code in all other
packages.

attribute: See the entry for instance variable.

base class: See the entry for inheritance.

child class: See the entry for inheritance.

class: At a high level of conceptualization, a class can be thought of as a category or a
type. We may think of “User” as a class and a specific user would then be an instance

of (or an object constructed from) this class. The following constitutes a definition of
the class User in Java:

class User {
private String name;
private int age;

class hierarchy: See the entry for inheritance.
class method: See the entry for method.

class variable: First read the entry for instance variable. In addition to instance vari-
ables, we may endow a class with one or more class variables. Whereas an instance
variable is given values on a per-instance basis, the value of a class variable is
global with respect to all instances constructed from a class. Class variables are fre-
quently referred to as static variables. In Java, a class variable is declared by using
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the keyword static, as in the class definition below that declares a class with two
instance variables and one class variable:

class SavingsAccount {
private String name;
private int age;
public static double interestRate;
VYA
}

concrete class: A class that is not abstract is informally referred to as a concrete class.

constructor: A class is generally provided with a constructor whose job is to create
instances from the class. A constructor sets aside the memory needed for the instance
and in that memory sets the values of the instance variables according to the argu-
ments supplied to the constructor (or, in the absence of arguments, by the default
values if those are known). Shown below is another definition of the User class.
What you see in the lines labeled “(A)” through “(D)” is the constructor for the class.

class User {
private String name;
private int age;

public User(String str, int yy) { //(h)
name = str; //(B)
age = yy; //(C)
} //(D)

}

In general, a class is allowed to have any number of constructors. When a class
has multiple constructors, they differ with respect to the number of parameters and
the parameter types. The compiler uses overload resolution to figure out which
constructor to invoke for a given constructor call.

derived class: See the entry for inheritance.
extended class: See the entry for inheritance.
final: See the entries for inheritance, instance variable, and overriding.

implements: First read the entry for interface. A class that provides implementation
code for the methods declared in an interface is said to implement that interface.

inheritance: Earlier we defined class as a category. A subcategory of a more general
category can also be defined as a class — in the form of a subclass of the more general
class. The subclass inherits some or all of the attributes and the methods defined for
the class that corresponds to the more general category.

Since, in general, a class may be extended into multiple subclasses, each such
subclass further extended into even more specialized subclasses, and so on, we can
end up with what is known as a class hierarchy.

A subclass is also commonly referred to as a derived class, an extended class, or
a child class. And the more general class is commonly referred to as the base class
or the superclass.

The syntax used in Java for defining a subclass is illustrated by the following
example:
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class User {
private String name;
private int age;
public User(String str, int yy) { name = str; age = yy; }

}
class StudentUser extends User { //(h)
private String schoolEnrolled;
public StudentUser( String nam, int y, String sch ) {
super (nam, y); //(B)
schoolEnrolled = sch;
}
}

where StudentUser is a subclass of User. Note the Java keyword extends in
line (A). Also note how the constructor definition for the subclass calls on the con-
structor of the base class in line (B) through the keyword super for the construction
of the base-class slice of the subclass object. With class—subclass definitions as shown
above, an instance of type StudentUser can act like an instance of type User. That s,
we can construct an instance of type StudentUser and assign it to a variable of type
User. The fact that a subclass-type object can act like a superclass type is referred
to as polymorphism. Also note that a class declared final cannot have subclasses.

instance: Given a class, you may construct a specific instance of that class by calling

its constructor. An instance created by a constructor is also frequently referred to as
an object.

instance method: See the entry for method.

instance variable: In the definition of the User class in the entries for class, construc-

tor, and inheritance, we refer to name and age as the instance variables of the
class. In general, we expect the values of such variables to vary from one instance to
another. Again, in general, the value assigned to an instance variable can be changed,
unless the variable is declared to be final, in which case it can only be assigned to
once. An instance variable may also be given a default value in the class definition.

An instance variable is also referred to as data member® and attribute. The UML
notation that is described briefly in the next section specifically uses attribute when
referring to instance variables.

instantiation: The word instantiation means constructing an instance of a class.

interface: A Javainterface is an abstract class that, in its most common usage, declares

a set of methods by only mentioning their signatures. A Java interface must not
include any implementation code. Here is an example of an interface from the Java
Collections Framework:

interface Collection {
public boolean add( Object a );
public boolean remove( Object a );
// other methods

31t’s the latter usage, meaning data member, that you will find in [2] when referring to the instance variables of a

class.
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Interfaces in Java are also used for grouping together related constants. When a
class inherits from such an interface, the constants appear as if locally defined in the
class. Such constants are treated implicitly as static and final.

method: A class is commonly endowed with behaviors through functions that are nor-
mally invoked on the instances constructed from the class. Such functions are most
commonly referred to as methods. The definition of print () in the User class shown
below is an example:

class User {
private String firstname;
private String lastname;
public User(String str, int yy) { name = str; age = yy; }
public void print() {
System.out.print( firstname + " " + lastname );

}

Note that when an instance is created, the methods in a class are bound to the instance
at run time. That is referred to as “dynamic binding” — unless the method is declared
to be static, in which case it is bound at compile time to the class itself. It’s for that
reason that a method such as print () shown above is also referred to as an instance
method. A static method, on the other hand, is also referred to as a class method.

object: First see the entry for instance. The term object with the lowercase ‘0’ is not
to be confused with Object with the uppercase ‘O’ in Java. Whereas the former can
refer to any instance created by calling the constructor of a class, the latter is the
name of the superclass of all classes in Java. Therefore, all objects in Java are of type
Object. Every Java class, user defined or otherwise, inherits implicitly from the root
class Object.

overloading: Overloading a method name or a constructor name means being able to
use the same name with a different number and/or types of parameters. When a class
has overloaded constructor or method names, it is the compiler’s job to determine
which of the constructors or the methods to invoke for a given call. The compiler
does this by using what is known as the overload resolution algorithm.

overload resolution: See the entry for overloading.

overriding: A subclass can provide an override implementation for a method defined
in the base class. Subsequently, if this method is invoked on a variable whose type is
that of the base class but that is actually pointing to an object of type subclass, it is
the subclass definition for the method that will be used. A method that is declared to
be final in a base class cannot be overridden in a subclass of the base class.

package: See the entry for access control modifiers. Package may also refer to a “Java
package” that groups together related classes and defines a namespace for them. For
example, the basic classes of Java that are made available automatically in a user
program are in the java.lang package. In general, if you need to use a class from
a package, either you must import the package in your program or you must use the
fully qualified name for the class.

polymorphism: See the entry for inheritance.

private: See the entry for access control modifiers.
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protected: See the entry for access control modifiers.
public: See the entry for access control modifiers.

signature: By the signature of a method we mean the return type, followed by the name
of the method, followed by a list of the data types in its parameter list.*

static: See the entries for class variable and class method.
static method: See the entry for method.

subclass: See the entry for inheritance.

superclass: See the entry for inheritance.

The object-oriented programming terminology listed above is by no means complete.
We have only defined the terms that occur most frequently in the rest of the book. Obvi-
ously, only a book devoted to just OO, such as Programming with Objects [2], can do full
justice to all of the terminology of object-oriented programming.

1.6 THE UML NOTATION USED IN THE CLASS DIAGRAMS

The diagrams used in this book for explaining the patterns are mostly class diagrams that
are based on the UML conventions for constructing such diagrams.’

In UML, a class is represented by a rectangular box that in its most detailed representa-
tion is divided into three parts vertically. The name of the class is written in the uppermost
partition of the box, followed by its instance and static variables (referred to as attributes in
UML) in the middle partition, followed by its methods (called operations in UML) in the
lowest partition. The name of the class is shown in bold for a concrete class and in italics
for an abstract class. Figure 1.3 shows an example of this representation for a class named
Employee.

In its most common usage, a class diagram shows two relationships between different
classes: generalization and association. A superclass is considered to be a generalization of
its subclasses. By the same token, a subclass is considered to be a specialization of its super-
class. For example, the class diagram of Figure 1.4 shows with an arrowed solid line the
class Employee as a superclass, and therefore a generalization, of the class Manager. Note
that the generalization arrow, with a closed triangle arrowhead, points to the superclass.
In Figure 1.4, the class Manager would be considered to be a specialization of the class
Employee. An association, on the other hand, is depicted with a solid line between two

4In some languages, the return type may not be considered to be a part of the signature. Another word that is used
for the signature of a method is header. The header of a method always includes its return type.

SUML stands for Unified Modeling Language. It was promulgated by the Object Management Group (OMG), a
not-for-profit organization founded by the leading software corporations of the world. UML is a visual language
that allows one to create different types of graphical representations of software. These visual representations,
in the form of various types of diagrams, greatly facilitate the conceptualization and dissemination of object-
oriented designs, especially because the diagrams only need to be drawn with the level of detail that is required
for explaining how the classes are meant to be used. The main repository of all information related to UML can
be found at [3]. If all that a reader wants is a level of familiarity with UML that would be sufficient to understand
the diagrams in this book, he/she is only going to need the information presented in Chapter 14 of [2]. The most
relevant sections from that source are reproduced here for the convenience of the reader.
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Employee

address
age
income

getName()
getAddress()
setAddress()
getlncome()
setlncome()

Fig. 1.3

Employee Corporation

Manager

Fig. 1.4

classes, as between Employee and Corporation in the figure. You show an association
link between two classes if the objects constructed from one class use in some capacity —
say as instance variables — the objects constructed from the other class.

Other types of relationships between classes that can be depicted in a class diagram
are aggregation and composition. The next two subsections discuss in greater detail the
depiction of associations, aggregations, and generalizations in class diagrams.

We placed only the names of the classes in the boxes in the class diagram of Figure 1.4.
In general, how much detail one shows for a class depends on the perspective used in
drawing the diagram. A class diagram may be drawn using three different perspectives:
(1) conceptual, (i) specification, and (iii) implementation.

At the conceptual level, for each class you include only the bare minimum informa-
tion needed to convey an overall sense of the main concepts of a problem domain. This
is the diagram you are likely to draw when you are just getting started with the design of
an OO program. However, even after you have fully developed an OO system, a concep-
tual level diagram can be useful for communicating to others a coarse-level description
of the system. At the specification level, you want to show the interfaces of each class.
At this level you’d want to make explicit the class responsibilities, as embodied in the
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public operations for each class. At the implementation level, you want to show more pre-
cisely how a class was (or needs to be) implemented in code. Now you’d include the private
and the protected attributes and operations as well.

In the OO literature, one also commonly sees mention of IsA and HasA relationships
between classes. The former represents a generalization-specialization relationship and the
latter an association, an aggregation, or a composition. The name ISA is supposed to capture
relationships such as

A Manager IsAn Employee
A CorporateCustomer IsA Customer

In such statements, what comes after IsA is a generalization or a super-type of what comes
before. On the other hand, statements like

An Order HasA Customer
An Orchestra HasA Player
A Window HasA Slider

express containment, in the form of an association, an aggregation, or a composition.

1.6.1 Association as a Relationship Between Classes

The class diagram of Figure 1.4 showed an association to display the conceptual link
between an object of type Employee and an object of type Corporation. An example
of a more elaborate representation of such an association is shown in Figure 1.5.

In the example depicted, an Employee has an instance variable called employedBy of
type Corporation; this instance variable is shown as a label at the head of the arrowed
association link from Employee to Corporation. We can talk about the label employedBy
as the role played by a Corporation in an instance of type Employee. The arrowhead
on the association link from Employee to Corporation is referred to as the navigabil-
ity arrow. The arrow tells us which of the two objects implements the association. In the
example shown, the association with the rolename employedBy is implemented in the
Employee class and therefore “belongs” to instances of type Employee. The label ‘0. .1’
at the Corporation end of the association is referred to as the multiplicity of the associ-
ation, which specifies how many instances of type Corporation in the role employedBy
may associate with a single instance of type Employee. The multiplicity of ‘0..1" means
that an Employee is employed by no more than one Corporation.

Employee 0.1 Corporation
employedB “—={ name
narge e employedBy | address
department employees [0..%]
position 0..*% numberOfEmployees
\employees

Fig. 1.5
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teamMembers
Employee
name
employedBy
department
postion
teamMembers
Fig. 1.6

About the association link that goes from Corporation to Employee in Figure 1.5, the
navigability arrow points toward the latter, and the rolename label is employees with the
multiplicity symbol ‘0. .*’. The multiplicity of ‘0. .*’ means that any number of employ-
ees, including zero, is allowed in an instance constructed from Corporation. If there was
a legal requirement that a corporation possess at least one employee, with no constraints
on the upper limit, the multiplicity label associated with the rolename employees would
change to ‘1. .*’. As you might have guessed already, the symbol ‘*’ in a multiplicity label
means an indefinite number.

The two association links in Figure 1.5 could also be shown as a single line between the
two classes. If we were to do so for our example, the line would show navigability arrows,
rolenames, and multiplicity symbols at both ends. An association with no navigability
arrows is considered bidirectional.

Figure 1.5 is an example of a binary association between two different classes. A binary
association is also allowed to connect a class to itself, in which case the association is called
reflexive. Figure 1.6 shows an example of a reflexive association. The next subsection talks
about the role of the diamond that you see at the base of the association link in Figure 1.6.

1.6.2 Aggregation and Composition as Relationships Between Classes

The objects connected through an association may or may not exist independently of each
other, and it is useful to differentiate between the two cases in a class diagram, especially
when an association is a link between a “whole” and its “parts.”

When there exist lifetime dependencies between the whole and its parts — in the sense
that the parts exist solely for the benefit of the whole — we refer to the relationship between
the whole and the parts as a composition. That is, we consider the whole to be a composite
of its parts. Such an association is depicted with a filled diamond at its base. Even though
such a relation can also be depicted as a straightforward association with appropriate navi-
gability arrows and multiplicities, showing it as composition draws attention to the lifetime
dependencies between the composite and its parts.

Consider the example in Figure 1.7 where we have used filled diamonds to show
a Window composite. Obviously, the “parts” that form the composite, such as sliders,
scrollbars, and so on, will cease to exist when a Window is closed.
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Window

1..%], scrollbar 1| title body [, 1
Slider TitleBar Panel
Fig. 1.7
Orchestra | Performer
name = — = name
musicians [1..%] musicians | instrument
calender
numberOfMusicians
Fig. 1.8

When you have a whole—parts relationship in which the parts can exist independently
of the whole, you have an aggregation. In the aggregation depicted in Figure 1.8, the per-
formers would continue to exist even after the Orchestra object has ceased to do so. An
aggregation is depicted with a hollow diamond at one end of the association link, the end
that is an aggregate of the objects at the other. Although this type of a relationship could
also be displayed as a straightforward association with appropriate navigability arrows and
multiplicities, the concept of an aggregation is supposed to capture the fact that even though
an orchestra is the sum total of its performers, the performers would continue to exist even

if the orchestra ceased to do so.

1.6.3 Representing Attributes

As mentioned earlier, the attributes of a class — which could either be instance variables
or static variables — are shown in the middle partition of the box that represents a class.

The UML convention for displaying an attribute is as follows:

visibility mname [N] : type = initialValue {property-string}
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where the visibility is one of

+ for public visibility
# for protected visibility

- for private visibility

although the keywords public, protected, and private can also be used directly. The absence
of a visibility marker indicates only that the visibility is not shown (not that it is undefined
or public) because, say, its depiction is not important to use intended for the class diagram.

In the UML notation for displaying the attributes, the name of the attribute goes where
you see the string name. The symbol N inside square brackets denotes the multiplicity
allowed for the attribute. The convention for expressing multiplicity is the same as for an
association. For example, if an attribute is allowed to take one or more values, the mul-
tiplicity symbol N would be replaced by ‘1. .*’. The absence of multiplicity designation
means that exactly one value is allowed for the attribute.

A language-dependent specification of the implementation type of the attribute goes
where you see the string type. The string initialValue is a language-dependent expres-
sion for the default value of the attribute for a newly created instance of the class, and
property-string is a string for expressing those traits of the attribute that are not cap-
tured by the rest of the syntax. For example, for an attribute that is read-only (such as
an attribute that is declared to be final in Java), the property-string would be set to
frozen.

The underscore, shown under name and type, if used, signifies that the attribute has
class scope, which means the same thing that it is static or one per class, as opposed to
one per instance. Except for the name, all other elements of the syntax specification are
optional.

1.6.4 Representing Operations

The third partition from the top, when it exists, of a class box shows its operations, meaning
the methods defined for the class. When a class is drawn at the specification level, only the
public operations of the class are displayed. However, at the implementation level, you’d
also want to show the private and the protected operations. The full UML syntax for an
operation is

visibility name (parameter-list) : return-type {property-string}

where visibility and name mean the same as for the case of attributes. The parameter-list is
a comma-separated list of the formal parameters for the operation, each specified using the
syntax

kind name : type = defaultValue
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where kind can be in, out, or inout, where in is for a parameter that passes a value to the
operation, out is for a parameter that fetches a value from the operation, and inout for a
parameter that can play both roles. The symbols name, type, and defaultValue serve
their usual roles.

Regarding the syntax for an operation, the symbol return-type is an implementation-
dependent language type of the value returned by the operation. The property-string
can be used to express such traits as whether an operation is abstract, which is the case
when only the header of the method is a part of the class definition and no implementation
code is provided. Finally, operations that have class scope — meaning that they are static —
are underlined as shown.

It is useful to make a distinction between two types of operations: guery and modifier.
A query operation simply tries to get the value of some class attribute without changing
the state of the object. On the other hand, a modifier operation will change the state of the
object. Informally, these two types of operations are also referred to as the getfer and the
setter methods of a class, respectively.



