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1
Machine Learning and
Financial Engineering

Wavelet networks are a new class of networks that combine the classic sigmoid
neural networks and wavelet analysis. Wavelet networks were proposed by Zhang
and Benveniste (1992) as an alternative to feedforward neural networks which would
alleviate the weaknesses associated with wavelet analysis and neural networks while
preserving the advantages of each method.

Recently, wavelet networks have gained a lot of attention and have been used with
great success in a wide range of applications, ranging from engineering; control;
financial modeling; short-term load forecasting; time-series prediction; signal classi-
fication and compression; signal denoising; static, dynamic, and nonlinear modeling;
to nonlinear static function approximation.

Wavelet networks are a generalization of radial basis function networks (RBFNs).
Wavelet networks are hidden layer networks that use a wavelet for activation instead
of the classic sigmoidal family. It is important to mention here that multidimensional
wavelets preserve the “universal approximation” property that characterizes neural
networks. The nodes (or wavelons) of wavelet networks are wavelet coefficients of
the function expansion that have a significant value. In Bernard et al. (1998), various
reasons were presented for why wavelets should be used instead of other transfer
functions. In particular, first, wavelets have high compression abilities, and second,
computing the value at a single point or updating a function estimate from a new
local measure involves only a small subset of coefficients.
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2 MACHINE LEARNING AND FINANCIAL ENGINEERING

In statistical terms, wavelet networks are nonlinear nonparametric estimators.
Moreover, the universal approximation property states that wavelet networks can
approximate, to any degree of accuracy, any nonlinear function and its derivatives. The
useful properties of wavelet networks make them an excellent nonlinear estimator for
modeling, interpreting, and forecasting complex financial problems and phenomena
when only speculation is available regarding the underlying mechanism that generates
possible observations.

In the context of a globalized economy, companies that offer financial services
try to establish and maintain their competitiveness. To do so, they develop and apply
advanced quantitative methodologies. Neural networks represent a new and exciting
technology with a wide range of potential financial applications, ranging from simple
tasks of assessing credit risk to strategic portfolio management. The fact that neural
and wavelet networks avoid a priori assumptions about the evolution in time of the
various financial variables makes them a valuable tool.

The purpose of this book is to present a step-by-step guide for model identification
of wavelet networks. A generally accepted framework for applying wavelet networks
is missing from the literature. In this book we present a complete statistical model
identification framework to utilize wavelet networks in various applications. More
precisely, wavelet networks are utilized for time-series prediction, construction of
confidence and prediction intervals, classification and modeling, and forecasting of
chaotic time series in the context of financial engineering. Although our proposed
framework is examined primarily for its use in financial applications, it is not limited
to finance. It is clear that it can be adopted and used in any discipline in the context
of modeling any nonlinear problem or function.

The basic introductory notions are presented below. Fist, financial engineering
and its relationship to machine learning and wavelet networks are discussed. Next,
research areas related to financial engineering and its function and applications are
presented. The basic notions of wavelet analysis and of neural and wavelet net-
works are also presented. More precisely, the basic mathematical notions that will be
needed in later chapters are presented briefly. Also, applications of wavelet networks
in finance are presented. Finally, the basic aspects of the framework proposed for
the construction of optimal wavelet networks are discussed. More precisely, model
selection, variable selection, and model adequacy testing stages are introduced.

FINANCIAL ENGINEERING

The most comprehensive definition of financial engineering is the following: Finan-
cial engineering involves the design, development, and implementation of innovative
financial instruments and processes, and the formulation of creative solutions to
problems of finance (Finnerty, 1988). From the definition it is clear that financial
engineering is linked to innovation. A general definition of financial innovation
includes not only the creation of new types of financial instruments, but the devel-
opment and evolution of new financial institutions (Mason et al., 1995). Financial
innovation is the driving force behind the financial system in fulfilling its primary
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function: the most efficient possible allocation of financial resources (Ζαπράνης,
2005). Investors, organizations, and companies in the financial sector benefit from
financial innovation. These benefits are reflected in lower funding costs, improved
yields, better management of various risks, and effective operation within changing
regulations.

In recent decades the use of mathematical techniques and processes, derived
from operational research, has increased significantly. These methods are used in
various aspects of financial engineering. Methods such as decision analysis, statistical
estimation, simulation, stochastic processes, optimization, decision support systems,
neural networks, wavelet networks, and machine learning in general have become
indispensable in several domains of financial operations (Mulvey et al., 1997).

According to Marshall and Bansal (1992), many factors have contributed to the
development of financial engineering, including technological advances, globaliza-
tion of financial markets, increased competition, changing regulations, the increasing
ability to solve complex financial models, and the increased volatility of financial
markets. For example, the operation of the derivatives markets and risk management
systems is supported decisively by continuous advances in the theory of the valuation
of derivatives and their use in hedging financial risks. In addition, the continuous
increase in computational power while its cost is being reduced makes it possible to
monitor thousands of market positions in real time to take advantage of short-term
anomalies in the market.

In addition to their knowledge of economic and financial theory, financial engineers
are required to possess the quantitative and technical skills necessary to implement
engineering methods to solve financial problems. Financial engineering is a unique
field of finance that does not necessarily focus on people with advanced technical
backgrounds who wish to move into the financial area but, is addressed to those
who wish to get involved in investment banking, investment management, or risk
management.

There is a mistaken point of view that financial engineering is accessible only by
people who have a strong mathematical and technical background. The usefulness of
a financial innovation should be measured on the basis of its effect on the efficiency of
the financial system, not on the degree of novelty that introduces. Similarly, the power
of financial engineering should not be considered in the light of the complexity of the
models that are used but from the additional administrative and financial flexibility
that it offers its users. Hence, financial engineering is addressed to a large audience
and should be considered within the broader context of the administrative decision-
making system that it supports.

FINANCIAL ENGINEERING AND RELATED RESEARCH AREAS

Financial engineering is a very large multidisciplinary field of research. As a result,
researchers are often focused on smaller subfields of financial engineering. There
are two main branches of financial engineering: quantitative finance and finan-
cial econometrics. Quantitative finance is a combination of two very important and
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Figure 1.1 Research areas related to financial engineering.

popular subfields of finance: mathematical finance and computational finance. On the
other hand, financial econometrics arises from financial economics. Research areas
related to financial engineering are illustrated in Figure 1.1.

The scientific field of financial engineering is closely related to the relevant dis-
ciplinary areas of mathematical finance and computational finance, as all focus on
the use of mathematics, algorithms, and computers to solve financial problems. It
can be said that financial engineering is a multidisciplinary field involving financial
theory, the methods of engineering, the tools of mathematics, and the practice of
programming. However, financial engineering is focused on applications, whereas
mathematical finance has a more theoretical perspective.

Mathematical finance, a field of applied mathematics concerned with financial
markets, began in the 1970s. Its primary focus was the study of mathematics applied to
financial concerns. Today, mathematical finance is an established and very important
autonomous field of knowledge. In general, financial mathematicians study a problem
and try to derive a mathematical or numerical model by observing the output values:
for example, market prices. Their analysis does not necessarily have a link back
to financial theory. More precisely, mathematical consistency is required, but not
necessarily compatibility with economic theory.

Mathematical finance is closely related to computational finance. More precisely,
the two fields overlap. Mathematical finance deals with the development of financial
models, and computational finance is concerned with their application in practice.
Computational finance emphasizes practical numerical methods rather than mathe-
matical proofs, and focuses on techniques that apply directly to economic analyses. In
addition to a good knowledge of financial theory, the background of people working
in the field of computational finance combines fluency in fields such as algorithms,
networks, databases, and programming languages (e.g., C/C++, Java, Fortran).

Today, the disciplinary area of mathematical finance and computational finance
constitutes part of a larger, established, and more general area of finance called
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quantitative finance. In general, there are two main areas in which advanced mathe-
matical and computational techniques are used in finance. One tries to derive math-
ematical formulas for the prices of derivatives, the other one deals with risk and
portfolio management.

Financial econometrics is another field of knowledge closely related (although
more remote) to financial engineering. Financial econometrics is the basic method of
inference in the branch of economics termed financial economics. More precisely, the
focus is on decisions made under uncertainty in the context of portfolio management
and their implications to the valuation of securities (Huang and Litzenberger, 1988).
The objective is to analyze financial models empirically under the assumption of
uncertainty in the decisions of investors and hence in market prices. For example, the
martingale model for capital asset pricing is related to mathematical finance. However,
the empirical analysis of the behavior of the autocorrelation coefficient of the price
changes generated by the martingale model is the subject of financial econometrics.

We illustrate the various subfields of financial engineering by the following exam-
ple. A financial economist studies the structural reasons that a company may have
a certain share price. A financial mathematician, on the other hand, takes the share
price as a given and may use a stochastic model in an attempt to derive the corre-
sponding price of a derivative with the stock as an underlying asset. The fundamental
theorem of arbitrage-free pricing is one of the key theorems in mathematical finance,
while the differential Black–Scholes–Merton approach (Black and Scholes, 1973)
finds applications in the context of pricing options. However, to apply the stochastic
model, a computational translation of the mathematics to a computing and numerical
environment is necessary.

FUNCTIONS OF FINANCIAL ENGINEERING

Financial engineers are involved in many important functions in a financial institution.
According to Mulvey et al. (1997), financial engineering is used widely in four major
functions in finance: (1) corporate finance, (2) trading, (3) investment management,
and (4) risk management (Figure 1.2). In corporate finance, large-scale businesses
are interested in raising funds for their operation. Financial engineers develop new
instruments or enhance existing ones in order to secure these funds. Also, they are
involved in takeovers and buyouts. In trading of securities or derivatives, the objective
of a financial engineer is to develop new dynamic trading strategies. In investment
management the aim is to develop new investment vehicles for investors.

Examples presented by Mulvey et al. (1997) include high-yield mutual funds,
money market funds, and the repo market. In addition, they develop systems for
transforming high-risk investment instruments to low-risk instruments by applying
techniques such as repackaging and overcollaterization. Finally, in risk management,
a financial engineer must, on the one hand, assess the various types of risk of a
range of securities and, on the other hand, use the appropriate methodologies and
tools to construct portfolios with the desired levels of risk and return. These method-
ological approaches relate primarily to portfolio insurance, portfolio immunization
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Figure 1.2 Financial engineering activities according to Mulvey et al. (1997).

against changes in certain financial variables, hedging, and efficient assets/liability
management.

Risk management is a crucial part of corporate financial management. The inter-
related areas of risk management and financial engineering find direct applications
in many problems of corporate financial management, such as assessment of default
risk, credit risk, portfolio selection and management, sovereign and country risk, and
financial programing, to name a few.

During the past three decades, a series of new scientific tools derived from the
wider field of operations research and artificial intelligence has been developed for
the most realistic and comprehensive management of financial risks. Techniques that
have been proposed and implemented include multicriteria decision analysis, expert
systems, neural networks, genetic and evolutionary algorithms, fuzzy networks, and
wavelet networks. A typical example is the use of neural networks by Zapranis and
Sivridis (2003) to estimate the speed of inversion within the Vasicek model, used to
derive the term structure of short-term interest rates.

APPLICATIONS OF MACHINE LEARNING IN FINANCE

Neural networks and machine learning in general are employed with considerable
success in primarily three types of applications in finance: (1) modeling for classi-
fication and prediction, (2) associative memory, and (3) clustering (Hawley et al.,
1990). The use of wavelet networks is shown in Figure 1.3.
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Figure 1.3 Types of applications of wavelet networks.

Classification includes assignment of units in predefined groups or classes, based
on the discovery of regularities that exist in the sample. Generally, nonlinear non-
parametric predictors such as wavelet networks are able to classify the units correctly
even if the sample is incomplete or additional noise has been added. Typical exam-
ples of such applications are the visual recognition of handwritten characters and the
identification of underwater targets by sonar. In finance, an example of a classification
application could be the grouping of bonds, based on regularities in financial data
of the issuer, into categories corresponding to the rating assigned by a specialized
company. Other examples are the approval of credit granting (the decision as to who
receives credit and how much), stock selection (classification based on the anticipated
yield), and automated trading systems.

The term prediction refers to the development of mathematical relationships
between the input variables of the wavelet network and usually one (although it
can be more) output variable. Artificial networks expand the common techniques
that are used in finance, such as linear and polynomial regression and autoregressive
moving averages (ARMA and ARIMA). In finance, machine learning is used mainly
in classification and prediction applications. When a wavelet network is trained, it
can be used for the prediction of a financial time series. For example, a wavelet
network can be used to produce point estimates of the future prices or returns of a
particular stock or index. However, financial analysts are usually also interested in
confidence and prediction intervals. For example, if the price of a stock moves outside
the prediction interval, a financial analyst can adjust the trading strategy.

In associative memory applications the goal is to produce an output corresponding
to the class or group desired, based on one input vector presented in the neural network
that determines which output is to be produced. For example, the input vector may
be a digitized image of a fingerprint, and the output desired may be reconstruction of
the entire fingerprint.
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Clustering is used to group a large number of different input variables, each of
which, however, has some similarities with other inputs. Clustering is useful for com-
pression or filtering of data without the loss of a substantial part of the information.
A financial application could be the creation of clusters of corporate bonds that cor-
respond to uniform risk classes based on data from financial statements. The number
and composition of the classes will be determined by the model, not by the user. In
this case, in contrast to the use of classification, the categories are not predetermined.
This method could provide an investor with a diversified portfolio.

FROM NEURAL TO WAVELET NETWORKS

In this section the basic notions of wavelet analysis, neural networks, and wavelet
networks are presented. Our purpose is to present the basic mathematical and theoret-
ical background that is used in subsequent chapters. Also, the reasons that motivated
the combination of wavelet analysis and neural networks to create a new tool, wavelet
networks, are discussed.

Wavelet Analysis

Wavelet analysis is a mathematical tool used in various areas of research. Recently,
wavelets have been used especially to analyze time series, data, and images. Time
series are represented by local information such as frequency, duration, intensity, and
time position, and by global information such as the mean states over different time
periods. Both global and local information is needed for the correct analysis of a
signal. The wavelet transform (WT) is a generalization of the Fourier transform (FT)
and the windowed Fourier transform (WFT).

Fourier Transform The attempt to understand complicated time series by breaking
them into basic pieces that are easier to understand is one of the central themes in
Fourier analysis. In the framework of Fourier series, complicated periodic functions
are written as the sum of simple waves represented mathematically by sines and
cosines. More precisely, Fourier transform breaks a signal down into a linear combi-
nation of constituent sinusoids of various frequencies; hence, the Fourier transform
is decomposition on a frequency-by-frequency basis.

Let f : R → C be a periodic function with period T > 0 that satisfies

‖f‖2 = ∫
∞

−∞
|f |2 dt <∞ (1.1)

Then its FT is given by

f̂ (𝜔) = ∫
∞

−∞
e−2𝜋i𝜔tf (t) dt (1.2)
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and its Fourier coefficients are given by

cn = ∫
∞

−∞
e−2𝜋i𝜔ntf (t) dt (1.3)

where 𝜔n = n∕T and

e2𝜋i𝜔n = cos 2𝜋𝜔n + i sin 2𝜋𝜔n (1.4)

In a common interpretation of the FT given by Mallat (1999), the periodic function
f (t) is considered as a musical tone that the FT decomposes to a linear combination
of different notes cn with frequencies 𝜔n. This method allows us to compress the
original signal, in the sense that it is not necessary to store the entire signal; only the
coefficients and the corresponding frequencies are required. Knowing the coefficients
cn, one can synthesize the original signal f (t). This procedure, called reconstruction,
is achieved by the inverse FT, given by

f (t) = ∫
∞

−∞
e2𝜋i𝜔t f̂ (𝜔) d𝜔 (1.5)

The FT has been used successfully in a variety of applications. The most common
use of FT is in solving partial differential equations (Bracewell, 2000), in image
processing and filtering (Lim, 1990), in data processing and analysis (Oppenheim
et al., 1999), and in optics (Wilson, 1995).

Short-Time Fourier Transform (Windowed Fourier) Fourier analysis performs
extremely well in the analysis of periodic signals. However, in transforming to the
frequency domain, time information is lost. When looking at the Fourier transform of a
signal, it is impossible to tell when a particular event took place. This is a serious draw-
back if the signal properties change a lot over time: that is, if they contain nonstation-
ary or transitory characteristics: drift, trends, abrupt changes, or beginnings and ends
of events. These characteristics are often the most important part of a time series, and
Fourier transform is not suited to detecting them (Zapranis and Alexandridis, 2006).

Trying to overcome the problems of classical Fourier transform, Gabor applied
the Fourier transform in small time “windows” (Mallat, 1999). To achieve a sort
of compromise between frequency and time, Fourier transform was expanded in
windowed Fourier transform or short-time Fourier transform (STFT). WFT uses a
window across the time series and then uses the FT of the windowed series. This is a
decomposition of two parameters, time and frequency. Window Fourier transform is
an extension of the Fourier transform where a symmetric window, g(u) = g(−u), is
used to localize signals in time. If t ∈ R, we define

ft(u) = ḡ(u − t) f (u) (1.6)
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Expression (1.6) reveals that ft(u) is a localized version of f that depends only
on values of f (u). Again following the notation of Kaiser (1994), the STFT of f is
given by

f̃ (𝜔, t) = f̂t (𝜔) = ∫
∞

−∞
e−2𝜋i𝜔u ḡ(u − t) f (u) du (1.7)

It is easy to see that by setting g(u) = 1, the SFTF is reduced to ordinary FT.
Because of the similarity of equations (1.2) and (1.7), the inverse SFTF can be
defined as

f (u) = C−1 ∫
∞

−∞ ∫
∞

−∞
e2𝜋i𝜔ug (u − t)f̃ (𝜔, t) d𝜔 dt (1.8)

where C = ‖g‖2.
As mentioned earlier, FT can be used to analyze a periodic musical tone. However,

if the musical tone is not periodic but rather is a series of notes or a melody, the Fourier
series cannot be used directly (Kaiser, 1994). On the other hand, the STFT can analyze
the melody and decompose it to notes, but it can also give the information when a
given note ends and the next one begins. The STFT has been used successfully in a
variety of applications. Common uses are in speech processing and spectral analysis
(Allen, 1982) and in acoustics (Nawab et al., 1983), among others.

Extending the Fourier Transform: The Wavelet Analysis Paradigm

As mentioned earlier, Fourier analysis is inefficient in dealing with the local behavior
of signals. On the other hand, windowed Fourier analysis is an inaccurate and inef-
ficient tool for analyzing regular time behavior that is either very rapid or very slow
relative to the size of the window (Kaiser, 1994). More precisely, since the window size
is fixed with respect to frequency, WFT cannot capture events that appear outside the
width of the window. Many signals require a more flexible approach: that is, one where
we can vary the window size to determine more accurately either time or frequency.

Instead of the constant window used in WFT, waveforms of shorter duration
at higher frequencies and waveforms of longer duration at lower frequencies were
used as windows by Grossmann and Morlet (1984). This method, called wavelet
analysis, is an extension of the FT. The fundamental idea behind wavelets is to
analyze according to scale. Low scale represents high frequency, while high scales
represent low frequency. The wavelet transform (WT) not only is localized in both
time and frequency but also overcomes the fixed time–frequency partitioning. The
new time–frequency partition is long in time at low frequencies and long in frequency
at high frequencies. This means that the WT has good frequency resolution for low-
frequency events and good time resolution for high-frequency events. Also, the WT
adapts itself to capture features across a wide range of frequencies. Hence, the WT
can be used to analyze time series that contain nonstationary dynamics at many
different frequencies (Daubechies, 1992).
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In finance, wavelet analysis is considered a new powerful tool for the analysis
of financial time series, and it is applied in a wide range of financial problems.
One example is the daily returns time series, which is represented by local infor-
mation such as frequency, duration, intensity, and time position, and by global
information such as the mean states over different time periods. Both global and local
information is needed for a correct analysis of the daily return time series. Wavelets
have the ability to decompose a signal or a time series on different levels. As a result,
this decomposition brings out the structure of the underlying signal as well as trends,
periodicities, singularities, or jumps that cannot be observed originally.

Wavelet analysis decomposes a general function or signal into a series of (orthog-
onal) basis functions called wavelets, which have different frequency and time loca-
tions. More precisely, wavelet analysis decomposes time series and images into
component waves of varying durations called wavelets, which are localized varia-
tions of a signal (Walker, 2008). As illustrated by Donoho and Johnstone (1994),
the wavelet approach is very flexible in handling very irregular data series. Ramsey
(1999) also comments that wavelet analysis has the ability to represent highly com-
plex structures without knowing the underlying functional form, which is of great
benefit in economic and financial research. A particular feature of the signal analyzed
can be identified with the positions of the wavelets into which it is decomposed.

Recently, an increasing number of studies apply wavelet analysis to analyze finan-
cial time series. Wavelet analysis was used by Alexandridis and Hasan (2013) to
estimate the systematic risk of CAPM using wavelet analysis to examine the meteor
shower effects of the global financial crisis. Similarly, one recent research strand of
CAPM has built an empirical modeling strategy centering on the issue of the multi-
scale nature of the systematic risk using a framework of wavelet analysis (Fernandez,
2006; Gençay et al., 2003, 2005; Masih et al., 2010, Norsworthy et al., 2000; Rabeh
and Mohamed, 2011). Wavelet analysis has also been used to construct a modeling
and pricing framework in the context of financial weather derivatives (Alexandridis
and Zapranis 2013a,b; Zapranis and Alexandridis, 2008, 2009).

Moreover, wavelet analysis was used by In and Kim (2006a,b) to estimate the
hedge ratio, and it was used by Fernandez (2005), and In and Kim (2007) to estimate
the international CAPM. Maharaj et al. (2011) made a comparison of developed and
emerging equity market return volatility at different time scales. The relationship
between changes in stock prices and bond yields in the G7 countries was studied
by Kim and In (2007), while Kim and In (2005) examined the relationship between
stock returns and inflation using wavelet analysis. He et al. (2012) studied the value-
at-risk in metal markets, while a wavelet-based assessment of the risk in emerging
markets was presented by Rua and Nunes (2012). Finally, a wavelet-based method
for modeling and predicting oil prices was presented by Alexandridis and Livanis
(2008), Alexandridis et al. (2008), and Yousefi et al. (2005). Finally, a survey of the
contribution of wavelet analysis in finance was presented by Ramsey (1999).

Wavelets A wavelet 𝜓 is a waveform of effectively limited duration that has an
average value of zero. The WA procedure adopts a particular wavelet function called
a mother wavelet. A wavelet family is a set of orthogonal basis functions generated
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by dilation and translation of a compactly supported scaling function 𝜑 (or father
wavelet), and a wavelet function 𝜓 (or mother wavelet).

The father wavelets 𝜑 and mother wavelets 𝜓 satisfy

∫ 𝜑(t) dt = 1 (1.9)

∫ 𝜓(t) dt = 0 (1.10)

The wavelet family consists of wavelet children which are dilated and translated
forms of a mother wavelet:

𝜓a,b (t) = 1
√

a
𝜓

( t − b
a

)

(1.11)

where a is the scale or dilation parameter and b is the shift or translation parameter.
The value of the scale parameter determines the level of stretch or compression

of the wavelet. The term 1
/√

a normalizes ‖
‖𝜓a,b (t)‖‖ = 1. In most cases we limit

our choice of a and b values by using a discrete set, because calculating wavelet
coefficients at every possible scale is computationally intensive. Temporal analysis
is performed with a contracted high-frequency version of the mother wavelet, while
frequency analysis is performed with a dilated, low-frequency version of the same
mother wavelet. In other words, whereas Fourier analysis consists of breaking a signal
up into sine waves of various frequencies, wavelet analysis is the breakup of a signal
into shifted and scaled versions of the original (or mother) wavelet (Misiti et al.,
2009). Wavelet decomposition is illustrated in Figure 1.4.

Two versions of the WT can be distinguished: the continuous wavelet transform
(CWT) and the discrete wavelet transform (DWT). The difference between them
lies in the set of scales and positions at which each transform operates. The CWT
can operate at every scale. However, an upper bound is determined since CWT is
extremely computationally expensive. Also, in CWT the analyzing wavelet is shifted

Wavelet transform 

Constituent wavelets of

different scales and positions
Original signal

Figure 1.4 Wavelet decomposition.
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smoothly over the full domain of the function analyzed. To reduce the computational
burden, wavelet coefficients are calculated only on a subset of scales. This method is
called the DWT.

In general, wavelets can be separated in orthogonal and nonorthogonal wavelets.
The term wavelet function is used generically to refer to either orthogonal or
nonorthogonal wavelets. An orthogonal set of wavelets is called a wavelet basis,
and a set of nonorthogonal wavelets is termed a wavelet frame. The use of an orthog-
onal basis implies the use of the DWT, whereas frames can be used with either the
discrete or the continuous transform.

Over the years a substantial number of wavelet functions have been proposed in the
literature. The Gaussian, the Morlet, and the Mexican hat wavelets are crude wavelets
that can be used only in continuous decomposition. The wavelets in the Meyer wavelet
family are infinitely regular wavelets that can be used in both CWT and DWT.
The wavelets in the Daubechies, symlet, and coiflet families are orthogonal and
compactly supported wavelets. These wavelet families can also be used in CWT and
DWT. The B-splines and biorthogonal wavelet families are biorthogonal, compactly
supported wavelet pairs that can also be used in both CWT and DWT. Finally, the
complex Gaussian, complex Morlet, complex Shannon, and complex-frequency B-
spline wavelet families are complex wavelets that can be used in the complex CWT.

Generally, the DWT is used for data compression if the signal is already sampled,
and the CWT is used for signal analysis. In the next sections the CWT and the
DWT are examined in detail. In Figure 1.5 the Mexican hat wavelet is presented,

0.8

Wavelet function psi

0.6

0.4

0.2

0

−0.2

−0.4
−8 −6 −4 −2 0 2 4 6 8

Figure 1.5 Mexican hat wavelet.
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Figure 1.6 Daubechies 3 wavelet (top right) and the scaling function (top left). The decomposition
(middle) and reconstruction (bottom) filters are also presented with low-pass (left) and high-pass (right)
filters.

and in Figures 1.6 and 1.7 two wavelets of the Daubechies family are presented, the
Daubechies 3 and 12, respectively. In addition, in Figures 1.6 and 1.7, the scaling
functions and decomposition and reconstruction filters are presented with low- and
high-pass filters.

Continuous Wavelet Transform Representing a signal as a function f (t), the CWT
of this function comprises the wavelet coefficients, C(a, b), which are produced
through the convolution of a mother wavelet function, 𝜓(t), with the signal analyzed,
f (t). The CWT is defined as the summation over all time of the signal multiplied by
scaled, shifted versions of the wavelet function:

f̃ (a, b) = C (a, b) = ∫
+∞

−∞
�̄�a,b(t) f (t) dt (1.12)

where

�̄�a(t) = 1
√

a
𝜓

(−t
a

)

(1.13)
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Figure 1.7 The Daubechies 12 wavelet (top right) together with the scaling function (top left). The
decomposition (middle) and reconstruction (bottom) filters are also presented with low-pass (left) and
high-pass (right) filters.

The CWT is continuous in the set of scales and positions at which it operates. It
is also continuous in terms of shifting; during computation, the analyzing wavelet is
shifted smoothly over the full domain of the function analyzed.

Either real or complex analytical wavelets can be used. Complex analytical
wavelets can separate amplitude and phase components, while real wavelets are
often used to detect sharp signal transitions. The results of the CWT are many
wavelet coefficients C, which are a function of scale and position. Multiplying each
coefficient by the appropriately scaled and shifted wavelet yields the constituent
wavelets of the original signal. As the original signal can be represented in terms
of a wavelet expansion (using coefficients in a linear combination of the wavelet
functions), data operations can be performed using just the corresponding wavelet
coefficients.

Similar to the STFT, the magnitude of wavelet coefficients will be represented
by a plot on which the x-axis represents the position along time and the y-axis
represents the scale. This plot, called a scalogram, represents the energy density of
the signal:

Wf̃ (𝜔, t) = |
|f̃ (a, b)||

2 =
|
|
|
|
|
∫

+∞

−∞
�̄�a,b(t) f (t) dt

|
|
|
|
|

2

(1.14)
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A scalogram allows the changing spectral composition of nonstationary signals to
be measured and compared. If the wavelet 𝜓 ∈ L2 (R) and satisfies the admissibility
condition

C
𝜓
= ∫

+∞

−∞

|�̂� (𝜔)|2

𝜔

d𝜔 < +∞ (1.15)

the original signal can be synthesized from the WT (Daubechies, 1992). The contin-
uous reconstruction formula is given by

f (t) = 1
C
𝜓
∫

+∞

−∞ ∫
+∞

−∞

1
a2

𝜓a,b(t) da db (1.16)

Discrete Wavelet Transform Calculating wavelet coefficients at every possible
scale is computationally expensive. However, if we choose only a subset of scales and
translations based on powers of 2 (the dyadic lattice), our analysis will be much more
efficient and just as accurate (Misiti et al., 2009). We obtain such an analysis from the
DWT. In the DWT the wavelet family is taken from a double-indexed regular lattice:

{(aj, bk) = (pj, kqpj): j, k ∈ Z}

where the parameters p and q denote the step sizes of the dilation and the translation
parameters. For p = 2 and q = 1 we have the standard dyadic lattice:

{(aj, bk) = (2j, 2jk): j, k ∈ Z} (1.17)

Thus, the scaling function 𝜙 generates for each j ∈ Z the sets Vj = span{𝜙j,k, k ∈ Z},
where Z denotes the set of integers and

𝜙j,k (t) = 2−j∕2
𝜙(2−jt − k), j, k ∈ Z (1.18)

The basis wavelet functions are usually of the form

𝜓j,k (t) = 2−j∕2
𝜓(2−jt − k), j, k ∈ Z (1.19)

It follows that there is a sequence {hk} (where hk is a scaling filter associated with
the wavelet) such that

∑
|hk|

2 = 1 and

f (t) =
√

2
∞∑

k=0

hk f (2t − k) (1.20)

where 𝜙 is normalized so that ∫ ∞−∞ 𝜙 (t) dt = 1.
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When {hk} is finite, a compactly supported scaling function is the solution to
the dilation equation above. The wavelet function is defined in terms of the scaling
function as

𝜓 (t) =
√

2
∞∑

k=0

gk𝜙 (2t − k) (1.21)

where ∫ ∞−∞ 𝜓 (t) dt = 0 and gk = (−1)k+1h1−k is a wavelet filter. Then Wj =
span{𝜓j,k, k ∈ Z} is the orthogonal complement of Vj in Vj+1, ∀j ∈ Z.

The DWT of the signal function comprises the wavelet coefficients C(j, k), which
are produced through the convulsion of a mother wavelet function 𝜓j,k (t) with the
signal analyzed, f (t):

C (j, k) = ∫
+∞

−∞
f (t)𝜓j,k (t) dt (1.22)

Thus, the discrete synthesis of the original signal is

f (t) =
∑

j∈Z

∑

k∈Z

C (j, k)𝜓j,k (t) (1.23)

Usually, the low-frequency content is the most important part of a signal. It is what
gives the signal its identity, while the high-frequency component usually contains a
large part of the noise in the signal (Misiti et al., 2009). We term the high-scale,
low-frequency components approximations and the low-scale, high-frequency com-
ponents details. At each level j, we build the j-level approximation aj, or approxima-
tion at level j, and a deviation signal called the j-level detail dj, or detail at level j. The
original signal is considered to be the approximation at level zero, denoted a0. The
words approximation and detail are justified by the fact that a1 is an approximation of
a0 taking into account the low frequencies of a0, whereas the detail d1 corresponds to
the high-frequency correction. For additional and detailed expositions on the math-
ematical aspects of wavelets, we refer, for example, to Daubechies (1992), Kaiser
(1994), Kobayashi (1998), Mallat (1999), and Wojtaszczyk (1997).

Neural Networks

Next we present a brief introduction to neural networks. The advantages of neural
networks are discussed as well as their applications in finance. In Chapter 2 the
mathematical and theoretical aspects are presented analytically.

Artificial neural networks or, simply, neural networks draw their inspiration from
biological systems. They are essentially devices of parallel and distributed processing
for nonparametric statistical inference which simulate the basic operating principles
of the biological brain. They consist of many interconnected neurones (also known as
hidden units), whose associated weights determine the strength of the signal passed
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through them. No particular structure or parametric form is assumed a priori; rather,
the strengths of the connections are computed in a way that captures the essential
features in the data.

The iterative algorithms employed for this purpose are known as learning algo-
rithms because of their gradual nature. Certain algorithms were firmly positioned in
the statistical framework by White (1989) and later by Geman et al. (1992), who
demonstrated that they could be formulated as a nonlinear regression problem.

Neural networks are analogous to nonparametric nonlinear regression models,
which constitute a very powerful approach, especially for financial applications. More
generally, they are essentially statistical tools for performing inductive inference,
providing an elegant formalism for unifying different nonparametric paradigms, such
as nearest neighbors, kernel smoothers, and projection pursuit. Neural networks have
shown considerable successes in a variety of disciplines, ranging through engineering,
control, and financial modeling (Zapranis and Refenes, 1999).

In the past 20 years, neural networks have enjoyed a rapid expansion and increasing
popularity in both the academic and industrial research communities. Lately, an
increased number of studies have been published in various research areas. The
main power of neural networks accrues from their capability for universal function
approximation. Many studies (e.g., Cardaliaguet and Euvrard, 1992; Cybenko, 1989;
Funahashi, 1989; Hornik et al., 1989, 1990; Ito, 1993; White, 1990); have shown that
one-hidden-layer neural networks can approximate arbitrarily well any continuous
function, including the function’s derivatives.

The novelty about neural networks lies in their ability to model nonlinear processes
with few (if any) a priori assumptions about the nature of the generating process
(Rumelhart et al., 1986). This is particularly useful in investment management, where
much is assumed and little is known about the nature of the process determining
asset prices.

Modern investment management models, such as the arbitrage pricing theory,
rely on the assumption that asset returns can be explained in terms of a set of
factors. The usual assumption is that the return of an asset is a linear combination
of the asset’s exposure to these factors. Such theories have been very useful in
expanding our understanding of capital markets, but many financial anomalies have
remained unexplainable. In Zapranis and Refenes (1999) the problem of investment
management was divided into three parts—factor analysis, estimating returns, and
portfolio optimization—and it was shown that neural learning can play a part in each.

Moreover, neural networks are less sensitive than classical approaches to assump-
tions regarding the error term, and hence they can be used in the presence of noise,
chaotic sections, and probability distributions with fat tails. The usual assumptions
among financial economists are that price fluctuations not due to external influences
are dominated by noise and can be modeled by stochastic processes. As a result,
analysts try to understand the nature of noise and develop tools for predicting its
effects on asset prices. However, very often, these remaining price fluctuations are
due to nonlinear dynamics of the generating process. Therefore, given appropriate
tools, it is possible to represent (and possibly understand) more of the market’s price
structure on the basis of completely or partially deterministic but nonlinear dynamics
(Zapranis and Refenes, 1999).
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Because of their inductive nature, neural networks have the ability to infer complex
nonlinear relationships between an asset price and its determinants. Although, poten-
tially, this approach can lead to better nonparametric estimators, neural networks are
not always easily accepted in the financial economics community, mainly because
established procedures for testing the statistical significance of the various aspects of
the estimated model do not exist. A coherent set of methodologies for developing and
assessing neural models, with a strong emphasis on their practical use in the capital
markets, was provided by Zapranis and Refenes (1999).

Recently, academic researchers and market participants, have shown an increasing
interest in nonlinear modeling techniques, with neural networks assuming a prominent
role. Neural networks are being applied to a number of “live” systems in financial
engineering and have shown promising results. Various performance figures are
being quoted to support these claims, but the absence of explicit models, due to the
nonparametric nature of the approach, makes it difficult to assess the significance of
the model estimated and the possibility that any short-term success is due to data
mining (Zapranis and Refenes, 1999).

Due to their nonparametric nature, neural models are of particular interest in
finance, since the deterministic part (if any) of asset price fluctuations is largely
unknown and arguably nonlinear. Over the years they have been applied extensively
to all stages of investment management. Comprehensive reviews have been provided
by Trippi and Turban (1992), and by Vellido et al. (1999).

Among the numerous contributions, notable are applications in bonds by Moody
and Utans (1994) and Dutta and Shekhar (1988); in stocks by White (1988), Refenes
et al. (1994), and Schöneburg (1990); in foreign exchange by Weigend et al. (1991); in
corporate and macroeconomics by Sen et al. (1992); and in credit risk by Atiya (2001).

From a statistical viewpoint, neural networks have a simple interpretation: Given a
sample Dn =

{(
xi; yi

)}n
i=1 generated by an unknown function 𝜑 (x) with the addition

of a stochastic zero-mean component 𝜀,

yi = 𝜑

(
xi

)
+ 𝜀i (1.24)

the task of “neural learning” is to construct an estimator g (x; w) ≡ �̂� (x) of 𝜑 (x),
where w is a set of free parameters known as connection weights. Since no a priori
assumptions are made regarding the functional form of 𝜑 (x), the neural network
g (x; w) is a nonparametric estimator of the conditional density E [y|x], as opposed
to a parametric estimator, where a priori assumptions are made.

Nevertheless, knowledge of the relative theory of neural learning and the basic
models of neural networks is essential for their effective implementation, especially
in complex applications such as the ones encountered in finance. In Chapter 2 an
in-depth analysis of neural networks is presented.

Wavelet Neural Networks

Wavelet networks are a new class of networks that combine classic sigmoid neural
networks and wavelet analysis. Wavelet networks have been used with great success
in a wide range of applications. Wavelet analysis has proved to be a valuable tool for
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analyzing a wide range of time series and has already been used with success in image
processing, signal denoising, density estimation, signal and image compression, and
time-scale decomposition. Wavelet analysis is often regarded as a “microscope” in
mathematics (Cao et al., 1995), and it is a powerful tool for representing nonlinearities
(Fang and Chow, 2006). The major drawback of wavelet analysis is that it is limited
to applications of small input dimension. The reason for this is that the construction
of a wavelet basis is computationally expensive when the dimensionality of the input
vector is relatively high (Zhang, 1997).

On the other hand, neural networks have the ability to approximate any deter-
ministic nonlinear process, with little knowledge and no assumptions regarding the
nature of the process. However, classical sigmoid neural networks have a series of
drawbacks. Typically, the initial values of the neural network’s weights are chosen
randomly. Random weight initialization is generally accompanied by extended train-
ing times. In addition, when the transfer function is sigmoidal, there is always a
significant change: that the training algorithm will converge to local minima. Finally,
there is no theoretical link between the specific parameterization of a sigmoidal acti-
vation function and the optimal network architecture, that is, model complexity (the
opposite holds true for wavelet networks).

Pati and Krishnaprasad (1993) have demonstrated that it is possible to construct a
theoretical formulation of a feedforward neural network in terms of wavelet decom-
positions. WNs were proposed by Zhang and Benveniste (1992) as an alternative
to feedforward neural networks which would alleviate the aforementioned weak-
nesses associated with each method. The wavelet networks are a generalization of
radial basis function networks. Wavelet networks are one hidden layer networks that
use a wavelet as an activation function instead of the classic sigmoidal family. It
is important here to mention that multidimensional wavelets preserve the “universal
approximation” property that characterizes neural networks. The nodes (or wavelons)
of wavelet networks are wavelet coefficients of the function expansion that have a
significant value. Various reasons were presented by Bernard et al. (1998) explaining
why wavelets should be used instead of other transfer functions. In particular, first,
wavelets have strong compression abilities, and second, computing the value at a
single point or updating the function estimate from a new local measure involves
only a small subset of coefficients.

Wavelet networks have been used in a variety of applications so far: in short-
term load forecasting (Bashir and El-Hawary, 2000; Benaouda et al., 2006; Gao and
Tsoukalas, 2001; Ulugammai et al., 2007; Yao et al., 2000); in time-series prediction
(Cao et al., 1995; Chen et al., 2006; Cristea et al., 2000); in signal classification
and compression (Kadambe and Srinivasan, 2006; Pittner et al., 1998; Subasi et al.,
2005); in signal denoising (Zhang, 2007); in statics, and dynamics (Allingham et al.,
1998; Oussar and Dreyfus, 2000; Oussar et al., 1998; Pati and Krishnaprasad, 1993;
Postalcioglu and Becerikli, 2007; Zhang and Benveniste, 1992); in nonlinear mod-
eling (Billings and Wei, 2005); and in nonlinear static function approximation (Jiao
et al., 2001; Szu et al., 1992; Wong and Leung, 1998). Khayamian et al. (2005)
even proposed the use of wavelet networks as a multivariate calibration method for
simultaneous determination of test samples of copper, iron, and aluminum. Finally,
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Alexandridis and Zapranis (2013a,b) used wavelet networks in modeling and pricing
financial weather derivatives.

In contrast to classical sigmoid neural networks, wavelet networks allow for con-
structive procedures that efficiently initialize the parameters of a network. Using
wavelet decomposition a wavelet library can be constructed. In turn, each wavelon
can be constructed using the best wavelet in the wavelet library. As a result, wavelet
networks provide information for the relative participation of each wavelon to the
function approximation and the estimated dynamics of the generating process. The
main characteristics of these constructive procedures are (1) convergence to the global
minimum of the cost function, and (2) the initial weight vector being in close prox-
imity to the global minimum, resulting in drastically reduced training times (Zhang,
1997; Zhang and Benveniste, 1992). Finally, efficient initialization methods will
approximate the same vector of weights, minimizing the loss function each time.

APPLICATIONS OF WAVELET NEURAL NETWORKS IN FINANCIAL
ENGINEERING, CHAOS, AND CLASSIFICATION

Artificial intelligence and machine learning are used to improve the process of deci-
sion making in a wide range of financial applications. For example, they are used to
evaluate credit risk, for risk assessment of mortgage loans, in project management
and bidding strategies, in financial and economic forecasting, in risk assessment of
investments in fixed-income products traded on an exchange, to identify regularities
in price changes of securities, and to predict default risk. Other applications explored
recently are portfolio selection and diversification, simulation of market behavior,
and pattern identification in financial data.

During recent years, neural networks have been utilized extensively in various
fields in finance. For example, Moody and Utans (1994) employed neural network in
corporate bond rating prediction. Neural networks were used in securities trading by
Trippi and Turban (1992) and Zapranis and Refenes (1999), and Chen et al. (2003)
used them to forecast and trade the Taiwan stock index. Finally, neural networks
were utilized for bankruptcy prediction by Tam and Kiang (1992) and Wilson and
Sharda (1994).

On the other hand, wavelet networks have been introduced only recently in finan-
cial applications. As a result, the literature on the application of wavelet network
in finance is limited. As an intermediate step, a very popular technique is to apply
wavelet analysis to decompose a financial time series and then use the decomposed
part or the wavelet coefficients as inputs to a neural network.

Becerra et al. (2005) used wavelet networks for the identification and prediction of
corporate financial distress. More precisely, the authors used various financial ratios,
such as working capital/total assets, accumulated retained profit/total assets, profit
before interest, and tax/total assets. They collected data between 1997 and 2000 from
60 British firms and compared three models. The first one was a linear model; the
other two were nonlinear nonparametric neural networks and wavelet networks. Their
results indicate that the wavelet networks outperform the other two alternatives in
classifying corporate financial distress correctly.
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In a similar application wavelet networks were trained in predicting bankruptcy
(Chauhan et al., 2009). Three data sets were used to test their model. The wavelet
network was evaluated as to bankruptcy prediction for 129 U.S. banks, 66 Spanish
banks, and 40 Turkish banks. Their results show high accuracy and conclude that
wavelet networks are a very effective tool for classification problems.

Echauz and Vachtsevanos (1997) used wavelet networks as trading advisors. Based
on past data, the investor had to decide whether to switch in or out of an S&P index
fund. The decisions suggested by the wavelet networks were based on a 13-week
holding period yield. Their results indicated that wavelet networks exceeded the
performance of a simple buy-and-hold strategy.

Wavelet analysis was used by Aussem et al. (1998) to decompose the S&P index.
The daily price index was decomposed on various scales, and then the coefficients of
the wavelet decompositions were used as the input to a network to forecast the future
price of the index up to five days ahead.

Similarly, wavelet analysis and radial basis function neural networks (a subclass
of wavelet networks) were combined by Liu et al. (2004). The two methods were
combined to identify and analyze possible chart patterns, and a method of finan-
cial forecasting using technical analysis was presented. Their results indicate that
the matching method proposed can be used to automate the chart pattern-matching
process.

Bashir and El-Hawary (2000) applied a wavelet network to short-term load fore-
casting. Similarly, Benaouda et al. (2006), Gao and Tsoukalas (2001), and Ulugammai
et al. (2007) utilized different versions of wavelet networks and wavelet analysis for
accurate forecasting of electricity loads, a necessity in the management of energy
companies. Pindoriya et al. (2008) utilized wavelet networks in energy price fore-
casting in electricity markets.

Wavelet networks have also been used to analyze financial time series (Alexan-
dridis and Zapranis, 2013a,b; Zapranis and Alexandridis, 2011). More precisely,
wavelet networks were employed in the context of weather derivative pricing and
modeling. Moreover, trained wavelet networks were used to predict the future prices
of financial weather derivatives. Their findings suggest that wavelet networks can
model the underlying processes very well and thus constitute a very accurate and
efficient tool for weather derivative pricing.

Wavelet networks were applied to the oil market by Alexandridis et al. (2008). The
objective was to investigate the factors that affect crude oil price for the period 1988
to 2008 through comparison of a linear and a nonlinear approach. The dynamics
of the West Texas Intermediate crude oil price, time series as well as the relation
of crude oil price, and returns to various explanatory variables were studied. First,
wavelet analysis was used to extract the driving forces and dynamics of crude oil
price and returns processes. Also examined was whether a wavelet neural network
estimator could provide some incremental value toward understanding the crude oil
price process. In contrast to the linear model, it was determined that wavelet network
findings are in line with those of economic analysts. Wavelet networks not only
have better predictive power in forecasting crude oil returns but can also model the
dynamics of the returns correctly.
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Alexandridis and Hasan (2013) investigated the impact of the global financial
crisis on the multihorizon nature of systematic risk and market risk using daily
data from eight major European equity markets over the period 2005 to 2012. The
method was based on a wavelet multiscale approach within the framework of a capital
asset pricing model. The sample covers pre-crisis, crisis, and post-crisis periods with
varying experiences and regimes. The results indicate that beta coefficients have a
mutliscale tendency in sample countries. Moreover, wavelet networks were trained
using past data to forecast the post-crisis multiscale betas and the value at risk in
each market.

In addition, wavelet networks have been employed extensively in classification
problems in various disciplines other than finance: for example, in medicine in
recognition of cardiac arythmias (Lin et al., 2008) and breast cancer (Senapati et al.,
2011) and for EEG signal classification (Subasi et al., 2005); by Szu et al. (1992) for
signal classification and by Shi et al. (2006) for speech signal processing. Finally,
wavelet networks were utilized successfully for the prediction of chaotic time series
(Cao et al., 1995; Chen et al., 2006; Cristea et al., 2000).

BUILDING WAVELET NETWORKS

In this book we focus on the construction of optimal wavelet networks and their
successful application in a wide range of applications. A generally accepted frame-
work for applying wavelet networks is missing from the literature. In this book we
present a complete statistical model identification framework in order to employ
wavelet networks in various applications. To our knowledge, we are the first to do
so. Although a vast literature on wavelet networks exists, to our knowledge this is
the first study that presents a step-by-step guide for model identification for wavelet
networks. Model identification can be classified in two parts: model selection and
variable significance testing. In this study, a framework similar to the one proposed
by Zapranis and Refenes (1999) for classical sigmoid neural networks is adapted.
More precisely, the following subjects were examined thoroughly: the structure of
a wavelet network, training methods, initialization algorithms, variable significance
and variable selection algorithms, model selection methods, and methods to construct
confidence and prediction intervals. Some of these issues were studied to some extent
by Iyengar et al. (2002).

Moreover, to succeed in the use of wavelet networks, a model adequacy framework
is needed. The evaluation of the model is usually performed in two stages. In the first
the accuracy of the predictions is assessed and in the second the performance and
behavior of the wavelet network are evaluated under conditions as close as possible
to the actual operating conditions of the application.

Variable Selection

In the following chapters, the first part of model identification, variable selection, is
discussed analytically. The objective is to develop an algorithm to use to select the
statistically significant variables from a group of candidates in a problem where little
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theory is available. Our aim is to present a statistical procedure that produces robust
and stable results when it is applied in the wavelet network framework.

In real problems it is important to determine the independent variables correctly,
for various reasons. In most financial problems there is little theoretical guidance and
information about the relationship of any explanatory variable with the dependent
variable. Irrelevant variables are among the most common sources of specification
error. An unnecessary independent variable included in a model (e.g., in the training
of a wavelet network) creates a series of problems. First, the architecture of the
wavelet network increases. As a result, the training time of the wavelet network and
the computational burden can increase significantly. Moreover, there is a possibility
that the inclusion of irrelevant variables will affect the training of the wavelet network.
As presented for complex problems in subsequent chapters, when irrelevant variables
are included there is a possibility that the training algorithm will be trapped in a
local minimum during minimization of the loss function. Finally, when irrelevant
variables are included in the model, its predictive power and generalization ability
are reduced.

On the other hand, correctly specified models are easier to understand and interpret.
The underlying relationship is explained by only a few key variables, while all minor
and random influences are attributed to the error term. Finally, including a large
number of independent variables relative to sample size runs the risk of a spurious fit.

To select the statistically significant and relevant variable, from a group of possible
explanatory variables, hypotheses tests of statistical significance are used. To do so,
the relative contributions of the explanatory variables in explaining the dependent
variable in the context of a specific model are estimated. Then the significance of a
variable is assessed. This can be done by testing the null hypothesis that it is irrelevant,
either by comparing a test statistic that has a known theoretical distribution with its
critical value, or by constructing confidence intervals for the relevance criterion.
Our decision on rejecting or not rejecting the null hypothesis is based on a given
significance level. The p-value, the smallest significance level for which the null
hypothesis will not be refuted, imposes a ranking on the variables according to their
relevance to the particular model (Zapranis and Refenes, 1999).

Before proceeding to variable selection, a measure of relevance must be defined.
Various measures are tested in later chapters, and an algorithm that produces robust
and stable results is presented.

Model Selection

Next, the second part of model identification, variable selection, will be discussed
analytically. The objective is to find a statistical procedure that identifies correctly the
optimal number of wavelons (hidden units) that are needed to model a specific prob-
lem. One of the most crucial steps is to identify the correct topology of the network. A
desired wavelet network architecture should contain as few hidden units as necessary
while explaining as much variability of the training data as possible. A network with
fewer hidden units than needed would not be able to learn the underlying function,
while selecting more hidden units than needed will result in an overfitted model.
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In both cases, the results obtained from the wavelet network cannot be interpreted.
Moreover, an underfitted or overfitted network cannot be used to forecast the evolution
of the underlying process. In the first case the model has not learned the dynamics
of the underlying process, hence cannot be used for forecasting. On the other hand,
in an overfitted network, the model has learned the noise part; hence, any forecasts
will be affected by the noise and will differ significantly from the real target values.
Therefore, an algorithm to select the appropriate wavelet network model for a given
problem must be derived.

Model Adequacy Testing

After the construction of a wavelet network, we are interested in measuring its
predictive ability in the context of a particular application. The evaluation of the
model usually includes two clearly distinct, though related stages. In the first stage,
various metrics that quantify the accuracy of the predictions or the classifications
made by the model are used and the model is evaluated based on these metrics.
The term accuracy is a quantification of the “proximity” between the outputs of the
wavelet network and the target values desired. Measurements of the precision are
related to the error function that is minimized (or in some cases, the profit function
that is maximized) during the model specification of the wavelet network model.

The second step is to assess the behavior and performance of the wavelet network
model under conditions as close as possible to the actual operating conditions of the
application. The greater accuracy of the network model does not necessarily mean
that it will be applied successfully. It is important, therefore, that the performance
of the model be evaluated in the context of the decision-making system that it
supports. Especially for use in time-series forecasting application, the performance
and evaluation of the model should be based on benchmark trading strategies. It is
also important to evaluate the behavior of the model throughout the range of the
actual scenarios possible. For example, if the application concerns the prediction of
the performance of a stock index, it would not be correct if the validation sample
corresponds solely to a period with a strong upward trend, since the evaluation will
be restricted to the specific circumstances.

A full understanding of the behavior of the model under a variety of conditions
is a prerequisite for the creation of a successful decision support system or simply a
decision-making system (e.g., automated trading systems). In upcoming chapters, an
analytical model adequacy framework is presented.

BOOK OUTLINE

The purpose of the book is twofold: first, to expand the framework that was developed
by Alexandridis (2010) for model selection and variable selection in the framework
of wavelet networks; and second, to provide a textbook that presents a step-by-step
guide to employing wavelet networks in various applications (finance, classification,
chaos, etc.).
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Chapter 2: Neural Networks

In this chapter the basic aspects of the neural networks are presented: more precisely,
the delta rule, the backpropagation algorithm, and the concept of training a network.
Our purpose is to make the reader familiar with the basic concepts of the neural
network framework. These concepts are later modified to construct a new class of
neural networks called wavelet networks.

Chapter 3: Wavelet Neural Networks

The basic aspects of the wavelet networks are presented in this chapter: more precisely,
the structure of a wavelet network, various initialization methods, a training method
for the wavelet networks, and stopping conditions of the training. In addition, online
training is discussed and various initialization methods are compared and evaluated
in two case studies.

Chapter 4: Model Selection: Selecting the Architecture of the Network

Chapter 4 we describe the model selection procedure. One of the most crucial steps
is to identify the correct topology of the network. Various algorithms and criteria are
presented as well as a complete statistical framework. Finally, the various methods
are compared and evaluated in two case studies.

Chapter 5: Variable Selection: Determining the Explanatory Variables

In this chapter various methods of testing the significance of each explanatory variable
are presented and tested. The purpose of this section is to find an algorithm that gives
consistently stable and correct results when it is used with wavelet networks. In real
problems it is important to determine correctly the independent variables. In most
problems there is only limited information about the relationship of any explanatory
variable with the dependent variable. As a result, unnecessary independent variables
are included in the model, reducing its predictive power. Finally, the various methods
are compared and evaluated in two case studies.

Chapter 6: Model Adequacy Testing: Determining a Network’s
Future Performance

In this chapter we present various methods used to test the adequacy of the wavelet
network constructed. Various criteria are presented that examine the residuals of the
wavelet network. Moreover, depending on the application (classification or predic-
tion), additional evaluation criteria are presented and discussed.

Chapter 7: Modeling Uncertainty: From Point Estimates to Prediction Intervals

The framework proposed is expanded by presenting two methods of estimating
confidence and prediction intervals. The output of the wavelet networks is the approx-
imation of the underlying function obtained from noisy data. In many applications,
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especially in finance, risk managers may be more interested in predicting intervals
for future movements of the underlying function than in simply point estimates. In
addition, the methods proposed are compared and evaluated in two case studies.

Chapter 8: Modeling Financial Temperature Derivatives

In this chapter a real data set is used to demonstrate the application of our proposed
framework to a financial problem. More precisely, using data from detrended and
deseasonalized daily average temperatures, a wavelet network is constructed, initial-
ized, and trained, in the context of modeling and pricing financial weather derivatives.
At the same time the significant variables are selected: in this case, the correct number
of lags. Finally, the wavelet network developed will be used to construct confidence
and prediction intervals.

Chapter 9: Modeling Financial Wind Derivatives

In this chapter, the framework proposed is applied to a second financial data set.
More precisely, daily average wind speeds are modeled and forecast in the context of
modeling and pricing financial weather derivatives. At the same time, the significant
variables are selected: in this case, the correct number of lags. Finally, the wavelet
network developed will be used to forecast the future index of the wind derivatives.

Chapter 10: Predicting Chaotic Time Series

In this chapter the framework proposed is evaluated for modeling and predicting
chaotic time series. More precisely, the chaotic system is described by the Mackey–
Glass equation. A wavelet network is constructed and then used to predict the evolu-
tion of the chaotic system and construct confidence and prediction intervals.

Chapter 11: Classification of Breast Cancer Cases

In this chapter the framework proposed in the earlier chapters is applied in a real-life
application. In this case study a wavelet network is constructed to classify breast
cancer based on various attributes. Each instance has one of two possible classes:
benign or malignant. The aim is to construct a wavelet network that accurately
classifies each clinical case. The classification is based on nine attributes: clump
thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses.
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