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C H A P T E R 1

Basic Probability Theory

PART I: THEORY

It is assumed that the reader has had a course in elementary probability. In this chapter
we discuss more advanced material, which is required for further developments.

1.1 OPERATIONS ON SETS

Let S denote a sample space. Let E1, E2 be subsets of S. We denote the union by
E1 ∪ E2 and the intersection by E1 ∩ E2. Ē = S − E denotes the complement of
E . By DeMorgan’s laws E1 ∪ E2 = Ē1 ∩ Ē2 and E1 ∩ E2 = Ē1 ∪ Ē2.

Given a sequence of sets {En, n ≥ 1} (finite or infinite), we define

sup
n≥1

En =
⋃

n≥1

En, inf
n≥1

En =
⋂

n≥1

En. (1.1.1)

Furthermore, lim inf
n→∞ and lim sup

n→∞
are defined as

lim inf
n→∞ En =

⋃

n≥1

⋂

k≥n

Ek, lim sup
n→∞

En =
⋂

n≥1

⋃

k≥n

Ek . (1.1.2)

If a point of S belongs to lim sup
n→∞

En , it belongs to infinitely many sets En . The sets

lim inf
n→∞ En and lim sup

n→∞
En always exist and

lim inf
n→∞ En ⊂ lim sup

n→∞
En. (1.1.3)
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If lim inf
n→∞ En = lim sup

n→∞
En , we say that a limit of {En, n ≥ 1} exists. In this case,

lim
n→∞ En = lim inf

n→∞ En = lim sup
n→∞

En. (1.1.4)

A sequence {En, n ≥ 1} is called monotone increasing if En ⊂ En+1 for all n ≥ 1. In

this case lim
n→∞En =

∞⋃

n=1

En . The sequence is monotone decreasing if En ⊃ En+1, for

all n ≥ 1. In this case lim
n→∞En =

∞⋂

n=1

En . We conclude this section with the definition

of a partition of the sample space. A collection of sets D = {E1, . . . , Ek} is called
a finite partition of S if all elements of D are pairwise disjoint and their union

is S, i.e., Ei ∩ E j = ∅ for all i 
= j ; Ei , E j ∈ D; and
k⋃

i=1

Ei = S. If D contains a

countable number of sets that are mutually exclusive and
∞⋃

i=1

Ei = S, we say that D

is a countable partition.

1.2 ALGEBRA AND σ -FIELDS

Let S be a sample space. An algebra A is a collection of subsets of S satisfying

(i) S ∈ A;

(ii) if E ∈ A then Ē ∈ A;

(iii) if E1, E2 ∈ A then E1 ∪ E2 ∈ A.

(1.2.1)

We consider ∅ = S̄. Thus, (i) and (ii) imply that ∅ ∈ A. Also, if E1, E2 ∈ A then
E1 ∩ E2 ∈ A.

The trivial algebra is A0 = {∅,S}. An algebra A1 is a subalgebra of A2 if all sets
of A1 are contained in A2. We denote this inclusion by A1 ⊂ A2. Thus, the trivial
algebra A0 is a subalgebra of every algebra A. We will denote by A(S), the algebra
generated by all subsets of S (see Example 1.1).

If a sample space S has a finite number of points n, say 1 ≤ n < ∞, then the col-
lection of all subsets of S is called the discrete algebra generated by the elementary
events of S. It contains 2n events.

Let D be a partition of S having k, 2 ≤ k, disjoint sets. Then, the algebra generated
by D, A(D), is the algebra containing all the 2k − 1 unions of the elements of D and
the empty set.
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An algebra on S is called a σ -field if, in addition to being an algebra, the following
holds.

(iv) If En ∈ A, n ≥ 1, then
∞⋃

n=1

En ∈ A.

We will denote a σ -field by F . In a σ -field F the supremum, infinum, limsup, and
liminf of any sequence of events belong to F . If S is finite, the discrete algebra A(S)
is a σ -field. In Example 1.3 we show an algebra that is not a σ -field.

The minimal σ -field containing the algebra generated by {(−∞, x],−∞ < x <

∞} is called the Borel σ -field on the real line R.
A sample space S, with a σ -field F , (S,F) is called a measurable space.
The following lemmas establish the existence of smallest σ -field containing a

given collection of sets.

Lemma 1.2.1. Let E be a collection of subsets of a sample space S. Then, there
exists a smallest σ -field F(E), containing the elements of E .

Proof. The algebra of all subsets of S, A(S) obviously contains all elements of E .
Similarly, the σ -field F containing all subsets of S, contains all elements of E . Define
the σ -field F(E) to be the intersection of all σ -fields, which contain all elements of
E . Obviously, F(E) is an algebra. QED

A collection M of subsets of S is called a monotonic class if the limit of any
monotone sequence in M belongs to M.

If E is a collection of subsets of S, let M∗(E) denote the smallest monotonic class
containing E .

Lemma 1.2.2. A necessary and sufficient condition of an algebra A to be a σ -field
is that it is a monotonic class.

Proof. (i) Obviously, if A is a σ -field, it is a monotonic class.
(ii) Let A be a monotonic class.

Let En ∈ A, n ≥ 1. Define Bn =
n⋃

i=1

Ei . Obviously Bn ⊂ Bn+1 for all n ≥ 1. Hence

lim
n→∞Bn =

∞⋃

n=1

Bn ∈ A. But
∞⋃

n=1

Bn =
∞⋃

n=1

En . Thus, sup
n≥1

En ∈ A. Similarly,
∞⋂

n=1

En ∈ A.

Thus, A is a σ -field. QED

Theorem 1.2.1. Let A be an algebra. Then M∗(A) = F(A), where F(A) is the
smallest σ -field containing A.
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Proof. See Shiryayev (1984, p. 139).
The measurable space (R,B), where R is the real line and B = F(R), called the

Borel measurable space, plays a most important role in the theory of statistics.
Another important measurable space is (Rn,Bn), n ≥ 2, where R

n = R × R × · · · ×
R is the Euclidean n-space, and Bn = B × · · · × B is the smallest σ -field containing
R

n , ∅, and all n-dimensional rectangles I = I1 × · · · × In , where

Ii = (ai , bi ], i = 1, . . . , n, −∞ < ai < bi < ∞.

The measurable space (R∞,B∞) is used as a basis for probability models of
experiments with infinitely many trials. R

∞ is the space of ordered sequences
x = (x1, x2, . . .), −∞ < xn < ∞, n = 1, 2, . . .. Consider the cylinder sets

C(I1 × · · · × In) = {x : xi ∈ Ii , i = 1, . . . , n}

and

C(B1 × · · · × Bn) = {x : xi ∈ Bi , i = 1, . . . , n}

where Bi are Borel sets, i.e., Bi ∈ B. The smallest σ -field containing all these cylinder
sets, n ≥ 1, is B(R∞). Examples of Borel sets in B(R∞) are

(a) {x : x ∈ R
∞, sup

n≥1
xn > a}

or

(b) {x : x ∈ R
∞, lim sup

n→∞
xn ≤ a}.

1.3 PROBABILITY SPACES

Given a measurable space (S,F), a probability model ascribes a countably additive
function P on F , which assigns a probability P{A} to all sets A ∈ F . This function
should satisfy the following properties.

(A.1) If A ∈ F then 0 ≤ P{A} ≤ 1.

(A.2) P{S} = 1. (1.3.1)

(A.3) If {En, n ≥ 1} ∈ F is a sequence of disjoint

sets inF , then P

{ ∞⋃

n=1

En

}
=

∞∑

n=1

P{En}. (1.3.2)
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Recall that if A ⊂ B then P{A} ≤ P{B}, and P{ Ā} = 1 − P{A}. Other properties
will be given in the examples and problems. In the sequel we often write AB for
A ∩ B.

Theorem 1.3.1. Let (S,F , P) be a probability space, where F is a σ -field of subsets
of S and P a probability function. Then

(i) if Bn ⊂ Bn+1, n ≥ 1, Bn ∈ F , then

P
{

lim
n→∞Bn

}
= lim

n→∞P{Bn}. (1.3.3)

(ii) if Bn ⊃ Bn+1, n ≥ 1, Bn ∈ F , then

P
{

lim
n→∞Bn

}
= lim

n→∞P{Bn}. (1.3.4)

Proof. (i) Since Bn ⊂ Bn+1, lim
n→∞Bn =

∞⋃

n=1

Bn . Moreover,

P

{ ∞⋃

n=1

Bn

}
= P{B1} +

∞∑

n=2

P{Bn − Bn−1}. (1.3.5)

Notice that for n ≥ 2, since B̄n Bn−1 = ∅,

P{Bn − Bn−1} = P{Bn B̄n−1}
= P{Bn} − P{Bn Bn−1} = P{Bn} − P{Bn−1}.

(1.3.6)

Also, in (1.3.5)

P{B1} +
∞∑

n=2

P{Bn − Bn−1} = lim
N→∞

(
P{B1} +

N∑

n=2

(P{Bn} − P{Bn−1})
)

= lim
N→∞

P{BN }. (1.3.7)
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Thus, Equation (1.3.3) is proven.

(ii) Since Bn ⊃ Bn+1, n ≥ 1, B̄n ⊂ B̄n+1, n ≥ 1. lim
n→∞Bn =

∞⋂

n=1

Bn . Hence,

P
(

lim
n→∞ Bn

)
= 1 − P

⎧
⎨

⎩

∞⋂

n=1

Bn

⎫
⎬

⎭

= 1 − P

{ ∞⋃

n=1

B̄n

}

= 1 − lim
n→∞ P{B̄n} = lim

n→∞ P{Bn}.
QED

Sets in a probability space are called events.

1.4 CONDITIONAL PROBABILITIES AND INDEPENDENCE

The conditional probability of an event A ∈ F given an event B ∈ F such that
P{B} > 0, is defined as

P{A | B} = P{A ∩ B}
P{B} . (1.4.1)

We see first that P{· | B} is a probability function on F . Indeed, for every A ∈ F ,
0 ≤ P{A | B} ≤ 1. Moreover, P{S | B} = 1 and if A1 and A2 are disjoint events in
F , then

P{A1 ∪ A2 | B} = P{(A1 ∪ A2)B}
P{B}

= P{A1 B} + P{A2 B}
P{B} = P{A1 | B} + P{A2 | B}.

(1.4.2)

If P{B} > 0 and P{A} 
= P{A | B}, we say that the events A and B are depen-
dent. On the other hand, if P{A} = P{A | B} we say that A and B are independent
events. Notice that two events are independent if and only if

P{AB} = P{A}P{B}. (1.4.3)

Given n events in A, namely A1, . . . , An , we say that they are pairwise independent
if P{Ai A j } = P{Ai }P{A j } for any i 
= j . The events are said to be independent in
triplets if

P{Ai A j Ak} = P{Ai }P{A j }P{Ak}
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for any i 
= j 
= k. Example 1.4 shows that pairwise independence does not imply
independence in triplets.

Given n events A1, . . . , An of F , we say that they are independent if, for any
2 ≤ k ≤ n and any k-tuple (1 ≤ i1 < i2 < · · · < ik ≤ n),

P

⎧
⎨

⎩

k⋂

j=1

Ai j

⎫
⎬

⎭ =
k∏

j=1

P{Ai j }. (1.4.4)

Events in an infinite sequence {A1, A2, . . .} are said to be independent if
{A1, . . . , An} are independent, for each n ≥ 2. Given a sequence of events A1, A2, . . .

of a σ -field F , we have seen that

lim sup
n→∞

An =
∞⋂

n=1

∞⋃

k=n

Ak .

This event means that points w in lim sup
n→∞

An belong to infinitely many of the events

{An}. Thus, the event lim sup
n→∞

An is denoted also as {An , i.o.}, where i.o. stands for

“infinitely often.”
The following important theorem, known as the Borel–Cantelli Lemma, gives

conditions under which P{An , i.o.} is either 0 or 1.

Theorem 1.4.1 (Borel–Cantelli). Let {An} be a sequence of sets in F .

(i) If
∞∑

n=1

P{An} < ∞, then P{An, i.o.} = 0.

(ii) If
∞∑

n=1

P{An} = ∞ and {An} are independent, then P{An, i.o.} = 1.

Proof. (i) Notice that Bn =
∞⋃

k=n

Ak is a decreasing sequence. Thus

P{An, i.o.} = P

{ ∞⋂

n=1

Bn

}
= lim

n→∞ P{Bn}.

But

P{Bn} = P

{ ∞⋃

k=n

Ak

}
≤

∞∑

k=n

P{Ak}.
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The assumption that
∞∑

n=1

P{An} < ∞ implies that lim
n→∞

∞∑

k=n

P{Ak} = 0.

(ii) Since A1, A2, . . . are independent, Ā1, Ā2, . . . are independent. This implies
that

P

{ ∞⋂

k=1

Āk

}
=

∞∏

k=1

P{ Āk} =
∞∏

k=1

(1 − P{Ak}).

If 0 < x ≤ 1 then log(1 − x) ≤ −x . Thus,

log
∞∏

k=1

(1 − P{Ak}) =
∞∑

k=1

log(1 − P{Ak})

≤ −
∞∑

k=1

P{Ak} = −∞

since
∞∑

n=1

P{An} = ∞. Thus P

{ ∞⋂

k=1

Āk

}
= 0 for all n ≥ 1. This implies that

P{An, i.o.} = 1. QED

We conclude this section with the celebrated Bayes Theorem.
Let D = {Bi , i ∈ J } be a partition of S, where J is an index set having a finite or

countable number of elements. Let B j ∈ F and P{B j } > 0 for all j ∈ J . Let A ∈ F ,
P{A} > 0. We are interested in the conditional probabilities P{B j | A}, j ∈ J .

Theorem 1.4.2 (Bayes).

P{B j | A} = P{B j }P{A | B j }∑

j ′∈J

P{B j ′ }P{A | B j ′ }
. (1.4.5)

Proof. Left as an exercise. QED

Bayes Theorem is widely used in scientific inference. Examples of the application
of Bayes Theorem are given in many elementary books. Advanced examples of
Bayesian inference will be given in later chapters.

1.5 RANDOM VARIABLES AND THEIR DISTRIBUTIONS

Random variables are finite real value functions on the sample space S, such that
measurable subsets of F are mapped into Borel sets on the real line and thus can be
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assigned probability measures. The situation is simple if S contains only a finite or
countably infinite number of points.

In the general case, S might contain non-countable infinitely many points. Even if
S is the space of all infinite binary sequences w = (i1, i2, . . .), the number of points
in S is non-countable. To make our theory rich enough, we will require that the
probability space will be (S,F , P), where F is a σ -field. A random variable X is a
finite real value function on S. We wish to define the distribution function of X , on
R, as

FX (x) = P{w : X (w) ≤ x}. (1.5.1)

For this purpose, we must require that every Borel set on R has a measurable inverse
image with respect to F . More specifically, given (S,F , P), let (R,B) be Borel
measurable space where R is the real line and B the Borel σ -field of subsets of R. A
subset of (R, B) is called a Borel set if B belongs to B. Let X : S → R. The inverse
image of a Borel set B with respect to X is

X−1(B) = {w : X (w) ∈ B}. (1.5.2)

A function X : S → R is called F-measurable if X−1(B) ∈ F for all B ∈ B. Thus,
a random variable with respect to (S,F , P) is an F-measurable function on S.
The classFX = {X−1(B) : B ∈ B} is also a σ -field, generated by the random variable
X . Notice that FX ⊂ F .

By definition, every random variable X has a distribution function FX . The prob-
ability measure PX {·} induced by X on (R, B) is

PX {B} = P{X−1(B)}, B ∈ B. (1.5.3)

A distribution function FX is a real value function satisfying the properties

(i) lim
x→−∞FX (x) = 0;

(ii) lim
x→∞FX (x) = 1;

(iii) If x1 < x2 then FX (x1) ≤ FX (x2); and

(iv) lim
ε↓0

FX (x + ε) = FX (x), and lim
ε↑0

F(x − ε) = FX (x−), all −∞ < x < ∞.

Thus, a distribution function F is right-continuous.
Given a distribution function FX , we obtain from (1.5.1), for every −∞ < a <

b < ∞,

P{w : a < X (w) ≤ b} = FX (b) − FX (a) (1.5.4)
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and

P{w : X (w) = x0} = FX (x0) − FX (x0−). (1.5.5)

Thus, if FX is continuous at a point x0, then P{w : X (w) = x0} = 0. If X is a random
variable, then Y = g(X ) is a random variable only if g is B-(Borel) measurable,
i.e., for any B ∈ B, g−1(B) ∈ B. Thus, if Y = g(X ), g is B-measurable and X F-
measurable, then Y is also F-measurable. The distribution function of Y is

FY (y) = P{w : g(X (w)) ≤ y}. (1.5.6)

Any two random variables X , Y having the same distribution are equivalent. We
denote this by Y ∼ X .

A distribution function F may have a countable number of distinct points of
discontinuity. If x0 is a point of discontinuity, F(x0) − F(x0−) > 0. In between
points of discontinuity, F is continuous. If F assumes a constant value between
points of discontinuity (step function), it is called discrete. Formally, let −∞ <

x1 < x2 < · · · < ∞ be points of discontinuity of F . Let IA(x) denote the indicator
function of a set A, i.e.,

IA(x) =
{

1, if x ∈ A
0, otherwise.

Then a discrete F can be written as

Fd(x) =
∞∑

i=1

I[xi ,xi+1)(x)F(xi )

=
∑

{xi ≤x}
(F(xi ) − F(xi−)).

(1.5.7)

Let μ1 and μ2 be measures on (R,B). We say that μ1 is absolutely continuous
with respect to μ2, and write μ1 � μ2, if B ∈ B and μ2(B) = 0 then μ1(B) = 0. Let λ
denote the Lebesgue measure on (R,B). For every interval (a, b], −∞ < a < b < ∞,
λ((a, b]) = b − a. The celebrated Radon–Nikodym Theorem (see Shiryayev, 1984,
p. 194) states that if μ1 � μ2 and μ1, μ2 are σ -finite measures on (R,B), there exists
a B-measurable nonnegative function f (x) so that, for each B ∈ B,

μ1(B) =
∫

B
f (x)dμ2(x) (1.5.8)
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where the Lebesgue integral in (1.5.8) will be discussed later. In particular, if Pc

is absolutely continuous with respect to the Lebesgue measure λ, then there exists a
function f ≥ 0 so that

Pc{B} =
∫

B
f (x)λ(x), B ∈ B. (1.5.9)

Moreover,

Fc(x) =
∫ x

−∞
f (y)dy, −∞ < x < ∞. (1.5.10)

A distribution function F is called absolutely continuous if there exists a non-
negative function f such that

F(ξ ) =
∫ ξ

−∞
f (x)dx, −∞ < ξ < ∞. (1.5.11)

The function f , which can be represented for “almost all x” by the derivative of F ,
is called the probability density function (p.d.f.) corresponding to F .

If F is absolutely continuous, then f (x) = d

dx
F(x) “almost everywhere.” The

term “almost everywhere” or “almost all” x means for all x values, excluding maybe
on a set N of Lebesgue measure zero. Moreover, the probability assigned to any
interval (α, β], α ≤ β, is

P{α < X ≤ β} = F(β) − F(α) =
∫ β

α

f (x)dx . (1.5.12)

Due to the continuity of F we can also write

P{α < X ≤ β} = P{α ≤ X ≤ β}.

Often the density functions f are Riemann integrable, and the above integrals are
Riemann integrals. Otherwise, these are all Lebesgue integrals, which are defined in
the next section.

There are continuous distribution functions that are not absolutely continuous.
Such distributions are called singular. An example of a singular distribution is the
Cantor distribution (see Shiryayev, 1984, p. 155).

Finally, every distribution function F(x) is a mixture of the three types of
distributions—discrete distribution Fd(·), absolutely continuous distributions Fac(·),
and singular distributions Fs(·). That is, for some 0 ≤ p1, p2, p3 ≤ 1 such that
p1 + p2 + p3 = 1,

F(x) = p1 Fd(x) + p2 Fac(x) + p3 Fs(x).

In this book we treat only mixtures of Fd(x) and Fac(x).
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1.6 THE LEBESGUE AND STIELTJES INTEGRALS

1.6.1 General Definition of Expected Value: The Lebesgue Integral

Let (S,F , P) be a probability space. If X is a random variable, we wish to define the
integral

E{X} =
∫

S
X (w)P(dw). (1.6.1)

We define first E{X} for nonnegative random variables, i.e., X (w) ≥ 0 for all
w ∈ S. Generally, X = X+ − X−, where X+(w) = max(0, X (w)) and X−(w) =
− min(0, X (w)).

Given a nonnegative random variable X we construct for a given finite integer n
the events

Ak,n =
{

w :
k − 1

2n
≤ X (w) <

k

2n

}
, k = 1, 2, . . . , n2n

and

An2n+1,n = {w : X (w) ≥ n}.

These events form a partition of S. Let Xn , n ≥ 1, be the discrete random variable
defined as

Xn(w) =
n2n∑

k=1

k − 1

2n
IAk,n (w) + nIAn2n+1,n (w). (1.6.2)

Notice that for each w , Xn(w) ≤ Xn+1(w) ≤ . . . ≤ X (w) for all n. Also, if w ∈ Ak,n ,

k = 1, . . . , n2n , then |X (w) − Xn(w)| ≤ 1

2n
. Moreover, An2n+1,n ⊃ A(n+1)2n+1,n+1,

all n ≥ 1. Thus

lim
n→∞ An2n+1,n =

∞⋂

n=1

{w : X (w) ≥ n}

= ∅.

Thus for all w ∈ S

lim
n→∞ Xn(w) = X (w). (1.6.3)
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Now, for each discrete random variable Xn(w)

E{Xn} =
n2n∑

k=1

k − 1

2n
P{Ak,n} + n P{w : X (w) > n}. (1.6.4)

Obviously E{Xn} ≤ n, and E{Xn+1} ≥ E{Xn}. Thus, lim
n→∞E{Xn} exists (it might be

+∞). Accordingly, the Lebesgue integral is defined as

E{X} =
∫

X (w)P{dw}

= lim
n→∞ E{Xn}.

(1.6.5)

The Lebesgue integral may exist when the Riemann integral does not. For example,
consider the probability space (I,B, P) where I = {x : 0 ≤ x ≤ 1}, B the Borel
σ -field on I, and P the Lebesgue measure on [B]. Define

f (x) =
{

0, if x is irrational on [0, 1]
1, if x is rational on [0, 1].

Let B0 = {x : 0 ≤ x ≤ 1, f (x) = 0}, B1 = [0, 1] − B0. The Lebesgue integral
of f is

∫ 1

0
f (x)dx = 0 · P{B0} + 1 · P{B1} = 0,

since the Lebesgue measure of B1 is zero. On the other hand, the Riemann integral of
f (x) does not exist. Notice that, contrary to the construction of the Riemann integral,

the Lebesgue integral
∫

f (x)P{dx} of a nonnegative function f is obtained by par-

titioning the range of the function f to 2n subintervals Dn = {B(n)
j } and construct-

ing a discrete random variable f̂n =
2n∑

j=1

f ∗
n, j I {x ∈ B(n)

j }, where fn, j = inf{ f (x) :

x ∈ B(n)
j }. The expected value of f̂n is E{ f̂n} =

2n∑

j=1

f ∗
n, j P(X ∈ B(n)

j ). The sequence

{E{ f̂n}, n ≥ 1} is nondecreasing, and its limit exists (might be +∞). Generally, we
define

E{X} = E{X+} − E{X−} (1.6.6)

if either E{X+} < ∞ or E{X−} < ∞.
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If E{X+} = ∞ and E{X−} = ∞, we say that E{X} does not exist. As a special
case, if F is absolutely continuous with density f , then

E{X} =
∫ ∞

−∞
x f (x)dx

provided
∫ ∞

−∞
|x | f (x)dx < ∞. If F is discrete then

E{X} =
∞∑

n=1

xn P{X = xn}

provided it is absolutely convergent.
From the definition (1.6.4), it is obvious that if P{X (w) ≥ 0} = 1 then E{X} ≥ 0.

This immediately implies that if X and Y are two random variables such that P{w :
X (w) ≥ Y (w)} = 1, then E{X − Y } ≥ 0. Also, if E{X} exists then, for all A ∈ F ,

E{|X |IA(X )} ≤ E{|X |},

and E{X IA(X )} exists. If E{X} is finite, E{X IA(X )} is also finite. From the definition
of expectation we immediately obtain that for any finite constant c,

E{cX} = cE{X},
E{X + Y } = E{X} + E{Y }.

(1.6.7)

Equation (1.6.7) implies that the expected value is a linear functional, i.e., if
X1, . . . , Xn are random variables on (S,F , P) and β0, β1, . . . , βn are finite con-
stants, then, if all expectations exist,

E

{
β0 +

n∑

i=1

βi Xi

}
= β0 +

n∑

i=1

βi E{Xi }. (1.6.8)

We present now a few basic theorems on the convergence of the expectations of
sequences of random variables.

Theorem 1.6.1 (Monotone Convergence). Let {Xn} be a monotone sequence of
random variables and Y a random variable.

(i) Suppose that Xn(w) ↗
n→∞

X (w), Xn(w) ≥ Y (w) for all n and all w ∈ S, and

E{Y } > −∞. Then

lim
n→∞ E{Xn} = E{X}.
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(ii) If Xn(w) ↘
n→∞

X (w), Xn(w) ≤ Y (w), for all n and all w ∈ S, and E{Y } < ∞,

then

lim
n→∞ E{Xn} = E{X}.

Proof. See Shiryayev (1984, p. 184). QED

Corollary 1.6.1. If X1, X2, . . . are nonnegative random variables, then

E

{ ∞∑

n=1

Xn

}
=

∞∑

n=1

E{Xn}. (1.6.9)

Theorem 1.6.2 (Fatou). Let Xn, n ≥ 1 and Y be random variables.

(i) If Xn(w) ≥ Y (w), n ≥ 1, for each w and E{Y } > −∞, then

E

{
lim

n→∞
Xn

}
≤ lim

n→∞
E{Xn};

(ii) if Xn(w) ≤ Y (w), n ≥ 1, for each w and E{Y } < ∞, then

lim
n→∞E{Xn} ≤ E

{
lim

n→∞Xn

}
;

(iii) if |Xn(w)| ≤ Y (w) for each w, and E{Y } < ∞, then

E

{
lim

n→∞
Xn

}
≤ lim

n→∞
E{Xn} ≤ lim

n→∞E{Xn} ≤ E
{

lim
n→∞Xn

}
. (1.6.10)

Proof. (i)

lim
n→∞

Xn(w) = lim
n→∞ inf

m≥n
Xm(w).

The sequence Zn(w) = inf
m≥n

Xm(w), n ≥ 1 is monotonically increasing for each w ,

and Zn(w) ≥ Y (w), n ≥ 1. Hence, by Theorem 1.6.1,

lim
n→∞ E{Zn} = E

{
lim

n→∞ Zn

}
.
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Or

E

{
lim

n→∞
Xn

}
= lim

n→∞ E{Zn} = lim
n→∞

E{Zn} ≤ lim
n→∞

E{Xn}.

The proof of (ii) is obtained by defining Zn(w) = sup
m≥n

Xm(w), and applying the

previous theorem. Part (iii) is a result of (i) and (ii). QED

Theorem 1.6.3 (Lebesgue Dominated Convergence). Let Y , X, Xn, n ≥ 1, be
random variables such that |Xn(w)| ≤ Y (w), n ≥ 1 for almost all w, and E{Y } < ∞.

Assume also that P
{

w : lim
n→∞Xn(w) = X (w)

}
= 1. Then E{|X |} < ∞ and

lim
n→∞ E{Xn} = E

{
lim

n→∞ Xn

}
, (1.6.11)

and

lim
n→∞ E{|Xn − X |} = 0. (1.6.12)

Proof. By Fatou’s Theorem (Theorem 1.6.2)

E

{
lim

n→∞
Xn

}
≤ lim

n→∞
E{Xn} ≤ lim

n→∞E{Xn} ≤ E
{

lim
n→∞Xn

}
.

But since lim
n→∞Xn(w) = X (w), with probability 1,

E{X} = E
{

lim
n→∞ Xn

}
= lim

n→∞ E{Xn}.

Moreover, |X (w)| < Y (w) for almost all w (with probability 1). Hence, E{|X |} < ∞.
Finally, since |Xn(w) − X (w)| ≤ 2Y (w), with probability 1

lim
n→∞ E{|Xn − X |} = E

{
lim

n→∞ |Xn − X |
}

= 0.

QED

We conclude this section with a theorem on change of variables under Lebesgue
integrals.

Theorem 1.6.4. Let X be a random variable with respect to (S,F , P). Let g : R →
R be a Borel measurable function. Then for each B ∈ B,

∫

B
g(x)PX {dx} =

∫

X−1(B)
g(X (w))P{dw}. (1.6.13)
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The proof of the theorem is based on the following steps.

1. If A ∈ B and g(x) = IA(x) then

∫

B
g(x)PX {dx} =

∫

B
IA(x)PX {dx} = PX {A ∩ B}

= P{w : X−1(A) ∩ X−1(B)}

=
∫

X−1(B)
g(X (w))P{dw}.

2. Show that Equation (1.6.13) holds for simple random variables.

3. Follow the steps of the definition of the Lebesgue integral.

1.6.2 The Stieltjes–Riemann Integral

Let g be a function of a real variable and F a distribution function. Let (α, β] be a
half-closed interval. Let

α = x0 < x1 < · · · < xn−1 < xn = β

be a partition of (α, β] to n subintervals (xi−1, xi ], i = 1, . . . , n. In each subinterval
choose x ′

i , xi−1 < x ′
i ≤ xi and consider the sum

Sn =
n∑

i=1

g(x ′
i )[F(xi ) − F(xi−1)]. (1.6.14)

If, as n → ∞, max
1≤i≤n

|xi − xi−1| → 0 and if lim
n→∞Sn exists (finite) independently of the

partitions, then the limit is called the Stieltjes–Riemann integral of g with respect
to F . We denote this integral as

∫ β

α

g(x)dF(x).

This integral has the usual linear properties, i.e.,

(i)
∫ β

α

cg(x)dF(x) = c
∫ β

α

g(x)dF(x);

(ii)
∫ β

α

(g1(x) + g2(x))dF(x) =
∫ β

α

g1(x)dF(x) +
∫ β

α

g2(x)dF(x); (1.6.15)
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and

(iii)
∫ β

α

g(x)d(γ F1(x) + δF2(x)) = γ

∫ β

α

g(x)dF1(x) + δ

∫ β

α

g(x)dF2(x).

One can integrate by parts, if all expressions exist, according to the formula

∫ β

α

g(x)dF(x) = [g(β)F(β) − g(α)F(α)] −
∫ β

α

g′(x)F(x)dx, (1.6.16)

where g′(x) is the derivative of g(x). If F is strictly discrete, with jump points
−∞ < ξ1 < ξ2 < · · · < ∞,

∫ β

α

g(x)dF(x) =
∞∑

j=1

I {α < ξ j ≤ β}g(ξ j )p j , (1.6.17)

where p j = F(ξ j ) − F(ξ j−), j = 1, 2, . . .. If F is absolutely continuous, then at
almost all points,

F(x + dx) − F(x) = f (x)dx + o(dx),

as dx → 0. Thus, in the absolutely continuous case

∫ β

α

g(x)dF(x) =
∫ β

α

g(x) f (x)dx . (1.6.18)

Finally, the improper Stieltjes–Riemann integral, if it exists, is

∫ ∞

−∞
g(x)dF(x) = lim

β→∞
α→−∞

∫ β

α

g(x)dF(x). (1.6.19)

If B is a set obtained by union and complementation of a sequence of intervals, we
can write, by setting g(x) = I {x ∈ B},

P{B} =
∫ ∞

−∞
I {x ∈ B}dF(x)

=
∫

B
dF(x),

(1.6.20)

where F is either discrete or absolutely continuous.
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1.6.3 Mixtures of Discrete and Absolutely Continuous Distributions

Let Fd be a discrete distribution and let Fac be an absolutely continuous distribution
function. Then for all α 0 ≤ α ≤ 1,

F(x) = αFd(x) + (1 − α)Fac(x) (1.6.21)

is also a distribution function, which is a mixture of the two types. Thus, for such
mixtures, if −∞ < ξ1 < ξ2 < · · · < ∞ are the jump points of Fd, then for every
−∞ < γ ≤ δ < ∞ and B = (γ, δ],

P{B} =
∫ δ

γ

dF(x)

= α

∞∑

j=1

I {γ < ξ j ≤ δ}dFd(ξ j ) + (1 − α)
∫ δ

γ

dFac(x).

(1.6.22)

Moreover, if B+ = [γ, δ] then

P{B+} = P{B} + dFd(γ ).

The expected value of X , when F(x) = pFd(x) + (1 − p)Fac(x) is,

E{X} = p
∑

{ j}
ξ j fd(ξ j ) + (1 − p)

∫ ∞

−∞
x fac(x)dx, (1.6.23)

where {ξ j } is the set of jump points of Fd; fd and fac are the corresponding p.d.f.s.
We assume here that the sum and the integral are absolutely convergent.

1.6.4 Quantiles of Distributions

The p-quantiles or fractiles of distribution functions are inverse points of the distri-
butions. More specifically, the p-quantile of a distribution function F , designated by
x p or F−1(p), is the smallest value of x at which F(x) is greater or equal to p, i.e.,

x p = F−1(p) = inf{x : F(x) ≥ p}. (1.6.24)

The inverse function defined in this fashion is unique. The median of a distribution,
x.5, is an important parameter characterizing the location of the distribution. The
lower and upper quartiles are the .25- and .75-quantiles. The difference between
these quantiles, RQ = x.75 − x.25, is called the interquartile range. It serves as one
of the measures of dispersion of distribution functions.
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1.6.5 Transformations

From the distribution function F(x) = αFd(x) + (1 − α)Fac(x), 0 ≤ α ≤ 1, we can
derive the distribution function of a transformed random variable Y = g(X ), which
is

FY (y) = P{g(X ) ≤ y}
= P{X ∈ By}

= α

∞∑

j=1

I {ξ j ∈ By}dFd(ξ j ) + (1 − α)
∫

By

dFac(x)

(1.6.25)

where

By = {x : g(x) ≤ y}.

In particular, if F is absolutely continuous and if g is a strictly increasing differentiable
function, then the p.d.f. of Y , h(y), is

fY (y) = fX (g−1(y))

(
d

dy
g−1(y)

)
, (1.6.26)

where g−1(y) is the inverse function. If g′(x) < 0 for all x , then

fY (y) = fX (g−1(y)) ·
∣∣∣∣

d

dy
g−1(y)

∣∣∣∣ . (1.6.27)

Suppose that X is a continuous random variable with p.d.f. f (x). Let g(x) be a
differentiable function that is not necessarily one-to-one, like g(x) = x2. Excluding
cases where g(x) is a constant over an interval, like the indicator function, let m(y)
denote the number of roots of the equation g(x) = y. Let ξ j (y), j = 1, . . . , m(y)
denote the roots of this equation. Then the p.d.f. of Y = g(x) is

fY (y) =
m(y)∑

j=1

fX (ξ j (y)) · 1

|g′(ξ j (y))| (1.6.28)

if m(y) > 0 and zero otherwise.
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1.7 JOINT DISTRIBUTIONS, CONDITIONAL DISTRIBUTIONS
AND INDEPENDENCE

1.7.1 Joint Distributions

Let (X1, . . . , Xk) be a vector of k random variables defined on the same probability
space. These random variables represent variables observed in the same experiment.
The joint distribution function of these random variables is a real value function F
of k real arguments (ξ1, . . . , ξk) such that

F(ξ1, . . . , ξk) = P{X1 ≤ ξ1, . . . , Xk ≤ ξk}. (1.7.1)

The joint distribution of two random variables is called a bivariate distribution
function.

Every bivariate distribution function F has the following properties.

(i) lim
ξ1→−∞

F(ξ1, ξ2) = lim
ξ2→−∞

F(ξ1, ξ2) = 0, for all ξ1, ξ2;

(ii) lim
ξ1→∞

lim
ξ2→∞

F(ξ1, ξ2) = 1;

(iii) lim
ε↓0

F(ξ1 + ε, ξ2 + ε) = F(ξ1, ξ2) for all (ξ1, ξ2);

(iv) for any a < b, c < d, F(b, d) − F(a, d) − F(b, c) + F(a, c) ≥ 0.

(1.7.2)

Property (iii) is the right continuity of F(ξ1, ξ2). Property (iv) means that the prob-
ability of every rectangle is nonnegative. Moreover, the total increase of F(ξ1, ξ2)
is from 0 to 1. The similar properties are required in cases of a larger number of
variables.

Given a bivariate distribution function F . The univariate distributions of X1 and
X2 are F1 and F2 where

F1(x) = lim
y→∞ F(x, y), F2(y) = lim

x→∞ F(x, y). (1.7.3)

F1 and F2 are called the marginal distributions of X1 and X2, respectively. In
cases of joint distributions of three variables, we can distinguish between three
marginal bivariate distributions and three marginal univariate distributions. As in the
univariate case, multivariate distributions are either discrete, absolutely continuous,
singular, or mixtures of the three main types. In the discrete case there are at most a
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countable number of points {(ξ ( j)
1 , . . . , ξ

( j)
k ), j = 1, 2, . . .} on which the distribution

concentrates. In this case the joint probability function is

p(x1, . . . , xk) =
⎧
⎨

⎩

P{X1 = ξ
( j)
1 , . . . , Xk = ξ

( j)
k }, if (x1, . . . , xk) = (ξ ( j)

1 , . . . , ξ
( j)
k )

j = 1, 2, . . .

0, otherwise.

(1.7.4)

Such a discrete p.d.f. can be written as

p(x1, . . . , xk) =
∞∑

j=1

I {(x1, . . . , xk) = (ξ ( j)
1 , . . . , ξ

( j)
k )}p j ,

where p j = P{X1 = ξ
( j)
1 , . . . , Xk = ξ

( j)
k }.

In the absolutely continuous case there exists a nonnegative function f (x1, . . . , xk)
such that

F(ξ1, . . . , ξk) =
∫ ξ1

−∞
· · ·
∫ ξk

−∞
f (x1, . . . , xk)dx1 . . . dxk . (1.7.5)

The function f (x1, . . . , xk) is called the joint density function.
The marginal probability or density functions of single variables or of a subvector

of variables can be obtained by summing (in the discrete case) or integrating, in the
absolutely continuous case, the joint distribution functions (densities) with respect to
the variables that are not under consideration, over their range of variation.

Although the presentation here is in terms of k discrete or k absolutely contin-
uous random variables, the joint distributions can involve some discrete and some
continuous variables, or mixtures.

If X1 has an absolutely continuous marginal distribution and X2 is discrete, we
can introduce the function N (B) on B, which counts the number of jump points
of X2 that belong to B. N (B) is a σ -finite measure. Let λ(B) be the Lebesgue
measure on B. Consider the σ -finite measure on B(2), μ(B1 × B2) = λ(B1)N (B2). If
X1 is absolutely continuous and X2 discrete, their joint probability measure PX is
absolutely continuous with respect to μ. There exists then a nonnegative function fX

such that

FX(x1, x2) =
∫ x1

−∞

∫ x2

−∞
fX(y1, y2)dy1d N (y2).

The function fX is a joint p.d.f. of X1, X2 with respect to μ. The joint p.d.f. fX is
positive only at jump point of X2.
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If X1, . . . , Xk have a joint distribution with p.d.f. f (x1, . . . , xk), the expected
value of a function g(X1, . . . , Xk) is defined as

E{g(X1, . . . , Xk)} =
∫

g(x1, . . . , xk)dF(x1, . . . , xk). (1.7.6)

We have used here the conventional notation for Stieltjes integrals.
Notice that if (X, Y ) have a joint distribution function F(x, y) and if X is discrete

with jump points of F1(x) at ξ1, ξ2, . . . , and Y is absolutely continuous, then, as in
the previous example,

∫
g(x, y)dF(x, y) =

∞∑

j=1

∫
g(ξ j , y) f (ξ j , y)dy

where f (x, y) is the joint p.d.f. A similar formula holds for the case of X , absolutely
continuous and Y , discrete.

1.7.2 Conditional Expectations: General Definition

Let X (w) ≥ 0, for all w ∈ S, be a random variable with respect to (S,F , P). Con-
sider a σ -field G, G ⊂ F . The conditional expectation of X given G is defined as a
G-measurable random variable E{X | G} satisfying

∫

A
X (w)P{dw} =

∫

A
E{X | G}(w)P{dw} (1.7.7)

for all A ∈ G. Generally, E{X | G} is defined if min{E{X+ | G}, E{X− | G}} < ∞
and E{X | G} = E{X+ | G} − E{X− | G}. To see that such conditional expectations
exist, where X (w) ≥ 0 for all w , consider the σ -finite measure on G,

Q(A) =
∫

A
X (w)P{dw}, A ∈ G. (1.7.8)

Obviously Q � P and by Radon–Nikodym Theorem, there exists a nonnegative,
G-measurable random variable E{X | G} such that

Q(A) =
∫

A
E{X | G}(w)P{dw}. (1.7.9)

According to the Radon–Nikodym Theorem, E{X | G} is determined only up to a set
of P-measure zero.
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If B ∈ F and X (w) = IB(w), then E{X | G} = P{B | G} and according to
(1.6.13),

P{A ∩ B} =
∫

A
IB(w)P{dw}

=
∫

A
P{B | G}P{dw}.

(1.7.10)

Notice also that if X is G-measurable then X = E{X | G} with probability 1.
On the other hand, if G = {∅,S} is the trivial algebra, then E{X | G} = E{X}

with probability 1.
From the definition (1.7.7), since S ∈ G,

E{X} =
∫

S
X (w)P{dw}

=
∫

S
E{X | G}P{dw}.

This is the law of iterated expectation; namely, for all G ⊂ F ,

E{X} = E{E{X | G}}. (1.7.11)

Furthermore, if X and Y are two random variables on (S,F , P), the collection of all
sets {Y −1(B), B ∈ B}, is a σ -field generated by Y . Let FY denote this σ -field. Since
Y is a random variable, FY ⊂ F . We define

E{X | Y } = E{X | FY }. (1.7.12)

Let y0 be such that fY (y0) > 0.
Consider the FY -measurable set Aδ = {w : y0 < Y (w) ≤ y0 + δ}. According to

(1.7.7)

∫

Aδ

X (w)P(dw) =
∫ ∞

−∞

∫ y0+δ

y0

x fXY (x, y)dxdy

=
∫ y0+δ

y0

E{X | Y = y} fY (y)dy.

(1.7.13)

The left-hand side of (1.7.13) is, if E{|X |} < ∞,

∫ ∞

−∞
x
∫ y0+δ

y0

fXY (x, y)dydx =
∫ y0+δ

y0

fY (y0)
∫ ∞

−∞
x

fXY (x, y)

fY (y0)
dxdy

= fY (y0)δ
∫ ∞

−∞
x

fXY (x, y0)

fY (y0)
dx + o(δ), as δ → 0
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where lim
δ→0

o(δ)

δ
= 0. The right-hand side of (1.7.13) is

∫ y0+δ

y0

E{X | Y = y} fY (y)dy = E{X | Y = y0} fY (y0)δ + o(δ), as δ → 0.

Dividing both sides of (1.7.13) by fY (y0)δ, we obtain that

E{X | Y = y0} =
∫ ∞

−∞
x fX |Y (x | y0)dx

=
∫ ∞

−∞
x

fXY (x, y0)

fX (y0)
dx .

We therefore define for fY (y0) > 0

fX |Y (x | y0) = fXY (x, y0)

fY (y0)
. (1.7.14)

More generally, for k > 2 let f (x1, . . . , xk) denote the joint p.d.f. of (X1, . . . , Xk).
Let 1 ≤ r < k and g(x1, . . . , xr ) denote the marginal joint p.d.f. of (X1, . . . , Xr ).
Suppose that (ξ1, . . . , ξr ) is a point at which g(ξ1, . . . , ξr ) > 0. The conditional
p.d.f. of Xr+1, . . . , Xk given {X1 = ξ1, . . . , Xr = ξr } is defined as

h(xr+1, . . . , xk | ξ1, . . . , ξr ) = f (ξ1, . . . , ξr , xr+1, . . . , xk)

g(ξ1, . . . , ξr )
. (1.7.15)

We remark that conditional distribution functions are not defined on points
(ξ1, . . . , ξr ) such that g(ξ1, . . . , ξr ) = 0. However, it is easy to verify that the proba-
bility associated with this set of points is zero. Thus, the definition presented here is
sufficiently general for statistical purposes. Notice that f (xr+1, . . . , xk | ξ1, . . . , ξr )
is, for a fixed point (ξ1, . . . , ξr ) at which it is well defined, a nonnegative function of
(xr+1, . . . , xk) and that

∫
dF(xr+1, . . . , xk | ξ1, . . . , ξr ) = 1.

Thus, f (xr+1, . . . , xk | ξ1, . . . , ξr ) is indeed a joint p.d.f. of (Xr+1, . . . , Xk). The
point (ξ1, . . . , ξr ) can be considered a parameter of the conditional distribution.

If ψ(Xr+1, . . . , Xk) is an (integrable) function of (Xr+1, . . . , Xk), the conditional
expectation of ψ(Xr+1, . . . , Xk) given {X1 = ξ1, . . . , Xr = ξr } is

E{ψ(Xr+1, . . . , Xk) | ξ1, . . . , ξr } =
∫

ψ(xr+1, . . . , xk)dF(xr+1, . . . , xk | ξ1, . . . , ξr ).

(1.7.16)

This conditional expectation exists if the integral is absolutely convergent.
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1.7.3 Independence

Random variables X1, . . . , Xn , on the same probability space, are called mutually
independent if, for any Borel sets B1, . . . , Bn ,

P{w : X1(w) ∈ B1, . . . , Xn(w) ∈ Bn} =
n∏

j=1

P{w : X j ∈ B j }. (1.7.17)

Accordingly, the joint distribution function of any k-tuple (Xi1 , . . . , Xik ) is a product
of their marginal distributions. In particular,

FX1···Xn (x1, . . . , xn) =
n∏

i=1

FXi (xi ). (1.7.18)

Equation (1.7.18) implies that if X1, . . . , Xn have a joint p.d.f. fX(x1, . . . , xn) and if
they are independent, then

fX(x1, . . . , xn) =
n∏

j=1

fX j (x j ). (1.7.19)

Moreover, if g(X1, . . . , Xn) =
n∏

j=1

g j (X j ), where g(x1, . . . , xn) is B(n)-measurable

and g j (x) are B-measurable, then under independence

E{g(X1, . . . , Xn)} =
n∏

j=1

E{g j (X j )}. (1.7.20)

Probability models with independence structure play an important role in statistical
theory. From (1.7.12) and (1.7.21), we imply that if X(r ) = (X1, . . . , Xr ) and Y(r ) =
(Xr+1, . . . , Xn) are independent subvectors, then the conditional distribution of X(r )

given Y(r ) is independent of Y(r ), i.e.,

f (x1, . . . , xr | xr+1, . . . , xn) = f (x1, . . . , xr ) (1.7.21)

with probability one.

1.8 MOMENTS AND RELATED FUNCTIONALS

A moment of order r , r = 1, 2, . . . , of a distribution F(x) is

μr = E{Xr }. (1.8.1)
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The moments of Y = X − μ1 are called central moments and those of |X | are called
absolute moments. It is simple to prove that the existence of an absolute moment
of order r , r > 0, implies the existence of all moments of order s, 0 < s ≤ r , (see
Section 1.13.3).

Let μ∗
r = E{(X − μ1)r }, r = 1, 2, . . . denote the r th central moment of a dis-

tribution. From the binomial expansion and the linear properties of the expectation
operator we obtain the relationship between moments (about the origin) μr and center
moments mr

μ∗
r =

r∑

j=0

(−1) j

(
r

j

)
μr− jμ

j
i , r = 1, 2, . . . (1.8.2)

where μ0 ≡ 1.
A distribution function F is called symmetric about a point ξ0 if its p.d.f. is

symmetric about ξ0, i.e.,

f (ξ0 + h) = f (ξ0 − h), all 0 ≤ h < ∞.

From this definition we immediately obtain the following results.

(i) If F is symmetric about ξ0 and E{|X |} < ∞, then ξ0 = E{X}.
(ii) If F is symmetric, then all central moments of odd order are zero, i.e.,

E{(X − E{X})2m+1} = 0, m = 0, 1, . . . , provided E |X |2m+1 < ∞.

The central moment of the second order occupies a central role in the theory
of statistics and is called the variance of X . The variance is denoted by V {X}. The
square-root of the variance, called the standard deviation, is a measure of dispersion
around the expected value. We denote the standard deviation by σ . The variance of
X is equal to

V {X} = E{X2} − (E{X})2. (1.8.3)

The variance is always nonnegative, and hence for every distribution having a finite
second moment E{X2} ≥ (E{X})2. One can easily verify from the definition that if
X is a random variable and a and b are constants, then V {a + bX} = b2V {X}.

The variance is equal to zero if and only if the distribution function is concentrated
at one point (a degenerate distribution).

A famous inequality, called the Chebychev inequality, relates the probability of
X concentrating around its mean, and the standard deviation σ .

Theorem 1.8.1 (Chebychev). If FX has a finite standard deviation σ , then, for every
a > 0,

P{w : |X (w) − μ| ≤ a} ≥ 1 − σ 2

a2
, (1.8.4)

where μ = E{X}.
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Proof.

σ 2 =
∫ ∞

−∞
(x − μ)2d FX (x)

=
∫

{|x−μ|≤a}
(x − μ)2dFX (x) +

∫

{|x−μ|>a}
(x − μ)2dFX (x)

≥ a2 P{w : |X (w) − μ| > a}.

(1.8.5)

Hence,

P{w : |X (w) − μ| ≤ a} = 1 − P{w : |X (w) − μ| > a} ≥ 1 − σ 2

a2
.

QED

Notice that in the proof of the theorem, we used the Riemann–Stieltjes integral. The
theorem is true for any type of distribution for which 0 ≤ σ < ∞. The Chebychev
inequality is a crude inequality. Various types of better inequalities are available,
under additional assumptions (see Zelen and Severv, 1968; Rohatgi, 1976, p. 102).

The moment generating function (m.g.f.) of a random variable X , denoted by
M , is defined as

M(t) = E{exp(t X )}, (1.8.6)

where t is such that M(t) < ∞. Obviously, at t = 0, M(0) = 1. However, M(t)
may not exist when t 
= 0. Assume that M(t) exists for all t in some interval (a, b),
a < 0 < b. There is a one-to-one correspondence between the distribution function
F and the moment generating function M . M is analytic on (a, b), and can be
differentiated under the expectation integral. Thus

dr

dtr
M(t) = E{Xr exp{t X}}, r = 1, 2, . . . . (1.8.7)

Under this assumption the r th derivative of M(t) evaluated at t = 0 yields the
moment of order r .

To overcome the problem of M being undefined in certain cases, it is useful to use
the characteristic function

φ(t) = E{eit X }, (1.8.8)

where i = √−1. The characteristic function exists for all t since

|φ(t)| =
∣∣∣∣
∫ ∞

−∞
eitx dF(x)

∣∣∣∣ ≤
∫ ∞

−∞
|eitx |dF(x) = 1. (1.8.9)

Indeed, |eitx | = 1 for all x and all t .
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If X assumes nonnegative integer values, it is often useful to use the probability
generating function (p.g.f.)

G(t) =
∞∑

j=0

t j p j , (1.8.10)

which is convergent if |t | < 1. Moreover, given a p.g.f. of a nonnegative integer value
random variable X , its p.d.f. can be obtained by the formula

P{w : X (w) = k} = 1

k!

dk

dtk
G(t)

∣∣
t=0. (1.8.11)

The logarithm of the moment generating function is called cumulants generating
function. We denote this generating function by K . K exists for all t for which M
is finite. Both M and K are analytic functions in the interior of their domains of
convergence. Thus we can write for t close to zero

K (t) = log M(t) =
∞∑

j=0

κ j

j!
t j (1.8.12)

The coefficients {κ j } are called cumulants. Notice that κ0 = 0, and κ j , j ≥ 1, can be
obtained by differentiating K (t) j times, and setting t = 0. Generally, the relation-
ships between the cumulants and the moments of a distribution are, for j = 1, . . . , 4

κ1 = μ1

κ2 = μ2 − μ2
1 = μ∗

2

κ3 = μ3 − 3μ2μ1 + 2μ3
1 = μ∗

3

κ4 = μ∗
4 − 3(μ∗

2)2.

(1.8.13)

The following two indices

β1 = μ∗
3

σ 3
(1.8.14)

and

β2 = μ∗
4

σ 4
, (1.8.15)

where σ 2 = μ∗
2 is the variance, are called coefficients of skewness (asymmetry) and

kurtosis (steepness), respectively. If the distribution is symmetric, then β1 = 0. If
β1 > 0 we say that the distribution is positively skewed; if β1 < 0, it is negatively
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skewed. If β2 > 3 we say that the distribution is steep, and if β2 < 3 we say that the
distribution is flat.

The following equation is called the law of total variance.
If E{X2} < ∞ then

V {X} = E{V {X | Y }} + V {E{X | Y }}, (1.8.16)

where V {X | Y } denotes the conditional variance of X given Y .
It is often the case that it is easier to find the conditional mean and variance,

E{X | Y } and V {X | Y }, than to find E{X} and V {X} directly. In such cases, formula
(1.8.16) becomes very handy.

The product central moment of two variables (X, Y ) is called the covariance and
denoted by cov(X, Y ). More specifically

cov(X, Y ) = E{[X − E{X}][Y − E{Y }]}
= E{XY } − E{X}E{Y }.

(1.8.17)

Notice that cov(X, Y ) = cov(Y, X ), and cov(X, X ) = V {X}. Notice that if X is a
random variable having a finite first moment and a is any finite constant, then
cov(a, X ) = 0. Furthermore, whenever the second moments of X and Y exist the
covariance exists. This follows from the Schwarz inequality (see Section 1.13.3),
i.e., if F is the joint distribution of (X, Y ) and FX , FY are the marginal distributions
of X and Y , respectively, then

(∫
g(x)h(y)dF(x, y)

)2

≤
(∫

g2(x)dFX (x)

)(∫
h2(y)dFY (y)

)
(1.8.18)

whenever E{g2(X )} and E{h2(Y )} are finite. In particular, for any two random vari-
ables having second moments

cov2(X, Y ) ≤ V {X}V {Y }.

The ratio

ρ = cov(X, Y )√
V {X}V {Y } (1.8.19)

is called the coefficient of correlation (Pearson’s product moment correlation). From
(1.8.18) we deduce that −1 ≤ ρ ≤ 1. The sign of ρ is that of cov(X, Y ).

The m.g.f. of a multivariate distribution is a function of k variables

M(t1, . . . , tk) = E

{
exp

{
k∑

i=1

ti Xi

}}
. (1.8.20)
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Let X1, . . . , Xk be random variables having a joint distribution. Consider the linear

transformation Y =
k∑

j=1

β j X j , where β1, . . . , βk are constants. Some formulae for the

moments and covariances of such linear functions are developed here. Assume that
all the moments under consideration exist. Starting with the expected value of Y we
prove:

E

{
k∑

i=1

βi Xi

}
=

k∑

i=1

βi E{Xi }. (1.8.21)

This result is a direct implication of the definition of the integral as a linear operator.
Let X denote a random vector in a column form and X′ its transpose. The expected

value of a random vector X′ = (X1, . . . , Xk) is defined as the corresponding vector
of expected values, i.e.,

E{X′} = (E{X1}, . . . , E{Xk}). (1.8.22)

Furthermore, let �| denote a k × k matrix with elements that are the variances and
covariances of the components of X. In symbols

�| = (σi j ; i, j = 1, . . . , k), (1.8.23)

where σi j = cov(Xi , X j ), σi i = V {Xi }. If Y = β ′X where β is a vector of constants,
then

V {Y } = β ′�| β

=
∑

i

∑

j

βiβ jσi j

=
k∑

i=1

β2
i σi i +

∑∑

i 
= j

βiβ jσi j .

(1.8.24)

The result given by (1.8.24) can be generalized in the following manner. Let Y1 = β ′X
and Y2 = α′X, where α and β are arbitrary constant vectors. Then

cov(Y1, Y2) = α′�| β. (1.8.25)

Finally, if X is a k-dimensional random vector with covariance matrix �| and Y is an
m-dimensional vector Y = AX, where A is an m × k matrix of constants, then the
covariance matrix of Y is

V [Y] = A�| A′. (1.8.26)
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In addition, if the covariance matrix of X is �| , then the covariance matrix of Y =
ξ + AX is V, where ξ is a vector of constants, and A is a matrix of constants. Finally,
if Y = AX and Z = BX, where A and B are matrices of constants with compatible
dimensions, then the covariance matrix of Y and Z is

C[Y, Z] = A�| B ′. (1.8.27)

We conclude this section with an important theorem concerning a characteristic
function. Recall that φ is generally a complex valued function on R, i.e.,

φ(t) =
∫ ∞

−∞
cos(t x)dF(x) + i

∫ ∞

−∞
sin(t x)dF(x).

Theorem 1.8.2. A characteristic function φ, of a distribution function F, has the
following properties.

(i) |φ(t)| ≤ φ(0) = 1;

(ii) φ(t) is a uniformly continuous function of t , on R;

(iii) φ(t) = φ(−t), where z̄ denotes the complex conjugate of z;

(iv) φ(t) is real valued if and only if F is symmetric around x0 = 0;

(v) if E{|X |n} < ∞ for some n ≥ 1, then the rth order derivative φ(r )(t) exists for
every 1 ≤ r ≤ n, and

φ(r )(t) =
∫ ∞

−∞
(i x)r eitx dF(x), (1.8.28)

μr = 1

ir
φ(r )(0), (1.8.29)

and

φ(t) =
n∑

j=1

(it) j

j!
μ j + (it)n

n!
Rn(t), (1.8.30)

where |Rn(t)| ≤ 3E{|X |n}, Rn(t) → 0 as t → 0;

(vi) if φ(2n)(0) exists and is finite, then μ2n < ∞;

(vii) if E{|X |n} < ∞ for all n ≥ 1 and

lim
n→∞

(
E{|X |n}

n!

)1/n

= 1

R
< ∞, (1.8.31)
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then

φ(t) =
∞∑

n=0

(it)n

n!
μn, |t | < R. (1.8.32)

Proof. The proof of (i) and (ii) is based on the fact that |eitx | = 1 for all t and all x .

Now,
∫

e−i t x dF(x) = φ(−t) = φ(t). Hence (iii) is proven.

(iv) Suppose F(x) is symmetric around x0 = 0. Then dF(x) = dF(−x) for all x .

Therefore, since sin(−t x) = − sin(t x) for all x ,
∫ ∞

−∞
sin(t x)dF(x) = 0, and φ(t) is

real. If φ(t) is real, φ(t) = φ(t). Hence φX (t) = φ−X (t). Thus, by the one-to-one
correspondence between φ and F , for any Borel set B, P{X ∈ B} = P{−X ∈ B} =
P{X ∈ −B}. This implies that F is symmetric about the origin.

(v) If E{|X |n} < ∞, then E{|X |r } < ∞ for all 1 ≤ r ≤ n. Consider

φ(t + h) − φ(t)

h
= E

{
eit X

(
eih X − 1

h

)}
.

Since

∣∣∣∣
eihx − 1

h

∣∣∣∣ ≤ |x |, and E{|X |} < ∞, we obtain from the Dominated Conver-

gence Theorem that

φ(1)(t) = lim
h→0

(
φ(t + h) − φ(t)

h

)

= E

{
eit X lim

h→0

eih X − 1

h

}

= i E{Xeit X }.

Hence μ1 = 1

i
φ(1)(0).

Equations (1.8.28)–(1.8.29) follow by induction. Taylor expansion of eiy yields

eiy =
n−1∑

k=0

(iy)k

k!
+ (iy)n

n!
(cos(θ1 y) + i sin(θ2 y)),

where |θ1| ≤ 1 and |θ2| ≤ 1. Hence

φ(t) = E{eit X }

=
n−1∑

k=0

(it)k

k!
μk + (it)n

n!
(μn + Rn(t)),
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where

Rn(t) = E{Xn(cos(θ1t X ) + i sin(θ2t X ) − 1)}.

Since | cos(t y)| ≤ 1, | sin(t y)| ≤ 1, evidently Rn(t) ≤ 3E{|X |n}. Also, by dominated
convergence, lim

t→0
Rn(t) = 0.

(vi) By induction on n. Suppose φ(2)(0) exists. By L’Hospital’s rule,

φ(2)(0) = lim
h→0

1

2

[
φ′(2h) − φ′(0)

2h
+ φ′(0) − φ′(−2h)

2h

]

= lim
h→0

1

4h2
[φ(2h) − 2φ(0) + φ(−2h)]

= lim
h→0

∫ (
eihx − e−ihx

2h

)2

dF(x)

= − lim
h→0

∫ (
sin(hx)

hx

)2

x2dF(x).

By Fatou’s Lemma,

φ(2)(0) ≤ −
∫

lim
h→0

(
sin(hx)

hx

)2

x2dF(x)

= −
∫

x2dF(x) = −μ2.

Thus, μ2 ≤ −φ(2)(0) < ∞. Assume that 0 < μ2k < ∞. Then, by (v),

φ(2k)(t) =
∫

(i x)2keitx dF(x)

= (−1)k
∫

eitx dG(x),

where dG(x) = x2kdF(x), or

G(x) =
∫ x

−∞
u2kdF(u).

Notice that G(∞) = μ2k < ∞. Thus,
(−1)kφ(2k)(t)

G(∞)
is the characteristic function of

the distribution G(x)/G(∞). Since
1

G(∞)
> 0,

∫
x2h+2dF(x) =

∫
x2dG(x) < ∞.

This proves that μ2k < ∞ for all k = 1, . . . , n.
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(vii) Assuming (1.8.31), if 0 < t0 < R, lim
n→∞

(E{|X |n})1/n

n!
<

1

t0
. Therefore,

lim
n→∞

(E{|X |n}tn
0 )1/n

n!
< 1.

By Stirling’s approximation, lim
n→∞(n!)1/n = 1. Thus, for 0 < t0 < R,

lim
n→∞

(
E{|X |n}tn

0 )

n!

)1/n

< 1.

Accordingly, by Cauchy’s test,
∞∑

n=1

E{|X |n}tn
0

n!
< ∞. By (iv), for any n ≥ 1, for any

t , |t | ≤ t0

φ(t) =
n∑

k=0

(it)n

n!
μn + R∗

n (t),

where |R∗
n (t)| ≤ 3

|t |n
n!

E{|X |n}. Thus, for every t , |t | < R, lim
n→∞|R∗

n (t)| = 0, which

implies that

φ(t) =
∞∑

k=1

(it)k

k!
μk, for all |t | < R.

QED

1.9 MODES OF CONVERGENCE

In this section we formulate many definitions and results in terms of random vectors
X = (X1, X2, · · · , Xk)′, 1 ≤ k < ∞. The notation ||X|| is used for the Euclidean

norm, i.e., ||x||2 =
k∑

i=1

x2
i .

We discuss here four modes of convergence of sequences of random vectors to a
random vector.

(i) Convergence in distribution, Xn
d−→ X;

(ii) Convergence in probability, Xn
p−→ X;

(iii) Convergence in r th mean, Xn
r−→ X; and

(iv) Convergence almost surely, Xn
a.s.−→ X.
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A sequence Xn is said to converge in distribution to X, Xn
d−→ X if the corre-

sponding distribution functions Fn and F satisfy

lim
n→∞

∫
g(x)dFn(x) =

∫
g(x)dF(x) (1.9.1)

for every continuous bounded function g on R
k .

One can show that this definition is equivalent to the following statement.

A sequence {Xn} converges in distribution to X, Xn
d−→ X if lim

n→∞ Fn(x) = F(x)

at all continuity points x of F .

If Xn
d−→ X we say that Fn converges to F weakly. The notation is Fn

w−→ F
or Fn ⇒ F .

We define now convergence in probability.

A sequence {Xn} converges in probability to X, Xn
p−→

n→∞ X if, for each ε > 0,

lim
n→∞ P{||Xn − X|| > ε} = 0. (1.9.2)

We define now convergence in r th mean.
A sequence of random vectors {Xn} converges in rth mean, r > 0, to X, Xn

r−→ X
if E{||Xn − X||r } → 0 as n → ∞.

A fourth mode of convergence is
A sequence of random vectors {Xn} converges almost-surely to X, Xn

a.s.−→ X, as
n → ∞ if

P{ lim
n→∞ Xn = X} = 1. (1.9.3)

The following is an equivalent definition.
Xn

a.s.−→ X as n → ∞ if and only if, for any ε > 0,

lim
n→∞ P{||Xm − X|| < ε, ∀m ≥ n} = 1. (1.9.4)

Equation (1.9.4) is equivalent to

P{ lim
n→∞||Xn − X|| < ε} = 1.

But,

P{ lim
n→∞||Xn − X|| < ε} = 1 − P{ lim

n→∞||Xn − X|| ≥ ε}

= 1 − P{||Xn − X|| ≥ ε, i.o.}.
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By the Borel–Cantelli Lemma (Theorem 1.4.1), a sufficient condition for
Xn

a.s.−→ X is

∞∑

n=1

P{||Xn − X|| ≥ ε} < ∞ (1.9.5)

for all ε > 0.

Theorem 1.9.1. Let {Xn} be a sequence of random vectors. Then

(a) Xn
a.s.−→ X implies Xn

p−→ X.

(b) Xn
r−→ X, r > 0, implies Xn

p−→ X.

(c) Xn
p−→ X implies Xn

d−→ X.

Proof. (a) Since Xn
a.s.−→ X, for any ε > 0,

0 = P{ lim
n→∞||Xn − X|| ≥ ε}

= lim
n→∞ P

{
⋃

m≥n

||Xm − X|| ≥ ε

}

≥ lim
n→∞ P{||Xn − X|| ≥ ε}.

(1.9.6)

The inequality (1.9.6) implies that Xn
p−→ X.

(b) It can be immediately shown that, for any ε > 0,

E{||Xn − X||r } ≥ εr P{||Xn − X|| ≥ ε}.

Thus, Xn
r−→ X implies Xn

p−→ X.
(c) Let ε > 0. If Xn ≤ x0 then either X ≤ x0 + ε1, where 1 = (1, . . . , 1)′, or

||Xn − X|| > ε. Thus, for all n,

Fn(x0) ≤ F(x0 + ε1) + P{||Xn − X|| > ε}.

Similarly,

F(x0 − ε1) ≤ Fn(x0) + P{||Xn − X|| > ε}.

Finally, since Xn
p−→ X,

F(x0 − ε1) ≤ lim
n→∞

Fn(x0) ≤ lim
n→∞Fn(x0) ≤ F(x0 + ε1).
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Thus, if x0 is a continuity point of F , by letting ε → 0, we obtain

lim
n→∞ Fn(x0) = F(x0).

QED

Theorem 1.9.2. Let {Xn} be a sequence of random vectors. Then

(a) if c ∈ R
k , then Xn

d−→ c implies Xn
p−→ c;

(b) if Xn
a.s.−→ X and ||Xn||r ≤ Z, for some r > 0 and some (positive) random

variable Z, with E{Z} < ∞, then Xn
r−→ X.

For proof, see Ferguson (1996, p. 9). Part (b) is implied also from Theorem 1.13.3.

Theorem 1.9.3. Let {Xn} be a sequence of nonnegative random variables such that
Xn

a.s.−→ X and E{Xn} → E{X}, E{X} < ∞. Then

E{|Xn − X |} → 0, as n → ∞. (1.9.7)

Proof. Since E{Xn} → E{X} < ∞, for sufficiently large n, E{Xn} < ∞. For
such n,

E{|Xn − X |} = E{(X − Xn)I {X ≥ Xn}} + E{(Xn − X )I {Xn > X}}
= 2E{(X − Xn)I {X ≥ Xn}} + E{X − Xn}.

But,

0 ≤ (X − Xn)I {X ≥ Xn} < X.

Therefore, by the Lebesgue Dominated Convergence Theorem,

lim
n→∞ E{(X − Xn)I {X ≥ Xn}} = 0.

This implies (1.9.7). QED
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1.10 WEAK CONVERGENCE

The following theorem plays a major role in weak convergence.

Theorem 1.10.1. The following conditions are equivalent.

(a) Xn
d−→ X;

(b) E{g(Xn)} → E{g(X)}, for all continuous functions, g, that vanish outside a
compact set;

(c) E{g(Xn)} → E{g(X)}, for all continuous bounded functions g;

(d) E{g(Xn)} → E{g(X)}, for all measurable functions g such that P{X ∈
C(g)} = 1, where C(g) is the set of all points at which g is continuous.

For proof, see Ferguson (1996, pp. 14–16).

Theorem 1.10.2. Let {Xn} be a sequence of random vectors in R
k , and Xn

d−→ X.
Then

(i) f(Xn)
d−→ f(X);

(ii) if {Yn} is a sequence such that Xn − Yn
p−→ 0, then Yn

d−→ X;

(iii) if Xn ∈ R
k and Yn ∈ R

l and Yn
d−→ c, then

(
Xn

Yn

)
d−→
(

X
c

)
.

Proof. (i) Let g : R
l → R be bounded and continuous. Let h(x) = g(f(x)). If x is

a continuity point of f, then x is a continuity point of h, i.e., C(f) ⊂ C(h). Hence
P{X ∈ C(h)} = 1. By Theorem 1.10.1 (c), it is sufficient to show that E{g(f(Xn))} →
E{g(f(X))}. Theorem 1.10.1 (d) implies, since P{X ∈ C(h)} = 1 and Xn

d−→ X,
that E{h(Xn)} → E{h(X)}.

(ii) According to Theorem 1.10.1 (b), let g be a continuous function on R
k

vanishing outside a compact set. Thus g is uniformly continuous and bounded.
Let ε > 0, find δ > 0 such that, if ||x − y|| < δ then |g(x) − g(y)| < ε. Also, g is
bounded, say |g(x)| ≤ B < ∞. Thus,

|E{g(Yn)} − E{g(X)}| ≤ |E{g(Yn)} − E{g(Xn)}| + |E{g(Xn)} − E{g(X)}|
≤ E{|g(Yn) − g(Xn)|I {||Xn − Yn|| ≤ δ}}
+ E{|g(Yn) − g(Xn)|I {||Xn − Yn|| > δ}
+ |E{g(Xn)} − E{g(X)}|
≤ ε + 2B P{||Xn − Yn|| > δ}
+ |E{g(Xn)} − E{g(X)}| −→

n→∞ ε.
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Hence Yn
d−→ X.

(iii)

P

{∣∣∣∣

∣∣∣∣

(
Xn

Yn

)
−
(

Xn

c

)∣∣∣∣

∣∣∣∣ > ε

}
= P{||Yn − c|| > ε} → 0, as n → ∞.

Hence, from part (ii),

(
Xn

Yn

)
d−→
(

X
c

)
. QED

As a special case of the above theorem we get

Theorem 1.10.3 (Slutsky’s Theorem). Let {Xn} and {Yn} be sequences of random

variables, Xn
d−→ X and Yn

p−→ c. Then

(i) Xn + Yn
d−→ X + c;

(ii) XnYn
d−→ cX ;

(iii) if c 
= 0 then
Xn

Yn

d−→ X

c
.

(1.10.1)

A sequence of distribution functions may not converge to a distribution function.
For example, let Xn be random variables with

Fn(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x < −n

1

2
, −n ≤ x < n

1, n ≤ x .

Then, lim
n→∞Fn(x) = 1

2
for all x . F(x) = 1

2
for all x is not a distribution function. In

this example, half of the probability mass escapes to −∞ and half the mass escapes
to +∞. In order to avoid such situations, we require from collections (families) of
probability distributions to be tight.

Let F = {Fu, u ∈ U} be a family of distribution functions on R
k . F is tight if, for

any ε > 0, there exists a compact set C ⊂ R
k such that

sup
u∈U

∫
I {x ∈ R

k − C}dFu(x) < ε.

In the above, the sequence Fn(x) is not tight.
If F is tight, then every sequence of distributions of F contains a subsequence

converging weakly to a distribution function. (see Shiryayev, 1984, p. 315).
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Theorem 1.10.4. Let {Fn} be a tight family of distribution functions on R. A nec-
essary and sufficient condition for Fn ⇒ F is that, for each t ∈ R, lim

n→∞φn(t) exists,

where φn(t) =
∫

eitx dFn(x) is the characteristic function corresponding to Fn.

For proof, see Shiryayev (1984, p. 321).

Theorem 1.10.5 (Continuity Theorem). Let {Fn} be a sequence of distribution
functions and {φn} the corresponding sequence of characteristic functions. Let F be
a distribution function, with characteristic function φ. Then Fn ⇒ F if and only if
φn(t) → φ(t) for all t ∈ R

k . (Shiryayev, 1984, p. 322).

1.11 LAWS OF LARGE NUMBERS

1.11.1 The Weak Law of Large Numbers (WLLN)

Let X1, X2, . . . be a sequence of identically distributed uncorrelated random vectors.
Let μ = E{X1} and let �| = E{(X1 − μ)(X1 − μ)′} be finite. Then the means X̄n =
1

n

n∑

i=1

Xi converge in probability to μ, i.e.,

X̄n
p−→ μ as n → ∞. X̄n

p−→ μ as n → ∞. (1.11.1)

The proof is simple. Since cov(Xn, Xn′ ) = 0 for all n 
= n′, the covariance matrix of

X̄n is
1

n
�| . Moreover, since E{X̄n} = μ,

E{||X̄n − μ||2} = 1

n
tr.{�| } → 0 as n → ∞.

Hence X̄n
2−→ μ, which implies that X̄n

p−→ μ. Here tr.{�| } denotes the trace
of �| .

If X1, X2, . . . are independent, and identically distributed, with E{X1} = μ, then
the characteristic function of X̄n is

φX̄n
(t) =

(
φ

(
t
n

))n

, (1.11.2)

where φ(t) is the characteristic function of X1. Fix t. Then for large values of n,

φ

(
t
n

)
= 1 + i

n
t′μ + o

(
1

n

)
, as n → ∞.
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Therefore,

φX̄n
(t) =

(
1 + i

n
t′μ + o

(
1

n

))n

→ eit′μ. (1.11.3)

φ(t) = eit′μ is the characteristic function of X, where P{X = μ} = 1. Thus, since

eit′μ is continuous at t = 0, X̄n
d−→ μ. This implies that X̄n

p−→ μ (left as an
exercise).

1.11.2 The Strong Law of Large Numbers (SLLN)

Strong laws of large numbers, for independent random variables having finite
expected values are of the form

1

n

n∑

i=1

(Xi − μi )
a.s.−→ 0, as n → ∞,

where μi = E{Xi }.

Theorem 1.11.1 (Cantelli). Let {Xn} be a sequence of independent random vari-
ables having uniformly bounded fourth-central moments, i.e.,

0 ≤ E(Xn − μn)4 ≤ C < ∞ (1.11.4)

for all n ≥ 1. Then

1

n

n∑

i=1

(Xi − μi )
a.s.−→

n→∞ 0. (1.11.5)

Proof. Without loss of generality, we can assume that μn = E{Xn} = 0 for all n ≥ 1.

E

⎧
⎨

⎩

(
1

n

n∑

i=1

Xi

)4
⎫
⎬

⎭ = 1

n4

{ n∑

i=1

E{X4
i }

+ 4
∑∑

i 
= j

E{X3
i X j } + 3

∑∑

i 
= j

E{X2
i X2

j }

+ 6
∑∑∑

i 
= j 
=k

E{X2
i X j Xk} +

∑∑∑∑

i 
= j 
=k 
=l

E{Xi X j Xk Xl}
}

= 1

n4

n∑

i=1

μ4,i + 3

n4

∑∑

i 
= j

σ 2
i σ 2

j ,



JWST390-c01 JWST390-Zacks November 1, 2013 9:21 Printer Name: Trim: 6.125in × 9.25in

PART I: THEORY 43

where μ4,i = E{X4
i } and σ 2

i = E{X2
i }. By the Schwarz inequality, σ 2

i σ 2
j ≤ (μ4,i ·

μ4 j )1/2 for all i 
= j . Hence,

E{X̄4
n} ≤ C

n3
+ 3n(n − 1)C

n4
= O

(
1

n2

)
.

By Chebychev’s inequality,

P{|X̄n| ≥ ε} = P{X̄4
n ≥ ε4}

≤ E{X̄4
n}

ε4
.

Hence, for any ε > 0,

∞∑

n=1

P{|X̄n| ≥ ε} ≤ C∗
∞∑

n=1

1

n2
< ∞,

where C∗ is some positive finite constant. Finally, by the Borel–Cantelli Lemma
(Theorem 1.4.1),

P{|X̄n| ≥ ε, i.o.} = 0.

Thus, P{|X̄n| < ε, i.o.} = 1. QED

Cantelli’s Theorem is quite stringent, in the sense, that it requires the existence of
the fourth moments of the independent random variables. Kolmogorov had relaxed
this condition and proved that, if the random variables have finite variances, 0 <

σ 2
n < ∞ and

∞∑

n=1

σ 2
n

n2
< ∞, (1.11.6)

then
1

n

n∑

i=1

(Xi − μi )
a.s.−→ 0 as n → ∞.

If the random variables are independent and identically distributed (i.i.d.), then
Kolmogorov showed that E{|X1|} < ∞ is sufficient for the strong law of large
numbers. To prove Kolmogorov’s strong law of large numbers one has to develop
more theoretical results. We refer the reader to more advanced probability books (see
Shiryayev, 1984).
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1.12 CENTRAL LIMIT THEOREM

The Central Limit Theorem (CLT) states that, under general valid conditions, the
distributions of properly normalized sample means converge weakly to the standard
normal distribution.

A continuous random variable Z is said to have a standard normal distribution,
and we denote it Z ∼ N (0, 1) if its distribution function is absolutely continuous,
having a p.d.f.

f (x) = 1√
2π

e− 1
2 x2

, −∞ < x < ∞. (1.12.1)

The c.d.f. of N (0, 1), called the standard normal integral is

�(x) = 1√
2π

∫ x

−∞
e− 1

2 y2
dy. (1.12.2)

The general family of normal distributions is studied in Chapter 2. Here we just
mention that if Z ∼ N (0, 1), the moments of Z are

μr =
⎧
⎨

⎩

(2k)!

2kk!
, if r = 2k

0, if r = 2k + 1.
(1.12.3)

The characteristic function of N (0, 1) is

φ(t) = 1√
2π

∫ ∞

−∞
e− 1

2 x2+i t x dx

= e− 1
2 t2

, −∞ < t < ∞.

(1.12.4)

A random vector Z̄ = (Z1, . . . , Zk)′ is said to have a multivariate normal distribu-
tion with mean μ = E{Z} = 0 and covariance matrix V (see Chapter 2), Z ∼ N (0, V )
if the p.d.f. of Z is

f (Z; V ) = 1

(2π )k/2|V |1/2
exp

{
−1

2
Z′V −1Z

}
.

The corresponding characteristic function is

φZ(t) = exp

{
−1

2
t′V t

}
, (1.12.5)

t ∈ R
k .
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Using the method of characteristic functions, with the continuity theorem we
prove the following simple two versions of the CLT. A proof of the Central Limit
Theorem, which is not based on the continuity theorem of characteristic functions,
can be obtained by the method of Stein (1986) for approximating expected values or
probabilities.

Theorem 1.12.1 (CLT). Let {Xn} be a sequence of i.i.d. random variables having
a finite positive variance, i.e., μ = E{X1}, V {X1} = σ 2, 0 < σ 2 < ∞. Then

√
n

X̄n − μ

σ

d−→ N (0, 1), as n → ∞. (1.12.6)

Proof. Notice that
√

n
X̄n − μ

σ
= 1√

n

n∑

i=1

Zi , where Zi = Xi − μ

σ
, i ≥ 1. Moreover,

E{Zi } = 0 and V {Zi } = 1, i ≥ 1. Let φZ (t) be the characteristic function of Z1. Then,
since E{Z} = 0, V {Z} = 1, (1.8.33) implies that

φZ (t) = 1 − t2

2
+ o(t), as t → 0.

Accordingly, since {Zn} are i.i.d.,

φ√
n Z̄n

(t) = φn
Z

(
t√
n

)

=
(

1 − t2

2n
+ o

(
1

n

))n

→ e−t2/2 as n → ∞.

Hence,
√

n Z̄n
d−→ N (0, 1). QED

Theorem 1.12.1 can be generalized to random vector. Let X̄n = 1

n

n∑

j=1

X j , n ≥ 1.

The generalized CLT is the following theorem.

Theorem 1.12.2. Let {Xn} be a sequence of i.i.d. random vectors with E{Xn} = 0,
and covariance matrix E{XnX′

n} = V, n ≥ 1, where V is positive definite with finite
eigenvalues. Then

√
n X̄n

d−→ N (0, V). (1.12.7)
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Proof. Let φX(t) be the characteristic function of X1. Then, since E{X1} = 0,

φ√
n X̄n

(t) = φn
X

(
t√
n

)

=
(

1 − 1

2n
t′V t + o

(
t√
n

))n

as n → ∞. Hence

lim
n→∞ φ√

n X̄n
(t) = exp

{
−1

2
t′Vt

}
, t ∈ R

k .

QED

When the random variables are independent but not identically distributed, we
need a stronger version of the CLT. The following celebrated CLT is sufficient for
most purposes.

Theorem 1.12.3 (Lindeberg–Feller). Consider a triangular array of random vari-
ables {Xn,k}, k = 1, . . . , n, n ≥ 1 such that, for each n ≥ 1, {Xn,k, k = 1, . . . , n}
are independent, with E{Xn,k} = 0 and V {Xn,k} = σ 2

n,k . Let Sn =
n∑

k=1

Xn,k and

B2
n =

n∑

k=1

σ 2
n,k . Assume that Bn > 0 for each n ≥ 1, and Bn ↗ ∞, as n → ∞. If,

for every ε > 0,

1

B2
n

n∑

k=1

E{X2
n,k I {|Xn,k | > εBn} → 0 (1.12.8)

as n → ∞, then Sn/Bn
d−→ N (0, 1) as n → ∞. Conversely, if max

1≤k≤n

σ 2
n,k

B2
n

→ 0 as

n → ∞ and Sn/Bn
d−→ N (0, 1), then (1.12.8) holds.

For a proof, see Shiryayev (1984, p. 326). The following theorem, known as
Lyapunov’s Theorem, is weaker than the Lindeberg–Feller Theorem, but is often
sufficient to establish the CLT.
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Theorem 1.12.4 (Lyapunov). Let {Xn} be a sequence of independent random
variables. Assume that E{Xn} = 0, V {Xn} > 0 and E{|Xn|3} < ∞, for all n ≥ 1.

Moreover, assume that B2
n =

n∑

j=1

V {X j } ↗ ∞. Under the condition

1

B3
n

n∑

j=1

E{|X j |3} → 0 as n → ∞, (1.12.9)

the CLT holds, i.e., Sn/Bn
d−→ N (0, 1) as n → ∞.

Proof. It is sufficient to prove that (1.12.9) implies the Lindberg–Feller condition
(1.12.8). Indeed,

E{|X j |3} =
∫ ∞

−∞
|x |3dF j (x)

≥
∫

{x :|x |>εBn}
|x |3dF j (x)

≥ εBn

∫

{x :|x |>Bnε}
x2dF j (x).

Thus,

1

B2
n

n∑

j=1

∫

{x :|x |>εBn}
x2dF j (x) ≤ 1

ε
· 1

B3
n

n∑

j=1

E{|X j |3} → 0.

QED

Stein (1986, p. 97) proved, using a novel approximation to expectation, that if
X1, X2, . . . are independent and identically distributed, with E X1 = 0, E X2

1 = 1 and
γ = E{|X1|3} < ∞, then, for all −∞ < x < ∞ and all n = 1, 2, . . . ,

∣∣∣∣∣P
{

1√
n

n∑

i=1

Xi ≤ x

}
− �(x)

∣∣∣∣∣ ≤
6γ√

n
,

where �(x) is the c.d.f. of N (0, 1). This immediately implies the CLT and shows that
the convergence is uniform in x .

1.13 MISCELLANEOUS RESULTS

In this section we review additional results.
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1.13.1 Law of the Iterated Logarithm

We denote by log2(x) the function log(log(x)), x > e.

Theorem 1.13.1. Let {Xn} be a sequence of i.i.d. random variables, such that

E{X1} = 0 and V {X1} = σ 2, 0 < σ < ∞. Let Sn =
n∑

i=1

Xi . Then

P

{
lim

n→∞
|Sn|
ψ(n)

= 1

}
= 1, (1.13.1)

where ψ(n) = (2σ 2n log2(n))1/2, n ≥ 3.

For proof, in the normal case, see Shiryayev (1984, p. 372).
The theorem means the sequence |Sn| will cross the boundary ψ(n), n ≥ 3, only a

finite number of times, with probability 1, as n → ∞. Notice that although E{Sn} =
0, n ≥ 1, the variance of Sn is V {Sn} = nσ 2 and P{|Sn| ↗ ∞} = 1. However, if

we consider
Sn

n
then by the SLLN,

Sn

n
a.s.−→ 0. If we divide only by

√
n then, by

the CLT,
Sn

σ
√

n
d−→ N (0, 1). The law of the iterated logarithm says that, for every

ε > 0, P

{ |Sn|
σ
√

n
> (1 + ε)

√
2 log2(n), i.o.

}
= 0. This means, that the fluctuations

of Sn are not too wild. In Example 1.19 we see that if {Xn} are i.i.d. with P{X1 =
1} = P{X1 = −1} = 1

2
, then

Sn

n
a.s.−→ 0 as n → ∞. But n goes to infinity faster

than
√

n log2(n). Thus, by (1.13.1), if we consider the sequence Wn = Sn√
2n log2(n)

then P{|Wn| < 1 + ε, i.o.} = 1. {Wn} fluctuates between −1 and 1 almost always.

1.13.2 Uniform Integrability

A sequence of random variables {Xn} is uniformly integrable if

lim
c→∞ sup

n≥1
E{|Xn|I {|Xn| > c}} = 0. (1.13.2)

Clearly, if |Xn| ≤ Y for all n ≥ 1 and E{Y } < ∞, then {Xn} is a uniformly integrable
sequence. Indeed, |Xn|I {|Xn| > c} ≤ |Y |I {|Y | > c} for all n ≥ 1. Hence,

sup
n≥1

E{|Xn|I {|Xn| > c}} ≤ E{|Y |I {|Y | > c}} → 0

as c → ∞ since E{Y } < ∞.
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Theorem 1.13.2. Let {Xn} be uniformly integrable. Then,

(i) E{ lim
n→∞

Xn} ≤ lim
n→∞

E{Xn} ≤ lim
n→∞E{Xn} ≤ E{ lim

n→∞Xn}; (1.13.3)

(ii) if in addition Xn
a.s.−→ X, as n → ∞, then X is integrable and

lim
n→∞ E{Xn} = E{X}, (1.13.4)

lim
n→∞ E{|Xn − X |} = 0. (1.13.5)

Proof. (i) For every c > 0

E{Xn} = E{Xn I {Xn < −c}} + E{Xn I {Xn ≥ −c}}. (1.13.6)

By uniform integrability, for every ε > 0, take c sufficiently large so that

sup
n≥1

|E{Xn I {Xn < −c}}| < ε.

By Fatou’s Lemma (Theorem 1.6.2),

lim
n→∞

E{Xn I {Xn ≥ −c}} ≥ E

{
lim

n→∞
Xn I {Xn ≥ −c}

}
. (1.13.7)

But Xn I {Xn ≥ −c}} ≥ Xn . Therefore,

lim
n→∞

E{Xn I {Xn ≥ −c}} ≥ E{ lim
n→∞

Xn}. (1.13.8)

From (1.13.6)–(1.13.8), we obtain

lim
n→∞

E{Xn} ≥ E

{
lim

n→∞
Xn

}
− ε. (1.13.9)

In a similar way, we show that

lim
n→∞E{Xn} ≤ E{lim Xn} + ε. (1.13.10)

Since ε is arbitrary we obtain (1.13.3). Part (ii) is obtained from (i) as in the Dominated
Convergence Theorem (Theorem 1.6.3). QED

Theorem 1.13.3. Let Xn ≥ 0, n ≥ 1, and Xn
a.s.−→ X, E{Xn} < ∞. Then E{Xn} →

E{X} if and only if {Xn} is uniformly integrable.
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Proof. The sufficiency follows from part (ii) of the previous theorem.
To prove necessity, let

A = {a : FX (a) − FX (a−) > 0}.

Then, for each c 
∈ A

Xn I {Xn < c} a.s.−→ X I {X < c}.

The family {Xn I {Xn < c}} is uniformly integrable. Hence, by sufficiency,

lim
n→∞E{Xn I {Xn < c}} = E{X I {X < c}}

for c 
∈ A, n → ∞. A has a countable number of jump points. Since E{X} < ∞, we

can choose c0 
∈ A sufficiently large so that, for a given ε > 0, E{X I {X ≥ c0}} <
ε

2
.

Choose N0(ε) sufficiently large so that, for n ≥ N0(ε),

E{Xn I {Xn ≥ c0}} ≤ E{X I {X ≥ c0}} + ε

2
.

Choose c1 > c0 sufficiently large so that E{Xn I {Xn ≥ c1}} ≤ ε, n ≤ N0. Then
sup

n
E{Xn I {Xn ≥ c1}} ≤ ε. QED

Lemma 1.13.1. If {Xn} is a sequence of uniformly integrable random variables,
then

sup
n≥1

E{|Xn|} < ∞. (1.13.11)

Proof.

sup
n≥1

E{|X |n} = sup
n≥1

(E{|Xn|I {|Xn| > c}} + E{|Xn|I {|Xn| ≤ c}})

≤ sup
n≥1

E{|Xn|I {|Xn| > c}} + sup
n≥1

E{|Xn|I {|Xn| ≤ c}}

≤ ε + c,

for 0 < c < ∞ sufficiently large. QED
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Theorem 1.13.4. A necessary and sufficient condition for a sequence {Xn} to be
uniformly integrable is that

sup
n≥1

E{|Xn|} ≤ B < ∞ (1.13.12)

and

sup
n≥1

E{|Xn|IA} → 0 when P{A} → 0. (1.13.13)

Proof. (i) Necessity: Condition (1.13.12) was proven in the previous lemma. Fur-
thermore, for any 0 < c < ∞,

E{|Xn|IA} = E{|Xn|I {A ∩ {|Xn| ≥ c}}}
+ E{|Xn|I {A ∩ {|Xn| < c}}}
≤ E{|Xn|I {|Xn| ≥ c}} + cP(A).

(1.13.14)

Choose c sufficiently large, so that E{|Xn|I {|Xn| ≥ c}} <
ε

2
and A so that P{A} <

ε

2c
, then E{|Xn|IA} < ε. This proves the necessity of (1.13.13).

(ii) Sufficiency: Let ε > 0 be given. Choose δ(ε) so that P{A} < δ(ε), and
sup
n≥1

E{|Xn|IA} ≤ ε.

By Chebychev’s inequality, for every c > 0,

P{|Xn| ≥ c} ≤ E{|Xn|}
c

, n ≥ 1.

Hence,

sup
n≥1

P{|Xn| ≥ c} ≤ 1

c
sup
n≥1

E{|Xn|} ≤ B

c
. (1.13.15)

The right-hand side of (1.13.15) goes to zero, when c → ∞. Choose c sufficiently
large so that P{|Xn| ≥ c} < ε. Such a value of c exists, independently of n, due to

(1.13.15). Let A =
{ ∞⋃

n=1

|Xn| ≥ c

}
. For sufficiently large c, P{A} < ε and, therefore,

sup
n≥1

E{|Xn|I {|Xn| ≥ c}} ≤ E{|Xn|IA} → 0

as c → ∞. This establishes the uniform integrability of {Xn}. QED
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Notice that according to Theorem 1.13.3, if E |Xn|r < ∞, r ≥ 1 and Xn
a.s.−→ X ,

lim
n→∞E{Xr

n} = E{Xr } if and only if {Xn} is a uniformly integrable sequence.

1.13.3 Inequalities

In previous sections we established several inequalities. The Chebychev inequal-
ity, the Kolmogorov inequality. In this section we establish some useful additional
inequalities.

1. The Schwarz Inequality
Let (X, Y ) be random variables with joint distribution function FXY and marginal

distribution functions FX and FY , respectively. Then, for every Borel measurable and
integrable functions g and h, such that E{g2(X )} < ∞ and E{h2(Y )} < ∞,

∣∣∣∣
∫

g(x)h(y)dFXY (x, y)

∣∣∣∣ ≤
(∫

g2(x)dFX (x)

)1/2 (∫
h2(y)dFY (y)

)1/2

. (1.13.16)

To prove (1.13.16), consider the random variable Q(t) = (g(X ) + th(Y ))2, −∞ <

t < ∞. Obviously, Q(t) ≥ 0, for all t , −∞ < t < ∞. Moreover,

E{Q(t)} = E{g2(X )} + 2t E{g(X )h(Y )} + t2 E{h2(Y )} ≥ 0

for all t . But, E{Q(t)} ≥ 0 for all t if and only if

(E{g(X )h(Y )})2 ≤ E{g2(X )}E{h2(Y )}.

This establishes (1.13.16).

2. Jensen’s Inequality
A function g : R → R is called convex if, for any −∞ < x < y < ∞ and

0 ≤ α ≤ 1,

g(αx + (1 − α)y) ≤ αg(x) + (1 − α)g(y).

Suppose X is a random variable and E{|X |} < ∞. Then, if g is convex,

g(E{X}) ≤ E{g(X )}. (1.13.17)

To prove (1.13.17), notice that since g is convex, for every x0, −∞ < x0 < ∞, g(x) ≥
g(x0) + (x − x0)g∗(x0) for all x , −∞ < x < ∞, where g∗(x0) is finite. Substitute
x0 = E{X}. Then

g(X ) ≥ g(E{X}) + (X − E{X})g∗(E{X})

with probability one. Since E{X − E{X}} = 0, we obtain (1.13.17).
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3. Lyapunov’s Inequality
If 0 < s < r and E{|X |r } < ∞, then

(E{|X |s})1/s ≤ (E{|X |r })1/r . (1.13.18)

To establish this inequality, let t = r/s. Notice that g(x) = |x |t is convex, since t > 1.
Let ξ = E{|X |s}, and (|X |s)t = |X |r . Thus, by Jensen’s inequality,

g(ξ ) = (E |X |s)r/s ≤ E{g(|X |s)}
= E{|X |r }.

Hence, E{|X |s}1/s ≤ (E{|X |r })1/r . As a result of Lyapunov’s inequality we have the
following chain of inequalities among absolute moments.

E{|X |} ≤ (E{X2})1/2 ≤ (E{|X |3})1/3 ≤ · · · . (1.13.19)

4. Hölder’s Inequality

Let 1 < p < ∞ and 1 < q < ∞, such that
1

p
+ 1

q
= 1. E{|X |p} < ∞ and

E{|Y |q} < ∞. Then

E{|XY |} ≤ (E{|X |p})1/p(E{|Y |q})1/q . (1.13.20)

Notice that the Schwarz inequality is a special case of Holder’s inequality for p =
q = 2.

For proof, see Shiryayev (1984, p. 191).

5. Minkowsky’s Inequality
If E{|X |p} < ∞ and E{|Y |p} < ∞ for some 1 ≤ p < ∞, then E{|X + Y |p} < ∞

and

(E{|X + Y |p})1/p ≤ (E |X |p)1/p + (E{|Y |p})1/p. (1.13.21)

For proof, see Shiryayev (1984, p. 192).

1.13.4 The Delta Method

The delta method is designed to yield large sample approximations to nonlinear
functions g of the sample mean X̄n and its variance. More specifically, let {Xn} be
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a sequence of i.i.d. random variables. Assume that 0 < V {X} < ∞. By the SLLN,

X̄n
a.s.−→ μ, as n → ∞, where X̄n = 1

n

n∑

j=1

X j , and by the CLT,
√

n
X̄n − μ

σ

d−→
n→∞

N (0, 1). Let g : R → R having third order continuous derivative. By the Taylor
expansion of g(X̄n) around μ,

g(X̄n) = g(μ) + (X̄n − μ)g(1)(μ) + 1

2
(X̄n − μ)2g(2)(μ) + Rn, (1.13.22)

where Rn = 1

6
(X̄n − μ)3g(3)(μ∗

n), where μ∗
n is a point between X̄n and μ, i.e., |X̄n −

μ∗
n| < |X̄n − μ|. Since we assumed that g(3)(x) is continuous, it is bounded on the

closed interval [μ − �,μ + �]. Moreover, g(3)(μ∗
n)

a.s.−→ g(3)(μ), as n → ∞. Thus

Rn
p→ 0, as n → ∞. The distribution of g(μ) + g(1)(μ)(X̄n − μ) is asymptotically

N (g(μ), (g(1)(μ))2σ 2/n). (X̄n − μ)2 2→ 0, as n → ∞. Thus,
√

n(g(X̄n) − g(μ))
d→

N (0, σ 2(g(1)(μ))2). Thus, if X̄n satisfies the CLT, an approximation to the expected
value of g(X̄n) is

E{g(X̄n)} ∼= g(μ) + σ 2

2n
g(2)(μ). (1.13.23)

An approximation to the variance of g(X̄n) is

V {g(X̄n)} ∼= σ 2

n
(g(1)(μ))2. (1.13.24)

Furthermore, from (1.13.22)

√
n(g(X̄n) − g(μ)) = √

n(X̄n − μ)g(1)(μ) + Dn, (1.13.25)

where

Dn = (X̄n − μ)2

2
g(2)(μ∗∗

n ), (1.13.26)

and |μ∗∗
n − X̄n| ≤ |μ − X̄n| with probability one. Thus, since X̄n − μ → 0 a.s., as

n → ∞, and since |g(2)(μ∗∗
n )| is bounded, Dn

p−→ 0, as n → ∞, then

√
n

g(X̄n) − g(μ)

σ |g(1)(μ)|
d−→ N (0, 1). (1.13.27)
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1.13.5 The Symbols op and O p

Let {Xn} and {Yn} be two sequences of random variables, Yn > 0 a.s. for all n ≥ 1.
We say that Xn = op(Yn), i.e., Xn is of a smaller order of magnitude than Yn in
probability if

Xn

Yn

p−→ 0 as n → ∞. (1.13.28)

We say that Xn = Op(Yn), i.e., Xn has the same order of magnitude in probability as

Yn if, for all ε > 0, there exists Kε such that supn P

{∣∣∣∣
Xn

Yn

∣∣∣∣ > Kε

}
< ε.

One can verify the following relations.

(i) op(1) + Op(1) = Op(1),

(ii) Op(1) + Op(1) = Op(1),

(iii) op(1) + op(1) = op(1),

(iv) Op(1) · Op(1) = Op(1),

(v) op(1) · Op(1) = op(1).

(1.13.29)

1.13.6 The Empirical Distribution and Sample Quantiles

Let X1, X2, . . . , Xn be i.i.d. random variables having a distribution F . The function

Fn(x) = 1

n

n∑

i=1

I {Xi ≤ x} (1.13.30)

is called the empirical distribution function (EDF).
Notice that E{I {Xi ≤ x}} = F(x). Thus, the SLLN implies that at each x ,

Fn(x)
a.s.−→ F(x) as n → ∞. The question is whether this convergence is uniform

in x . The answer is given by

Theorem 1.13.5 (Glivenko–Cantelli). Let X1, X2, X3, . . . be i.i.d. random vari-
ables. Then

sup
−∞<x<∞

|Fn(x) − F(x)| a.s.−→ 0, as n → ∞. (1.13.31)

For proof, see Sen and Singer (1993, p. 185).
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The pth sample quantile xn,p is defined as

xn,p = F−1
n (p)

= inf{x : Fn(x) ≥ p}
(1.13.32)

for 0 < p < 1, where Fn(x) is the EDF. When F(x) is continuous then, the points of
increase of Fn(x) are the order statistics X (1:n) < · · · < X (n:n) with probability one.

Also, Fn(X (i :n)) = i

n
, i = 1, . . . , n. Thus,

xn,p = X (i(p):n), where

i(p) = smallest integer i such that i ≥ pn.
(1.13.33)

Theorem 1.13.6. Let F be a continuous distribution function, and ξp = F−1(p),
and suppose that F(ξp) = p and for any ε > 0, F(ξp − ε) < p < F(ξp + ε). Let
X1, . . . , Xn be i.i.d. random variables from this distribution. Then

xn,p
a.s.−→ ξp as n → ∞.

For proof, see Sen and Singer (1993, p. 167).
The following theorem establishes the asymptotic normality of xn,p.

Theorem 1.13.7. Let F(x) be an absolutely continuous distribution, with continuous
p.d.f. f (x). Let p, 0 < p < 1, ξp = F−1(p) and f (ξp) > 0. Then

√
n(xn,p − ξp)

d−→ N

(
0,

p(1 − p)

f 2(ξp)

)
. (1.13.34)

For proof, see Sen and Singer (1993, p. 168).
The results of Theorems 1.13.6–1.13.7 will be used in Chapter 7 to establish the

asymptotic relative efficiency of the sample median, relative to the sample mean.

PART II: EXAMPLES

Example 1.1. We illustrate here two algebras.
The sample space is finite

S = {1, 2, . . . , 10}.

Let E1 = {1, 2}, E2 = {9, 10}. The algebra generated by E1 and E2, A1, contains the
events

A1 = {S,∅, E1, Ē1, E2, Ē2, E1 ∪ E2, E1 ∪ E2}.
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The algebra generated by the partition D = {E1, E2, E3, E4}, where E1 = {1, 2},
E2 = {9, 10}, E3 = {3, 4, 5}, E4 = {6, 7, 8} contains the 24 = 16 events

A2 = {S,∅, E1, E2, E3, E4, E1 ∪ E2, E1 ∪ E3, E1 ∪ E4, E2 ∪ E3, E2 ∪ E4,

E3 ∪ E4, E1 ∪ E2 ∪ E3, E1 ∪ E2 ∪ E4, E1 ∪ E3 ∪ E4, E2 ∪ E3 ∪ E4}.

Notice that the complement of each set in A2 is in A2. A1 ⊂ A2. Also, A2

⊂ A(S).

Example 1.2. In this example we consider a random walk on the integers. Consider
an experiment in which a particle is initially at the origin, 0. In the first trial the particle
moves to +1 or to −1. In the second trial it moves either one integer to the right or one
integer to the left. The experiment consists of 2n such trials (1 ≤ n < ∞). The sample
space S is finite and there are 22n points in S, i.e., S = {(i1, . . . , i2n) : i j = ±1, j =

1, . . . , 2n}. Let E j =
{

(i1, . . . , i2n) :
2n∑

k=1

ik = j

}
, j = 0,±2,±, · · · ,±2n. E j is the

event that, at the end of the experiment, the particle is at the integer j . Obviously,
−2n ≤ j ≤ 2n. It is simple to show that j must be an even integer j = ±2k, k =
0, 1, . . . , n. Thus, D = {E2k, k = 0,±1, . . . ,±n} is a partition of S. The event E2k

consists of all elementary events in which there are (n + k) +1s and (n − k) −1s.

Thus, E2k is the union of

(
2n

n + k

)
points of S, k = 0,±1, . . . ,±n.

The algebra generated by D, A(D), consists of ∅ and 22n+1 − 1 unions of the
elements of D.

Example 1.3. Let S be the real line, i.e., S = {x : −∞ < x < ∞}. We construct an
algebra A generated by half-closed intervals: Ex = (−∞, x], −∞ < x < ∞. Notice
that, for x < y, Ex ∪ Ey = (−∞, y]. The complement of Ex is Ēx = (x,∞). We
will adopt the convention that (x,∞) ≡ (x,∞].

Consider the sequence of intervals En =
(

−∞, 1 − 1

n

]
, n ≥ 1. All En ∈ A. How-

ever,
∞⋃

n=1

En = (−∞, 1). Thus lim
n→∞En does not belong to A. A is not a σ -field. In

order to make A into a σ -field we have to add to it all limit sets of sequences of
events in A.

Example 1.4. We illustrate here three events that are only pairwise independent.

Let S = {1, 2, 3, 4}, with P(w) = 1

4
, for all w ∈ S. Define the three events

A1 = {1, 2}, A2 = {1, 3}, A3 = {1, 4}.
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P{Ai } = 1

2
, i = 1, 2, 3.

A1 ∩ A2 = {1}.
A1 ∩ A3 = {1}.
A2 ∩ A3 = {1}.

Thus

P{A1 ∩ A2} = 1

4
= P{A1}P{A2}.

P{A1 ∩ A3} = 1

4
= P{A1}P{A3}.

P{A2 ∩ A3} = 1

4
= P{A2}P{A3}.

Thus, A1, A2, A3 are pairwise independent. On the other hand,

A1 ∩ A2 ∩ A3 = {1}

and

P{A1 ∩ A2 ∩ A3} = 1

4

= P{A1}P{A2}P{A3} = 1

8
.

Thus, the triplet (A1, A2, A3) is not independent.

Example 1.5. An infinite sequence of trials, in which each trial results in either
“success” S or “failure” F is called Bernoulli trials if all trials are independent and
the probability of success in each trial is the same. More specifically, consider the
sample space of countable sequences of Ss and Fs, i.e.,

S = {(i1, i2, . . .) : i j = S, F, j = 1, 2, . . .}.

Let

E j = {(i1, i2, . . .) : i j = S}, j = 1, 2, . . . .

We assume that {E1, E2, . . . , En} are mutually independent for all n ≥ 2 and
P{E j } = p for all j = 1, 2, . . . , 0 < p < 1.
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The points of S represent an infinite sequence of Bernoulli trials. Consider the
events

A j = {(i1, i2, . . .) : i j = S, i j+1 = F, i j+2 = S}
= E j ∩ Ē j+1 ∩ E j+2

j = 1, 2, . . .. {A j } are not independent.
Let B j = {A3 j+1}, j ≥ 0. The sequence {B j , j ≥ 1} consists of mutually indepen-

dent events. Moreover, P(B j ) = p2(1 − p) for all j = 1, 2, . . .. Thus,
∞∑

j=1

P(B j ) =

∞ and the Borel–Cantelli Lemma implies that P{Bn, i.o.} = 1. That is, the pat-
tern SF S will occur infinitely many times in a sequence of Bernoulli trials, with
probability one.

Example 1.6. Let S be the sample space of N = 2n binary sequences of size n,
n < ∞, i.e.,

S = {(i1, . . . , in) : i j = 0, 1, j = 1, . . . , n}.

We assign the points w = (i1, . . . , in) of S, equal probabilities, i.e., P{(i1, . . . , in)} =
2−n . Consider the partition D = {B0, B1, . . . , Bn} to k = n + 1 disjoint events, such
that

B j = {(i1, . . . , in) :
n∑

l=1

il = j}, j = 0, . . . , n.

B j is the set of all points having exactly j ones and (n − j) zeros. We define the
discrete random variable corresponding to D as

X (w) =
n∑

j=0

j IB j (w).

The jump points of X (w) are {0, 1, . . . , n}. The probability distribution function of
X (w) is

fX (x) =
n∑

j=0

I{ j}(x)P{B j }.

It is easy to verify that

P{B j } =
(

n
j

)
2−n, j = 0, 1, . . . , n
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where

(
n
j

)
= n!

j!(n − j)!
, j = 0, 1, . . . , n.

Thus,

fX (x) =
n∑

j=0

I{ j}(x)

(
n
x

)
2−n .

The distribution function (c.d.f.) is given by

FX (x) =

⎧
⎪⎨

⎪⎩

0, if x < 0
[x]∑

j=0

(
n
j

)
2−n,

where [x] is the maximal integer value smaller or equal to x . The distribution function
illustrated here is called a binomial distribution (see Section 2.2.1).

Example 1.7. Consider the random variable of Example 1.6. In that example X (w) ∈
{0, 1, . . . , n} and fX ( j) =

(
n
j

)
2−n , j = 0, . . . , n. Accordingly,

E{X} =
n∑

j=0

j

(
n
j

)
2−n = n

2

n−1∑

j=0

(
n − 1

j

)
2−(n−1) = n

2
.

Example 1.8. Let (S,F , P) be a probability space where S = {0, 1, 2, . . .}. F is
the σ -field of all subsets of S. Consider X (w) = w , with probability function

p j = P{w : X (w) = j}

= e−λ λ j

j!
, j = 0, 1, 2, . . .

for some λ, 0 < λ < ∞. 0 < p j < ∞ for all j , and since
∞∑

j=0

λ j

j
= eλ,

∞∑

j=0

p j = 1.
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Consider the partition D = {A1, A2, A3} where A1 = {w : 0 ≤ w ≤ 10}, A2 =
{w : 10 < w ≤ 20} and A3 = {w : w ≥ 21}. The probabilities of these sets are

q1 = P{A1} = e−λ

10∑

j=0

λ j

j!
,

q2 = P{A2} = e−λ

20∑

j=11

λ j

j!
, and

q3 = P{A3} = e−λ

∞∑

j=21

λ j

j!
.

The conditional distributions of X given Ai i = 1, 2, 3 are

fX |Ai (x) =
λx

x!
IAi (x)

bi −1∑

j=bi−1

λ j

j!

, i = 1, 2, 3

where b0 = 0, b1 = 11, b2 = 21, b3 = ∞.
The conditional expectations are

E{X | Ai } = λ

bi −2∑

j=(bi−1−1)+

λ j

j!

bi −1∑

j=bi−1

λ j

j!

, i = 1, 2, 3

where a+ = max(a, 0). E{X | D} is a random variable, which obtains the values
E{X | A1} with probability q1, E{X | A2} with probability q2, and E{X | A3} with
probability q3.

Example 1.9. Consider two discrete random variables X , Y on (S,F , P) such that
the jump points of X and Y are the nonnegative integers {0, 1, 2, . . .}. The joint
probability function of (X, Y ) is

fXY (x, y) =
⎧
⎨

⎩
e−λ

λy

(y + 1)!
, x = 0, 1, . . . , y; y = 0, 1, 2, . . .

0, otherwise,

where λ, 0 < λ < ∞, is a specified parameter.
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First, we have to check that

∞∑

x=0

∞∑

y=0

fXY (x, y) = 1.

Indeed,

fY (y) =
y∑

x=0

fXY (x, y)

= e−λ λy

y!
, y = 0, 1, . . .

and

∞∑

y=0

e−λ λy

y!
= e−λ · eλ = 1.

The conditional p.d.f. of X given {Y = y}, y = 0, 1, . . . is

fX |Y (x | y) =
⎧
⎨

⎩

1

1 + y
, x = 0, 1, . . . , y

0, otherwise.

Hence,

E{X | Y = y} = 1

1 + y

y∑

x=0

x

= y

2
, y = 0, 1, . . .

and, as a random variable,

E{X | Y } = Y

2
.

Finally,

E{E{X | Y }} =
∞∑

y=0

y

2
e−λ λy

y!
= λ

2
.

Example 1.10. In this example we show an absolutely continuous distribution for
which E{X} does not exist.
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Let F(x) = 1

2
+ 1

π
tan−1(x). This is called the Cauchy distribution. The density

function (p.d.f.) is

f (x) = 1

π
· 1

1 + x2
, −∞ < x < ∞.

It is a symmetric density around x = 0, in the sense that f (x) = f (−x) for all x . The
expected value of X having this distribution does not exist. Indeed,

∫ ∞

−∞
|x | f (x)dx = 2

π

∫ ∞

0

x

1 + x2
dx

= 1

π
lim

T →∞
log(1 + T 2) = ∞.

Example 1.11. We show here a mixture of discrete and absolutely continuous
distributions.

Let

Fac(x) =
{

0, if x < 0
1 − exp{−λx}, if x ≥ 0

Fd(x) =

⎧
⎪⎨

⎪⎩

0, if x < 0

e−μ

[x]∑

j=0

μ j

j!
, if x ≥ 0

where [x] designates the maximal integer not exceeding x ; λ and μ are real positive
numbers. The mixed distribution is, for 0 ≤ α ≤ 1,

F(x) =

⎧
⎪⎨

⎪⎩

0, if x < 0

αe−μ

[x]∑

j=0

μ j

j!
+ (1 − α)[1 − exp(−λx)], if x ≥ 0.

This distribution function can be applied with appropriate values of α, λ, and μ

for modeling the length of telephone conversations. It has discontinuities at the
nonnegative integers and is continuous elsewhere.

Example 1.12. Densities derived after transformations.
Let X be a random variable having an absolutely continuous distribution with

p.d.f. fX .
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A. If Y = X2, the number of roots are

m(y) =
⎧
⎨

⎩

0, if y < 0
1, if y = 0
2, if y > 0.

Thus, the density of Y is

fY (y) =
⎧
⎨

⎩

0, y ≤ 0
1

2
√

y
[ fX (

√
y) + fX (−√

y)], y > 0.

B. If Y = cos X

m(y) =
{

0, if |y| > 1
∞, if |y| ≤ 1.

For every y, such that |y| < 1, let ξ (y) be the value of cos−1(y) in the interval (0, π ).
Then, if f (x) is the p.d.f. of X , the p.d.f. of Y = cos X is, for |y| < 1,

fY (y) = 1√
1 − y2

∞∑

j=0

{ fX (ξ (y) + 2π j) +

+ fX (ξ (y) − 2π j) + fX (−ξ (y) + 2π j) + fX (−ξ (y) − 2π j)}.

The density does not exist for |y| ≥ 1.

Example 1.13. Three cases of joint p.d.f.

A. Both X1, X2 are discrete, with jump points on {0, 1, 2, . . .}. Their joint p.d.f. for
0 < λ < ∞ is,

fX1 X2 (x1, x2) =
(

x2

x1

)
2−x2 e−λ λx2

x2!
,

for x1 = 0, . . . , x2, x2 = 0, 1, . . .. The marginal p.d.f. are

fX1 (x1) = e−λ/2 (λ/2)x1

x1!
, x1 = 0, 1, . . . and

fX2 (x2) = e−λ λx2

x2!
, x2 = 0, 1, . . . .

B. Both X1 and X2 are absolutely continuous, with joint p.d.f.

fX1 X2 (x, y) = 2I(0,1)(x)I(0,x)(y).
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The marginal distributions of X1 and X2 are

fX1 (x) = 2x I(0,1)(x) and

fX2 (y) = 2(1 − y)I(0,1)(y).

C. X1 is discrete with jump points {0, 1, 2, . . .} and X2 absolutely continuous. The
joint p.d.f., with respect to the σ -finite measure d N (x1)dy is, for 0 < λ < ∞,

fX1 X2 (x, y) = e−λ λx

x!
· 1

1 + x
I {x = 0, 1, . . .}I(0,1+x)(y).

The marginal p.d.f. of X1, is

fX (x) = e−λ λx

x!
, x = 0, 1, 2, . . . .

The marginal p.d.f. of X2 is

fX2 (y) = 1

λ

∞∑

n=0

⎛

⎝1 − e−λ

n∑

j=0

λ j

j!

⎞

⎠ I(n,n+1)(y).

Example 1.14. Suppose that X , Y are positive random variables, having a joint
p.d.f.

fXY (x, y) = 1

y
λe−λy I(0,y)(x), 0 < y < ∞, 0 < x < y, 0 < λ < ∞.

The marginal p.d.f. of X is

fX (x) = λ

∫ ∞

x

1

y
e−λydy

= λE1(λx),

where E1(ξ ) =
∫ ∞

ξ

1

u
e−udu is called the exponential integral, which is finite for all

ξ > 0. Thus, according to (1.6.62), for x0 > 0,

fY |X (y | x0) =
1

y
e−λy I(x0,∞)(y)

E1(λx0)
.
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Finally, for x0 > 0,

E{Y | X = x0} =

∫ ∞

x0

e−λydy

E1(λx0)

= e−λx0

λE1(λx0)
.

Example 1.15. In this example we show a distribution function whose m.g.f., M ,
exists only on an interval (−∞, t0). Let

F(x) =
{

0, if x < 0
1 − e−λx , if x ≥ 0,

where 0 < λ < ∞. The m.g.f. is

M(t) = λ

∫ ∞

0
etx−λx dx

= λ

λ − t
=
(

1 − t

λ

)−1

, −∞ < t < λ.

The integral in M(t) is ∞ if t ≥ λ. Thus, the domain of convergence of M is
(−∞, λ).

Example 1.16. Let

Xi =
{

1, with probability p
0, with probability (1 − p)

i = 1, . . . , n. We assume also that X1, . . . , Xn are independent. We wish to derive

the p.d.f. of Sn =
n∑

i=1

Xi . The p.g.f. of Sn is, due to independence, when q = 1 − p,

E{t Sn } = E

{
t

n∑
i=1

Xi

}

=
n∏

i=1

E{t Xi }

= (pt + q)n, −∞ < t < ∞.
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Since all Xi have the same distribution. Binomial expansion yields

E{t Sn } =
n∑

j=0

(
n
j

)
p j (1 − p)n− j t j .

Since two polynomials of degree n are equal for all t only if their coefficients are
equal, we obtain

P{Sn = j} =
(

n
j

)
p j (1 − p)n− j , j = 0, . . . , n.

The distribution of Sn is called the binomial distribution.

Example 1.17. In Example 1.13 Part C, the conditional p.d.f. of X2 given {X1 = x}
is

fX2|X1 (y | x) = 1

1 + x
I(0,1+x)(y).

This is called the uniform distribution on (0, 1 + x). It is easy to find that

E{Y | X = x} = 1 + x

2

and

V {Y | X = x} = (1 + x)2

12
.

Since the p.d.f. of X is

P{X = x} = e−λ λx

x!
, x = 0, 1, 2, . . .

the law of iterated expectation yields

E{Y } = E{E{Y | X}}

= E

{
1

2
+ 1

2
X

}

= 1

2
+ λ

2
,

since E{X} = λ.
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The law of total variance yields

V {Y } = V {E{Y | X}} + E{V {Y | X}}

= V

{
1

2
+ 1

2
X

}
+ E

{
(1 + X )2

12

}

= 1

4
V {X} + 1

12
E{1 + 2X + X2}

= 1

4
λ + 1

12
(1 + 2λ + λ(1 + λ))

= 1

12
(1 + λ)2 + λ

3
.

To verify these results, prove that E{X} = λ, V {X} = λ and E{X2} = λ(1 + λ). We
also used the result that V {a + bX} = b2V {X}.

Example 1.18. Let X1, X2, X3 be uncorrelated random variables, having the same
variance σ 2, i.e.,

�| = σ 2 I.

Consider the linear transformations

Y1 = X1 + X2,

Y2 = X1 + X3,

and

Y3 = X2 + X3.

In matrix notation

Y = AX,

where

A =
⎡

⎣
1 1 0
1 0 1
0 1 1

⎤

⎦.
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The variance–covariance matrix of Y, according to (1.8.30) is

V [Y] = A�| A′

= σ 2 AA′

= σ 2

⎡

⎣
2 1 1
1 2 1
1 1 2

⎤

⎦.

From this we obtain that correlations of Yi , Y j for i 
= j and ρi j = 1

2
.

Example 1.19. We illustrate here convergence in distribution.

A. Let X1, X2, . . . be random variables with distribution functions

Fn(x) =
⎧
⎨

⎩

0, if x < 0
1

n
+
(

1 − 1

n

) (
1 − e−x

)
, if x ≥ 0.

Xn
d−→ X , where the distribution of X is

F(x) =
{

0, x < 0
1 − e−x , x ≥ 0.

B. Xn are random variables with

Fn(x) =
{

0, x < 0
1 − e−nx , x ≥ 0

and F(x) = I {x ≥ 0}. Xn
d−→ X . Notice that F(x) is discontinuous at x = 0. But,

for all x 
= 0 lim
n→∞ Fn(x) = F(x).

C. Xn are random vectors, i.e.,

Xn = (X1n, X2n), n ≥ 1.

The function Ix (a, b), for 0 < a, b < ∞, 0 ≤ x ≤ 1, is called the incomplete beta
function ratio and is given by

Ix (a, b) =

∫ x

0
ua−1(1 − u)b−1du

B(a, b)
,
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where B(a, b) =
∫ 1

0
ua−1(1 − u)b−1du. In terms of these functions, the marginal

distribution of X1n and X2n are

F1n(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < 0
1

n
+
(

1 − 1

n

)
Ix (a, b), 0 ≤ x ≤ 1

1, 1 < x

and

F2n(y) =

⎧
⎪⎪⎨

⎪⎪⎩

0, y < 0(
1 − 1

n

)
Iy(a, b), 0 ≤ y < 1

1, 1 ≤ y

where 0 < a, b < ∞. The joint distribution of (X1n, X2n) is Fn(x, y) = F1n(x)F2n(y),

n ≥ 1. The random vectors Xn
d−→ X, where F(x) is

F(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x < 0 or y < 0
Ix (a, b)Iy(a, b), 0 ≤ x , y ≤ 1
Ix (a, b), 0 ≤ x ≤ 1, y > 1
Iy(a, b), 1 < x , 0 ≤ y ≤ 1
1, 1 < x , 1 < y.

Example 1.20. Convergence in probability.
Let Xn = (X1n, X2n), where Xi,n (i = 1, 2) are independent and have a distribution

Fn(x) =
⎧
⎨

⎩

0, x < 0
nx, 0 < x < 1

n
1, 1

n ≤ x .

Fix an ε > 0 and let N (ε) =
[

2

ε

]
, then for every n > N (ε),

P[(X2
1,n + X2

2,n)1/2 < ε] = 1.

Thus, Xn
p−→ 0.



JWST390-c01 JWST390-Zacks November 1, 2013 9:21 Printer Name: Trim: 6.125in × 9.25in

PART II: EXAMPLES 71

Example 1.21. Convergence in mean square.
Let {Xn} be a sequence of random variables such that

E{Xn} = 1 + a

n
, 0 < a < ∞ and

V {Xn} = b

n
, 0 < b < ∞.

Then, Xn
2−→ 1, as n → ∞. Indeed, E{(Xn − 1)2} = a2

n2
+ b

n
→ 0, as n → ∞.

Example 1.22. Central Limit Theorem.

A. Let {Xn}, n ≥ 1 be a sequence of i.i.d. random variables, P{Xn = 1} = P{Xn =
−1} = 1

2
. Thus, E{Xn} = 0 and V {Xn} = 1, n ≥ 1. Thus

√
n X̄n = 1√

n

n∑

i=1

Xi
d−→

N (0, 1). It is interesting to note that for these random variables, when Sn =
n∑

i=1

Xi ,

1√
n

Sn
d−→ N (0, 1), while

Sn

n
a.s.−→ 0.

B. Let {Xn} be i.i.d, having a rectangular p.d.f.

f (x) = 1(0,1)(x).

In this case, E{X1} = 1

2
and V {X1} = 1

12
. Thus,

√
n

X̄n − 1

2√
1

12

d−→
n→∞ N (0, 1).

Notice that if n = 12, then if S12 =
12∑

i=1

Xi , then S12 − 6 might have a distribution

close to that of N (0, 1). Early simulation programs were based on this.

Example 1.23. Application of Lyapunov’s Theorem.
Let {Xn} be a sequence of independent random variables, with distribution func-

tions

Fn(x) =
{

0, x < 0
1 − exp{−x/n}, x ≥ 0
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n ≥ 1. Thus, E{Xn} = n, V {Xn} = n2, and E{X3
n} = 6n3. Thus, B2

n =
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
, n ≥ 1. In addition,

n∑

k=1

E{X3
k } = 6

n∑

k=1

k3 = O(n4).

Thus,

lim
n→∞

n∑

k=1

E{X3
k }

B3
n

= 0.

It follows from Lyapunov’s Theorem that

√
6

n∑

k=1

(Xk − k)

√
n(n + 1)(2n + 1)

d−→ N (0, 1).

Example 1.24. Variance stabilizing transformation.
Let {Xn} be i.i.d. binary random variables, such that P{Xn = 1} = p, and P{Xn =

0} = 1 − p. It is easy to verify that μ = E{X1} = p and V {X1} = p(1 − p). Hence,

by the CLT,
√

n
X̄n − p√
p(1 − p)

d−→ N (0, 1), as n → ∞. Consider the transformation

g(X̄n) = 2 sin−1
√

X̄n.

The derivative of g(x) is

g(1)(x) = 2√
1 − x

· 1

2
√

x
= 1√

x(1 − x)
.

Hence V {X1}(g(1)(p))2 = 1.
It follows that

√
n(2 sin−1(

√
X̄n) − 2 sin−1(

√
p))

d−→ N (0, 1).
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g(2)(x) = −1

2

1 − 2x

(x(1 − x))3/2
. Hence, by the delta method,

E{g(X̄n)} ∼= 2 sin−1(
√

p) − 1 − 2p

4n(p(1 − p))1/2
.

This approximation is very ineffective if p is close to zero or close to 1. If p is close

to
1

2
, the second term on the right-hand side is close to zero.

Example 1.25. A. Let X1, X2, . . . be i.i.d. random variables having a finite variance

0 < σ 2 < ∞. Since
√

n(X̄n − μ)
d−→ N (0, σ 2), we say that X̄n − μ = Op

(
1√
n

)

as n → ∞. Thus, if cn ↗ ∞ but cn = o(
√

n), then cn(X̄n − μ)
p−→ 0. Hence

X̄n − μ = op(cn), as n → ∞.
B. Let X1, X2, . . . , Xn be i.i.d. having a common exponential distribution with

p.d.f.

f (x ; μ) =
{

0, if x < 0
μe−μx , if x ≥ 0

0 < μ < ∞. Let Yn = min[Xi , i = 1, . . . , n] be the first order statistic in a random
sample of size n (see Section 2.10). The p.d.f. of Yn is

fn(y; μ) =
{

0, if y < 0
nμe−nμy, if y ≥ 0.

Thus nYn ∼ X1 for all n. Accordingly, Yn = Op

(
1

n

)
as n → ∞. It is easy to see

that
√

n Yn
p−→ 0. Indeed, for any given ε > 0,

P{√n Yn > ε} = e−√
n με → 0 as n → ∞.

Thus, Yn = op

(
1√
n

)
as n → ∞.

PART III: PROBLEMS

Section 1.1

1.1.1 Show that A ∪ B = B ∪ A and AB = B A.

1.1.2 Prove that A ∪ B = A ∪ B Ā, (A ∪ B) − AB = AB̄ ∪ ĀB.

1.1.3 Show that if A ⊂ B then A ∪ B = B and A ∩ B = A.
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1.1.4 Prove DeMorgan’s laws, i.e., A ∪ B = Ā ∩ B̄ or A ∩ B = Ā ∪ B̄.

1.1.5 Show that for every n ≥ 2,

(
n⋃

i=1

Ai

)
=

n⋂

i=1

Āi .

1.1.6 Show that if A1 ⊂ · · · ⊂ AN then sup
1≤n≤N

An = AN and inf
1≤n≤N

An = A1.

1.1.7 Find lim
n→∞

[
0, 1 − 1

n

)
.

1.1.8 Find lim
n→∞

(
0,

1

n

)
.

1.1.9 Show that if D = {A1, . . . , Ak} is a partition of S then, for every B, B =
n⋃

i=1

Ai B.

1.1.10 Prove that lim
n→∞

An ⊂ lim
n→∞An .

1.1.11 Prove that
∞⋃

n=1

An = lim
n→∞

n⋃

j=1

A j and
∞⋂

n=1

An = lim
n→∞

n⋂

j=1

A j .

1.1.12 Show that if {An} is a sequence of pairwise disjoint sets, then lim
n→∞

∞⋃

j=n

A j =

φ.

1.1.13 Prove that lim
n→∞(An ∪ Bn) = lim

n→∞An ∪ lim
n→∞Bn .

1.1.14 Show that if {an} is a sequence of nonnegative real numbers, then
sup
n≥1

[0, an) = [0, sup
n≥1

an).

1.1.15 Let A�B = AB̄ ∪ B Ā (symmetric difference). Let {An} be a sequence of
disjoint events; define B1 = A1, Bn+1 = Bn�An+1, n ≥ 1. Prove that lim

Bn =
∞⋃

n=1

An .

1.1.16 Verify

(i) A�B = Ā�B̄.

(ii) C = A�B if and only if A = B�C .
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(iii)

( ∞⋃

n=1

An

)
�
( ∞⋃

n=1

Bn

)
⊂

∞⋃

n=1

(An�Bn).

1.1.17 Prove that limn→∞ An = limn→∞ Ān .

Section 1.2

1.2.1 Let A be an algebra over S. Show that if A1, A2 ∈ A then A1 A2 ∈ A.

1.2.2 Let S = {−, . . . ,−2,−1, 0, 1, 2, . . .} be the set of all integers. A set A ⊂ S
is called symmetric if A = −A. Prove that the collection A of all symmetric
subsets of S is an algebra.

1.2.3 Let S = {−, . . . ,−2,−1, 0, 1, 2 . . .}. Let A1 be the algebra of symmetric
subsets of S, and let A2 be the algebra generated by sets An = {−2,−1,

i1, . . . , in}, n ≥ 1, where i j ≥ 0, j = 1, . . . , n.

(i) Show that A3 = A1 ∩ A2 is an algebra.

(ii) Show that A4 = A1 ∪ A2 is not an algebra.

1.2.4 Show that if A is a σ -field, An ⊂ An+1, for all n ≥ 1, then lim
n→∞ Ān ∈ A.

Section 1.3

1.3.1 Let F(x) = P{(−∞, x]}. Verify
(a) P{(a, b]} = F(b) − F(a).
(b) P{(a, b)} = F(b−) − F(a).
(c) P{[a, b)} = F(b−) − F(a−).

1.3.2 Prove that P{A ∪ B} = P{A} + P{B Ā}.

1.3.3 A point (X, Y ) is chosen in the unit square. Thus, S = {(x, y) : 0 ≤ x, y ≤
1}. Let B be the Borel σ -field on S. For a Borel set B, we define

P{B} =
∫ ∫

B

dxdy.

Compute the probabilities of

B = {(x, y) : x >
1

2

}

C = {(x, y) : x2 + y2 ≤ 1
}

D = {(x, y) : x + y ≤ 1}
P{D ∩ B}, P{D ∩ C}, P{C ∩ B}.
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1.3.4 LetS = {x : 0 ≤ x < ∞} andB the Borel σ -field onS, generated by the sets

[0, x), 0 < x < ∞. The probability function on B is P{B} = λ

∫

B
e−λx dx ,

for some 0 < λ < ∞. Compute the probabilities

(i) P{X ≤ 1/λ}.
(ii) P

{
1

λ
≤ X ≤ 2

λ

}
.

(iii) Let Bn =
[

0,

(
1 + 1

n

)
/λ

)
. Compute lim

n→∞P{Bn} and show that it is

equal to P
{

lim
n→∞Bn

}
.

1.3.5 Consider an experiment in which independent trials are conducted sequen-
tially. Let Ri be the result of the i th trial. P{Ri = 1} = p, P{Ri = 0} = 1 −
p. The trials stop when (R1, R2, . . . , RN ) contains exactly two 1s. Notice that
in this case, the number of trials N is random. Describe the sample space. Let
wn be a point of S, which contains exactly n trials. wn = {(i1, . . . , in−1, 1)},
n ≥ 2, where

n−1∑

j=1

i j = 1. Let En = {(i1, . . . , in−1, 1) :
n−1∑

j=1

i j = 1}.

(i) Show that D = {E2, E3, . . .} is a countable partition of S.

(ii) Show that P{En} = (n − 1)p2qn−2, where 0 < p < 1, q = 1 − p, and

prove that
∞∑

n=2

P{En} = 1.

(iii) What is the probability that the experiment will require at least 5 trials?

1.3.6 In a parking lot there are 12 parking spaces. What is the probability that
when you arrive, assuming cars fill the spaces at random, there will be four
adjacent spaces vacant, while all other spaces filled?

Section 1.4

1.4.1 Show that if A and B are independent, then Ā and B̄, A and B̄, Ā and B are
independent.

1.4.2 Show that if three events are mutually independent, then if we replace
any event with its complement, the new collection is still mutually
independent.

1.4.3 Two digits are chosen from the set P = {0, 1, . . . , 9}, without replacement.
The order of choice is immaterial. The probability function assigns every
possible set of two the same probability. Let Ai (i = 0, . . . , 9) be the event
that the chosen set contains the digit i . Show that for any i 
= j , Ai and A j

are not independent.
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1.4.4 Let A1, . . . , An be mutually independent events. Show that

P

{
n⋃

i=1

Ai

}
= 1 −

n∏

i=1

P{ Āi }.

1.4.5 If an event A is independent of itself, then P{A} = 0 or P(A) = 1.

1.4.6 Consider the random walk model of Example 1.2.

(i) What is the probability that after n steps the particle will be on a positive
integer?

(ii) Compute the probability that after n = 7 steps the particle will be at
x = 1.

(iii) Let p be the probability that in each trial the particle goes one step
to the right. Let An be the event that the particle returns to the origin
after n steps. Compute P{An} and show, by using the Borel–Cantelli

Lemma, that if p 
= 1

2
then P{An, i.o.} = 0.

1.4.7 Prove that

(i)
n∑

k=0

(
n
k

)
= 2k .

(ii)
n∑

k=0

(
M
k

)(
N − M
n − k

)
=
(

N
n

)
.

(iii)
n∑

k=0

k

(
M
k

)(
N − M
n − k

)
= n

M

N

(
N
n

)
= M

(
N − 1
n − 1

)
.

1.4.8 What is the probability that the birthdays of n = 12 randomly chosen people
will fall in 12 different calendar months?

1.4.9 A stick is broken at random into three pieces. What is the probability that
these pieces can form a triangle?

1.4.10 There are n = 10 particles and m = 5 cells. Particles are assigned to the
cells at random.

(i) What is the probability that each cell contains at least one particle?

(ii) What is the probability that all 10 particles are assigned to the first 3
cells?

Section 1.5

1.5.1 Let F be a discrete distribution concentrated on the jump points −∞ <

ξ1 < ξ2 < · · · < ∞. Let pi = dF(ξi ), i = 1, 2, . . .. Define the function

U (x) =
{

1, if x ≥ 0
0, if x < 0.



JWST390-c01 JWST390-Zacks November 1, 2013 9:21 Printer Name: Trim: 6.125in × 9.25in

78 BASIC PROBABILITY THEORY

(i) Show that, for all −∞ < x < ∞

F(x) =
∞∑

i=1

piU (x − ξi )

=
∞∑

i=1

pi I (ξi ≤ x).

(ii) For h > 0, define

DhU (x) = 1

h
[U (x + h) − U (x)] = 1

h
[I (x ≥ −h) − I (x ≥ 0)].

Show that

∫ ∞

−∞

∞∑

i=1

pi DhU (x − ξi )dx = 1 for all h > 0.

(iii) Show that for any continuous function g(x), such that
∞∑

i=1

pi |g(ξi )| <

∞,

lim
h→0

∫ ∞

−∞

∞∑

i=1

pi g(x)DhU (x − ξi )dx =
∞∑

i=1

pi g(ξi ).

1.5.2 Let X be a random variable having a discrete distribution, with jump points

ξi = i , and pi = dF(ξi ) = e−2 2i

i!
, i = 0, 1, 2, . . .. Let Y = X3. Determine

the p.d.f. of Y .

1.5.3 Let X be a discrete random variable assuming the values {1, 2, . . . , n} with
probabilities

pi = 2i

n(n + 1)
, i = 1, . . . , n.

(i) Find E{X}.
(ii) Let g(X ) = X2; find the p.d.f. of g(X ).

1.5.4 Consider a discrete random variable X , with jump points on {1, 2, . . .} and
p.d.f.

fX (n) = c

n2
, n = 1, 2, . . .
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where c is a normalizing constant.

(i) Does E{X} exist?

(ii) Does E{X/ log X} exist?

1.5.5 Let X be a discrete random variable whose distribution has jump points
at {x1, x2, . . . , xk}, 1 ≤ k ≤ ∞. Assume also that E{|X |} < ∞. Show that
for any linear transformation Y = α + βx , β 
= 0, −∞ < α < ∞, E{Y } =
α + βE{X}. (The result is trivially true for β = 0).

1.5.6 Consider two discrete random variables (X, Y ) having a joint p.d.f.

fXY ( j, n) = e−λ

j!(n − j)!

(
p

1 − p

) j

(λ(1 − p))n, j = 0, 1, . . . , n,

n = 0, 1, 2, . . . .

(i) Find the marginal p.d.f. of X .

(ii) Find the marginal p.d.f. of Y .

(iii) Find the conditional p.d.f. fX |Y ( j | n), n = 0, 1, . . ..

(iv) Find the conditional p.d.f. fY |X (n | j), j = 0, 1, . . ..

(v) Find E{Y | X = j}, j = 0, 1, . . ..

(vi) Show that E{Y } = E{E{Y | X}}.

1.5.7 Let X be a discrete random variable, X ∈ {0, 1, 2, . . .} with p.d.f.

fX (n) = e−n − e−(n+1), n = 0, 1, . . . .

Consider the partition D = {A1, A2, A3}, where

A1 = {w : X (w) < 2},
A2 = {w : 2 ≤ X (w) < 4},
A3 = {w : 4 ≤ X (w)}.

(i) Find the conditional p.d.f.

fX |D(x | Ai ), i = 1, 2, 3.

(ii) Find the conditional expectations E{X | Ai }, i = 1, 2, 3.

(iii) Specify the random variable E{X | D}.
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1.5.8 For a given λ, 0 < λ < ∞, define the function P( j ; λ) = e−λ

j∑

l=0

λl

l!
.

(i) Show that, for a fixed nonnegative integer j , Fj (x) is a distribution
function, where

Fj (x) =
{

0, if x < 0
1 − P( j − 1; x), if x ≥ 0

and where P( j ; 0) = I { j ≥ 0}.
(ii) Show that Fj (x) is absolutely continuous and find its p.d.f.

(iii) Find E{X} according to Fj (x).

1.5.9 Let X have an absolutely continuous distribution function with p.d.f.

f (x) =
{

3x2, if 0 ≤ x ≤ 1
0, otherwise.

Find E{e−X }.

Section 1.6

1.6.1 Consider the absolutely continuous distribution

F(x) =
⎧
⎨

⎩

0, if x < 0
x, if 0 ≤ x < 1
1, if 1 ≤ x

of a random variable X . By considering the sequences of simple functions

Xn(w) =
n∑

i=1

i − 1

n
I

{
i − 1

n
≤ X (w) <

i

n

}
, n ≥ 1

and

X2
n(w) =

n∑

i=1

(
i − 1

n

)2

I

{
i − 1

n
≤ X (w) <

i

n

}
, n ≥ 1,

show that

lim
n→∞ E{Xn} =

∫ 1

0
xdx = 1

2
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and

lim
n→∞ E{X2

n} =
∫ 1

0
x2dx = 1

3
.

1.6.2 Let X be a random variable having an absolutely continuous distribution F ,
such that F(0) = 0 and F(1) = 1. Let f be the corresponding p.d.f.

(i) Show that the Lebesgue integral

∫ 1

0
x P{dx} = lim

n→∞

2n∑

i=1

i − 1

2n

[
F

(
i

2n

)
− F

(
i − 1

2n

)]
.

(ii) If the p.d.f. f is continuous on (0, 1), then

∫ 1

0
x P{dx} =

∫ 1

0
x f (x)dx,

which is the Riemann integral.

1.6.3 Let X , Y be independent identically distributed random variables and let
E{X} exist. Show that

E{X | X + Y } = E{Y | X + Y } = X + Y

2
a.s.

1.6.4 Let X1, . . . , Xn be i.i.d. random variables and let E{X1} exist. Let Sn =
n∑

j=1

X j . Then, E{X1 | Sn} = Sn

n
, a.s.

1.6.5 Let

FX (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < 0

1

4
, if x = 0

1

4
+ 1

2
x3, if 0 < x < 1

1, if 1 ≤ x .

Find E{X} and E{X2}.
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1.6.6 Let X1, . . . , Xn be Bernoulli random variables with P{Xi = 1} = p. If n =
100, how large should p be so that P{Sn < 100} < 0.1, when Sn =

n∑

i=1

Xi ?

1.6.7 Prove that if E{|X |} < ∞, then, for every A ∈ F ,

E{|X |IA(X )} ≤ E{|X |}.

1.6.8 Prove that if E{|X |} < ∞ and E{|Y |} < ∞, then E{X + Y } = E{X} +
E{Y }.

1.6.9 Let {Xn} be a sequence of i.i.d. random variables with common c.d.f.

F(x) =
{

0, if x < 0
1 − e−x , if x ≥ 0.

Let Sn =
n∑

i=1

Xi .

(i) Use the Borel–Cantelli Lemma to show that lim
n→∞Sn = ∞ a.s.

(ii) What is lim
n→∞E

{
Sn

1 + Sn

}
?

1.6.10 Consider the distribution function F of Example 1.11, with α = .9, λ = .1,
and μ = 1.

(i) Determine the lower quartile, the median, and the upper quartile of
Fac(x).

(ii) Tabulate the values of Fd(x) for x = 0, 1, 2, . . . and determine the lower
quartile, median, and upper quartile of Fd(x).

(iii) Determine the values of the median and the interquartile range IQR of
F(x).

(iv) Determine P{0 < X < 3}.

1.6.11 Consider the Cauchy distribution with p.d.f.

f (x ; μ, σ ) = 1

πσ
· 1

1 + (x − μ)2/σ 2
, −∞ < x < ∞,

with μ = 10 and σ = 2.

(i) Write the formula of the c.d.f. F(x).

(ii) Determine the values of the median and the interquartile range of F(x).

1.6.12 Let X be a random variable having the p.d.f. f (x) = e−x , x ≥ 0. Determine
the p.d.f. and the median of

(i) Y = log X ,

(ii) Y = exp{−X}.
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1.6.13 Let X be a random variable having a p.d.f. f (x) = 1

π
, −π

2
≤ x ≤ π

2
. Deter-

mine the p.d.f. and the median of

(i) Y = sin X ,

(ii) Y = cos X ,

(iii) Y = tan X .

1.6.14 Prove that if E{|X |} < ∞ then

E{X} = −
∫ 0

−∞
F(x)dx +

∫ ∞

0
(1 − F(x))dx .

1.6.15 Apply the result of the previous problem to derive the expected value of a
random variable X having an exponential distribution, i.e.,

F(x) =
{

0, if x < 0
1 − e−λx , if x ≥ 0.

1.6.16 Prove that if F(x) is symmetric around η, i.e.,

F(η − x) = 1 − F(η + x−), for all 0 ≤ x < ∞,

then E{X} = η, provided E{|X |} < ∞.

Section 1.7

1.7.1 Let (X, Y ) be random variables having a joint p.d.f.

fXY (x, y) =
{

1, if −1 < x < 1, 0 < y < 1 − |x |
0, otherwise.

(i) Find the marginal p.d.f. of Y .

(ii) Find the conditional p.d.f. of X given {Y = y}, 0 < y < 1.

1.7.2 Consider random variables {X, Y }. X is a discrete random variable with

jump points {0, 1, 2, . . .}. The marginal p.d.f. of X is fX (x) = e−λ
λx

x!
, x =

0, 1, . . . , 0 < λ < ∞. The conditional distribution of Y given {X = x},
x ≥ 1, is

FY |X (y | x) =
⎧
⎨

⎩

0, y < 0
y/x, 0 ≤ y ≤ x
1, x < y.
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When {X = 0}

FY |X (y | 0) =
{

0, y < 0
1, y ≥ 0.

(i) Find E{Y }.
(ii) Show that the c.d.f. of Y has discontinuity at y = 0, and FY (0) −

FY (0−) = e−λ.

(iii) For each 0 < y < ∞, F ′
Y (y) = fY (y), where

∫ ∞

0
fY (y)dy = 1 − e−λ.

Show that, for y > 0,

fY (y) =
∞∑

n=1

I {n − 1 < y < n}e−λ

∞∑

x=n

1

x
· λx

x!
,

and prove that
∫ ∞

0
fY (y)dy = 1 − e−λ.

(iv) Derive the conditional p.d.f. of X given {Y = y}, 0 < y < ∞, and find
E{X | Y = y}.

1.7.3 Show that if X , Y are independent random variables, E{|X |} < ∞ and
E{|Y | < ∞}, then E{XY } = E{X}E{Y }. More generally, if g, h are inte-
grable, then if X , Y are independent, then

E{g(X )h(Y )} = E{g(X )}E{h(Y )}.

1.7.4 Show that if X , Y are independent, absolutely continuous, with p.d.f. fX

and fY , respectively, then the p.d.f. of T = X + Y is

fT (t) =
∫ ∞

−∞
fX (x) fY (t − x)dx .

[ fT is the convolution of fX and fY .]

Section 1.8

1.8.1 Prove that if E{|X |r } exists, r ≥ 1, then lim
a→∞(a)r P{|X | ≥ a} = 0.

1.8.2 Let X1, X2 be i.i.d. random variables with E{X2
1} < ∞. Find the correlation

between X1 and T = X1 + Xn .

1.8.3 Let X1, . . . , Xn be i.i.d. random variables; find the correlation between X1

and the sample mean X̄n = 1

n

n∑

i=1

Xi .
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1.8.4 Let X have an absolutely continuous distribution with p.d.f.

fX (x) =
⎧
⎨

⎩

0, if x < 0
λm

(m − 1)!
xm−1e−λx , if x ≥ 0

where 0 < λ < ∞ and m is an integer, m ≥ 2.

(i) Derive the m.g.f. of X . What is its domain of convergence?

(ii) Show, by differentiating the m.g.f. M(t), that E{Xr } =
m(m + 1) · · · (m + r − 1)

λr
, r ≥ 1.

(iii) Obtain the first four central moments of X .

(iv) Find the coefficients of skewness β1 and kurtosis β2.

1.8.5 Let X have an absolutely continuous distribution with p.d.f.

fX (x) =
⎧
⎨

⎩

1

b − a
, if a ≤ x ≤ b

0, otherwise.

(i) What is the m.g.f. of X?

(ii) Obtain E{X} and V {X} by differentiating the m.g.f.

1.8.6 Random variables X1, X2, X3 have the covariance matrix

�| =
⎛

⎝
3 0 0
0 2 1
0 1 2

⎞

⎠.

Find the variance of Y = 5x1 − 2x2 + 3x3.

1.8.7 Random variables X1, . . . , Xn have the covariance matrix

�| = I + J,

where J is an n × n matrix of 1s. Find the variance of X̄n = 1

n

n∑

i=1

Xi .

1.8.8 Let X have a p.d.f.

fX (x) = 1√
2π

e− 1
2 x2

, −∞ < x < ∞.

Find the characteristic function φ of X .
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1.8.9 Let X1, . . . , Xn be i.i.d., having a common characteristic function φ. Find

the characteristic function of X̄n = 1

n

n∑

j=1

X j .

1.8.10 If φ is a characteristic function of an absolutely continuous distribution, its
p.d.f. is

f (x) = 1

2π

∫ ∞

−∞
e−i t xφ(t)dt.

Show that the p.d.f. corresponding to

φ(t) =
{

1 − |t |, |t | ≤ 1
0, |t | > 1

is

f (x) = 1 − cos x

πx2
, |x | ≤ π

2
.

1.8.11 Find the m.g.f. of a random variable whose p.d.f. is

fX (x) =
{a − |x |

a2
, if |x | ≤ a

0, if |x | > a,

0 < a < ∞.

1.8.12 Prove that if φ is a characteristic function, then |φ(t)|2 is a characteristic
function.

1.8.13 Prove that if φ is a characteristic function, then

(i) lim
|t |→∞

φ(t) = 0 if X has an absolutely continuous distribution.

(ii) lim sup
|t |→∞

|φ(t)| = 1 if X is discrete.

1.8.14 Let X be a discrete random variable with p.d.f.

f (x) =
{

e−λ
λx

x!
, x = 0, 1, . . .

0, otherwise.

Find the p.g.f. of X .
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Section 1.9

1.9.1 Let Fn , n ≥ 1, be the c.d.f. of a discrete uniform distribution on{
1

n
,

2

n
, . . . , 1

}
. Show that Fn(x)

d−→ F(x), as n → ∞, where

F(x) =
⎧
⎨

⎩

0, if x < 0
x, if 0 ≤ x ≤ 1
1, if 1 < x .

1.9.2 Let B( j ; n, p) denote the c.d.f. of the binomial distribution with p.d.f.

b( j ; n, p) =
(

n
j

)
p j (1 − p)n− j , j = 0, 1, . . . , n,

where 0 < p < 1. Consider the sequence of binomial distributions

Fn(x) = B

(
[x]; n,

1

2n

)
I {0 ≤ x ≤ n} + I {x > n}, n ≥ 1.

What is the weak limit of Fn(x)?

1.9.3 Let X1, X2, . . . , Xn, . . . be i.i.d. random variables such that V {X1} =
σ 2 < ∞, and μ = E{X1}. Use Chebychev’s inequality to prove that X̄n =
1

n

n∑

i=1

Xi
p−→ μ as n → ∞.

1.9.4 Let X1, X2, . . . be a sequence of binary random variables, such that P{Xn =
1} = 1

n
, and P{Xn = 0} = 1 − 1

n
, n ≥ 1.

(i) Show that Xn
r−→ 0 as n → ∞, for any r ≥ 1.

(ii) Show from the definition that Xn
p−→ 0 as n → ∞.

(iii) Show that if {Xn} are independent, then P{Xn = 1, i.o.} = 1. Thus,
Xn 
→ 0 a.s.

1.9.5 Let ε1, ε2, . . . be independent r.v., such that E{εn} = μ and V {εn} = σ 2

for all n ≥ 1. Let X1 = ε1 and for n ≥ 2, let Xn = β Xn−1 + εn , where

−1 < β < 1. Show that X̄n = 1

n

n∑

i=1

Xi
2−→ μ

1 − β
, as n → ∞.

1.9.6 Prove that convergence in the r th mean, for some r > 0 implies convergence
in the sth mean, for all 0 < s < r .
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1.9.7 Let X1, X2, . . . , Xn, . . . be i.i.d. random variables having a common rect-
angular distribution R(0, θ ), 0 < θ < ∞. Let X (n) = max{X1, . . . , Xn}. Let

ε > 0. Show that
∞∑

n=1

Pθ {X (n) < θ − ε} < ∞. Hence, by the Borel–Cantelli

Lemma, X (n)
a.s.−→ θ , as n → ∞. The R(0, θ ) distribution is

Fθ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x < 0
x

θ
, if 0 ≤ x ≤ θ

1, if θ < x

where 0 < θ < ∞.

1.9.8 Show that if Xn
p−→ X and Xn

p−→ Y , then P{w : X (w) 
= Y (w)} = 0.

1.9.9 Let Xn
p−→ X , Yn

p−→ Y , P{w : X (w) 
= Y (w)} = 0. Then, for every
ε > 0,

P{|Xn − Yn| ≥ ε} → 0, as n → ∞.

1.9.10 Show that if Xn
d−→ C as n → ∞, where C is a constant, then Xn

p−→ C .

1.9.11 Let {Xn} be such that, for any p > 0,
∞∑

n=1

E{|Xn|p} < ∞. Show that Xn
a.s.−→

0 as n → ∞.

1.9.12 Let {Xn} be a sequence of i.i.d. random variables. Show that E{|X1|} < ∞
if and only if

∞∑

n=1

P{|X1| > ε · n} < ∞. Show that E |X1| < ∞ if and only

if
Xn

n
a.s.−→ 0.

Section 1.10

1.10.1 Show that if Xn has a p.d.f. fn and X has a p.d.f. g(x) and if
∫

| fn(x) −
g(x)|dx → 0 as n → ∞, then sup

B
|Pn{B} − P{B}| → 0 as n → ∞, for all

Borel sets B. (Ferguson, 1996, p. 12).

1.10.2 Show that if a′Xn
d−→ a′X as n → ∞, for all vectors a, then Xn

d−→ X
(Ferguson, 1996, p. 18).
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1.10.3 Let {Xn} be a sequence of i.i.d. random variables. Let Zn = √
n(X̄n − μ),

n ≥ 1, where μ = E{X1} and X̄n = 1

n

n∑

i=1

Xi . Let V {X1} < ∞. Show that

{Zn} is tight.

1.10.4 Let B(n, p) designate a discrete random variable, having a binomial distri-

bution with parameter (n, p). Show that

{
B

(
n,

1

2n

)}
is tight.

1.10.5 Let P(λ) designate a discrete random variable, which assumes on

{0, 1, 2, . . .} the p.d.f. f (x) = e−λ
λx

x!
, x = 0, 1, . . . , 0 < λ < ∞. Using the

continuity theorem prove that B(n, pn)
d−→ P(λ) if lim

n→∞npn = λ.

1.10.6 Let Xn ∼ B

(
n,

1

2n

)
, n ≥ 1. Compute lim

n→∞E{e−Xn }.

Section 1.11

1.11.1 (Khinchin WLLN). Use the continuity theorem to prove that if X1,

X2, . . . , Xn, . . . are i.i.d. random variables, then X̄n
p−→ μ, where

μ = E{X1}.

1.11.2 (Markov WLLN). Prove that if X1, X2, . . . , Xn, . . . are independent random
variables and if μk = E{Xk} exists, for all k ≥ 1, and E |Xk − μk |1+δ < ∞
for some δ > 0, all k ≥ 1, then

1

n1+δ

n∑

k=1

E |Xk − μk |1+δ → 0 as n → ∞

implies that
1

n

n∑

k=1

(Xk − μk)
p−→ 0 as n → ∞.

1.11.3 Let {Xn} be a sequence of random vectors. Prove that if X̄n
d−→ μ then

X̄n
p−→ μ, where X̄n = 1

n

n∑

j=1

X j and μ = E{X1}.

1.11.4 Let {Xn} be a sequence of i.i.d. random variables having a common p.d.f.

f (x) =
⎧
⎨

⎩

0, if x < 0
λm

(m − 1)!
xm−1e−λx , if x ≥ 0,

where 0 < λ < ∞, m = 1, 2, . . .. Use Cantelli’s Theorem (Theorem 1.11.1)

to prove that X̄n
a.s.−→ m

λ
, as n → ∞.
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1.11.5 Let {Xn} be a sequence of independent random variables where

Xn ∼ R(−n, n)/n

and R(−n, n) is a random variable having a uniform distribution on (−n, n),
i.e.,

fn(x) = 1

2n
1(−n,n)(x).

Show that X̄n
a.s.−→ 0, as n → ∞. [Prove that condition (1.11.6) holds].

1.11.6 Let {Xn} be a sequence of i.i.d. random variables, such that |Xn| ≤ C a.s.,
for all n ≥ 1. Show that X̄n

a.s.−→ μ as n → ∞, where μ = E{X1}.

1.11.7 Let {Xn} be a sequence of independent random variables, such that

P{Xn = ±1} = 1

2

(
1 − 1

2n

)

and

P{Xn = ±n} = 1

2
· 1

2n
, n ≥ 1.

Prove that
1

n

n∑

i=1

Xi
a.s.−→ 0, as n → ∞.

Section 1.12

1.12.1 Let X ∼ P(λ), i.e.,

f (x) = e−λ λx

x!
, x = 0, 1, . . . .

Apply the continuity theorem to show that

X − λ√
λ

d−→ N (0, 1), as λ → ∞.

1.12.2 Let {Xn} be a sequence of i.i.d. discrete random variables, and X1 ∼ P(λ).
Show that

Sn − nλ√
nλ

d−→ N (0, 1), as n → ∞.

What is the relation between problems 1 and 2?
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1.12.3 Let {Xn} be i.i.d., binary random variables, P{Xn = 1} = P{Xn = 0} = 1

2
,

n ≥ 1. Show that

n∑

i=1

i Xi − n(n + 1)

4

Bn

d−→ N (0, 1), as n → ∞,

where B2
n = n(n + 1)(2n + 1)

24
, n ≥ 1.

1.12.4 Consider a sequence {Xn} of independent discrete random variables,

P{Xn = n} = P{Xn = −n} = 1

2
, n ≥ 1. Show that this sequence satisfies

the CLT, in the sense that

√
6 Sn√

n(n + 1)(2n + 1)
d−→ N (0, 1), as n → ∞.

1.12.5 Let {Xn} be a sequence of i.i.d. random variables, having a common abso-
lutely continuous distribution with p.d.f.

f (x) =

⎧
⎪⎨

⎪⎩

1

2|x | log2 |x | , if |x | <
1

e

0, if |x | ≥ 1

e
.

Show that this sequence satisfies the CLT, i.e.,

√
n

X̄n

σ

d−→ N (0, 1), as n → ∞,

where σ 2 = V {X}.

1.12.6 (i) Show that

(G(1, n) − n)√
n

d−→ N (0, 1), as n → ∞

where G(1, n) is an absolutely continuous random variable with a p.d.f.

gn(x) =
⎧
⎨

⎩

0, if x < 0
1

(n − 1)!
xn−1e−x , x ≥ 0.
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(ii) Show that, for large n,

gn(n) = 1

(n − 1)!
nn−1e−n ≈ 1√

2π
√

n
.

Or

n! ≈
√

2π nn+ 1
2 e−n as n → ∞.

This is the famous Stirling approximation.

Section 1.13

1.13.1 Let Xn ∼ R(−n, n), n ≥ 1. Is the sequence {Xn} uniformly integrable?

1.13.2 Let Zn = Xn − n√
n

∼ N (0, 1), n ≥ 1. Show that {Zn} is uniformly integrable.

1.13.3 Let {X1, X2, . . . , Xn, . . .} and {Y1, Y2, . . . , Yn, . . .} be two independent
sequences of i.i.d. random variables. Assume that 0 < V {X1} = σ 2

x <

∞, 0 < V {Y1} = σ 2
y < ∞. Let f (x, y) be a continuous function on R2,

having continuous partial derivatives. Find the limiting distribution of√
n( f (X̄n, Ȳn) − f (ξ, η)), where ξ = E{X1}, η = E{Y1}. In particular, find

the limiting distribution of Rn = X̄n/Ȳn , when η > 0.

1.13.4 We say that X ∼ E(μ), 0 < μ < ∞, if its p.d.f. is

f (x) =
{

0, if x < 0
μe−μx , if x ≥ 0.

Let X1, X2, . . . , Xn, . . . be a sequence of i.i.d. random variables, X1 ∼
E(μ), 0 < μ < ∞. Let X̄n = 1

n

n∑

i=1

Xi .

(a) Compute V {eX̄n } exactly.
(b) Approximate V {eX̄n } by the delta method.

1.13.5 Let {Xn} be i.i.d. Bernoulli random variables, i.e., X1 ∼ B(1, p), 0 < p < 1.

Let p̂n = 1

n

n∑

i=1

Xi and

Wn = log

(
p̂n

1 − p̂n

)
.
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Use the delta method to find an approximation, for large values of n, of

(i) E{Wn}
(ii) V {Wn}.

Find the asymptotic distribution of
√

n

(
Wn − log

(
p

1 − p

))
.

1.13.6 Let X1, X2, . . . , Xn be i.i.d. random variables having a common continuous
distribution function F(x). Let Fn(x) be the empirical distribution function.
Fix a value x0 such that 0 < Fn(x0) < 1.

(i) Show that nFn(x0) ∼ B(n, F(x0)).

(ii) What is the asymptotic distribution of Fn(x0) as n → ∞?

1.13.7 Let X1, X2, . . . , Xn be i.i.d. random variables having a standard Cauchy
distribution. What is the asymptotic distribution of the sample median

F−1
n

(
1

2

)
?

PART IV: SOLUTIONS TO SELECTED PROBLEMS

1.1.5 For n = 2, A1 ∪ A2 = Ā1 ∩ Ā2. By induction on n, assume that
k⋃

i=1

Ai =
k⋂

i=1

Āi for all k = 2, . . . , n. For k = n + 1,

n+1⋃

k=1

Ai =
(

n⋃

i=1

Ai

)
∪ An+1 =

(
n⋃

i=1

Ai

)
∩ Ān+1

=
n⋂

i=1

Āi ∩ Ān+1 =
n+1⋂

i=1

Āi .

1.1.10 We have to prove that

(
lim

n→∞
An

)
⊂
(

lim
n→∞An

)
. For an elementary event

w ∈ S, let

IAn (w) =
{

1, if w ∈ An

0, if w 
∈ An .

Thus, if w ∈ lim
n→∞

An =
∞⋃

n=1

∞⋂

k=n

An , there exists an integer K (w) such that

∞∏

n≥K (w)

IAn (w) = 1.

Accordingly, for all n ≥ 1, w ∈
∞⋃

k=n

Ak . Here w ∈
∞⋂

n=1

∞⋃

k=n

Ak = lim
n→∞An .
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1.1.15 Let {An} be a sequence of disjoint events. For all n ≥ 1, we define

Bn = Bn−1�An

= Bn−1 Ān ∪ B̄n−1 An

and

B1 = A1

B2 = Ā1 A2 ∪ A1 Ā2

B3 = ( Ā1 A2 ∪ A1 Ā2)A3 ∪ ( Ā1 A2 ∪ A1 Ā2) Ā3

= ( Ā1 A2 ∩ A1 Ā2)A3 ∪ Ā1 A2 Ā3 ∪ A1 Ā2 Ā3

= (A1 ∪ Ā2)( Ā1 ∪ A2)A3 ∪ Ā1 A2 Ā3 ∪ A1 Ā2 Ā3

= A1 A2 A3 ∪ Ā1 Ā2 A3 ∪ Ā1 A2 Ā3 ∪ A1 Ā2 Ā3.

By induction on n we prove that, for all n ≥ 2,

Bn =
⎛

⎝
n⋂

j=1

A j

⎞

⎠ ∪
⎛

⎝
n⋃

i=1

Ai

⎛

⎝
⋂

j 
=i

Ā j

⎞

⎠

⎞

⎠ =
n⋃

i=1

Ai .

Hence Bn ⊂ Bn+1 for all n ≥ 1 and lim
n→∞Bn =

∞⋃

n=1

An .

1.2.2 The sample space S = Z, the set of all integers. A is a symmetric set in S, if
A = −A. Let A = {collection of all symmetric sets}. φ ∈ A. If A ∈ A then
Ā ∈ A. Indeed − Ā = −S − (−A) = S − A = Ā. Thus, Ā ∈ A. Moreover,
if A, B ∈ A then A ∪ B ∈ A. Thus, A is an algebra.

1.2.3 S = Z. Let A1 = {generated by symmetric sets}. A2 = {generated by
(−2,−1, i1, . . . , in), n ≥ 1, i j ∈ N ∀ j = 1, . . . , n}. Notice that if A =
(−2,−1, i1, . . . , in) then Ā = {(· · · ,−4,−3, N − (i1, . . . , in))} ∈ A2, and
S = A ∪ Ā1 ∈ A2. A2 is an algebra. A3 = A1 ∩ A2. If B ∈ A3 it must
be symmetric and also B ∈ A2. Thus, B = (−2,−1, 1, 2) or B =
(· · · ,−4,−3, 3, 4, . . .). Thus, B and B̄ are in A3, so S = (B ∪ B̄) ∈ A3

and so is φ. Thus, A is an algebra.
Let A4 = A1 ∪ A2. Let A = {−2,−1, 3, 7} and B = {−3, 3}. Then

A ∪ B = {−3,−2,−1, 3; 7}. But A ∪ B does not belong to A1 neither to
A2. Thus A ∪ B 
∈ A4. A4 is not an algebra.
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1.3.5 The sample space is

S = {(i1, . . . , in−1, 1) :
n−1∑

j=1

i j = 1, n ≥ 2}.

(i) Let En =
⎧
⎨

⎩(i1, . . . , in−1, 1) :
n−1∑

j=1

i j = 1

⎫
⎬

⎭, n = 2, 3, . . .. For j 
= k,

E j ∩ Ek = ∅. Also
∞⋃

n=l

En = S. Thus, D = {E2, E3, . . .} is a count-

able partition of S.

(ii) All elementary events wn = (i1, . . . , in−1, 1) ∈ En are equally probable
and P{wn} = p2qn−2. There are

(n−1
1

) = n − 1 such elementary events
in En . Thus, P{En} = (n − 1)p2qn−2. Moreover,

∞∑

n=2

P{En} = p2
∞∑

n=2

(n − 1)qn−2

= p2
∞∑

l=1

lqk−1 = 1.

Indeed,

∞∑

l=1

lql−1 =
∞∑

l=1

d

dq
ql

= d

dq

(
q

1 − q

)

= 1

(1 − q)2
= 1

p2
.

(iii) The probability that the experiment requires at least 5 trials is the
probability that in the first 4 trials there is at most 1 success, which is
1 − p2(1 + 2q + 3q2).

1.4.6 Let Xn denote the position of the particle after n steps.

(i) If n = 2k, the particle after n steps could be, on the positive side only on
even integers 2, 4, 6, . . . , 2k. If n = 2k + 1, the particle could be after
n steps on the positive side only on an odd integer 1, 3, 5, . . . , 2k + 1.
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Let p be the probability of step to the right (0 < p < 1) and q = 1 − p
of step to the left. If n = 2k + 1,

P{Xn = 2 j + 1} =
(

2 j

j

)
p2k+1− j q j , j = 0, . . . , k.

Thus, if n = 2k + 1,

P{Xn > 0} =
k∑

j=0

(
2 j

j

)
p2k+1− j q j .

In this solution, we assumed that all steps are independent (see Sec-
tion 1.7). If n = 2k the formula can be obtained in a similar manner.

(ii) P{X7 = 1} = (63
)

p4q3. If p = 1

2
, then P{X7 = 1} =

(6
3

)

27
= 0.15625.

(iii) The probability of returning to the origin after n steps is

P{Xn = 0} =
⎧
⎨

⎩

0, if n = 2k + 1(
2k

k

)
pkqk, if n = 2k.

Let An = {Xn = 0}. Then,
∞∑

k=0

P{A2k+1} = 0 and when p = 1

2
,

∞∑

k=0

P{A2k} =
∞∑

k=0

(
2k

k

)
1

22k
=

∞∑

k=0

(2k)!

(k!)2
· 1

4k
= ∞.

Thus, by the Borel–Cantelli Lemma, if p = 1

2
, P{Ani.o.} = 1. On the

other hand, if p 
= 1

2
,

∞∑

k=0

(
2k

k

)
(pq)k = 4pq√

1 − 4pq
(
1 + √

1 − 4pq
) < ∞.

Thus, if p 
= 1

2
, P{Ani.o.} = 0.

1.5.1 F(x) is a discrete distribution with jump points at −∞ < ξ1 < ξ2 < · · · <

∞. pi = d(Fξi ), i = 1, 2, . . .. U (x) = I (x ≥ 0).
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(i) U (x − ξi ) = I (x ≥ ξi )

F(x) =
∑

ξi ≤x

pi =
∞∑

i=1

piU (x − ξi ).

(ii) For h > 0,

DhU (x) = 1

h
[U (x + h) − U (x)].

U (x + h) = 1 if x ≥ −h. Thus,

DhU (x) = 1

h
I (−h ≤ x < 0)

∫ ∞

−∞

∞∑

i=1

pi DhU (x − ξi )dx =
∞∑

i=1

pi
1

h

∫ x−ξi

−h+x−ξi

du =
∞∑

i=1

pi = 1.

(iii) lim
h→0

∫ ∞

−∞

∞∑

i=1

pi g(x)DhU (x − ξi )dx =
∞∑

i=1

pi lim
h↓0

∫ ξi

ξi −h

g(x)

h
dx

=
∞∑

i=1

pi lim
h↓0

G(ξi ) − G(ξi − h)

h
=

∞∑

i=1

pi g(ξi )

Here, G(ξi ) =
∫ ξi

−∞
g(x)dx ;

d

dξi
G(ξi ) = g(ξi ).

1.5.6 The joint p.d.f. of two discrete random variables is

fX,Y ( j, n) = e−λ

j!(n − j)!

(
p

1 − p

) j

(λ(1 − p))n, j = 0, . . . , n n = 0, 1, . . . .

(i) The marginal distribution of X is

fX ( j) =
∞∑

n= j

fX,Y ( j, n)

= p j (λ(1 − p)) j

(1 − p) j j!
e−λ

∞∑

n= j

(λ(1 − p))n− j

(n − j)!

= e−λp (λp) j

j!
e−λ(1−p)

∞∑

n=0

(λ(1 − p))n

n!

= e−λp (λp) j

j!
, j = 0, 1, 2, . . . .
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(ii) The marginal p.d.f. of Y is

fY (n) =
n∑

j=0

pX,Y ( j, n)

= e−λ λn

n!

n∑

j=0

(
n

j

)
p j (1 − p)n− j

= e−λ λn

n!
, n = 0, 1, . . . .

(iii) pX |Y ( j | n) = fX,Y ( j, n)

fY (n)
=
(

n

j

)
p j (1 − p)n− j , j = 0, . . . , n.

(iv) pY |X (n | j) = fX,Y ( j, n)

fX ( j)

= e−λ(1−p) (λ(1 − p))n− j

(n − j)!
, n ≥ j.

(v) E(Y | X = j) = j + λ(1 − p).

(vi) E{Y } = E{E{Y | X}} = λ(1 − p) + E{X}
= λ(1 − p) + λp = λ.

1.5.8 Fj (x) =
{

0, if x < 0
1 − P( j − 1; x), if x ≥ 0,

where j ≥ 1, and P( j − 1; x) = e−x
j−1∑

i=0

xi

x!
.

(i) We have to show that, for each j ≥ 1, Fj (x) is a c.d.f.

(i) 0 ≤ Fj (x) ≤ 1 for all 0 ≤ x < ∞.

(ii) Fj (0) = 0 and lim
x→∞Fj (x) = 1.

(iii) We show now that Fj (x) is strictly increasing in x . Indeed, for all
x > 0

d

dx
Fj (x) = −

j−1∑

i=0

d

dx

(
e−x xi

i!

)

= e−x +
j−1∑

i=1

(
e−x xi

i!
− e−x xi−1

(i − 1)!

)

= e−x x j−1

( j − 1)!
> 0, for all 0 < x < ∞.
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(ii) The density of Fj (x) is

f j (x) = x j−1

( j − 1)!
e−x , j ≥ 1, x ≥ 0.

Fj (x) is absolutely continuous.

(iii) E j {X} =
∫ ∞

0

x j

( j − 1)!
e−x dx

= j
∫ ∞

0

x j

j!
e−x dx = j.

1.6.3 X , Y are independent and identically distributed, E |X | < ∞.

E{X | X + Y } + E{Y | X + Y } = X + Y

E{X | X + Y } = E{Y | X + Y } = X + Y

2
.

1.6.9 F(x) =
{

0, x < 0
1 − e−x , x ≥ 0.

(i) Let An = {Xn > 1}. The events An , n ≥ 1, are independent. Also

P{An} = e−1. Hence,
∞∑

n=1

P{An} = ∞. Thus, by the Borel–Cantelli

Lemma, P{Ani.o.} = 1. That is, P
(

lim
n→∞Sn = ∞

)
= 1.

(ii)
Sn

1 + Sn
≥ 0. This random variable is bounded by 1. Thus, by the Dom-

inated Convergence Theorem, lim
n→∞E

{
Sn

1 + Sn

}
= E

{
lim

n→∞
Sn

1 + Sn

}

= 1.

1.8.4 fX (x) =
⎧
⎨

⎩

0, if x < 0
λm

(m − 1)!
xm−1e−λx , x ≥ 0; m ≥ 2.

(i) The m.g.f. of X is

M(t) = λm

(m − 1)!

∫ ∞

0
e−x(λ−t)xm−1dx

= λm

(λ − t)m
=
(

1 − t

λ

)−m

, for t < λ.
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The domain of convergence is (−∞, λ).

(ii) M ′(t) = m

λ

(
1 − t

λ

)−m−1

M ′′(t) = m(m + 1)

λ2

(
1 − t

λ

)−(m+2)

...

M (r )(t) = m(m + 1) · · · (m + r − 1)

λr

(
1 − t

λ

)−(m+r )

.

Thus, μr = M (r )(t)
∣∣
t=0 = m(m + 1) · · · (m + r − 1)

λr
r ≥ 1.

(iii) μ1 = m

λ

μ2 = m(m + 1)

λ2

μ3 = m(m + 1)(m + 2)

λ3

μ4 = m(m + 1)(m + 2)(m + 3)

λ4
.

The central moments are

μ∗
1 = 0

μ∗
2 = μ2 − μ2

1 = m

λ2

μ∗
3 = μ3 − 3μ2μ1 + 2μ3

1

= 1

λ3
(m(m + 1)(m + 2) − 3m2(m + 1) + 2m3)

= 2m

λ3

μ∗
4 = μ4 − 4μ3μ1 + 6μ2μ

2
1 − 3μ4

1

= 1

λ4
(m(m + 1)(m + 2)(m + 3) − 4m2(m + 1)(m + 2)

+ 6m3(m + 1) − 3m4)

= 3m(m + 2)

λ4
.

(iv) β1 = 2m

m3/2
= 2√

m
; β2 = 3m(m + 2)

m2
= 3 + 6

m
.
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1.8.11 The m.g.f. is

MX (t) = 1

a2

∫ a

−a
etx (a − |x |)dx

= 2(cosh(at) − 1)

a2t2

= 1 + 1

12
(at)2 + o(t), as t → 0.

1.9.1 Fn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < 0
j

n
,

j

n
≤ x <

j + 1

n
, j = 0, . . . , n − 1

1, 1 ≤ x .

F(x) =
⎧
⎨

⎩

0, x < 0
x, 0 < x < 1
1, 1 ≤ x .

All points −∞ < x < ∞ are continuity points of F(x). lim
n→∞Fn(x) = F(x),

for all x < 0 or x > 1. |Fn(x) − F(x)| ≤ 1

n
for all 0 ≤ x ≤ 1. Thus

Fn(x)
w−→ F(x), as n → ∞.

1.9.4 Xn =

⎧
⎪⎪⎨

⎪⎪⎩

0, w.p.

(
1 − 1

n

)

1, w.p.
1

n

, n ≥ 1.

(i) E{|Xn|r } = 1

n
1 = 1

n
for all r > 0. Thus, Xn

r−→
n→∞ 0, for all r > 0.

(ii) P{|Xn| > ε} = 1

n
for all n ≥ 1, any ε > 0. Thus, Xn

p−→
n→∞ 0.

(iii) Let An = {w : Xn(w) = 1}; P{An} = 1

n
, n ≥ 0.

∞∑

n=1

1

n
= ∞. Since

X1, X2, . . . are independent, by Borel–Cantelli’s Lemma, P{Xn =
1, i.o.} = 1. Thus Xn 
→ 0 a.s.

1.9.5 ε1, ε2, · · · independent r.v.s, such that E(εn) = μ, and V {εn} = σ 2. ∀n ≥ 1.

X1 = ε1,

Xn = β Xn−1 + εn = β(β Xn−2 + εn−1) + εn

= · · · =
n∑

j=1

βn− jε j , ∀n ≥ 1, |β| < 1.
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Thus, E{Xn} = μ

n−1∑

j=0

β j −→
n→∞

μ

1 − β
.

X̄n = 1

n

n∑

i=1

i∑

j=1

β i− jε j

= 1

n

n∑

j=1

ε j

n∑

i= j

β i− j

= 1

n

n∑

j=1

ε j
1 − βn− j+1

1 − β
.

Since {εn} are independent,

V {X̄n} = σ 2

n2(1 − β)2

n∑

j=1

(1 − βn− j+1)2

= σ 2

n(1 − β)2

(
1 − 2

β(1 − βn+1)

n(1 − β)
+ β2(1 − β2n+1)

n(1 − β2)

)
→0 as n → ∞.

Furthermore,

E

{(
X̄n − μ

1 − β

)2
}

= V {X̄n} +
(

E{X̄n} − μ

1 − β

)2

(
E{X̄n} − μ

1 − β

)2

= μ2

n2(1 − β)2
(1 − βn+1)2 → 0 as n → ∞.

Hence, X̄n
2−→ μ

1 − β
.

1.9.7 X1, X2, . . . i.i.d. distributed like R(0, θ ). Xn = max
1≤i≤n

(Xi ). Due to indepen-

dence,

Fn(x) = P{X (n) ≤ x} =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < 0
( x

θ

)n
, 0 ≤ x < θ

1, θ ≤ x .
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Accordingly, P{X (n) < θ − ε} =
(

1 − ε

θ

)n
, 0 < ε < θ . Thus,

∞∑

n=1

P{X (n) ≤ θ − ε} < ∞, and P{X (n) ≤ θ − ε, i.o.} = 0. Hence,

X (n) → θ a.s.

1.10.2 We are given that a′Xn
d−→ a′ X for all a. Consider the m.g.f.s, by conti-

nuity theorem Ma′Xn (t) = E{eta′Xn } → E{eta=X}, for all t in the domain of

convergence. Thus E{e(ta)′Xn } → E{e(ta)′X} for all β = ta. Thus, X̄n
d−→ X.

1.10.6 Xn ∼ B

(
n,

1

n

)

E{e−Xn } =
(

1

n
e−1 + 1 − 1

n

)n

=
(

1 − 1

n
(1 − e−1)

)n

−→
n→∞ e−(1−e−1).

Thus, lim
n→∞MXn (−1) = Mx (−1), where X ∼ P(1).

1.11.1 (i) MX̄n
(t) =

(
MX

(
t

n

))n

=
(

E
{

e
t
n X
})n

=
(

1 + t

n
E{X} + o

(
1

n

))n

=
(

1 + t

n
μ + o

(
1

n

))n

−→
n→∞ etμ, ∀t.

etμ is the m.g.f. of the distribution

F(x) =
{

0, x < μ

1, x ≥ μ.

Thus, by the continuity theorem, X̄n
d−→ μ and, therefore, X̄n

p−→ μ,
as n → ∞.

1.11.5 {Xn} are independent. For δ > 0,

Xn ∼ R(−n, n)/n.
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The expected values are E{Xn} = 0 ∀n ≥ 1.

σ 2
n = 4n2

12n2
= 1

3
∞∑

n=1

σ 2
n

n2
< ∞.

Hence, by (1.11.6), X̄n
a.s.−→ 0.

1.12.1 M X−λ√
λ

= E
{

et( X−λ√
λ

)
}

= e−√
λt−λ(1−et/

√
λ).

1 − exp{t/
√

λ} = 1 −
(

1 + t√
λ

+ t2

2λ
+ · · ·

)

= − t√
λ

− t2

2λ
+ · · · .

Thus,

√
λt − λ(1 − et

√
λ) = t2

2
+ O

(
1√
λ

)
.

Hence,

M X−λ√
λ

(t) = exp

{
t2

2
+ O

(
1√
λ

)}
→ et2/2 as λ → ∞.

MZ (t) = et2/2 is the m.g.f. of N (0, 1).

1.12.3 P(Xn = 1) = 1

2
,

P(Xn = 0) = 1

2
,

E{Xn} = 1

2
.
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Let Yn = nXn; E{Yn} = n

2
, E |Yn|3 = n3

2
. Notice that

n∑

i=1

i Xi − n(n + 1)

4
=

n∑

i=1

(Yi − μi ), where μi = i

2
= E{Yi }. E |Yi − μi |3 = i3

8
. Accordingly,

n∑

i=1

E{|Yi − μi |3}
n∑

i=1

E{(Yi − μi )
2}3/2

=
1

4
n2(n + 1)2

(
1

24
n(n + 1)(2n + 1)

)3/2 → 0 as n → ∞.

Thus, by Lyapunov’s Theorem,

n∑

i=1

i Xi − n(n + 1)

4
(

1

24
n(n + 1)(2n + 1)

)1/2

d−→ N (0, 1) as n → ∞.

1.13.5 {Xn} i.i.d. B(1, p), 0 < p < 1.

p̂n = 1

n

∑
Xi

Wn = log
p̂n

(1 − p̂n)
.

(i) E{Wn} ∼= log
p

1 − p
+ 1

2n
p(1 − p)W ′′(p)

W ′(p) = (1 − p)(1 − p + p)

p(1 − p)2
= 1

p(1 − p)

W ′′(p) = − (1 − 2p)

p2(1 − p)2
.

Thus,

E{Wn} ∼= log

(
p

1 − p

)
− 1 − 2p

2np(1 − p)
.

(ii) V {Wn} ∼= p(1 − p)

n
· 1

(p(1 − p))2

= 1

np(1 − p)
.


