
1

The word Android is used correctly in many contexts. Although the word still 

can refer to a humanoid robot, Android has come to mean much more than

that in the last decade. In the mobile space, it refers to a company, an operating 

system, an open source project, and a development community. Some people 

even call mobile devices Androids. In short, an entire ecosystem surrounds the 

now wildly popular mobile operating system.

This chapter looks closely at the composition and health of the Android 

ecosystem. First you fi nd out how Android became what it is today. Then the 

chapter breaks down the ecosystem stakeholders into groups in order to help 

you understand their roles and motivations. Finally, the chapter discusses the 

complex relationships within the ecosystem that give rise to several important 

issues that affect security.

Understanding Android’s Roots

Android did not become the world’s most popular mobile operating system 

overnight. The last decade has been a long journey with many bumps in the 

road. This section recounts how Android became what it is today and begins 

looking at what makes the Android ecosystem tick.

C H A P T E R 

1

Looking at the Ecosystemcosystem

CO
PYRIG

HTED
 M

ATERIA
L



2 Chapter 1 ■ Looking at the Ecosystem

Company History

Android began as Android, Inc., a company founded by Andy Rubin, Chris 

White, Nick Sears, and Rich Miner in October 2003. They focused on creating 

mobile devices that were able to take into account location information and 

user preferences. After successfully navigating market demand and fi nancial 

diffi culties, Google acquired Android, Inc., in August 2005. During the period 

following, Google began building partnerships with hardware, software, and 

telecommunications companies with the intent of entering the mobile market.

In November 2007, the Open Handset Alliance (OHA) was announced. This 

consortium of companies, which included 34 founding members led by Google, 

shares a commitment to openness. In addition, it aims to accelerate mobile plat-

form innovation and offer consumers a richer, less expensive, and better mobile 

experience. The OHA has since grown to 84 members at the time this book was 

published. Members represent all parts of the mobile ecosystem, including 

mobile operators, handset manufacturers, semiconductor companies, software 

companies, and more. You can fi nd the full list of members on the OHA website 

at www.openhandsetalliance.com/oha_members.html.

With the OHA in place, Google announced its fi rst mobile product, Android. 

However, Google still did not bring any devices running Android to the market. 

Finally, after a total of fi ve years, Android was made available to the general

public in October 2008. The release of the fi rst publicly available Android phone, 

the HTC G1, marked the beginning of an era.

Version History

Before the fi rst commercial version of Android, the operating system had Alpha 

and Beta releases. The Alpha releases where available only to Google and OHA 

members, and they were codenamed after popular robots Astro Boy, yy Bender, andrr
R2-D2. Android Beta was released on November 5, 2007, which is the date that 

is popularly considered the Android birthday.

The fi rst commercial version, version 1.0, was released on September 23, 2008, 

and the next release, version 1.1, was available on February 9, 2009. Those were 

the only two releases that did not have a naming convention for their codename. 

Starting with Android 1.5, which was released on April 30, 2009, the major ver-

sions’ code names were ordered alphabetically with the names of tasty treats. 

Version 1.5 was code named Cupcake. Figure 1-1 shows all commercial Android

versions, with their respective release dates and code names.



 Chapter 1 ■ Looking at the Ecosystem 3

Figure 1-1: Android releases



4 Chapter 1 ■ Looking at the Ecosystem

In the same way that Android releases are code-named, individual builds are 

identifi ed with a short build code, as explained on the Code Names, Tags, and 

Build Numbers page at http://source.android.com/source/build-numbers

.html. For example, take the build number JOP40D. The fi rst letter represents the 

code name of the Android release (J is Jelly Bean). The second letter identifi es 

the code branch from which the build was made, though its precise meaning 

varies from one build to the next. The third letter and subsequent two digits 

comprise a date code. The letter represents the quarter, starting from A, which 

means the fi rst quarter of 2009. In the example, P represents the fourth quarter 

of 2012. The two digits signify days from the start of the quarter. In the example, 

P40 is November 10, 2012. The fi nal letter differentiates individual versions 

for the same date, again starting with A. The fi rst builds for a particular date, 

signifi ed with A, don’t usually use this letter.

Examining the Device Pool

As Android has grown, so has the number of devices based on the operating 

system. In the past few years, Android has been slowly branching out from the 

typical smartphone and tablet market, fi nding its way into the most unlikely 

of places. Devices such as smart watches, television accessories, game consoles, 

ovens, satellites sent to space, and the new Google Glass (a wearable device with 

a head-mounted display) are powered by Android. The automotive industry is 

beginning to use Android as an infotainment platform in vehicles. The operat-

ing system is also beginning to make a strong foothold in the embedded Linux 

space as an appealing alternative for embedded developers. All of these facts 

make the Android device pool an extremely diverse place.

You can obtain Android devices from many retail outlets worldwide. Currently, 

most mobile subscribers get subsidized devices through their mobile carriers. 

Carriers provide these subsidies under the terms of a contract for voice and 

data services. Those who do not want to be tied to a carrier can also purchase 

Android devices in consumer electronics stores or online. In some countries, 

Google sells their Nexus line of Android devices in their online store, Google Play.

Google Nexus

Nexus devices are Google’s fl agship line of devices, consisting mostly of smart-

phones and tablets. Each device is produced by a different original equipment 

manufacturer (OEM) in a close partnership with Google. They are sold SIM-

unlocked, which makes switching carriers and traveling easy, through Google 

Play directly by Google. To date, Google has worked in cooperation with HTC, 



 Chapter 1 ■ Looking at the Ecosystem 5

Samsung, LG, and ASUS to create Nexus smartphones and tablets. Figure 1-2 

shows some of the Nexus devices released in recent years.

Figure 1-2: Google Nexus devices

Nexus devices are meant to be the reference platform for new Android 

versions. As such, Nexus devices are updated directly by Google soon after 

a new Android version is released. These devices serve as an open platform 

for developers. They have unlockable boot loaders that allow fl ashing custom 

Android builds and are supported by the Android Open Source Project (AOSP).

Google also provides factory images, which are binary fi rmware images that can

be fl ashed to return the device to the original, unmodifi ed state.

Another benefi t of Nexus devices is that they offer what is commonly referred 

to as a pure Google experience. This means that the user interface has not been 

modifi ed. Instead, these devices offer the stock interface found in vanilla Android 

as compiled from AOSP. This also includes Google’s proprietary apps such as 

Google Now, Gmail, Google Play, Google Drive, Hangouts, and more.

Market Share

Smartphone market share statistics vary from one source to another. Some 

sources include ComScore, Kantar, IDC, and Strategy Analytics. An over-

all look at the data from these sources shows that Android’s market share is 

on the rise in a large proportion of countries. According to a report released 

by Goldman Sachs, Android was the number one player in the entire global 

computing market at the end of 2012. StatCounter’s GlobalStats, available at 

http://gs.statcounter.com/, show that Android is currently the number one 

player in the mobile operating system market, with 41.3 percent worldwide as 



6 Chapter 1 ■ Looking at the Ecosystem

of November 2013. Despite these small variations, all sources seem to agree that 

Android is the dominating mobile operating system.

Release Adoption

Not all Android devices run the same Android version. Google regularly pub-

lishes a dashboard showing the relative percentage of devices running a given 

version of Android. This information is based on statistics gathered from visits 

to Google Play, which is present on all approved devices. The most up-to-date 

version of this dashboard is available at http://developer.android.com/about/

dashboards/. Additionally, Wikipedia contains a chart showing dashboard 

data aggregated over time. Figure 1-3 depicts the chart as of this writing, which 

includes data from December 2009 to February 2013. 

Figure 1-3: Android historical version distribution

Source: fjmustak (Creative Commons Attribution-Share Alike 3.0 Unported license)http://
en.wikipedia.org/wiki/File:Android_historical_version_
distribution.png

As shown, new versions of Android have a relatively slow adoption rate. It 

takes in excess of one year to get a new version running on 90 percent of devices. 

You can read more about this issue and other challenges facing Android in the 

“Grasping Ecosystem Complexities” section later in this chapter.



 Chapter 1 ■ Looking at the Ecosystem 7

Open Source, Mostly

AOSP is the manifestation of Google and the OHA members’ commitment to 

openness. At its foundation, the Android operating system is built upon many 

different open source components. This includes numerous libraries, the Linux 

kernel, a complete user interface, applications, and more. All of these software 

components have an Open Source Initiative (OSI)–approved license. Most of the 

Android source is released under version 2.0 of the Apache Software License 

that you can fi nd at apache.org/licenses/LICENSE-2.0. Some outliers do exist, 

mainly consisting on upstream projects, which are external open source projects

on which Android depends. Two examples are the Linux kernel code that is 

licensed under GPLv2 and the WebKit project that uses a BSD-style license. 

The AOSP source repository brings all of these projects together in one place.

Although the vast majority of the Android stack is open source, the resulting 

consumer devices contain several closed source software components. Even 

devices from Google’s fl agship Nexus line contain code that ships as propri-

etary binary blobs. Examples include boot loaders, peripheral fi rmware, radio 

components, digital rights management (DRM) software, and applications. 

Many of these remain closed source in an effort to protect intellectual property. 

However, keeping them closed source hinders interoperability, making com-

munity porting efforts more challenging.

Further, many open source enthusiasts trying to work with the code fi nd that 

Android isn’t fully developed in the open. Evidence shows that Google develops 

Android largely in secret. Code changes are not made available to the public 

immediately after they are made. Instead, open source releases accompany new 

version releases. Unfortunately, several times the open source code was not made 

available at release time. In fact, the source code for Android Honeycomb (3.0) 

was not made available until the source code for Ice Cream Sandwich (4.0) was 

released. In turn, the Ice Cream Sandwich source code wasn’t released until 

almost a month after the offi cial release date. Events like these detract from 

the spirit of open source software, which goes against two of Android’s stated 

goals: innovation and openness.

Understanding Android Stakeholders

Understanding exactly who has a stake in the Android ecosystem is important. 

Not only does it provide perspective, but it also allows one to understand who 

is responsible for developing the code that supports various components. This 

section walks through the main groups of stakeholders involved, including 

Google, hardware vendors, carriers, developers, users, and security researchers. 



8 Chapter 1 ■ Looking at the Ecosystem

This section explores each stakeholder’s purpose and motivations, and it exam-

ines how the stakeholders relate to each other.

Each group is from a different fi eld of industry and serves a particular pur-

pose in the ecosystem. Google, having given birth to Android, develops the 

core operating system and manages the Android brand. Hardware fabricators 

make the underlying hardware components and peripherals. OEMs make the 

end-user devices and manage the integration of the various components that 

make a device work. Carriers provide voice and data access for mobile devices. A 

vast pool of developers, including those who are employed by members of other 

groups, work on a multitude of projects that come together to form Android.

Figure 1-4 shows the relationships between the main groups of ecosystem 

stakeholders.

Google All levels

All levels

Kernel, Radio

Apps, boot loader
and radio reqs

OEMs

Carriers

System-on-Chip
Manufacturers

Consumers

Figure 1-4: Ecosystem relationships 

These relationships indicate who talks to who when creating or updating 

an Android device. As the fi gure clearly shows, the Android ecosystem is very 

complex. Such business relationships are diffi cult to manage and lead to a variety 

of complexities that are covered later in this chapter. Before getting into those 

issues, it’s time to discuss each group in more detail.

Google

As the company that brought Android to market, Google has several key 

roles in the ecosystem. Its responsibilities include legal administration, brand 



Chapter 1 ■ Looking at the Ecosystem 9

management, infrastructure management, in-house development, and enabling 

outside development. Also, Google builds its line of Nexus devices in close 

cooperation with its partners. In doing so, it strikes the business deals necessary 

to make sure that great devices running Android actually make it to market. 

Google’s ability to execute on all of these tasks well is what makes Android 

appealing to consumers. 

First and foremost, Google owns and manages the Android brand. OEMs can-

not legally brand their devices as Android devices or provide access to Google 

Play unless the devices meet Google’s compatibility requirements. (The details 

of these requirements are covered in more depth in the “Compatibility” section 

later in this chapter.) Because Android is open source, compatibility enforce-

ment is one of the few ways that Google can infl uence what other stakeholders 

can do with Android. Without it, Google would be largely powerless to prevent 

the Android brand from being tarnished by a haphazard or malicious partner.

The next role of Google relates to the software and hardware infrastructure 

needed to support Android devices. Services that support apps such as Gmail, 

Calendar, Contacts, and more are all run by Google. Also, Google runs Google 

Play, which includes rich media content delivery in the form of books, maga-

zines, movies, and music. Delivering such content requires licensing agreements 

with distribution companies all over the world. Additionally, Google runs the 

physical servers behind these services in their own data centers, and the com-

pany provides several crucial services to the AOSP, such as hosting the AOSP 

sources, factory image downloads, binary driver downloads, an issue tracker, 

and the Gerrit code review tool.

Google oversees the development of the core Android platform. Internally, it 

treats the Android project as a full-scale product development operation. The 

software developed inside Google includes the operating system core, a suite 

of core apps, and several optional non-core apps. As mentioned previously, 

Google develops innovations and enhancements for future Android versions in 

secret. Google engineers use an internal development tree that is not visible to 

device manufacturers, carriers, or third-party developers. When Google decides 

its software is ready for release, it publishes factory images, source code, and 

application programming interface (API) documentation simultaneously. It also 

pushes updates out via over-the-air (OTA) distribution channels. After a release 

is in AOSP, everyone can clone it and start their work building their version of 

the latest release. Separating development in this fashion enables developers 

and device manufacturers to focus on a single version without having to track 

the unfi nished work of Google’s internal teams. As true as this may be, closed 

development detracts from the credence of AOSP as an open source project.

Yet another role for Google lies in fostering an open development community 

that uses Android as a platform. Google provides third-party developers with 



10 Chapter 10 ■ Looking at the Ecosystem

development kits, API documentation, source code, style guidance, and more. 

All of these efforts help create a cohesive and consistent experience across mul-

tiple third-party applications.

By fulfi lling these roles, Google ensures the vitality of the Android as a brand, 

a platform, and an open source project.

Hardware Vendors

The purpose of an operating system is to provide services to applications and 

manage hardware connected to the device. After all, without hardware the 

Android operating system software wouldn’t serve much purpose. The hardware 

of today’s smartphones is very complex. With such a small form factor and lots 

of peripherals, supporting the necessary hardware is quite an undertaking. In 

order to take a closer look at the stakeholders in this group, the following sec-

tions break down hardware vendors into three subgroups that manufacture 

central processing units (CPUs), System-on-Chip (SoC), and devices, respectively.

CPU Manufacturers

Although Android applications are processor agnostic, native binaries are 

not. Instead, native binaries are compiled for the specifi c processor used by a 

particular device. Android is based on the Linux kernel, which is portable and 

supports a multitude of processor architectures. Similarly, Android’s Native
Development Kit (NDK) includes tools for developing user-space native code 

for all application processor architectures supported by Android. This includes 

ARM, Intel x86, and MIPS.

Due to its low power consumption, the ARM architecture has become the 

most widely used architecture in mobile devices. Unlike other microprocessor 

corporations that manufacture their own CPUs, ARM Holdings only licenses 

its technology as intellectual property. ARM offers several microprocessor core 

designs, including the ARM11, Cortex-A8, Cortex-A9, and Cortex-A15. The designs 

usually found on Android devices today feature the ARMv7 instruction set.

In 2011, Intel and Google announced a partnership to provide support for 

Intel processors in Android. The Medfi eld platform, which features an Atom 

processor, was the fi rst Intel-based platform supported by Android. Also, Intel 

launched the Android on Intel Architecture (Android-IA) project. This project is 

based on AOSP and provides code for enabling Android on Intel processors. The 

Android-IA website at https://01.org/android-ia/ is targeted at system and

platform developers whereas the Intel Android Developer website at http://

software.intel.com/en-us/android/ is targeted at application developers. 

Some Intel-based smartphones currently on the market include an Intel pro-

prietary binary translator named libhoudini. This translator allows running 

applications built for ARM processors on Intel-based devices.



 Chapter 1 ■ Looking at the Ecosystem 11

MIPS Technologies offers licenses to its MIPS architecture and microprocessor 

core designs. In 2009, MIPS Technologies ported Google’s Android operating 

system to the MIPS processor architecture. Since then, several device manu-

facturers have launched Android devices running on MIPS processors. This is 

especially true for set-top boxes, media players, and tablets. MIPS Technologies 

offers source code for its Android port, as well as other development resources, 

at http://www.imgtec.com/mips/developers/mips-android.asp.

System-on-Chip Manufacturers

System-on-Chip (SoC) is the name given to a single piece of silicon that includes

the CPU core, along with a graphics processing unit (GPU), random access 

memory (RAM), input/output (I/O) logic, and sometimes more. For example, 

many SoCs used in smartphones include a baseband processor. Currently, most 

SoCs used in the mobile industry include more than one CPU core. Combining 

the components on a single chip reduces manufacturing costs and decreases 

power consumption, ultimately leading to smaller and more effi cient devices.

As mentioned previously, ARM-based devices dominate the Android device 

pool. Within ARM devices, there are four main SoC families in use: OMAP from 

Texas Instruments, Tegra from nVidia, Exynos from Samsung, and Snapdragon 

from Qualcomm. These SoC manufacturers license the CPU core design from 

ARM Holdings. You can fi nd a full list of licensees on ARM’s website at www.arm.

com/products/processors/licensees.php. With the exception of Qualcomm,

SoC manufacturers use ARM’s designs without modifi cation. Qualcomm invests 

additional effort to optimize for lower power consumption, higher performance, 

and better heat dissipation.

Each SoC has different components integrated into it and therefore requires 

different support in the Linux kernel. As a result, development for each SoC is 

tracked separately in a Git repository specifi c to that SoC. Each tree includes 

SoC-specifi c code including drivers and confi gurations. On several occasions, 

this separation has led to vulnerabilities being introduced into only a subset 

of the SoC-specifi c kernel source repositories. This situation contributes to 

one of the key complexities in the Android ecosystem, which is discussed 

further in the “Grasping Ecosystem Complexities” section later in this chapter.

Device Manufacturers

Device manufacturers, including original design manufacturers (ODMs) and 

OEMs, design and build the products used by consumers. They decide which 

combination of hardware and software will make it into the fi nal unit and take 

care of all of the necessary integration. They choose the hardware components 

that will be combined together, the device form factor, screen size, materials, 

battery, camera lens, sensors, radios, and so on. Usually device manufacturers 



12 Chapter 1 ■ Looking at the Ecosystem

partner up with a SoC manufacturer for a whole line of products. Most choices

made when creating a new device relate directly to market differentiation, 

targeting a particular customer segment, or building brand loyalty.

While developing new products, device manufacturers have to adapt the

Android platform to work well on its new hardware. This task includes adding 

new kernel device drivers, proprietary bits, and user-space libraries. Further, 

OEMs often make custom modifi cations to Android, especially in the Android 

Framework. To comply with the GPLv2 license of the Android kernel, OEMs are 

forced to release kernel sources. However, the Android Framework is licensed 

under the Apache 2.0 License, which allows modifi cations to be redistributed 

in binary form without having to release the source code. This is where most 

vendors try to put their innovations to differentiate their devices from others. For 

example, the Sense and Touchwiz user interface modifi cations made by HTC and

Samsung are implemented primarily in the Android Framework. Such modi-

fi cations are a point of contention because they contribute to several complex, 

security-related problems in the ecosystem. For example, customizations may 

introduce new security issues. You can read more about these complexities in 

the “Grasping Ecosystem Complexities” section, later in this chapter.

Carriers

Aside from providing mobile voice and data services, carriers close deals with 

device manufacturers to subsidize phones to their clients. The phones obtained

through a carrier usually have a carrier-customized software build. These builds 

tend to have the carrier logo in the boot screen, preconfi gured Access Point Name 

(APN) network settings, changes in the default browser home page and browser 

bookmarks, and a lot of pre-loaded applications. Most of the time these changes 

are embedded into the system partition so that they cannot be removed easily.

In addition to adding customization to the device’s fi rmware, carriers also have 

their own quality assurance (QA) testing procedures in place. These QA processes 

are reported to be lengthy and contribute to the slow uptake of software updates. 

It is very common to see an OEM patch a security hole in the operating system 

for its unbranded device while the carrier-branded device remains vulnerable 

for much longer. It’s not until the update is ready to be distributed to the car-

rier devices that subsidized users are updated. After they have been available 

for some time, usually around 12 to 18 months, devices are discontinued. Some 

devices are discontinued much more quickly—in a few cases even immediately 

after release. After that point, any users still using such a device will no longer 

receive updates, regardless of whether they are security related or not.



Chapter 1 ■ Looking at the Ecosystem 13

Developers

As an open source operating system, Android is an ideal platform for 

developers to play with. Google engineers are not the only people contributing 

code to the Android platform. There are a lot of individual developers and enti-

ties who contribute to AOSP on their own behalf. Every contribution to AOSP 

(coming either from Google or from a third party) has to use the same code style 

and be processed through Google’s source code review system, Gerrit. During

the code review process, someone from Google decides whether to include or 

exclude the changes.

Not all developers in the Android ecosystem build components for the operat-

ing system itself. A huge portion of developers in the ecosystem are application 

developers. They use the provided software development kits (SDKs), frameworks, 

and APIs to build apps that enable end users to achieve their goals. Whether 

these goals are productivity, entertainment, or otherwise, app developers aim 

to meet the needs of their user base.

In the end, developers are driven by popularity, reputation, and proceeds. 

App markets in the Android ecosystem offer developers incentives in the form of 

revenue sharing. For example, advertisement networks pay developers for plac-

ing ads in their applications. In order to maximize their profi ts, app developers 

try to become extremely popular while maintaining an upstanding reputation. 

Having a good reputation, in turn, drives increased popularity.

Custom ROMs

The same way manufacturers introduce their own modifi cations to the Android 

platform, there are other custom fi rmware projects (typically called ROMs) devel-

oped by communities of enthusiasts around the world. One of the most popular 

Android custom fi rmware projects is CyanogenMod. With 9.5 million active installs

in December 2013, it is developed based on the offi cial releases of Android with 

additional original and third-party code. These community-modifi ed versions of 

Android usually include performance tweaks, interface enhancements, features, 

and options that are typically not found in the offi cial fi rmware distributed with 

the device. Unfortunately, they often undergo less extensive testing and quality 

assurance. Further, similar to the situation with OEMs, modifi cations made in 

custom ROMs may introduce additional security issues.

Historically, device manufacturers and mobile carriers have been unsup-

portive of third-party fi rmware development. To prevent users from using 

custom ROMs, they place technical obstacles such as locked boot loaders or 



14 Chapter 14 ■ Looking at the Ecosystem

NAND locks. However, custom ROMs have grown more popular because 

they provide continued support for older devices that no longer receive offi cial 

updates. Because of this, manufacturers and carriers have softened their posi-

tions regarding unoffi cial fi rmware. Over time, some have started shipping 

devices with unlocked or unlockable boot loaders, similar to Nexus devices.

Users

Android would not be the thriving community that it is today without its mas-

sive user base. Although each individual user has unique needs and desires, 

they can be classifi ed into one of three categories. The three types of end users 

include general consumers, power users, and security researchers.

Consumers

Since Android is the top-selling smartphone platform, end users enjoy a wide 

range of devices to choose from. Consumers want a single, multifunction device 

with personal digital assistant (PDA) functions, camera, global position system

(GPS) navigation, Internet access, music player, e-book reader, and a complete 

gaming platform. Consumers usually look for a productivity boost, to stay 

organized, or stay in touch with people in their lives, to play games on the go 

and to access information from various sources on the Internet. On top of all 

this, they expect a reasonable level of security and privacy.

The openness and fl exibility of Android is also apparent to consumers. The 

sheer number of available applications, including those installable from sources 

outside offi cial means, is directly attributable to the open development com-

munity. Further, consumers can extensively customize their devices by install-

ing third-party launchers, home screen widgets, new input methods, or even 

full custom ROMs. Such fl exibility and openness is often the deciding factor

for those who choose Android over competing smartphone operating systems.

Power Users

The second type of user is a special type of consumer called power users in this

text. Power users want to have the ability to use features that are beyond what 

is enabled in stock devices. For example, users who want to enable Wi-Fi teth-

ering on their devices are considered members of this group. These users are 

intimately familiar with advanced settings and know the limitations of their 

devices. They are much less averse to the risk of making unoffi cial changes to 

the Android operating system, including running publicly available exploits to 

gain elevated access to their devices.



 Chapter 1 ■ Looking at the Ecosystem 15

Security Researchers

You can consider security researchers a subset of power users, but they have 

additional requirements and differing goals. These users can be motivated by 

fame, fortune, knowledge, openness, protecting systems, or some combination 

of these ideals. Regardless of their motivations, security researchers aim to 

discover previously unknown vulnerabilities in Android. Conducting this type 

of research is far easier when full access to a device is available. When elevated 

access is not available, researchers usually seek to obtain elevated access fi rst. 

Even with full access, this type of work is challenging.

Achieving the goals of a security researcher requires deep technical knowl-

edge. Being a successful security researcher requires a solid understanding of 

programming languages, operating system internals, and security concepts. 

Most researchers are competent in developing, reading, and writing several dif-

ferent programming languages. In some ways, thi s makes security researchers 

members of the developers group, too. It’s common for security researchers to 

study security concepts and operating system internals at great length, includ-

ing staying on top of cutting edge information. 

The security researcher ecosystem group is the primary target audience of 

this book, which has a goal of both providing base knowledge for budding 

researchers and furthering the knowledge of established researchers.

Grasping Ecosystem Complexities

The OHA includes pretty much all major Android vendors, but some parties 

are working with different goals. Some of these goals are competing. This leads 

to various partnerships between manufacturers and gives rise to some massive 

cross-organizational bureaucracy. For example, Samsung memory division is 

one of the world’s largest manufacturers of NAND fl ash. With around 40 percent 

market share, Samsung produces dynamic random access memory (DRAM) 

and NAND memory even for devices made by competitors of its mobile phones 

division. Another controversy is that although Google does not directly earn 

anything from the sale of each Android device, Microsoft and Apple have 

successfully sued Android handset manufacturers to extract patent royalty 

payments from them. Still, this is not the full extent of the complexities that 

plague the Android ecosystem.

Apart from legal battles and diffi cult partnerships, the Android ecosystem 

is challenged by several other serious problems. Fragmentation in both hard-

ware and software causes complications, only some of which are addressed by 

Google’s compatibility standards. Updating the Android operating system itself 



16 Chapter 16 ■ Looking at the Ecosystem

remains a signifi cant challenge for all of the ecosystem stakeholders. Strong 

roots in open source further complicate software update issues, giving rise to 

increased exposure to known vulnerabilities. Members of the security research 

community are troubled with the dilemma of deciding between security and 

openness. This dilemma extends to other stakeholders as well, leading to a 

terrible disclosure track record. The following sections discuss each of these 

problem areas in further detail.

Fragmentation

The Android ecosystem is rampant with fragmentation, due to the differences

between the multitudes of various Android devices. The open nature of Android 

makes it ideal for mobile device manufacturers to build their own devices based 

off the platform. As a result, the device pool is made up of many different devices 

from many different manufacturers. Each device is composed of a variety of 

software and hardware, including OEM or carrier-specifi c modifi cations. Even 

on the same device, the version of Android itself might vary from one carrier 

or user to another. Because of all of these differences, consumers, developers, 

and security researchers wrestle with fragmentation regularly.

Although fragmentation has relatively little effect on consumers, it is slightly 

damaging to the Android brand. Consumers accustomed to using Samsung 

devices who switch to a device from HTC are often met with a jarring experi-

ence. Because Samsung and HTC both highly customize the user experience 

of their devices, users have to spend some time reacquainting themselves with 

how to use their new devices. The same is also true for longtime Nexus device 

users who switch to OEM-branded devices. Over time, consumers may grow 

tired of this issue and decide to switch to a more homogeneous platform. Still, 

this facet of fragmentation is relatively minor.

Application developers are signifi cantly more affected by fragmentation 

than consumers. Issues primarily arise when developers attempt to support 

the variety of devices in the device pool (including the software that runs on 

them). Testing against all devices is very expensive and time intensive. Although 

using the emulator can help, it’s not a true representation of what users on actual 

devices will encounter. The issues developers must deal with include differing 

hardware confi gurations, API levels, screen sizes, and peripheral availability. 

Samsung has more than 15 different screen sizes for its Android devices, ranging 

from 2.6 inches to 10.1 inches. Further, High-Defi nition Multimedia Interface 

(HDMI) dongles and Google TV devices that don’t have a touchscreen require 

specialized input handling and user interface (UI) design. Dealing with all of 

this fragmentation is no easy task, but thankfully Google provides developers 

with some facilities for doing so.



Chapter 1 ■ Looking at the Ecosystem 17

Developers create applications that perform well across different devices, in 

part, by doing their best to hide fragmentation issues. To deal with differing 

screen sizes, the Android UI framework allows applications to query the device 

screen size. When an app is designed properly, Android automatically adjusts

application assets and UI layouts appropriately for the device. Google Play also 

allows app developers to deal with differing hardware confi gurations by declar-

ing requirements within the application itself. A good example is an application 

that requires a touchscreen. On a device without a touchscreen, viewing such an 

app on Google Play shows that the app does not support the device and cannot 

be installed. The Android application Support Library transparently deals with 

some API-level differences. However, despite all of the resources available, some 

compatibility issues remain. Developers are left to do their best in these corner 

cases, often leading to frustration. Again, this weakens the Android ecosystem 

in the form of developer disdain.

For security, fragmentation is both positive and negative, depending mostly on 

whether you take the perspective of an attacker or a defender. Although attack-

ers might easily fi nd exploitable issues on a particular device, those issues are 

unlikely to apply to devices from a different manufacturer. This makes fi nding 

fl aws that affect a large portion of the ecosystem diffi cult. Even when equipped 

with such a fl aw, variances across devices complicate exploit development. In 

many cases, developing a universal exploit (one that works across all Android 

versions and all devices) is not possible. For security researchers, a comprehen-

sive audit would require reviewing not only every device ever made, but also 

every revision of software available for those devices. Quite simply put, this is an 

insurmountable task. Focusing on a single device, although more approachable, 

does not paint an adequate picture of the entire ecosystem. An attack surface 

present on one device might not be present on another. Also, some components 

are more diffi cult to audit, such as closed source software that is specifi c to each 

device. Due to these challenges, fragmentation simultaneously makes the job 

of an auditor more diffi cult and helps prevent large-scale security incidents.

Compatibility

One complexity faced by device manufacturers is compatibility. Google, as 

the originator of Android, is charged with protecting the Android brand. This 

includes preventing fragmentation and ensuring that consumer devices are 

compatible with Google’s vision. To ensure device manufacturers comply with 

the hardware and software compatibility requirements set by Google, the com-

pany publishes a compatibility document and a test suite. All manufacturers 

who want to distribute devices under the Android brand have to follow these 

guidelines.



18 Chapter 18 ■ Looking at the Ecosystem

Compatibility Defi nition Document

The Android Compatibility Defi nition Document (CDD) available at http://source

.android.com/compatibility/ enumerates the software and hardware require-

ments of a “compatible” Android device. Some hardware must be present on 

all Android devices. For example, the CDD for Android 4.2 specifi es that all 

device implementations must include at least one form of audio output, and 

one or more forms of data networking capable of transmitting data at 200K 

bit/s or greater. However, the inclusion of various peripherals is left up to the 

device manufacturer. If certain peripherals are included, the CDD specifi es 

some additional requirements. For example, if the device manufacturer decides 

to include a rear-facing camera, then the camera must have a resolution of at 

least 2 megapixels. Devices must follow CDD requirements to bear the Android 

moniker and, further, to ship with Google’s applications and services.

Compatibility Test Suite

The Android Compatibility Test Suite (CTS) is an automated testing harness that

executes unit tests from a desktop computer to the attached mobile devices. 

CTS tests are designed to be integrated into continuous build systems of the 

engineers building a Google-certifi ed Android device. Its intent is to reveal 

incompatibilities early on, and ensure that the software remains compatible 

throughout the development process.

As previously mentioned, OEMs tend to heavily modify parts of the Android 

Framework. The CTS makes sure that APIs for a given version of the platform 

are unmodifi ed, even after vendor modifi cations. This ensures that applica-

tion developers have a consistent development experience regardless of who 

produced the device.

The tests performed in the CTS are open source and continually evolving. 

Since May 2011, the CTS has included a test category called security that cen-

tralizes tests for security bugs. You can review the current security tests in the 

master branch of AOSP at https://android.googlesource.com/platform/

cts/+/master/tests/tests/security.

Update Issues

Unequivocally, the most important complexity in the Android ecosystem relates 

to the handling of software updates, especially security fi xes. This issue is fueled 

by several other complexities in the ecosystem, including third-party software, 

OEM customizations, carrier involvement, disparate code ownership, and more. 

Problems keeping up with upstream open source projects, technical issues with 

deploying operating system updates, lack of back-porting, and a defunct alliance 



 Chapter 1 ■ Looking at the Ecosystem 19

are at the heart of the matter. Overall, this is the single largest factor contribut-

ing to the large number of insecure devices in use in the Android ecosystem.

Update Mechanisms

The root cause of this issue stems from the divergent processes involved in 

updating software in Android. Updates for apps are handled differently than 

operating system updates. An app developer can deploy a patch for a security 

fl aw in his app via Google Play. This is true whether the app is written by 

Google, OEMs, carriers, or independent developers. In contrast, a security fl aw 

in the operating system itself requires deploying a fi rmware upgrade or OTA 

update. The process for creating and deploying these types of updates is far 

more arduous.

For example, consider a patch for a fl aw in the core Android operating sys-

tem. A patch for such an issue begins with Google fi xing the issue fi rst. This is 

where things get tricky and become device dependent. For Nexus devices, the 

updated fi rmware can be released directly to end users at this point. However, 

updating an OEM-branded device still requires OEMs to produce a build

including Google’s security fi x. In another twist, OEMs can deliver the updated 

fi rmware directly to end users of unlocked OEM devices at this point. For carrier-

subsidized devices, the carrier must prepare its customized build including the 

fi x and deliver it to the customer base. Even in this simple example, the update 

path for operating system vulnerabilities is far more complicated than applica-

tion updates. Additional problems coordinating with third-party developers or 

low-level hardware manufacturers could also arise.

Update Frequency

As previously mentioned, new versions of Android are adopted quite slowly. 

In fact, this particular issue has spurred public outcry on several occasions. In 

April 2013, the American Civil Liberties Union (ACLU) fi led a complaint with 

the Federal Trade Commission (FTC). They stated that the four major mobile 

carriers in the U.S. did not provide timely security updates for the Android 

smartphones they sell. They further state that this is true even if Google has 

published updates to fi x exploitable security vulnerabilities. Without receiving 

timely security updates, Android cannot be considered a mature, safe, or secure 

operating system. It’s no surprise that people are looking for government action 

on the matter.

The time delta between bug reporting, fi x development, and patch deployment 

varies widely. The time between bug reporting and fi x development is often 

short, on the order of days or weeks. However, the time between fi x development 

and that fi x getting deployed on an end user’s device can range from weeks to 



20 Chapter 10 ■ Looking at the Ecosystem

months, or possibly never. Depending on the particular issue, the overall patch 

cycle could involve multiple ecosystem stakeholders. Unfortunately, end users 

pay the price because their devices are left vulnerable.

Not all security updates in the Android ecosystem are affected by these 

complexities to the same degree. For example, apps are directly updated by 

their authors. App authors’ ability to push updates in a timely fashion has led 

to several quick patch turnarounds in the past. Additionally, Google has proven 

their ability to deploy fi rmware updates for Nexus devices in a reasonable time 

frame. Finally, power users sometimes patch their own devices at their own risk.

Google usually patches vulnerabilities in the AOSP tree within days or weeks 

of the discovery. At this point, OEMs can cherry-pick the patch to fi x the vulner-

ability and merge it into their internal tree. However, OEMs tend to be slow in 

applying patches. Unbranded devices usually get updates faster than carrier 

devices because they don’t have to go through carrier customizations and car-

rier approval processes. Carrier devices usually take months to get the security 

updates, if they ever get them.

Back-porting

The term back-kk porting refers to the act of applying the fi x for a current version 

of software to an older version. In the Android ecosystem, back-ports for secu-

rity fi xes are mostly nonexistent. Consider a hypothetical scenario: The latest 

version of Android is 4.2. If a vulnerability is discovered that affects Android 

4.0.4 and later, Google fi xes the vulnerability only in 4.2.x and later versions. 

Users of prior versions such as 4.0.4 and 4.1.x are left vulnerable indefi nitely. It 

is believed that security fi xes may be back-ported in the event of a widespread 

attack. However, no such attack is publicly known at the time of this writing.

Android Update Alliance

In May 2011, during Google I/O, Android Product Manager Hugo Barra announced 

the Android Update Alliance. The stated goal of this initiative was to encour-

age partners to make a commitment to update their Android devices for at 

least 18 months after initial release. The update alliance was formed by HTC, 

LG, Motorola, Samsung, Sony Ericsson, AT&T, T-Mobile, Sprint, Verizon, and 

Vodafone. Unfortunately, the Android Update Alliance has never been men-

tioned again after the initial announcement. Time has shown that the costs of 

developing new fi rmware versions, issues with legacy devices, problems in 

newly released hardware, testing problems on new versions, or development 

issues could stand in the way of timely updates happening. This is especially 

problematic on poorly selling devices where carriers and manufacturers have 

no incentive to invest in updates.



 Chapter 1 ■ Looking at the Ecosystem 21

Updating Dependencies

Keeping up with upstream open source projects is a cumbersome task. This 

is especially true in the Android ecosystem because the patch lifecycle is so 

extended. For example, the Android Framework includes a web browser engine 

called WebKit. Several other projects also use this engine, including Google’s 

own Chrome web browser. Chrome happens to have an admirably short patch 

lifecycle, on the order of weeks. Unlike Android, it also has a successful bug 

bounty program in which Google pays for and discloses discovered vulner-

abilities with each patch release. Unfortunately, many of these bugs are pres-

ent in the code used by Android. Such a bug is often referred to as a half-ff day
vulnerability. The term is born from the term half-ff life, which measures the rate e
at which radioactive material decays. Similarly, a half-day bug is one that is 

decaying. Sadly, while it decays, Android users are left exposed to attacks that 

may leverage these types of bugs.

Security versus Openness

One of the most profound complexities in the Android ecosystem is between 

power users and security-conscious vendors. Power users want and need to 

have unfettered access to their devices. Chapter 3 discusses the rationale behind 

these users’ motivations further. In contrast, a completely secure device is in 

the best interests of vendors and everyday end users. The needs of power users 

and vendors give rise to interesting challenges for researchers.

As a subset of all power users, security researchers face even more challeng-

ing decisions. When researchers discover security issues, they must decide 

what they do with this information. Should they report the issue to the vendor? 

Should they disclose the issue openly? If the researcher reports the issue, and 

the vendor fi xes it, it might hinder power users from gaining the access they 

desire. Ultimately, each researcher’s decision is driven by individual motiva-

tions. For example, researchers routinely withhold disclosure when a publicly 

viable method to obtain access exists. Doing so ensures that requisite access is 

available in the event that vendors fi x the existing, publicly disclosed methods. 

It also means that the security issues remain unpatched, potentially allowing 

malicious actors to take advantage of them. In some cases, researchers choose 

to release heavily obfuscated exploits. By making it diffi cult for the vendors to 

discover the leveraged vulnerability, power users are able to make use of the 

exploit longer. Many times, the vulnerabilities used in these exploits can only 

be used with physical access to the device. This helps strike a balance between 

the confl icting wants of these two stakeholder groups.

Vendors also struggle to fi nd a balance between security and openness. All 

vendors want satisfi ed customers. As mentioned previously, vendors modify 



22 Chapter 1 ■ Looking at the Ecosystem

Android in order to please users and differentiate themselves. Bugs can be 

introduced in the process, which detracts from overall security. Vendors must 

decide whether to make such modifi cations. Also, vendors support devices after 

they are purchased. Power user modifi cations can destabilize the system and 

lead to unnecessary support calls. Keeping support costs low and protecting 

against fraudulent warranty replacements are in the vendors’ best interests. To 

deal with this particular issue, vendors employ boot loader locking mechanisms. 

Unfortunately, these mechanisms also make it more diffi cult for competent 

power users to modify their devices. To compromise, many vendors provide 

ways for end users to unlock devices. You can read more about these methods 

in Chapter 3.

Public Disclosures

Last but not least, the fi nal complexity relates to public disclosures, or public 

announcement, of vulnerabilities. In information security, these announcements 

serve as notice for system administrators and savvy consumers to update the 

software to remediate discovered vulnerabilities. Several metrics, including full 

participation in the disclosure process, can be used to gauge a vendor’s security

maturity. Unfortunately, such disclosures are extremely rare in the Android 

ecosystem. Here we document known public disclosures and explore several 

possible reasons why this is the case.

In 2008, Google started the android-security-announce mailing list on 

Google groups. Unfortunately, the list contains only a single post introducing 

the list. You can fi nd that single message at https://groups.google.com/d/

msg/android-security-announce/aEba2l7U23A/vOyOllbBxw8J. After the initial 

post, not a single offi cial security announcement was ever made. As such, the 

only way to track Android security issues is by reading change logs in AOSP, 

tracking Gerrit changes, or separating the wheat from chaff in the Android 

issue tracker at https://code.google.com/p/android/issues/list. These

methods are time consuming, error prone, and unlikely to be integrated into 

vulnerability assessment practices.

Although it is not clear why Google has not followed through with their 

intentions to deliver security announcements, there are several possible reasons. 

One possibility involves the extended exposure to vulnerabilities ramping in 

the Android ecosystem. Because of this issue, it’s possible that Google views 

publicly disclosing fi xed issues as irresponsible. Many security professionals,

including the authors of this text, believe that the danger imposed by such 

a disclosure is far less than that of the extended exposure itself. Yet another 

possibility involves the complex partnerships between Google, device manufac-

turers, and carriers. It is easy to see how disclosing a vulnerability that remains 

present in a business partner’s product could be seen as bad business. If this 



 Chapter 1 ■ Looking at the Ecosystem 23

is the case, it means Google is prioritizing a business relationship before the 

good of the public.

Google aside, very few other Android stakeholders on the vendor side have 

conducted public disclosures. Many OEMs have avoided public disclosure

entirely, even shying away from press inquiries about hot-button vulnerabilities. 

For example, while HTC has a disclosure policy posted at www.htc.com/www/

terms/product-security/, the company has never made a public disclosure 

to date. On a few occasions, carriers have mentioned that their updates include 

“important security fi xes.” On even fewer occasions, carriers have even refer-

enced public CVE numbers assigned to specifi c issues. 

The Common Vulnerabilities and Exposures (CVE) project aims to create a cen-

tral, standardized tracking number for vulnerabilities. Security professionals, 

particularly vulnerability experts, use these numbers to track issues in software 

or hardware. Using CVE numbers greatly improves the ability to identify and 

discuss an issue across organizational boundaries. Companies that embrace 

the CVE project are typically seen as the most mature since they recognize the 

need to document and catalog past issues in their products. 

Of all of the stakeholders on the vendor side, one has stood out as taking 

public disclosure seriously. That vendor is Qualcomm, with its Code Aurora 

forum. This group is a consortium of companies with projects serving the mobile 

wireless industry and is operated by Qualcomm. The Code Aurora website has 

a security advisories page available at https://www.codeaurora.org/projects/

security-advisories, with extensive details about security issues and CVE 

numbers. This level of maturity is one that other stakeholders should seek to 

follow so that the security of the Android ecosystem as a whole can improve.

In general, security researchers are the biggest proponents of public disclosures 

in the Android ecosystem. Although not every security researcher is completely 

forthcoming, they are responsible for bringing issues to the attention of all of the 

other stakeholders. Often issues are publicly disclosed by independent research-

ers or security companies on mailing lists, at security conferences, or on other 

public forums. Increasingly, researchers are coordinating such disclosures with 

stakeholders on the vendor side to safely and quietly improve Android security.

Summary

 In this chapter you have seen how the Android operating system has grown 

over the years to conquer the mobile operating system (OS) market from the 

bottom up. The chapter walked you through the main players involved in the 

Android ecosystem, explaining their roles and motivations. You took a close 

look at the various problems that plague the Android ecosystem, including how 

they affect security. Armed with a deep understanding of Android’s complex 



24 Chapter 14 ■ Looking at the Ecosystem

ecosystem, one can easily pinpoint key problem areas and apply oneself more 

effectively to the problem of Android security.

The next chapter provides an overview of the security design and architecture 

of Android. It dives under the hood to show how Android works, including 

how security mechanisms are enforced. 


