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Before you jump into the study of algorithms, you need a little background. To 

begin with, you need to know that, simply stated, an algorithm is a recipe for

getting something done. It defi nes the steps for performing a task in a certain way.

That defi nition seems simple enough, but no one writes algorithms for per-

forming extremely simple tasks. No one writes instructions for how to access 

the fourth element in an array. It is just assumed that this is part of the defi ni-

tion of an array and that you know how to do it (if you know how to use the 

programming language in question).

Normally people write algorithms only for diffi cult tasks. Algorithms explain 

how to fi nd the solution to a complicated algebra problem, how to fi nd the short-

est path through a network containing thousands of streets, or how to fi nd the 

best mix of hundreds of investments to optimize profi ts.

This chapter explains some of the basic algorithmic concepts you should 

understand if you want to get the most out of your study of algorithms.

It may be tempting to skip this chapter and jump to studying specific 

algorithms, but you should at least skim this material. Pay close attention to the 

section “Big O Notation,” because a good understanding of runtime performance 

can mean the difference between an algorithm performing its task in seconds, 

hours, or not at all.
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Approach

To get the most out of an algorithm, you must be able to do more than simply 

follow its steps. You need to understand the following:

■ The algorithm’s behavior. Does it fi nd the best possible solution, or does 

it just fi nd a good solution? Could there be multiple best solutions? Is 

there a reason to pick one “best” solution over the others?

■ The algorithm’s speed. Is it fast? Slow? Is it usually fast but sometimes

slow for certain inputs?

■ The algorithm’s memory requirements. How much memory will the 

algorithm need? Is this a reasonable amount? Does the algorithm require 

billions of terabytes more memory than a computer could possibly have 

(at least today)?

■ The main techniques the algorithm uses. Can you reuse those techniques

to solve similar problems?

This book covers all these topics. It does not, however, attempt to cover every 

detail of every algorithm with mathematical precision. It uses an intuitive 

approach to explain algorithms and their performance, but it does not analyze 

performance in rigorous detail. Although that kind of proof can be interesting, 

it can also be confusing and take up a lot of space, providing a level of detail 

that is unnecessary for most programmers. This book, after all, is intended 

primarily for programming professionals who need to get a job done.

This book’s chapters group algorithms that have related themes. Sometimes 

the theme is the task they perform (sorting, searching, network algorithms), 

sometimes it’s the data structures they use (linked lists, arrays, hash tables, 

trees), and sometimes it’s the techniques they use (recursion, decision trees, dis-

tributed algorithms). At a high level, these groupings may seem arbitrary, but 

when you read about the algorithms, you’ll see that they fi t together.

In addition to those categories, many algorithms have underlying themes that 

cross chapter boundaries. For example, tree algorithms (Chapters 10, 11, and 12) 

tend to be highly recursive (Chapter 9). Linked lists (Chapter 3) can be used to 

build arrays (Chapter 4), hash tables (Chapter 8), stacks (Chapter 5), and queues 

(Chapter 5). The ideas of references and pointers are used to build linked lists 

(Chapter 3), trees (Chapters 10, 11, and 12), and networks (Chapters 13 and 14). 

As you read, watch for these common threads. Appendix A summarizes com-

mon strategies programs use to make these ideas easier to follow.
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Algorithms and Data Structures

An algorithm is a recipe for performing a certain task. A data structure is a way 

of arranging data to make solving a particular problem easier. A data structure 

could be a way of arranging values in an array, a linked list that connects items 

in a certain pattern, a tree, a graph, a network, or something even more exotic.

Often algorithms are closely tied to data structures. For example, the edit 

distance algorithm described in Chapter 15 uses a network to determine how 

similar two strings are. The algorithm is tied closely to the network and won’t 

work without it.

Often an algorithm says, “Build a certain data structure and then use it in a 

certain way.” The algorithm can’t exist without the data structure, and there’s no 

point in building the data structure if you don’t plan to use it with the algorithm.

Pseudocode

To make the algorithms described in this book as useful as possible, they are 

fi rst described in intuitive English terms. From this high-level explanation, you 

should be able to implement the algorithm in most programming languages.

Often, however, an algorithm’s implementation contains niggling little details 

that can make implementation hard. To make handling those details easier, the 

algorithms are also described in pseudocode. Pseudocode is text that is a lot like

a programming language but that is not really a programming language. The 

idea is to give you the structure and details you would need to implement the 

algorithm in code without tying the algorithm to a particular programming 

language. Hopefully you can translate the pseudocode into actual code to run 

on your computer.

The following snippet shows an example of pseudocode for an algorithm that 

calculates the greatest common divisor (GCD) of two integers:

// Find the greatest common divisor of a and b.
// GCD(a, b) = GCD(b, a Mod b).
Integer: Gcd(Integer: a, Integer: b)
    While (b != 0)
        // Calculate the remainder.
        Integer: remainder = a Mod b

        // Calculate GCD(b, remainder).
        a = b
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        b = remainder
    End While

    // GCD(a, 0) is a.
    Return a
End Gcd

THE MOD OPERATOR

The modulus operator, which is written Mod in the pseudocode, means the
remainder after division. For example, 13 Mod 4 is 1 because 13 divided by 4 is 3 
with a remainder of 1.

The equation 13 Mod 4 is usually pronounced “13 mod 4” or “13 modulo 4.”

The pseudocode starts with a comment. Comments begin with the characters 

// and extend to the end of the line.

The fi rst actual line of code is the algorithm’s declaration. This algorithm is 

called Gcd and returns an integer result. It takes two parameters named a and 

b, both of which are integers.

NOTE Chunks of code that perform a task, optionally returning a result, are 
variously called routines, subroutines, methods, procedures, subprocedures, or 
functions.

The code after the declaration is indented to show that it is part of the method. 

The fi rst line in the method’s body begins a While loop. The code indented

below the While statement is executed as long as the condition in the While

statement remains true.

The While loop ends with an End While statement. This statement isn’t strictly 

necessary, because the indentation shows where the loop ends, but it provides 

a reminder of what kind of block of statements is ending.

The method exits at the Return statement. This algorithm returns a value, so 

this Return statement indicates which value the algorithm should return. If the 

algorithm doesn’t return any value, such as if its purpose is to arrange values 

or build a data structure, the Return statement isn’t followed by a return value.

The code in this example is fairly close to actual programming code. Other 

examples may contain instructions or values described in English. In those 

cases, the instructions are enclosed in angle brackets (<>) to indicate that you 

need to translate the English instructions into program code.

Normally when a parameter or variable is declared (in the Gcd algorithm, 

this includes the parameters a and b and the variable remainder), its data type 

is given before it, followed by a colon, as in Integer: remainder. The data

type may be omitted for simple integer looping variables, as in For i = 1 To 10.
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One other feature that is different from some programming languages is that 

a pseudocode For loop may include a Step statement indicating the value by 

which the looping variable is changed each trip through the loop. A For loop 

ends with a Next i statement (where i is the looping variable) to remind you 

which loop is ending.

For example, consider the following pseudocode:

For i = 100 To 0 Step -5
    // Do something...
Next i

This code is equivalent to the following C# code:

for (int i = 100; i >= 0; i -= 5)
{
    // Do something...
}

The pseudocode used in this book uses If-Then-Else statements, Case state-

ments, and other statements as needed. These should be familiar to you from 

your knowledge of real programming languages. Anything else that the code 

needs is spelled out in English.

One basic data structure that may be unfamiliar to you depending on which 

programming languages you know is a List. A List is similar to a self-expanding

array. It provides an Add method that lets you add an item to the end of the list.

For example, the following pseudocode creates a List Of Integer that contains

the numbers 1 through 10:

List Of Integer: numbers
For i = 1 To 10
    numbers.Add(i)
Next i

After a list is initialized, the pseudocode can use it as if it were a normal array 

and access items anywhere in the list. Unlike arrays, lists also let you add and 

remove items from any position.

Many algorithms in this book are written as methods or functions that return 

a result. The method’s declaration begins with the result’s data type. If a method 

performs some task and doesn’t return a result, it has no data type.

The following pseudocode contains two methods:

// Return twice the input value.
Integer: DoubleIt(Integer: value)
    Return 2 * value
End DoubleIt

// The following method does something and doesn't return a value.
DoSomething(Integer: values[])
    // Some code here.
    ...
End DoSomething



6 Chapter 1 ■ Algorithm Basics

The DoubleIt method takes an integer as a parameter and returns an integer. 

The code doubles the input value and returns the result.

The DoSomething method takes as a parameter an array of integers named 

values. It performs a task and doesn’t return a result. For example, it might 

randomize or sort the items in the array. (Note that this book assumes that 

arrays start with the index 0. For example, an array containing three items has 

indices 0, 1, and 2.)

Pseudocode should be intuitive and easy to understand, but if you fi nd some-

thing that doesn’t make sense to you, feel free to post a question on the book’s 

discussion forum at www.wiley.com/go/essentialalgorithms or e-mail me at

RodStephens@CSharpHelper.com. I’ll point you in the right direction.

One problem with pseudocode is that it has no compiler to detect errors. As a 

check of the basic algorithm, and to give you some actual code to use for a refer-

ence, C# implementations of most of the algorithms and many of the exercises 

are available for download on the book’s website.

Algorithm Features

A good algorithm must have three features: correctness, maintainability, and 

effi ciency.

Obviously if an algorithm doesn’t solve the problem for which it was designed, 

it’s not much use. If it doesn’t produce correct answers, there’s little point in 

using it.

NOTE Interestingly, some algorithms produce correct answers only some of
the time but are still useful. For example, an algorithm may be able to give you 
some information with a certain probability. In that case you may be able to rerun 
the algorithm many times to increase your confidence that the answer is correct. 
Fermat’s primality test, described in Chapter 2, is this kind of algorithm.

If an algorithm isn’t maintainable, it’s dangerous to use in a program. If an 

algorithm is simple, intuitive, and elegant, you can be confi dent that it is produc-

ing correct results, and you can fi x it if it doesn’t. If the algorithm is intricate, 

confusing, and convoluted, you may have a lot of trouble implementing it, and 

you will have even more trouble fi xing it if a bug arises. If it’s hard to under-

stand, how can you know if it is producing correct results?

NOTE This doesn’t mean it isn’t worth studying confusing and difficult algo-
rithms. Even if you have trouble implementing an algorithm, you may learn a lot
in the attempt. Over time your algorithmic intuition and skill will increase, so
algorithms you once thought were confusing will seem easier to handle. You must 
always test all algorithms thoroughly, however, to make sure they are producing 
correct results.
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Most developers spend a lot of effort on effi ciency, and effi ciency is certainly 

important. If an algorithm produces a correct result and is simple to implement 

and debug, it’s still not much use if it takes seven years to fi nish or if it requires 

more memory than a computer can possibly hold.

In order to study an algorithm’s performance, computer scientists ask how 

its performance changes as the size of the problem changes. If you double the 

number of values the algorithm is processing, does the runtime double? Does 

it increase by a factor of 4? Does it increase exponentially so that it suddenly 

takes years to fi nish?

You can ask the same questions about memory usage or any other resource 

that the algorithm requires. If you double the size of the problem, does the 

amount of memory required double?

You can also ask the same questions with respect to the algorithm’s performance 

under different circumstances. What is the algorithm’s worst-case performance? 

How likely is the worst case to occur? If you run the algorithm on a large set of 

random data, what is its average-case performance?

To get a feeling for how problem size relates to performance, computer sci-

entists use Big O notation, described in the following section.

Big O Notation
Big O notation uses a function to describe how the algorithm’s worst-case perfor-

mance relates to the problem size as the size grows very large. (This is sometimes 

called the program’s asymptotic performance.) The function is written within

parentheses after a capital letter O.

For example, O(N2) means an algorithm’s runtime (or memory usage or

whatever you’re measuring) increases as the square of the number of inputs N. 

If you double the number of inputs, the runtime increases by roughly a factor 

of 4. Similarly, if you triple the number of inputs, the runtime increases by a 

factor of 9.

NOTE Often O(N2) is pronounced “order N squared.” For example, you might
say, “The quicksort algorithm described in Chapter 6 has a worst-case perfor-
mance of order N squared.”

There are fi ve basic rules for calculating an algorithm’s Big O notation:

 1. If an algorithm performs a certain sequence of steps f(N) times for a math-

ematical function f, it takes O(f(N)) steps.

 2. If an algorithm performs an operation that takes O(f(N)) steps and then 

performs a second operation that takes O(g(N)) steps for functions f and 

g, the algorithm’s total performance is O(f(N) + g(N)).

 3. If an algorithm takes O(f(N) + g(N)) and the function f(N) is greater than 

g(N) for large N, the algorithm’s performance can be simplifi ed to O(f(N)).
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 4. If an algorithm performs an operation that takes O(f(N)) steps, and for

every step in that operation it performs another O(g(N)) steps, the algo-

rithm’s total performance is O(f(N) × g(N)).

 5. Ignore constant multiples. If C is a constant, O(C × f(N)) is the same as 

O(f(N)), and O(f(C × N)) is the same as O(f(N)).

These rules may seem a bit formal, with all the f(N) and g(N), but they’re 

fairly easy to apply. If they seem confusing, a few examples should make them 

easier to understand.

Rule 1

If an algorithm performs a certain sequence of steps f(ff N) times for a mathematical func-
tion f, ff it takes O( f(( (ff N)) steps.

Consider the following algorithm, written in pseudocode, for fi nding the 

largest integer in an array:
Integer: FindLargest(Integer: array[])
    Integer: largest = array[0]
    For i = 1 To <largest index>
        If (array[i] > largest) Then largest = array[i]
    Next i
    Return largest
End FindLargest

The FindLargest algorithm takes as a parameter an array of integers and

returns an integer result. It starts by setting the variable largest equal to the 

fi rst value in the array.

It then loops through the remaining values in the array, comparing each to 

largest. If it fi nds a value that is larger than largest, the program sets larg-

est equal to that value.

After it fi nishes the loop, the algorithm returns largest.

This algorithm examines each of the N items in the array once, so it has O(N) 

performance.

NOTE Often algorithms spend most of their time in loops. There’s no way an
algorithm can execute more than N steps with a fixed number of code lines unless
it contains some sort of loop.

Study an algorithm’s loops to figure out how much time it takes.

Rule 2

If an algorithm performs an operation that takes O( f(( (ff N)) steps and then performs a
second operation that takes O(g(N)) steps for functions f and g, gg the algorithm’s total
performance is O( f(( (ff N) + g(N)).

If you look again at the FindLargest algorithm shown in the preceding sec-

tion, you’ll see that a few steps are not actually inside the loop. The following 
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pseudocode shows the same steps, with their runtime order shown to the right 

in comments:

Integer: FindLargest(Integer: array[])
    Integer: largest = array[0]                           // O(1)
    For i = 1 To <largest index>                          // O(N)
        If (array[i] > largest) Then largest = array[i]
    Next i
    Return largest                                        // O(1)
End FindLargest

This algorithm performs one setup step before it enters its loop and then 

performs one more step after it fi nishes the loop. Both of those steps have 

performance O(1) (they’re each just a single step), so the total runtime for the 

algorithm is really O(1 + N + 1). You can use normal algebra to combine terms 

to rewrite this as O(2 + N).

Rule 3

If an algorithm takes O(f(( (ff N) + g(N)) and the function f(ff N) is greater than g(N) for large
N, NN the algorithm’s performance can be simplifi ed to O( f(( (ff N)).

The preceding example showed that the FindLargest algorithm has runtime

O(2 + N). When N grows large, the function N is larger than the constant value 

2, so O(2 + N) simplifi es to O(N).

Ignoring the smaller function lets you focus on the algorithm’s asymptotic 

behavior as the problem size becomes very large. It also lets you ignore relatively 

small setup and cleanup tasks. If an algorithm spends some time building simple 

data structures and otherwise getting ready to perform a big computation, you 

can ignore the setup time as long as it’s small compared to the length of the 

main calculation.

Rule 4

If an algorithm performs an operation that takes O( f(( (ff N)) steps, and for every step in
that operation it performs another O(g(N)) steps, the algorithm’s total performance is
O( f(( (ff N) × g(N)).

Consider the following algorithm that determines whether an array contains 

any duplicate items. (Note that this isn’t the most effi cient way to detect duplicates.)

Boolean: ContainsDuplicates(Integer: array[])
    // Loop over all of the array's items.
    For i = 0 To <largest index>
        For j = 0 To <largest index>
            // See if these two items are duplicates.
            If (i != j) Then
                If (array[i] == array[j]) Then Return True
            End If
        Next j
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    Next i

    // If we get to this point, there are no duplicates.
    Return False
End ContainsDuplicates

This algorithm contains two nested loops. The outer loop iterates over all the 

array’s N items, so it takes O(N) steps.

For each trip through the outer loop, the inner loop also iterates over the N 

items in the array, so it also takes O(N) steps.

Because one loop is nested inside the other, the combined performance is 

O(N × N) = O(N2).

Rule 5

Ignore constant multiples. If C is a constant,t O(C × f(ff N)) is the same as O( f(( (ff N)), and
O( f(( (ff C × N)) is the same as O( f(( (ff N)).

If you look again at the ContainsDuplicates algorithm shown in the preced-

ing section, you’ll see that the inner loop actually performs one or two steps. 

It performs an If test to see if the indices i and j are the same. If they are dif-

ferent, it compares array[i] and array[j]. It may also return the value True.

If you ignore the extra step for the Return statement (it happens at most only

once), and you assume that the algorithm performs both the If statements (as

it does most of the time), the inner loop takes O(2 × N) steps. Therefore, the 

algorithm’s total performance is O(N × 2 × N) = O(2 × N2).

Rule 5 lets you ignore the factor of 2, so the runtime is O(N2).

This rule really goes back to the purpose of Big O notation. The idea is to get 

a feeling for the algorithm’s behavior as N increases. In this case, suppose you 

increase N by a factor of 2.

If you plug the value 2 × N into the equation 2 × N2, you get the following:

2 × (2 × N)2 = 2 × 4 × N2 = 8 × N2

This is 4 times the original value 2 × N2, so the runtime has increased by a

factor of 4.

Now try the same thing with the runtime simplifi ed by Rule 5 to O(N2).

Plugging 2 × N into this equation gives the following:

(2 × N)2 = 4 × N2

This is 4 times the original value N2, so this also means that the runtime has 

increased by a factor of 4.

Whether you use the formula 2 × N2NN  or just N2NN , the result is the same: Increasing 

the size of the problem by a factor of 2 increases the runtime by a factor of 4. The 

important thing here isn’t the constant; it’s the fact that the runtime increases 

as the square of the number of inputs N.
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NOTE It’s important to remember that Big O notation is just intended to give
you an idea of an algorithm’s theoretical behavior. Your results in practice may
be different. For example, suppose an algorithm’s performance is O(N), but if you
don’t ignore the constants, the actual number of steps executed is something like
100,000,000 + N. Unless N is really big, you may not be able to safely ignore the 
constant.

Common Runtime Functions
When you study the runtime of algorithms, some functions occur frequently. 

The following sections give some examples of a few of the most common func-

tions. They also give you some perspective so that you’ll know, for example, 

whether an algorithm with O(N3) performance is reasonable.

1

An algorithm with O(1) performance takes a constant amount of time no matter 

how big the problem is. These sorts of algorithms tend to perform relatively 

trivial tasks because they cannot even look at all the inputs in O(1) time.

For example, at one point the quicksort algorithm needs to pick a number that 

is in an array of values. Ideally, that number should be somewhere in the middle 

of all the values in the array, but there’s no easy way to tell which number might 

fall nicely in the middle. (For example, if the numbers are evenly distributed 

between 1 and 100, 50 would make a good dividing number.) The following 

algorithm shows one common approach for solving this problem:

Integer: DividingPoint(Integer: array[])
    Integer: number1 = array[0]
    Integer: number2 = array[<last index of array>]
    Integer: number3 = array[<last index of array> / 2]

    If (<number1 is between number2 and number3>) Return number1
    If (<number2 is between number1 and number3>) Return number2
    Return number3
End MiddleValue

This algorithm picks the values at the beginning, end, and middle of the 

array, compares them, and returns whichever item lies between the other two. 

This may not be the best item to pick out of the whole array, but there’s a decent 

chance that it’s not too terrible a choice.

Because this algorithm performs only a few fi xed steps, it has O(1) perfor-

mance and its runtime is independent of the number of inputs N. (Of course, 

this algorithm doesn’t really stand alone. It’s just a small part of a more com-

plicated algorithm.)
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Log N

An algorithm with O(log N) performance typically divides the number of items 

it must consider by a fi xed fraction at every step.

LOGARITHMS

The logarithm of a number in a certain log base is the power to which the base 
must be raised to get a certain result. For example, log2(8) is 3 because 23 = 8. 
Here, 2 is the log base.

Often in algorithms the base is 2 because the inputs are being divided into two 
groups repeatedly. As you’ll see shortly, the log base isn’t really important in Big 
O notation, so it is usually omitted.

For example, Figure 1-1 shows a sorted complete binary tree. It’s a binary tree
because every node has at most two branches. It’s a complete tree because every

level (except possibly the last) is completely full and all the nodes in the last 

level are grouped on the left side. It’s a sorted tree because every node’s value is

at least as large as its left child and no larger than its right child.

7

94

2 6 8 10

1 3 5

Figure 1-1: Searching a full binary tree takes O(log N) steps.

The following pseudocode shows one way you might search the tree shown 

in Figure 1-1 to fi nd a particular item.

Node: FindItem(Integer: target_value)
    Node: test_node = <root of tree>

    Do Forever
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      // If we fell off the tree. The value isn't present.
      If (test_node == null) Return null

      If (target_value == test_node.Value) Then
          // test_node holds the target value. This is the node we want.
          Return test_node
      Else If (target_value < test_node.Value) Then
          // Move to the left child.
          test_node = test_node.LeftChild
      Else
          // Move to the right child.
          test_node = test_node.RightChild
      End If
    End Do
End FindItem

Chapter 10 covers tree algorithms in detail, but you should be able to get the 

gist of the algorithm from the following discussion.

The algorithm declares and initializes the variable test_node so that it points

to the root at the top of the tree. (Traditionally, trees in computer programs are 

drawn with the root at the top, unlike real trees.) It then enters an infi nite loop.

If test_node is null, the target value isn’t in the tree, so the algorithm 

returns null.

NOTE null is a special value that you can assign to a variable that should nor-
mally point to an object such as a node in a tree. The value null means “This vari-
able doesn’t point to anything.”

If test_node holds the target value, test_node is the node we’re seeking, so

the algorithm returns it.

If target_value, the value we’re searching for, is less than the value in test_

node, the algorithm sets test_node equal to its left child. (If test_node is at the 

bottom of the tree, its LeftChild value is null, and the algorithm handles the 

situation the next time it goes through the loop.)

If test_node’s value does not equal target_value and is not less than tar-

get_value, it must be greater than target_value. In that case, the algorithm

sets test_node equal to its right child. (Again, if test_node is at the bottom of 

the tree, its RightChild is null, and the algorithm handles the situation the next

time it goes through the loop.)

The variable test_node moves down through the tree and eventually either 

fi nds the target value or falls off the tree when test_node is null.

Understanding this algorithm’s performance becomes a question of how far 

down the tree test_node must move before it fi nds target_value or falls off 

the tree.

Sometimes the algorithm gets lucky and fi nds the target value right away. If 

the target value is 7 in Figure 1-1, the algorithm fi nds it in one step and stops. 
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Even if the target value isn’t at the root node—for example, if it’s 4—the program 

might have to check only a bit of the tree before stopping.

In the worst case, however, the algorithm needs to search the tree from top 

to bottom.

In fact, roughly half the tree’s nodes are the nodes at the bottom that have 

missing children. If the tree were a full complete tree, with every node having 

exactly zero or two children, the bottom level would hold exactly half the tree’s 

nodes. That means if you search for randomly chosen values in the tree, the 

algorithm will have to travel through most of the tree’s height most of the time.

Now the question is, “How tall is the tree?” A full complete binary tree of 

height H has 2H+1 − 1 nodes. To look at it from the other direction, a full com-

plete binary tree that contains N nodes has height log
2
(N + 1) − 1. Because the

algorithm searches the tree from top to bottom in the worst (and average) case, 

and because the tree has a height of roughly log
2
(N), the algorithm runs in

O(log
2
(N)) time.

At this point a curious feature of logarithms comes into play. You can convert 

a logarithm from base A to base B using this formula:

log
B
(x) = log

A
(x) / log

A
(B)

Setting B = 2, you can use this formula to convert the value O(log
2
(N) into

any other log base A:

O(log
2
(N)) = O(log

A
(N) / log

A
(2))

The value 1 / log
A

(2) is a constant for any given A, and Big O notation ignores 

constant multiples, so that means O(log
2
(N)) is the same as O(log

A
(N)) for any 

log base A. For that reason, this runtime is often written O(log N) with no indi-

cation of the base (and no parentheses to make it look less cluttered).

This algorithm is typical of many algorithms that have O(log N) performance. 

At each step, it divides roughly in half the number of items it must consider.

Because the log base doesn’t matter in Big O notation, it doesn’t matter which 

fraction the algorithm uses to divide the items it is considering. This example 

divides the number of items in half at each step, which is common for many 

logarithmic algorithms. But it would still have O(log N) performance if it divided 

the remaining items by a factor of 1/10th and made lots of progress at each step, 

or if it divided the items by a factor of 9/10ths and made relatively little progress.

The logarithmic function log(N) grows relatively slowly as N increases, so 

algorithms with O(log N) performance generally are fast enough to be useful.

Sqrt N

Some algorithms have O(sqrt(N)) performance (where sqrt is the square root 

function), but they’re not common, and none are covered in this book. This 

function grows very slowly but a bit faster than log(N).
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N

The FindLargest algorithm described in the earlier section “Rule 1” has O(N) 

performance. See that section for an explanation of why it has O(N) performance.

The function N grows more quickly than log(N) and sqrt(N) but still not 

too quickly, so most algorithms that have O(N) performance work quite well 

in practice.

N log N

Suppose an algorithm loops over all the items in its problem set and then, for 

each loop, performs some sort of O(log N) calculation on that item. In that case, 

the algorithm has O(N × log N) or O(N log N) performance.

Alternatively, an algorithm might perform some sort of O(log N) operation 

and, for each step in it, do something to each of the items in the problem.

For example, suppose you have built a sorted tree containing N items as 

described earlier. You also have an array of N values and you want to know 

which values in the array are also in the tree.

One approach would be to loop through the values in the array. For each 

value, you could use the method described earlier to search the tree for 

that value. The algorithm examines N items and for each it performs log(N) 

steps so the total runtime is O(N log N).

Many sorting algorithms that work by comparing items have an O(N log N) 

runtime. In fact, it can be proven that any algorithm that sorts by comparing

items must use at least O(N log N) steps, so this is the best you can do, at least 

in Big O notation. Some algorithms are still faster than others because of the 

constants that Big O notation ignores.

N2

An algorithm that loops over all its inputs and then for each input loops over 

the inputs again has O(N2) performance. For example, the ContainsDuplicates

algorithm described earlier, in the section “Rule 4,” runs in O(N2) time. See that 

section for a description and analysis of the algorithm.

Other powers of N, such as O(N3) and O(N4NN ), are possible and are obviously 

slower than O(N2).

An algorithm is said to have polynomial runtime if its runtime involves any

polynomial involving N. O(N), O(N2), O(N6), and even O(N4000NN ) are all polyno-

mial runtimes.

Polynomial runtimes are important because in some sense these problems 

can still be solved. The exponential and factorial runtimes described next grow 

extremely quickly, so algorithms that have those runtimes are practical for only 

very small numbers of inputs.
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2N

Exponential functions such as 2N grow extremely quickly, so they are practi-

cal for only small problems. Typically algorithms with these runtimes look for 

optimal selection of the inputs.

For example, consider the knapsack problem. You are given a set of objects 

that each has a weight and a value. You also have a knapsack that can hold a 

certain amount of weight. You can put a few heavy items in the knapsack, or 

you can put lots of lighter items in it. The challenge is to select the items with 

the greatest total value that fi t in the knapsack.

This may seem like an easy problem, but the only known algorithms for fi nd-

ing the best possible solution essentially require you to examine every possible 

combination of items.

To see how many combinations are possible, note that each item is either in 

the knapsack or out of it, so each item has two possibilities. If you multiply the 

number of possibilities for the items, you get 2 × 2 × ... × 2 = 2N total possible

selections.

Sometimes you don’t have to try every possible combination. For example, if 

adding the fi rst item fi lls the knapsack completely, you don’t need to add any 

selections that include the fi rst item plus another item. In general, however, you 

cannot exclude enough possibilities to narrow the search signifi cantly.

For problems with exponential runtimes, you often need to use heuristics—

algorithms that usually produce good results but that you cannot guarantee 

will produce the best possible results.

N!

The factorial function, written N! and pronounced “N factorial,” is defi ned for 

integers greater than 0 by N! = 1 × 2 × 3 × ... × N. This function grows much 

more quickly than even the exponential function 2N. Typically algorithms with

factorial runtimes look for an optimal arrangement of the inputs.

For example, in the traveling salesman problem (TSP), you are given a list of 

cities. The goal is to fi nd a route that visits every city exactly once and returns 

to the starting point while minimizing the total distance traveled.

This isn’t too hard with just a few cities, but with many cities the problem 

becomes challenging. The most obvious approach is to try every possible arrange-

ment of cities. Following that algorithm, you can pick N possible cities for the 

fi rst city. After making that selection, you have N – 1 possible cities to visit next. 

Then there are N – 2 possible third cities, and so forth, so the total number of 

arrangements is N × (N – 1) × (N – 2) × ... × 1 = N!.
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Visualizing Functions
Table 1-1 shows a few values for the runtime functions described in the preced-

ing sections so that you can see how quickly these functions grow.

Table 1-1: Function Values for Various Inputs

N LO G
2
(n) SQRT(n) n n2 2n n!

1 0 1 1 1 2 1

5 2.32 2.23 5 25 32 625

10 3.32 3.16 10 100 1,024 1.0×109

15 3.90 3.87 15 225 3.3×104 2.9×1016

20 4.32 4.47 20 400 1.0×106 5.24×1024

50 5.64 7.07 50 2,500 1.1×1015 1.8×1083

100 6.64 10 100 1×104 1.3×1030 1.0×10198

1000 9.96 31.62 1,000 1×106 1.1×10301 —

10000 13.28 100 1×104 1×108 — —

100000 16.60 316.22 1×105 1×1010 — —

Figure 1-2 shows a graph of these functions. Some of the functions have been 

scaled so that they fi t better on the graph, but you can easily see which grows 

fastest when x grows large. Even dividing by 100 doesn’t keep the factorial 

function on the graph for very long.

Practical Considerations

Although theoretical behavior is important in understanding an algorithm’s 

runtime behavior, practical considerations also play an important role in real-

world performance for several reasons.

The analysis of an algorithm typically considers all steps as taking the same 

amount of time even though that may not be the case. Creating and destroying 

new objects, for example, may take much longer than moving integer values 

from one part of an array to another. In that case an algorithm that uses arrays 

may outperform one that uses lots of objects even though the second algorithm 

does better in Big O notation.
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Figure 1-2: The log, sqrt, linear, and even polynomial functions grow at a reasonable pace, 
but exponential and factorial functions grow incredibly quickly.

Many programming  environments also provide access to operating system 

functions that are more effi cient than basic algorithmic techniques. For example, 

part of the insertionsort algorithm requires you to move some of the items in an 

array down one position so that you can insert a new item before them. This is a 

fairly slow process and contributes greatly to the algorithm’s O(N2) performance.

However, many programs can use a function (such as RtlMoveMemory in .NET

programs and MoveMemory in Windows C++ programs) that moves blocks of 

memory all at once. Instead of walking through the array, moving items one at 

a time, a program can call these functions to move the whole set of array values 

at once, making the program much faster.

Just because an algorithm has a certain theoretical asymptotic performance 

doesn’t mean you can’t take advantage of whatever tools your programming 

environment offers to improve performance. Some programming environments 

also provide tools that can perform the same tasks as some of the algorithms 

described in this book. For example, many libraries include sorting routines that 

do a very good job of sorting arrays. Microsoft’s .NET Framework, used by C# 

and Visual Basic, includes an Array.Sort method that uses an implementation 
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that you are unlikely to beat using your own code—at least in general. For 

specifi c problems you can still beat Array.Sort’s performance if you have extra

information about the data. (For more information, read about countingsort in 

Chapter 6.)

Special-purpose libraries may also be available that can help you with certain 

tasks. For example, you may be able to use a network analysis library instead 

of writing your own network tools. Similarly, database tools may save you a 

lot of work building trees and sorting things. You may get better performance 

building your own balanced trees, but using a database is a lot less work.

If your programming tools include functions that perform the tasks of one 

of these algorithms, by all means use them. You may get better performance 

than you could achieve on your own, and you’ll certainly have less debug-

ging to do.

Finally, the best algorithm isn’t always the one that is fastest for very large 

problems. If you’re sorting a huge list of numbers, quicksort usually provides 

good performance. If you’re sorting only three numbers, a simple series of If

statements will probably give better performance and will be a lot simpler. Even 

if quicksort does give better performance, does it matter whether the program 

fi nishes sorting in 1 millisecond or 2? Unless you plan to perform the sort many 

times, you may be better off going with the simpler algorithm that’s easier to 

debug and maintain rather than the complicated one to save 1 millisecond.

If you use libraries such as those described in the preceding paragraphs, you 

may not need to code all these algorithms yourself, but it’s still useful to under-

stand how the algorithms work. If you understand the algorithms, you can take 

better advantage of the tools that implement them even if you don’t write them. 

For example, if you know that relational databases typically use B-trees (and 

similar trees) to store their indices, you’ll have a better understanding of how 

important pre-allocation and fi ll factors are. If you understand quicksort, you’ll 

know why some people think the .NET Framework’s Array.Sort method is not 

cryptographically secure. (This is discussed in the section “Using Quicksort” 

in Chapter 6.)

Understanding the algorithms also lets you apply them to other situations. 

You may not need to use mergesort, but you may be able to use its divide-and-

conquer approach to solve some other problem on multiple processors.

Summary

To get the most out of an algorithm, you not only need to understand how it 

works, but you also need to understand its performance characteristics. This 

chapter explained Big O notation, which you can use to study an algorithm’s 

performance. If you know an algorithm’s Big O runtime behavior, you can 

estimate how much the runtime will change if you change the problem size.
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This chapter also described some algorithmic situations that lead to common 

runtime functions. Figure 1-2 showed graphs of these equations so that you 

can get a feel for just how quickly each grows as the problem size increases. 

As a rule of thumb, algorithms that run in polynomial time are often fast 

enough that you can run them for moderately large problems. Algorithms 

with exponential or factorial runtimes, however, grow extremely quickly as 

the problem size increases, so you can run them only with relatively small 

problem sizes.

Now that you have some understanding of how to analyze algorithm speeds, 

you’re ready to study some specifi c algorithms. The next chapter discusses 

numerical algorithms. They tend not to require elaborate data structures, so 

they usually are quite fast.

Exercises

Asterisks indicate particularly diffi cult problems.

 1. The section “Rule 4” described a ContainsDuplicates algorithm that has

runtime O(N2). Consider the following improved version of that algorithm:

Boolean: ContainsDuplicates(Integer: array[])
    // Loop over all of the array's items except the last one.
    For i = 0 To <largest index> - 1
        // Loop over the items after item i.
        For j = i + 1 To <largest index>
            // See if these two items are duplicates.
            If (array[i] == array[j]) Then Return True
        Next j
    Next i

    // If we get to this point, there are no duplicates.
    Return False
End ContainsDuplicates

What is the runtime of this new version?

 2. Table 1-1 shows the relationship between problem size N and various

runtime functions. Another way to study that relationship is to look at the 

largest problem size that a computer with a certain speed could execute

within a given amount of time.

For example, suppose a computer can execute 1 million algorithm 

steps per second. Consider an algorithm that runs in O(N2) time. In 1

hour the computer could solve a problem where N = 60,000 (because 

60,0002 = 3,600,000,000, which is the number of steps the computer can 

execute in 1 hour).
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Make a table showing the largest problem size N that this computer could 

execute for each of the functions listed in Table 1-1 in one second, minute, 

hour, day, week, and year.

 3. Sometimes the constants that you ignore in Big O notation are important. 

For example, suppose you have two algorithms that can do the same job.

The fi rst requires 1,500 × N steps, and the other requires 30 × N2 steps.

For what values of N would you choose each algorithm?

 4. *Suppose you have two algorithms—one that uses N3 / 75 − N2 / 4 + N + 10 

steps, and one that uses N / 2 + 8 steps. For what values of N would you

choose each algorithm?

 5. Suppose a program takes as inputs N letters and generates all possible 

unordered pairs of the letters. For example, with inputs ABCD, the pro-

gram generates the combinations AB, AC, AD, BC, BD, and CD. (Here 

unordered means that AB and BA count as the same pair.) What is the 

algorithm’s runtime?

 6. Suppose an algorithm with N inputs generates values for each unit square 

on the surface of an N × N × N cube. What is the algorithm’s runtime?

 7. Suppose an algorithm with N inputs generates values for each unit cube 

on the edges of an N × N × N cube, as shown in Figure 1-3. What is the 

algorithm’s runtime?

N = 3

N = 4

N = 5

Figure 1-3: This algorithm generates values for cubes on a cube’s “skeleton.”
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 8. *Suppose you have an algorithm that, for N inputs, generates a value for 

each small cube in the shapes shown in Figure 1-4. Assuming that the 

obvious hidden cubes are present so that the shapes in the fi gure are not

hollow, what is the algorithm’s runtime?

N = 1 N = 2

N = 3 N = 4

Figure 1-4: This algorithm adds one more level to the shape as N increases.

 9. Can you have an algorithm without a data structure? Can you have a data

structure without an algorithm?

 10. Consider the following two algorithms for painting a fence:

Algorithm1()
    For i = 0 To <number of boards in fence> - 1
        <paint board number i>
    Next i
End Algorithm1

Algorithm2(Integer: first_board, Integer: last_board)
    If (first_board == last_board) Then
        // There's only one board. Just paint it.
        <paint board number first_board>
    Else
        // There's more than one board. Divide the boards
        // into two groups and recursively paint them.
        Integer: middle_board = (first_board + last_board) / 2
        Algorithm2(first_board, middle_board)
        Algorithm2(middle_board, last_board)
    End If
End Algorithm2

What are the runtimes for these two algorithms, where N is the number 

of boards in the fence? Which algorithm is better?
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 11. *Fibonacci numbers can be defi ned recursively by the following rules:

Fibonacci(0) = 1
Fibonacci(1) = 1
Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2)

The Fibonacci sequence starts with the values 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.

How does the Fibonacci function compare to the runtime functions shown 

in Figure 1-2?
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