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CHAPTER 1

Multivariate Linear Time Series

1.1 INTRODUCTION

Multivariate time series analysis considers simultaneously multiple time series. It is a
branch of multivariate statistical analysis but deals specifically with dependent data.
It is, in general, much more complicated than the univariate time series analysis,
especially when the number of series considered is large. We study this more com-
plicated statistical analysis in this book because in real life decisions often involve
multiple inter-related factors or variables. Understanding the relationships between
those factors and providing accurate predictions of those variables are valuable in
decision making. The objectives of multivariate time series analysis thus include

1. To study the dynamic relationships between variables

2. To improve the accuracy of prediction

Let zt = (z1t, · · · , zkt)′ be a k-dimensional time series observed at equally
spaced time points. For example, let z1t be the quarterly U.S. real gross domestic
product (GDP) and z2t the quarterly U.S. civilian unemployment rate. By studying
z1t and z2t jointly, we can assess the temporal and contemporaneous dependence
between GDP and unemployment rate. In this particular case, k = 2 and the two
variables are known to be instantaneously negatively correlated. Figure 1.1 shows
the time plots of quarterly U.S. real GDP (in logarithm of billions of chained 2005
dollars) and unemployment rate, obtained via monthly data with averaging, from
1948 to 2011. Both series are seasonally adjusted. Figure 1.2 shows the time plots
of the real GDP growth rate and the changes in unemployment rate from the second
quarter of 1948 to the fourth quarter of 2011. Figure 1.3 shows the scatter plot of
the two time series given in Figure 1.2. From these figures, we can see that the GDP
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FIGURE 1.1 Time plots of U.S. quarterly real GDP (in logarithm) and unemployment rate from 1948
to 2011. The data are seasonally adjusted.
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FIGURE 1.2 Time plots of the growth rate of U.S. quarterly real GDP (in logarithm) and the change
series of unemployment rate from 1948 to 2011. The data are seasonally adjusted.

and unemployment rate indeed have negative instantaneous correlation. The sample
correlation is −0.71.

As another example, consider k = 3. Let z1t be the monthly housing starts of the
New England division in the United States, and z2t and z3t be the monthly hous-
ing starts of the Middle Atlantic division and the Pacific division, respectively. By
considering the three series jointly, we can investigate the relationships between the
housing markets of the three geographical divisions in the United States. Figure 1.4
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FIGURE 1.3 Scatter plot of the changes in quarterly U.S. unemployment rate versus the growth rate
of quarterly real GDP (in logarithm) from the second quarter of 1948 to the last quarter of 2011. The data
are seasonally adjusted.

2000 2005 20101995

10
00

50
00

20
00

0
50

00
20

00
0

40
00

Year

2000 2005 20101995
Year

2000 2005 20101995
Year

N
ew

 E
ng

M
id

 A
t

P
ac

ifi
c

FIGURE 1.4 Time plots of the monthly housing starts for the New England, Middle Atlantic, and
Pacific divisions of the United States from January 1995 to June 2011. The data are not seasonally
adjusted.
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FIGURE 1.5 Time plots of the monthly unemployment rates of the 50 states in the United States from
January 1976 to September 2011. The data are seasonally adjusted.

shows the time plots of the three monthly housing starts from January 1995 to June
2011. The data are not seasonally adjusted so that there exists a clear seasonal cycle
in the series. From the plots, the three series show certain similarities as well as some
marked differences. In some applications, we consider large k. For instance, let zt

be the monthly unemployment rates of the 50 states in the United States. Figure 1.5
shows the time plots of the monthly unemployment rates of the 50 states from
January 1976 to September 2011. The data are seasonally adjusted. Here, k = 50
and plots are not particularly informative except that the series have certain common
behavior. The objective of considering these series simultaneously may be to obtain
predictions for the state unemployment rates. Such forecasts are important to state
and local governments. In this particular instance, pooling information across states
may be helpful in prediction because states may have similar social and economic
characteristics.

In this book, we refer to {zit} as the ith component of the multivariate time series
zt. The objectives of the analysis discussed in this book include (a) to investigate
the dynamic relationships between the components of zt and (b) to improve the
prediction of zit using information in all components of zt.

Suppose we are interested in predicting zT+1 based on the data {z1, . . . ,zT }. To
this end, we may entertain the model

ẑT+1 = g(zT , zT−1, . . . ,z1),

where ẑT+1 denotes a prediction of zT+1 and g(.) is some suitable function. The
goal of multivariate time series analysis is to specify the function g(.) based on the
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available data. In many applications, g(.) is a smooth, differentiable function and can
be well approximated by a linear function, say,

ẑT+1 ≈ π0 + π1zT + π2zT−1 + · · ·+ πTz1,

where π0 is a k-dimensional vector, and πi are k × k constant real-valued matrices
(for i = 1, . . . , T ). Let aT+1 = zT+1 − ẑT+1 be the forecast error. The prior
equation states that

zT+1 = π0 + π1zT + π2zT−1 + · · ·+ πTz1 + aT+1

under the linearity assumption.
To build a solid foundation for making prediction described in the previous para-

graph, we need sound statistical theories and methods. The goal of this book is to
provide some useful statistical models and methods for analyzing multivariate time
series. To begin with, we start with some basic concepts of multivariate time series.

1.2 SOME BASIC CONCEPTS

Statistically speaking, a k-dimensional time series zt = (z1t, . . . , zkt)
′ is a random

vector consisting of k random variables. As such, there exists an underlying proba-
bility space on which the random variables are defined. What we observe in practice
is a realization of this random vector. For simplicity, we use the same notation zt for
the random vector and its realization. When we discuss properties of zt, we treat it
as a random vector. On the other hand, when we consider an application, we treat zt

as a realization. In this book, we assume that zt follows a continuous multivariate
probability distribution. In other words, the discrete-valued (or categorical) multi-
variate time series are not considered. Because we are dealing with random vectors,
vector and matrix are used extensively in the book. If necessary, readers can consult
Appendix A for a brief review of mathematics and statistics.

1.2.1 Stationarity

A k-dimensional time series zt is said to be weakly stationary if (a) E(zt) = μ, a k-
dimensional constant vector, and (b) Cov(zt) = E[(zt−μ)(zt−μ)′] = Σz , a con-
stant k × k positive-definite matrix. Here, E(z) and Cov(z) denote the expectation
and covariance matrices of the random vector z, respectively. Thus, the mean and
covariance matrices of a weakly stationary time series zt do not depend on time, that
is, the first two moments of zt are time invariant. Implicit in the definition, we require
that the mean and covariance matrices of a weakly stationary time series exist.

A k-dimensional time series zt is strictly stationary if the joint distribution of the
m collection, (zt1 , . . . ,ztm), is the same as that of (zt1+j , . . . ,ztm+j)

′, where m, j,
and (t1, . . . , tm) are arbitrary positive integers. In statistical terms, strict stationarity
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requires that the probability distribution of an arbitrary collection of zt is time
invariant. An example of strictly stationary time series is the sequence of independent
and identically distributed random vectors of standard multivariate normal distribu-
tion. From the definitions, a strictly stationary time series zt is weakly stationary
provided that its first two moments exist.

In this chapter, we focus mainly on the weakly stationary series because strict
stationarity is hard to verify in practice. We shall consider nonstationary time series
later. In what follows, stationarity means weak stationarity.

1.2.2 Linearity

We focus on multivariate linear time series in this book. Strictly speaking, real
multivariate time series are nonlinear, but linear models can often provide accurate
approximations for making inference. A k-dimensional time series zt is linear if

zt = μ+

∞∑
i=0

ψiat−i, (1.1)

where μ is a k-dimensional constant vector, ψ0 = Ik, the k × k identity matrix,
ψi (i > 0) are k × k constant matrices, and {at} is a sequence of independent
and identically distributed random vectors with mean zero and a positive-definite
covariance matrix Σa.

We require Σa to be positive-definite; otherwise, the dimension k can be
reduced—see the principal component analysis discussed in Chapter 2. The condi-
tion that ψ0 = Ik is satisfied because we allow Σa to be a general positive-definite
matrix. An alternative approach to express a linear time series is to require ψ0 to be
a lower triangular matrix with diagonal elements being 1 and Σa a diagonal matrix.
This is achieved by using the Cholesky decomposition of Σa; see Appendix A.
Specifically, decomposite the covariance matrix as Σa = LGL′, where G is a
diagonal matrix and L is a k × k lower triangular matrix with 1 being its diagonal
elements. Let bt = L−1at. Then, at = Lbt, and

Cov(bt) = Cov(L−1at) = L−1Σa(L
−1)′ = L−1(LGL′)(L′)−1 = G.

With the sequence {bt}, Equation (1.1) can be written as

zt = μ+

∞∑
i=0

(ψiL)bt−i = μ+

∞∑
i=0

ψ∗
i bt−i, (1.2)

where ψ∗
0 = L, which is a lower triangular matrix, ψ∗

i = ψiL for i > 0, and the
covariance matrix of bt is a diagonal matrix.

For a stationary, purely stochastic process zt, Wold decomposition states that it
can be written as a linear combination of a sequence of serially uncorrelated process
et. This is close, but not identical, to Equation (1.1) because {et} do not necessarily
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have the same distribution. An example of zt that satisfies the Wold decompo-
sition, but not a linear time series, is the multivariate autoregressive conditional
heteroscedastic process. We discuss multivariate volatility modeling in Chapter 7.
The Wold decomposition, however, shows that the conditional mean of zt can be
written as a linear combination of the lagged values zt−i for i > 0 if zt is stationary
and purely stochastic. This provides a justification for starting with linear time series
because the conditional mean of zt plays an important role in forecasting.

Consider Equation (1.1). We see that zt−1 is a function of {at−1,at−2, · · · }.
Therefore, at time index t−1, the only unknown quantity of zt is at. For this reason,
we call at the innovation of the time series zt at time t. One can think of at as the
new information about the time series obtained at time t. We shall make the concept
of innovation more precisely later when we discuss forecasting. The innovation at is
also known as the shock to the time series at time t.

For the linear series zt in Equation (1.1) to be stationary, the coefficient matrices
must satisfy

∞∑
i=1

‖ψi‖ < ∞,

where ‖A‖ denotes a norm of the matrix A, for example, the Frobenius norm
‖A‖ =

√
tr(AA′). Based on the properties of a convergence series, this implies that

‖ψi‖ → 0 as i → ∞. Thus, for a stationary linear time series zt in Equation (1.1),
we have ψi → 0 as i → ∞. Furthermore, we have

E(zt) = μ, and Cov(zt) =

∞∑
i=0

ψiΣaψ
′
i. (1.3)

We shall discuss the stationarity conditions of zt later for various models.

1.2.3 Invertibility

In many situations, for example, forecasting, we like to express the time series zt as
a function of its lagged values zt−i for i > 0 plus new information at time t. A time
series zt is said to be invertible if it can be written as

zt = c+ at +

∞∑
j=1

πjzt−j , (1.4)

where c is a k-dimensional constant vector, at is defined as before in Equation (1.1),
and πi are k × k constant matrices. An obvious example of an invertible time series
is a vector autoregressive (VAR) series of order 1, namely, zt = c + π1zt−1 + at.
Again, we shall discuss the invertibility conditions later. Here, it suffices to say that,
for an invertible series zt, πi → 0 as i → ∞.
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8 multivariate linear time series

1.3 CROSS-COVARIANCE AND CORRELATION MATRICES

To measure the linear dynamic dependence of a stationary time series zt, we define
its lag � cross-covariance matrix as

Γ� = Cov(zt, zt−�) = E[(zt − μ)(zt−� − μ)′]

=

⎡
⎢⎣

E(z̃1tz̃1,t−�) E(z̃1tz̃2,t−�) · · · E(z̃1tz̃k,t−�)
...

...
...

E(z̃ktz̃1,t−�) E(z̃ktz̃2,t−�) · · · E(z̃ktz̃k,t−�)

⎤
⎥⎦ , (1.5)

where μ = E(zt) is the mean vector of zt and z̃t = (z̃1t, . . . , z̃kt)
′ ≡ zt − μ is the

mean-adjusted time series. This cross-covariance matrix is a function of �, not the
time index t, because zt is stationary. For � = 0, we have the covariance matrix Γ0

of zt. In some cases, we use the notation Σz to denote the covariance matrix of zt,
that is, Σz = Γ0.

Denote the (i, j)th element of Γ� as γ�,ij , that is, Γ� = [γ�,ij ]. From the definition
in Equation (1.5), we see that γ�,ij is the covariance between zi,t and zj,t−�. There-
fore, for a positive lag �, γ�,ij can be regarded as a measure of the linear dependence
of the ith component zit on the �th lagged value of the jth component zjt. This inter-
pretation is important because we use matrix in the book and one must understand
the meaning of each element in a matrix.

From the definition in Equation (1.5), for negative lag �, we have

Γ� = E[(zt − μ)(zt−� − μ)′]

= E[(zt+� − μ)(zt − μ)′], (because of stationarity)

= {E[(zt − μ)(zt+� − μ)′]}′ , (because C = (C ′)′)

=
{
E[(zt − μ)(zt−(−�) − μ)′]

}′

= {Γ−�}′ , (by definition)

= Γ′
−�.

Therefore, unlike the case of univariate stationary time series for which the auto-
covariances of lag � and lag −� are identical, one must take the transpose of
a positive-lag cross-covariance matrix to obtain the negative-lag cross-covariance
matrix.

Remark: Some researchers define the cross-covariance matrix of zt as G� =
E[(zt−�−μ)(zt−μ)′], which is the transpose matrix of Equation (1.5). This is also
a valid definition; see the property Γ−� = Γ′

�. However, the meanings of the off-
diagonal elements of G� are different from those defined in Equation (1.5) for � > 0.
As a matter of fact, the (i, j)th element g�,ij of G� measures the linear dependence
of zjt on the lagged value zi,t−� of zit. So long as readers understand the meanings
of elements of a cross-covariance matrix, either definition can be used. �
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For a stationary multivariate linear time series zt in Equation (1.1), we have, for
� ≥ 0,

Γ� = E[(zt − μ)(zt−� − μ)′]

= E[(at +ψ1at−1 + · · · )(at−� +ψ1at−�−1 + · · · )′]
= E[(at +ψ1at−1 + · · · )(a′

t−� + a′
t−�−1ψ

′
1 + · · · )]

=

∞∑
i=�

ψiΣaψ
′
i−�, (1.6)

where the last equality holds because at has no serial covariances and ψ0 = Ik.
For a stationary series zt, the lag � cross-correlation matrix (CCM) ρ� is

defined as

ρ� = D−1Γ�D
−1 = [ρ�,ij ], (1.7)

where D = diag{σ1, . . . , σk} is the diagonal matrix of the standard deviations of
the components of zt. Specifically, σ2

i = Var(zit) = γ0,ii, that is, the (i, i)th element
of Γ0. Obviously, ρ0 is symmetric with diagonal elements being 1. The off-diagonal
elements of ρ0 are the instantaneous correlations between the components of zt. For
� > 0, ρ� is not symmetric in general because ρ�,ij is the correlation coefficient
between zit and zj,t−�, whereas ρ�,ji is the correlation coefficient between zjt and
zi,t−�. Using properties of Γ�, we have ρ� = ρ′

−�.
To study the linear dynamic dependence between the components of zt, it suffices

to consider ρ� for � ≥ 0, because for negative � we can use the property ρ� = ρ′
−�.

For a k-dimensional series zt, each matrix ρ� is a k × k matrix. When k is large,
it is hard to decipher ρ� simultaneously for several values of �. To summarize the
information, one can consider k2 plots of the elements of ρ� for � = 0, . . . ,m,
where m is a prespecified positive integer. Specifically, for each (i, j)th position, we
plot ρ�,ij versus �. This plot shows the linear dynamic dependence of zit on zj,t−�

for � = 0, 1, . . . ,m. We refer to these k2 plots as the cross-correlation plots of zt.

1.4 SAMPLE CCM

Given the sample {zt}Tt=1, we obtain the sample mean vector and covariance
matrix as

μ̂z =
1

T

T∑
t=1

zt, Γ̂0 =
1

T − 1

T∑
t=1

(zt − μ̂z)(zt − μ̂z)
′. (1.8)
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These sample quantities are estimates of μ and Γ0, respectively. The lag � sample
cross-covariance matrix is defined as

Γ̂� =
1

T − 1

T∑
t=�+1

(zt − μ̂z)(zt−� − μ̂z)
′.

The lag � sample CCM is then

ρ̂� = D̂
−1

Γ̂�D̂
−1

,

where D̂ = diag{γ̂1/2
0,11, · · · , γ̂

1/2
0,kk}, in which γ̂0,ii is the (i, i)th element of Γ̂0. If zt

is a stationary linear process and at follows a multivariate normal distribution, then
ρ̂� is a consistent estimate of ρ�. The normality condition can be relaxed by assuming
the existence of finite fourth-order moments of zt. The asymptotic covariance matrix
between elements of ρ̂� is complicated in general. An approximate formula has been
obtained in the literature when zt has zero fourth-order cumulants (see Bartlett 1955,
Box, Jenkins, and Reinsel 1994, Chapter 11, and Reinsel 1993, Section 4.1.2). How-
ever, the formula can be simplified for some special cases. For instance, if zt is a
white noise series with positive-definite covariance matrix Σz , then we have

Var(ρ̂�,ij) ≈
1

T
for � > 0,

Var(ρ̂0,ij) ≈
(1− ρ20,ij)

2

T
for i �= j,

Cov(ρ̂�,ij , ρ̂−�,ij) ≈
ρ20,ij
T

,

Cov(ρ̂�,ij , ρ̂h,uv) ≈ 0, � �= h.

Another special case of interest is that zt follows a vector moving-average (VMA)
model, which will be discussed in Chapter 3. For instance, if zt is a VMA(1) process,
then

Var(ρ̂�,ii) ≈
1− 3ρ21,ii + 4ρ41,ii

T
, Var(ρ̂�,ij) ≈

1 + 2ρ1,iiρ1,jj
T

,

for � = ±2,±3, . . . . If zt is a VMA(q) process with q > 0, then

Var(ρ̂�,ij) ≈
1

T

(
1 + 2

q∑
v=1

ρv,iiρv,jj

)
, for |�| > q. (1.9)

In data analysis, we often examine the sample CCM ρ̂� to study the linear dynamic
dependence in the data. As mentioned before, when the dimension k is large, it is
hard to comprehend the k2 cross-correlations simultaneously. To aid our ability to
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decipher the dependence structure of the data, we adopt the simplified matrix of Tiao
and Box (1981). For each sample CCM ρ̂�, we define a simplified matrix s� =
[s�,ij ] as

s�,ij =

⎧⎨
⎩

+ if ρ̂�,ij ≥ 2/
√
T ,

− if ρ̂�,ij ≤ −2/
√
T ,

· if |ρ̂�,ij | < 2/
√
T .

(1.10)

This simplified matrix provides a summary of the sample CCM ρ̂� by applying the
approximate 5% significance test to individual elements of ρ� under the white noise
assumption.

Another approach to check the linear dynamic dependence of zt is to consider the
sample counterpart of the cross-correlation plot. For each (i, j)th position of the sam-
ple CCM, we plot ρ̂�,ij versus � for � = 0, 1, . . . ,m, where m is a positive integer.
This is a generalization of the sample autocorrelation function (ACF) of the univari-
ate time series. For a k-dimensional series zt, we have k2 plots. To simplify further
the reading of these k2 plots, an approximate 95% pointwise confidence interval is
often imposed on the plot. Here, the 95% interval is often computed using 0±2/

√
T .

In other words, we use 1/
√
T as the standard error for the sample cross-correlations.

This is justified in the sense that we are checking whether the observed time series
is a white noise series. As mentioned before, if zt is a white noise series with a
positive-definite covariance matrix, then ρ� = 0 and the asymptotic variance of the
sample cross-correlation ρ̂�,ij is 1/T for � > 0.

To demonstrate, we use the command ccm of the MTS package in R to obtain the
cross-correlation plots for a dataset consisting of 300 independent and identically
distributed (iid) random draws from the two-dimensional standard Gaussian distri-
bution. In this particular case, we have Σz = I2 and ρ� = 0 for � > 0 so that we
expect ρ̂� to be small for � > 0 and most of the sample cross-correlations to be within
the 95% confidence intervals. Figure 1.6 shows the sample cross-correlation plots.
As expected, these plots confirm that zt has zero cross-correlations for all positive
lags.

R Demonstration: Output edited.

> sig=diag(2) % create the 2-by-2 identity matrix
> x=rmvnorm(300,rep(0,2),sig) % generate random draws
> MTSplot(x) % Obtain time series plots (output not shown)
> ccm(x)
[1] "Covariance matrix:"

[,1] [,2]
[1,] 1.006 -0.101
[2,] -0.101 0.994
CCM at lag: 0

[,1] [,2]
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FIGURE 1.6 Sample cross-correlation plots for 300 observations drawn independently from the
bivariate standard normal distribution. The dashed lines indicate pointwise 95% confidence intervals.

[1,] 1.000 -0.101
[2,] -0.101 1.000
Simplified matrix:
CCM at lag: 1
. .
. .
CCM at lag: 2
. .
. .
CCM at lag: 3
. .
. .

1.5 TESTING ZERO CROSS-CORRELATIONS

A basic test in multivariate time series analysis is to detect the existence of linear
dynamic dependence in the data. This amounts to testing the null hypothesis H0 :
ρ1 = · · · = ρm = 0 versus the alternative hypothesis Ha : ρi �= 0 for some i satis-
fying 1 ≤ i ≤ m, where m is a positive integer. The Portmanteau test of univariate
time series has been generalized to the multivariate case by several authors. See, for
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instance, Hosking (1980, 1981), Li and McLeod (1981), and Li (2004). In particular,
the multivariate Ljung–Box test statistic is defined as

Qk(m) = T 2
m∑
�=1

1

T − �
tr

(
Γ̂
′
�Γ̂

−1

0 Γ̂�Γ̂
−1

0

)
, (1.11)

where tr(A) is the trace of the matrix A and T is the sample size. This is referred to
as the multivariate Portmanteau test. It can be rewritten as

Qk(m) = T 2
m∑
�=1

1

T − �
b̂
′
�

(
ρ̂−1
0 ⊗ ρ̂−1

0

)
b̂�,

where b̂� = vec(ρ̂′
�) and ⊗ is the Kronecker product of two matrices. Here, vec(A)

denotes the column-stacking vector of matrix A. Readers are referred to Appendix A
for the definitions of vectors and the Kronecker product of two matrices.

Under the null hypothesis that Γ� = 0 for � > 0 and the condition that zt is
normally distributed, Qk(m) is asymptotically distributed as χ2

mk2 , that is, a chi-
square distribution with mk2 degrees of freedom. Roughly speaking, assume that
E(zt) = 0 because covariance matrices do not depend on the mean vectors. Under
the assumption Γ� = 0 for � > 0, we have zt = at, a white noise series. Then, the
lag � sample autocovariance matrix of at is

Γ̂� =
1

T

T∑
t=�+1

ata
′
t−�.

Using vec(AB) = (B′ ⊗ I)vec(A), and letting γ̂� = vec(Γ̂�), we have

γ̂� =
1

T

T∑
t=�+1

(at−� ⊗ Ik)at.

Therefore, we have E(γ̂�) = 0 and

Cov(γ̂�) = E(γ̂�γ̂
′
�) =

T − �

T 2
Σa ⊗Σa.

In the aforementioned equation, we have used

E[(at−� ⊗ Ik)ata
′
t(a

′
t−� ⊗ Ik)] = E(at−�a

′
t−�)⊗ E(at ⊗ at) = Σa ⊗Σa.

Moreover, by iterated expectation, we have Cov(γ̂�, γ̂v) = 0 for � �= v. In fact, the
vectors T 1/2γ̂�, � = 1, . . . ,m, are jointly asymptotically normal by application of
the martingale central limit theorem; see Hannan (1970, p. 228). Therefore,
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T 2

T − �
γ̂′
�

(
Σ−1

a ⊗Σ−1
a

)
γ̂� =

T 2

T − �
tr

(
Σ−1

a Γ̂
′
�Σ

−1
a Γ̂�

)
(1.12)

is asymptotically distributed as chi-square with k2 degrees of freedom.

Remark: Strictly speaking, the test statistic of Li and McLeod (1981) is

Q∗
k(m) = T

m∑
�=1

b̂
′
�

(
ρ̂−1
0 ⊗ ρ̂−1

0

)
b̂� +

k2m(m+ 1)

2T
,

which is asymptotically equivalent to Qk(m). �
To demonstrate the Qk(m) statistic, we consider the bivariate time series zt =

(z1t, z2t)
′ of Figure 1.2, where z1t is the growth rate of U.S. quarterly real GDP and

z2t is the change in the U.S. quarterly unemployment rate. Obviously, there exists
certain linear dynamic dependence in the data so that we expect the test statistic to
reject the null hypothesis of no cross-correlations. This is indeed the case. The p-
values of Qk(m) are also close to 0 for m > 0. See the R demonstration given later,
where we use the command mq of the MTS package to perform the test. We also apply
the Qk(m) statistic to a random sample of 200 observations drawn from the three-
dimensional standard normal distribution. In this particular case, the statistic does
not reject the null hypothesis of zero cross-correlations. Figure 1.7 shows the time

2 4 6 8 10
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0.
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1.
0

m

P
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b

FIGURE 1.7 Plot of p-values for the Qk(m) statistics for a simulated data consisting of 200 random
draws from the three-dimensional standard normal distribution. The dashed line denotes type I error of 5%.
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plot of p-values of the Qk(m) statistic for the simulated three-dimensional white
noise series. This is part of the output of the command mq. The dashed line of the
plot denotes the type I error of 5%. For this particular simulation, as expected, all
p-values are greater than 0.05, confirming that the series has no zero CCMs.

R Demonstration

> da=read.table("q-gdpunemp.txt",header=T) % Load the data
> head(da)
year mon gdp rate

1 1948 1 1821.809 3.733333
....
6 1949 4 1835.512 5.866667
> x=cbind(diff(da$gdp),diff(da$rate)) % compute differenced

% series
> mq(x,lag=10) % Compute Q(m) statistics
Ljung-Box Statistics:

m Q(m) p-value
[1,] 1 140 0
[2,] 2 196 0
[3,] 3 213 0
[4,] 4 232 0
[5,] 5 241 0
[6,] 6 246 0
[7,] 7 250 0
[8,] 8 261 0
[9,] 9 281 0
[10,] 10 290 0
>
> sig=diag(3) %% Simulation study
> z=rmvnorm(200,rep(0,3),sig)
> mq(z,10)
Ljung-Box Statistics:

m Q(m) p-value
[1,] 1.00 8.56 0.48
[2,] 2.00 14.80 0.68
[3,] 3.00 19.86 0.84
[4,] 4.00 24.36 0.93
[5,] 5.00 37.22 0.79
[6,] 6.00 49.73 0.64
[7,] 7.00 55.39 0.74
[8,] 8.00 68.72 0.59
[9,] 9.00 76.79 0.61
[10,] 10.00 81.23 0.73

Remark: When the dimension k is large, it becomes cumbersome to plot the
CCMs. A possible solution is to summarize the information of Γ̂� by the chi-squared
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statistic in Equation (1.12). In particular, we can compute the p-value of the chi-
squared statistic for testing H0 : Γ� = 0 versus Ha : Γ� �= 0. By plotting the p-value
against the lag, we obtain a multivariate generalization of the ACF plot. �

1.6 FORECASTING

Prediction is one of the objectives of the multivariate time series analysis. Suppose
we are interested in predicting zh+� based on information available at time t = h
(inclusive). Such a prediction is called the �-step ahead forecast of the series at the
time index h. Here, h is called the forecast origin and � the forecast horizon. Let Ft

denote the available information at time t, which, in a typical situation, consists of
the observations z1, . . . ,zt. In a time series analysis, the data-generating process is
unknown so that we must use the information in Fh to build a statistical model for
prediction. As such, the model itself is uncertain. A careful forecaster must consider
such uncertainty in making predictions. In practice, it is hard to handle model uncer-
tainty and we make the simplifying assumption that the model used in prediction is
the true data-generating process. Keep in mind, therefore, that the forecasts produced
by any method that assumes the fitted model as the true model are likely to under-
estimate the true variability of the time series. In Chapter 2, we discuss the effect of
parameter estimates on the mean square of forecast errors for VAR models.

Forecasts produced by an econometric model also depend on the loss function
used. In this book, we follow the tradition by using the minimum mean square error
(MSE) prediction. Let xh be an arbitrary forecast of zh+� at the forecast origin h.
The forecast error is zh+� − xh, and the mean square of forecast error is

MSE(xh) = E[(zh+� − xh)(zh+� − xh)
′].

Let zh(�) = E(zh+�|Fh) be the conditional expectation of zh+� given the
information Fh, including the model. Then, we can rewrite the MSE of xh as

MSE(xh) = E[{zh+� − zh(�) + zh(�)− xh}{zh+� − zh(�) + zh(�)− xh}′]
= E[{zh+� − zh(�)}{zh+� − zh(�)}′] + E[{zh(�)−xh}{zh(�)−xh}′]
= MSE[zh(�)] + E[{zh(�)− xh}{zh(�)− xh}′], (1.13)

where we have used the property

E[{zh+� − zh(�)}{zh(�)− xh}′] = 0.

This equation holds because zh(�) − xh is a vector of functions of Fh, but zh+� −
zh(�) is a vector of functions of the innovations {ah+�, . . . ,ah+1}. Consequently,
by using the iterative expectation and E(at+i) = 0, the result in Equation (1.13)
holds.
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Consider Equation (1.13). Since E[{zh(�)−xh}{zh(�)−xh}′] is a nonnegative-
definite matrix, we conclude that

MSE(xh) ≥ MSE[zh(�)],

and the equality holds if and only if xh = zh(�). Consequently, the minimum MSE
forecast of zh+� at the forecast origin t = h is the conditional expectation of zh+�

given Fh. For the linear model in Equation (1.1), we have

zh(�) = μ+ψ�ah +ψ�+1ah−1 + · · · .

Let eh(�) = zh+� − zh(�) be the �-step ahead forecast error. Then, we have

eh(�) = ah+� +ψ1ah+�−1 + · · ·+ψ�−1ah+1. (1.14)

The covariance matrix of the forecast error is then

Cov[eh(�)] = Σa +

�−1∑
i=1

ψiΣaψ
′
i = [σe,ij ]. (1.15)

If we further assume that at is multivariate normal, then we can obtain interval
forecasts for zh+�. For instance, a 95% interval forecast for the component zi,h+� is

zih(�)± 1.96
√
σe,ii,

where zih(�) is the ith component of zh(�) and σe,ii is the (i, i)th diagonal element
of Cov[eh(�)] defined in Equation (1.15). One can also construct confidence regions
and simultaneous confidence intervals using the methods available in multivariate
statistical analysis; see, for instance, Johnson and Wichern (2007, Section 5.4). An
approximate 100(1−α)% confidence region for zt+h is the ellipsoid determined by

(zh(�)− zh+�)
′Cov[eh(�)]

−1(zh(�)− zh+�) ≤ χ2
k,1−α,

where χ2
k,1−α denotes the 100(1 − α) quantile of a chi-square distribution with k

degrees of freedom and 0 < α < 1. Also, 100(1 − α)% simultaneous confidence
intervals for all components of zt are

zih(�)±
√
χ2
k,1−α × σe,ii, i = 1, . . . , k.

An alternative approach to construct simultaneous confidence intervals for the k
components is to use the Bonferroni’s inequality. Consider a probability space and
events E1, . . . , Ek. The inequality says that
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Pr(∪k
i=1Ei) ≤

k∑
i=1

Pr(Ei).

Therefore,

Pr(∩k
i=1Ei) ≥ 1−

k∑
i=1

Pr(Ec
i ),

where Ec
i denotes the complement of the event Ei. By choosing a (100 − (α/k))%

forecast interval for each component zit, we apply the inequality to ensure that the
probability that the following forecast intervals hold is at least 100(1− α):

zih(�)± Z1−(α/k)
√
σe,ii,

where Z1−v is the 100(1− v) quantile of a standard normal distribution.
From Equation (1.14), we see that the one step ahead forecast error is

eh(1) = ah+1.

This says that ah+1 is the unknown quantity of zh+1 at time h. Therefore, ah+1 is
called the innovation of the series at time index h+1. This provides the justification
for using the term innovation in Section 1.2.

1.7 MODEL REPRESENTATIONS

The linear model in Equation (1.1) is commonly referred to as the moving-average
(MA) representation of a multivariate time series. This representation is useful in
forecasting, such as computing the covariance of a forecast error shown in Equa-
tion (1.15). It is also used in studying the impulse response functions. Again, details
are given in later chapters of the book. For an invertible series, the model in Equa-
tion (1.4) is referred to as the autoregressive (AR) representation of the model. This
model is useful in understanding how zt depends on its lag values zt−i for i > 0.

If the time series is both stationary and invertible, then these two model presenta-
tions are equivalent and one can obtain one representation from the other. To see this,
we first consider the mean of zt. Taking expectation on both sides of Equation (1.4),
we have

μ = c+
∞∑
i=1

πiμ.
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Letting π0 = Ik, we obtain, from the prior equation,

( ∞∑
i=0

πi

)
μ = c.

Plugging in c, we can rewrite Equation (1.4) as

z̃t =

∞∑
i=1

πiz̃t−i + at, (1.16)

where, as before, z̃t = zt − μ is the mean-adjusted time series.
Next, we consider the relationship between the coefficient matrices ψi and πj ,

using the mean-adjusted series z̃t. The MA representation is

z̃t =
∞∑
i=0

ψiat−i.

Let B be the back-shift operator defined by Bxt = xt−1 for any time series xt. In
the econometric literature, the back-shift operator is called the lag operator and the
notation L is often used. Using the back-shift operator, the MA representation of z̃t

becomes

z̃t =
∞∑
i=0

ψiat−i =
∞∑
i=0

ψiB
iat = ψ(B)at, (1.17)

where ψ(B) = Ik +ψ1B +ψ2B
2 +ψ3B

3 + · · · . On the other hand, we can also
rewrite the AR representation in Equation (1.16) using the back-shift operator as

z̃t −
∞∑
i=1

πiz̃t−i = at or π(B)z̃t = at, (1.18)

where π(B) = Ii − π1B − π2B
2 − · · · . Plugging Equation (1.17) into Equa-

tion (1.18), we obtain

π(B)ψ(B)at = at.

Consequently, we have π(B)ψ(B) = Ik. That is,

(Ik − π1B − π2B
2 − π3B

3 − · · · )(Ii +ψ1B +ψ2B
2 + · · · ) = Ik.

This equation implies that all coefficient matrices of Bi on the left-hand side, for
i > 0, must be 0. Consequently, we have
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ψ1 − π1 = 0, (coefficient matrix of B1)

ψ2 − π1ψ1 − π2 = 0, (coefficient matrix of B2)

ψ3 − π1ψ2 − π2ψ1 − π3 = 0, (coefficient matrix of B3)

... =
...

In general, we can obtain ψ� recursively from {πi|i = 1, 2, . . .} via

ψ� =

�−1∑
i=0

π�−iψi, � ≥ 1, (1.19)

where ψ0 = π0 = Ik. Similarly, we can obtain π� recursively from {ψi|i =
1, 2, . . .} via

π1 = ψ1 and π� = ψ� −
�−1∑
i=1

πiψ�−i, � > 1. (1.20)

Finally, neither the AR representation in Equation (1.4) nor the MA representa-
tion in Equation (1.1) is particularly useful in estimation if they involve too many
coefficient matrices. To facilitate model estimation and to gain a deeper understand-
ing of the models used, we postulate that the coefficient matrices πi and ψj depend
only on a finite number of parameters. This consideration leads to the use of vec-
tor autoregressive moving-average (VARMA) models, which are also known as the
multivariate autoregressive moving-average (MARMA) models.

A general VARMA(p, q) model can be written as

zt = φ0 +

p∑
i=1

φizt−1 + at −
q∑

i=1

θiat−i, (1.21)

where p and q are nonnegative integers, φ0 is a k-dimensional constant vector, φi and
θj are k×k constant matrices, and {at} is a sequence of independent and identically
distributed random vectors with mean zero and positive-definite covariance matrix
Σa. Using the back-shift operator B, we can write the VARMA model in a compact
form as

φ(B)zt = φ0 + θ(B)at, (1.22)

where φ(B) = Ik − φ1B − · · · − φpB
p and θ(B) = Ik − θ1B − · · · − θqB

q

are matrix polynomials in B. Certain conditions on φ(B) and θ(B) are needed to
render the VARMA model stationary, invertible, and identifiable. We shall discuss
these conditions in detail in later chapters of the book.
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For a stationary series zt, by taking expectation on both sides of Equation (1.21),
we have

μ = φ0 +

p∑
i=1

φiμ,

where μ = E(zt). Consequently, we have

(
Ik −

p∑
i=1

φi

)
μ = φ0. (1.23)

This equation can be conveniently written as φ(1)μ=φ0. Plugging Equa-
tion (1.23) into the VARMA model in Equation (1.22), we obtain a mean-adjusted
VARMA(p, q) model as

φ(B)z̃t = θ(B)at, (1.24)

where, as before, z̃t = zt − μ.
The AR and MA representations of zt can be obtained from the VARMA model

by matrix multiplication. Assuming for simplicity that the matrix inversion involved
exists, we can rewrite Equation (1.24) as

z̃t = [φ(B)]−1θ(B)at.

Consequently, comparing with the MA representation in Equation (1.17), we have
ψ(B) = [φ(B)]−1θ(B), or equivalently

φ(B)ψ(B) = θ(B).

By equating the coefficient matrices of Bi on both sides of the prior equation, we
can obtain recursively ψi from φj and θv with ψ0 = Ik.

If we rewrite the VARMA model in Equation (1.24) as [θ(B)]−1φ(B)z̃t =
at and compare it with the AR representation in Equation (1.18), we see that
[θ(B)]−1φ(B) = π(B). Consequently,

ψ(B) = θ(B)π(B).

Again, by equating the coefficient matrices of Bi on both sides of the prior equation,
we can obtain recursively the coefficient matrix πi from φj and θv .

The requirement that both the φ(B) and θ(B) matrix polynomials of Equa-
tion (1.21) start with the k × k identity matrix is possible because the covariance
matrix of at is a general positive-definite matrix. Similar to Equation (1.2), we
can have alternative parameterizations for the VARMA(p, q) model. Specifically,
consider the Cholesky decomposition Σa = LΩL′. Let bt = L−1at. We have
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Cov(bt) = Ω, which is a diagonal matrix, and at = Lbt. Using the same method as
that of Equation (1.2), we can rewrite the VARMA model in Equation (1.21) as

zt = φ0 +

p∑
i=1

φizt−i +Lbt −
q∑

j=1

θ∗
jbt−j ,

where θ∗
j = θjL. In this particular formulation, we have θ∗(B) = L−

∑q
j=1 θ

∗
jB

j .

Also, because L is a lower triangular matrix with 1 being the diagonal elements, L−1

is also a lower triangular matrix with 1 being the diagonal elements. Premultiplying
Equation (1.21) by L−1 and letting φ∗

0 = L−1φ0, we obtain

L−1zt = φ∗
0 +

p∑
i=1

L−1φizt−i + bt −
q∑

j=1

L−1θjat−j .

By inserting LL−1 in front of at−j , we can rewrite the prior equation as

L−1zt = φ∗
0 +

p∑
i=1

φ∗
i zt−i + bt −

q∑
j=1

θ̃jbt−j ,

where φ∗
i = L−1φi and θ̃j = L−1θjL. In this particular formulation, we have

φ∗(B) = L−1 −
∑p

i=1 φ
∗
iB

i. From the discussion, we see that there are several
equivalent ways to write a VARMA(p, q) model. The important issue in studying
a VARMA model is not how to write a VARMA model, but what is the dynamic
structure embedded in a given model.

1.8 OUTLINE OF THE BOOK

The book comprises seven chapters. Chapter 2 focuses on the VAR models. It con-
siders the properties of VAR models, starting with simple models of orders 1 and
2. It then introduces estimation and model building. Both the least-squares and
Bayesian estimation methods are discussed. Estimation with linear parameter con-
straints is also included. It also discusses forecasting and the decomposition of the
forecast-error covariances. The concepts and calculations of impulse response func-
tion are given in detail. Chapter 3 studies the stationary and invertible VARMA
models. Again, it starts with the properties of simple MA models. For estimation,
both the conditional and the exact likelihood methods are introduced. It then investi-
gates the identifiability and implications of VARMA models. Various approaches to
study the likelihood function of a VARMA model are given. For model building, the
chapter introduces the method of extended CCMs.

Chapter 4 studies the structural specification of VARMA models. Two methods
are given that can specify the simplifying structure (or skeleton) of a vector VARMA
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time series and, hence, overcome the difficulty of identifiability. Chapter 5 focuses
on unit-root nonstationarity. The asymptotic properties of unit-root processes are
discussed. It then introduces spurious regression, cointegration, and error-correction
forms of VARMA models. Finally, the chapter considers cointegration tests and
estimation of error-correction models. Applications of cointegration in finance are
briefly discussed. Chapter 6 considers factor models and some selected topics in
vector time series. Most factor models available in the literature are included and
discussed. Both the orthogonal factor models and the approximate factor models are
considered. For selected topics, the chapter includes seasonal vector time series, prin-
cipal component analysis, missing values, regression models with vector time series
errors, and model-based clustering. Finally, Chapter 7 studies multivariate volatility
models. It discusses various multivariate volatility models that are relatively easy to
estimate and produce positive-definite volatility matrices.

1.9 SOFTWARE

Real examples are used throughout the book to demonstrate the concepts and anal-
yses of vector time series. These empirical analyses were carried out via the MTS

package developed by the author for the book. Not a trained programmer, I am cer-
tain that most of the programs in the package are not as efficient as they can be. With
high probability, the program may even contain bugs. My goal in preparing the pack-
age is to ensure that readers can reproduce the results shown in the book and gain
experience in analyzing real-world vector time series. Interested readers and more
experienced researchers can certainly improve the package. I sincerely welcome the
suggestions for improvements and corrections for any bug.

EXERCISES

1.1 Simulation is helpful in learning vector time series. Define the matrices

C =

[
0.8 0.4

−0.3 0.6

]
, S =

[
2.0 0.5
0.5 1.0

]
.

Use the command

m1=VARMAsim(300,arlags=c(1),phi=C,sigma=S);zt=m1$series

to generate 300 observations from the VAR(1) model

zt = Czt−1 + at,

where at are iid bivariate normal random variates with mean zero and
Cov(at) = S.
• Plot the time series zt.
• Obtain the first five lags of sample CCMs of zt.
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• Test H0 : ρ1 = · · · = ρ10 = 0 versus Ha : ρi �= 0 for some i, where
i ∈ {1, . . . , 10}. Draw the conclusion using the 5% significance level.

1.2 Use the matrices of Problem 1 and the following command

m2=VARMAsim(200,malags=c(1),theta=C,sigma=S);zt=m2$series

to generate 200 observations from the VMA(1) model, zt = at−Cat−1, where
at are iid N(0,S).
• Plot the time series zt.
• Obtain the first two lags of sample CCMs of zt.
• Test H0 : ρ1 = · · · = ρ5 = 0 versus Ha : ρi �= 0 for some i ∈ {1, . . . , 5}.

Draw the conclusion using the 5% significance level.

1.3 The file q-fdebt.txt contains the U.S. quarterly federal debts held by (a)
foreign and international investors, (b) federal reserve banks, and (c) the public.
The data are from the Federal Reserve Bank of St. Louis, from 1970 to 2012
for 171 observations, and not seasonally adjusted. The debts are in billions of
dollars. Take the log transformation and the first difference for each time series.
Let zt be the differenced log series.
• Plot the time series zt.
• Obtain the first five lags of sample CCMs of zt.
• Test H0 : ρ1 = · · · = ρ10 = 0 versus Ha : ρi �= 0 for some i, where
i ∈ {1, . . . , 10}. Draw the conclusion using the 5% significance level.

Hint: You may use the following commands of MTS to process the data:

da=read.table("q-fdebt.txt",header=T)
debt=log(da[,3:5]); tdx=da[,1]+da[,2]/12
MTSplot(debt,tdx); zt=diffM(debt); MTSplot(zt,tdx[-1])

1.4 The file m-pgspabt.txt consists of monthly simple returns of Procter &
Gamble stock, S&P composite index, and Abbott Laboratories from January
1962 to December 2011. The data are from CRSP. Transform the simple returns
into log returns. Let zt be the monthly log returns.
• Plot the time series zt.
• Obtain the first two lags of sample CCMs of zt.
• Test H0 : ρ1 = · · · = ρ5 = 0 versus Ha : ρi �= 0 for some i ∈ {1, . . . , 5}.

Draw the conclusion using the 5% significance level.

1.5 For a VARMA time series zt, derive the result of Equation (1.20).
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