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Introduction

1.1 Distribution of extremes in random fields

The aim of this book is to present a method for analyzing the tail distribution of
extreme values in random fields. A random field can be considered as a collection
of random variables {Xt : t ∈ T }, indexed by a set of parameters T . The index set
T may be quite complex. However, in the applications that we will analyze in this
book it will typically turn out that T is a ‘nice’ subset of R

d , the d-dimensional
space of real numbers.

In some statistical applications one is interested in probabilities such as:

P

(
sup
t∈T

Xt ≥ x

)
,

the probability that the maximum of the random field exceeds a threshold x,
for large values of x. There are only a few special cases in which the problem
of computing such probabilities has an exact solution. In all other cases one
is forced to use numerical methods, such as simulations, or to apply asymptotic
approximations in order to evaluate the probability. This book concentrates on the
application of the proposed method for producing asymptotic analytical expan-
sions of the probability. Nonetheless, some elements in the method may, and
have been, applied in order to simulate numerical evaluations more efficiently.
An application that illustrates the usefulness of the method in the context of
simulations is presented in the second part of the book.

As a motivating example consider scanning statistics. Scanning statistics
are used in order to detect rare signals in an environment contaminated by
random noise. For example, let us assume measurements that are taken in a
one-dimensional environment. Each measurement is associated with a point
in the environment and the points are equally spaced. For the most part, the
expected values of the observations are fixed at some baseline level throughout
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4 EXTREMES IN RANDOM FIELDS

the environment. However, at some unknown locations the expected value is
different from the baseline. Such a shift of the expectation extends over an
interval of unknown length. An interval of shifted expectations is the signal we
seek to identify. Such a signal is parameterized by the location of the interval,
by the length of the interval, and perhaps also by the magnitude of the shift.

The expectations of the observations correspond to signals (or lack thereof).
A complication in fulfilling the task at hand is the fact that the observations are
subject also to random noise, which may be parameterized by the variance of the
observations. Frequently, this random noise is taken to be normally distributed
and independent among observations. In such a case, the expectation structure
and the variance specifies completely the distribution of the observations.

Say that our goal is to decide whether or not there is any signal in the envi-
ronment. A reasonable approach, which has statistical merits to it, is to associate
with each potential signal a statistic that summarizes the information in the data
regarding that signal. For example, if signals are all of the form of an inter-
val with a fixed level of the expectation above the baseline then an appropriate
statistic is the standardized sample average of the observations that belong to the
interval, with standardization conducted with respect to the baseline expectation
and variance. The presence of a signal in the environment is announced if there
exists a statistic with a value above a previously determined threshold. False
detection occurs when all observations share the same background expectation
level but, due to random fluctuations, the threshold is crossed. The preliminary
task of the statistician, in order to limit the probability of false alarms, is to
determine the value of the threshold.

In the current example the parameter set T corresponds to the collection of
all potential signal intervals. An element in T , an interval, is composed of a pair
of numbers – the central location of the interval on the line and the length of the
interval. Hence, T is a subset of the two-dimensional plain of real numbers. The
statistic Xt that is associated with t ∈ T is the standardized sample average based
on the observations that belong to the interval t . Note that although the original
observations were assumed to be independent, the collection of statistics {Xt :
t ∈ T } are not since two overlapping intervals share some of the observations.
On the other hand, if the noise is normal then the distribution of the statistics
is also normal. A graphical illustration of the situation is given in Figure 2.5 in
Section 2.3.1 Denote the threshold by x. It follows that the probability of false
detection is of the form:

P

(
sup
t∈T

Xt ≥ x

)
,

which is the form we declared to be of interest for us. Approximations that relate
the probability to the value of the threshold x enables one to select the value of
the threshold to meet tolerated levels of the probability.

1 In Figure 2.5, our t is denoted there by θ = (t, h), with t the central location and h the length
of the interval. The statistic that we denote here by Xt is denoted there by Zθ .
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The text is devoted to the task of analyzing the tail probability of extremes.
We ignore completely more fundamental issues of sample-path properties of the
random field and questions of measurability of the random variable supt∈T Xt .
The parameter set T in many of our applications is either finite or countable.
In such a case measurability of the supremum follows readily. In other cases
one may rely on the separability of the random field in order to establish the
measurability requirement. As for us in this book, we just ignore the issue.

The analysis of the probability that the maximal value of the field exceeds the
threshold x in the situation where T is such that this probability is vanishingly
small will occupy a central part of the discussion. This type of analysis, the
analysis of vanishingly small probabilities, is frequently referred to as large
deviations. Typically, a statement of a theorem in large deviations establishes
the exponential rate by which the probability converges to zero. This first-order
approximation of the probability will not be sufficient for our needs. The aim
of our analysis will be to produce refined approximations, approximations that
include polynomial terms and associated constants. These refined expansions
open the door for the production of approximations to probability of events that
involve maximization of a random field in settings where probabilities do not
converge to zero or the computation of other functionals that are associated with
such events.

For example, in the case of a scanning statistic with normal noise we have
that the marginal distribution of each element in the random field is standard
normal. Consequently,

P(Xt ≥ x) = 1 − �(x) ≈ 1

x
√

2π
e− 1

2 x2
,

where � is the cumulative distribution function of the standard normal distri-
bution and the approximation is valid for large values of x. It can be shown
that

lim
x→∞ x−2 log P

(
sup
t∈T

Xt ≥ x

)
= −1

2
,

which is the content of the large deviation statement in this case. However, in
Chapters 2 and 3 we prove the more detailed approximation:

P

(
max
t∈T

Xt ≥ x

)
∼ x3e− 1

2 x2
(2π)−

1
2 · (0.5)2(t1 − t0)(1/h0 − 1/h1) ,

when T = [t0, t1] × [h0, h1] ⊂ R
2. This more detailed description involves both

the large deviation rate (appearing in the approximation in the form of the element
e− 1

2 ) but also polynomial terms and constants.
In this book we will selfishly concentrate on a specific approach for dealing

with the problem at hand and thus portray the false image that the method that we
present is the best method, not to say the only method, for producing asymptotic
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approximation of the probability that a random field obtains an extremely high
value. The special situation where the index T is a subset of the real line, in
which case the random field is actually a random process, has a long history and
many tools for solving. Some of the alternative methods of solution in this case
will be presented briefly in the next chapter. Another notable special case with
a very elegant theory is the situation where the random field is Gaussian with a
smooth covariance structure. A more general tool may be applied in the Gaussian
setting that involves a continuous parameter set T for cases where the covariance
function does not have derivatives. There are far fewer tools available in order
to deal with the even more general case where the random field is not Gaussian,
and to handle in this non-Gaussian setting cases where the index set is discrete
or the sample paths are not smooth.

The toolbox of the probabilist is not completely empty when faced with these
more general problems. However, the optional methods are limited in number
and none is very elegant. Admittedly, one may question the elegancy of the
method that we will advocate. Still, the method seems to work in many different
settings and thus may claim the title of generality.

The method is defined through a series of steps in which the large deviation
part of the probability is accounted for first, followed by refinements that result
from the identification of the contributions that are due to global and to more local
fluctuations. These recommended steps may help to organize the investigation of
the probabilistic characteristics of the problem at hand and assist in the evaluation
of the relative contribution of the various sources of variability.

The demonstration of methods for approximating the extreme tail of the dis-
tribution of the maxima of a random field is initiated in the next chapter. The
current introductory chapter is devoted to mental preparation. In Section 1.2 we
provide a bird’s view of the proposed method. In that section we outline the role
and characteristics of the different steps. All the details are left out and are given
in subsequent chapters.

Section 1.3 presents the type of random fields in which one may hope to
apply the method as it is presented in the current text. Essentially, we are moti-
vated by the analysis of Gaussian random fields, yet the the method is marketed
as a tool that works for non-Gaussian fields as well. Nonetheless, the approxi-
mation is based to some extent on the application of the central limit theorem.
Consequently, the type of fields that we target are those that obey the central
limit theorem in an appropriate sense. We discuss such fields in Section 1.3.

In Section 1.4 we give a list of applications. Random fields associated with
two relatively simple applications will serve throughout the first part of the book
as a demonstration of classical methods for approximating the distribution of
extremes, as well as the demonstration of our method. Other, more complicated
examples will be discussed in the second part of the book, the part devoted to
applications. For these examples we use the method described in Section 1.2.
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1.2 Outline of the method

The method we propose is motivated by statistical considerations. We are inspired
to think of the parameter t of the field as specifying a statistical model and con-
sider Xt as a statistic that summarizes the information regarding the parameter.
In many of the applications that we will consider this indeed is the context in
which the field emerges. In other applications, when this is not the case, we may
still consider that point of view as a motivation and a guiding principle.

More specifically, we propose to consider the problem of finding the tail
distribution of a random field in the context of statistical hypothesis testing. In
statistical hypothesis testing competing models for the distribution of the obser-
vations are grouped into two sub-collections. One sub-collection is called the
null hypothesis. It reflects the absence of a scientifically significant signal in the
data. The other sub-collection is composed of alternative distributions which are
a reflection of the presence of such a signal. A statistical test is constructed with
the role of determining which of the two hypotheses is more consistent with
empirical observations.

Inspired by that point of view one may regard the random variable supt∈T Xt

as the test statistic, with the test itself rejecting the null hypothesis in favor of the
alternative if this test statistic is above a threshold x. The null hypothesis itself
in this context is composed of a single distribution: the actual distribution of the
data. Consequently, rejecting the null hypothesis is an error. The probability that
we seek is the probability of making such an error, which in statistical vocabulary
is called the significance level of the test.

The alternative collection of models is associated with the set T . Each t ∈ T

specifies a model Pt of the distribution of the data. This distribution may be the
actual distribution that was considered, if the problem emerged in the considered
statistical context, or it may involve some artificially constructed model that fits
our needs. At the heart of the method is the proposal to translate the original
problem of computing the probability of being above the threshold under the null
hypothesis to a problem of computing expectations under alternative models. The
vehicle that carries out this translation is the likelihood ratio identity.

The likelihood ratio identity employs likelihood ratios. A likelihood is
the probability of the observed data under a given probabilistic model. If
the distribution of the data is continuous then the likelihood refers to the
probability’s density. A likelihood ratio is the ratio between two likelihoods.
Here we consider likelihood ratios in which the denominator is the likelihood of
the data under the current distribution (the null distribution) and the numerator
is the likelihood of the data under the alternative distribution Pt . We denote this
likelihood ratio by exp {�t }, with �t being the log-likelihood ratio. We relate
each Xt to �t , whether or not Xt emerged originally as a log-likelihood ratio,
and rephrase the original problem of crossing the threshold by elements from the
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collection {Xt : t ∈ T } using instead elements from the collection {�t : t ∈ T },
possibly with a different threshold.

In the book we present a recipe for the application of the method that involves
the likelihood ratio identity. This recipe is executed in a series of steps, and it is
concluded by producing an approximation for the tail probability that we analyze.
Unlike the baking of real cakes, one need not follow the proposed steps meticu-
lously in order to avoid disasters. On the contrary, these steps are only guidelines
and are not necessarily optimal in all scenarios. Still, we find them useful.

The first step involves the identification of the large deviation rate. The
method itself produces refinements to the first-order approximation that is pro-
duced by this rate. Frequently, one may find the large deviation rate by the
maximization of the marginal probabilities {P(supt∈T Xt ≥ x) : t ∈ T } over the
collection T .

A large deviation rate is associated with a collection of values in the param-
eter set. Preparation towards the application of the likelihood ratio identity may
involve the identification of a subset of parameter values that are most likely to
contain the maximizing value and restricting the analysis only to that sub-region.

In the case where the parameter space is continuous one may consider another
preparation step in which the maximization is restricted to a dense, but discrete,
sub-collection. Although the method can, and has been, implemented directly to
a continuous parameter set there are some technical advantages to its implemen-
tation in the context of a discrete set of parameters.

After preparations one may invoke the likelihood ratio identity. The outcome
of this step is a presentation of the probability, under the given distribution, that
the maximum of the field exceeds a threshold in terms of a sum of expectations.
The sum extends over the different values of the parameters. Each element in
the sum is computed in the context of the alternative probability model specified
by that value. The expectation involves a deterministic term that is associated
with the large deviation rate and a product of two random terms, one measuring
the global behavior of the field in the context of maximization and the other
measuring local fluctuations.

The localization theorem, the subsequent step, applies a local limit theorem
to the global term in order to prove the asymptotic independence between the
effect of the global term and the effect of local fluctuations. In the examples that
are considered the local limit theorem emerges as a refinement of the central
limit theorem. Consequently, the given approach is more natural in problems
where the global term obeys a central limit theorem and converges to the normal
distribution. The outcome of this step is an approximation of each parameter-
specific expectation in the representation by the product of three factors: a factor
associated with the large deviation rate, a factor associated with the density of
the normal limit of the global term, and a factor that measures local fluctuations.
The integrated approximation of the tail probability is obtained by the summation
of these products over the collection of parameter values.

The method is employed in settings consistent with large deviation formula-
tion. Accordingly, the probability P(supt∈T Xt ≥ x) converges to zero when the
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threshold x diverges to infinity. In other applications, when the parameter set T

is increasing fast enough as a function of x, the probability may be converging to
a positive constant. In such a case, Poisson-type approximations may be applied
in order to extend the approximation obtained in large deviation settings to the
setting of non-vanishing probabilities. Convergence in distribution that emerges
from Poisson approximations, in conjunction with statement of uniform integra-
bility, may be used in order to approximate functionals associated with extremes
that involve expectation.

1.3 Gaussian and asymptotically Gaussian
random fields

The random field is a collection of random variables {Xt : t ∈ T } with a joint
distribution. The joint distribution is uniquely specified in terms of the finite-
dimensional joint distribution of the random vector {Xt : t = t1, t2 . . . , tk}, for
any finite sub-collection of parameter values t1, . . . , tk ∈ T . In the special case
where these finite-dimensional joint distributions are all Gaussian we say that the
field is a Gaussian random field.

The joint distribution of a Gaussian random vector, the multinormal distribu-
tion, is a function only of the vector of expectations and the matrix of variances
and covariances. As a conclusion we get that the distribution of a Gaussian
random field is fully specified in terms of the expectation function: the expecta-
tion E(Xt ), for each t ∈ T , and the variance-covariance function: the covariance
Cov(Xt , Xs), for any pair (t, s) ∈ T × T . The distribution of the maximum of
the Gaussian field is influenced both by the deterministic component of the field,
namely the expectation, and by the variability, which is determined by the covari-
ance function.

The theory that deals with the investigation of extreme values in Gaussian
fields is highly developed. The role of the expectation, and the more delicate
role of the covariance structure, in the determination of the distributions of such
extremes is well understood. Extremely accurate asymptotic approximations of
the distribution of these extremes exist for some subfamilies of Gaussian random
fields. Good asymptotic approximations exist for other subfamilies.

In the next chapter we will present the two main tools for analyzing the
distribution of extremes in Gaussian fields. One tool is based on the computation
of the expectation of the Euler characteristic of the excursion set. This tool is
applicable when the realizations of the random field are differentiable and is
extremely accurate. The other, more general approach, is known as the double-
sum method. It is not as accurate as the first tool but it may apply in situations
where the realizations of the field are not smooth.

The smoothness, or lack thereof, of the realizations of a Gaussian random field
is determined by the covariance function in general, and the smoothness of this
function in the vicinity of the diagonal {(t, t) : t ∈ T } in particular. Consequently,
the answer to a question regarding which of the tools can be used is related to
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the ability to take partial derivatives of the covariance function at the points
of the diagonal. Basically, if second-order partial derivatives exist then the more
accurate method of the Euler characteristic may be applied. Otherwise, one should
refer to the more general double-sum method.

Our method is more like the double-sum method in the sense that it may be
applied under more general conditions, paying for the generality of the application
in terms of accuracy of the approximation. It has a further advantage that it can
be applied in settings where the random field is not Gaussian, although it should
obey a local limit theorem that emerges from the central limit theorem.

The central limit theorem deals with the convergence of sums of random ele-
ments to a Gaussian element. If, for example, the elements are independent fields
then the resulting limit is a Gaussian field. A central limit theorem in the context
of random field relies, typically, on the convergence of the finite-dimensional
distribution of the field to a Gaussian limit and on a tightness property. The role
of tightness is to ensure that distribution of the field, along the process of con-
vergence, may be approximated uniformly well using a finite and fixed collection
of parameter points.

A tempting approach for dealing with the distribution of the extremes in
a non-Gaussian setting, in the case where the field in question belongs to a
sequence that converges to a Gaussian limit, is to apply the approximation of the
distribution of the maximum to the Gaussian limit distribution. In this approach
one separates between the convergence of the field to the Gaussian limit, which
is carried out first, and the convergence of the tail distribution of the field to zero,
which is assessed after the first convergence took place. Tempting as it may be,
this approach may produce misleading outcomes. The reason for this is that the
central limit theorem, as the name suggests, deals with the central part of the
distribution, not with the extreme tail of the distribution. There may very well
exist a big difference between the tail behavior of the original field and the tail
behavior of a Gaussian field with the same expectation and the same covariance
function as the original field. However, this difference is washed away by the
central limit theorem. A better approach is to deal directly with the distribution
of extreme values of the original field itself and assess its asymptotic behavior.

In the approach outlined in the previous section the probability of the maxi-
mum of the field is presented as a sum of terms. These terms are composed of a
determinist factor that relates to the large deviation rate, a factor that relates to
the contribution of the global term, and a factor that measures the contribution
of local perturbations. Separating out the effect of large deviation guarantees
an honest assessment of the extreme tail distribution. The central limit theorem
plays a part in the derivation of the contribution of the global term and, in some
cases, in the contribution of the local fluctuations.

The part played by the central limit theorem in the assessment of the contri-
bution of the global term is in the form of a local limit theorem. A local limit
theorem deals with the probability that a statistic, typically a statistic produced
by taking a sum, obtains values from an interval of fixed width. The statistic
has a variance that goes to infinity. Consequently, the probability of belonging
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to the interval goes to 0 at a rate proportional to the standard deviation of the
statistic. An accurate assessment of the rate by which the probability converges
to zero may be deduced from a central limit theorem that involves a higher
order expansion of the approximation error. A famous theorem of that sort is the
Berry–Esseen theorem. An important point to make is that the distribution of
the global term is assessed in the context of an appropriate alternative distribu-
tion, not the original null distribution. Consequently, convergence may hold for
the selected alternative distribution even if it does not exist for the original null
distribution.

The method relies on a statement regarding the joint limit distribution of
the global term and a local field that is derived by local deviations of the field.
The requirement is a local limit for the global term and asymptotic indepen-
dence between the global term and local deviations. The local deviations are not
required to converge to a Gaussian limit. This requirement is much less than
the requirement that the field converges to a Gaussian limit. In the particular
important case where the field does converge to a Gaussian limit, for example
when the field is a sum of independent fields, the factor in the approximation
that is associated with the local fluctuation is the same as the factor that emerges
for Gaussian fields (still, the factor that is associated with large deviation may
be different). In other cases, the factor that is associated with local fluctuations
may differ from the factors encountered in the Gaussian setting.

1.4 Applications

This book targets people with an interest in statistics and probability as branches
of applied mathematics. As such, it will not do an honest job if it does not
demonstrate the applicability of the theory to ‘real life situations’. ‘Application
of mathematical theory’ is, to some extent, an oxymoron. Typically, what is
presented as applications are as abstract and removed from physical reality as the
theory that it serves to demonstrate and justify. To justify the relation between
an application and real life the mathematician tells a story that portrays the
application as something that actual practitioners, people that do real science or
put their money (or other people’s money) at real risk, care about. These stories
can fool outsiders but not people who actually know the details.

This description is true also for the applications given in this book. I am not
an insider in either of the topics that appear in the second part of the book. In
some cases, for example in genetics, I can say that I know people who know
actual practitioners. In other cases I have only my imagination and what I read
in Wikipedia to guide me.

Let us list the applications that will be presented in the book. In the first
part of the book we will use two simple applications in order to demonstrate the
solutions provided by the theory, both classical solutions that will be presented
in Chapter 2, and the solution provided by our method. That solution will be
mainly given in Chapter 3.
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The first example is an example of sequential testing of hypotheses. In this
example we will consider the case of two simple hypotheses and the application of
the sequential probability ratio test for testing one hypothesis versus the other. In
this example the parameter space is one-dimensional – the positive integers – and
the random field is the process of a random walk. Tools that are applicable to
random walks, in particular random walks stopped by a stopping time, can be
used for the analysis of this example.

The second example is an example of a scanning statistic in the spirit of the
example that was mentioned at the beginning of the chapter. Scanning statistics
are used in order to detect rare signals in an environment contaminated by random
noise. In the particular example we will consider a signal of the form of a region
of elevated expectation in a linear environment with a Gaussian white noise. The
elevated region is parameterized by the location of its center and by its width. The
resulting field of scanning statistics is two-dimensional and Gaussian. We will
consider cases where the field is smooth and a case where it is not. The classical
tools for the analysis of Gaussian fields will be applied in Chapter 2 and our
alternative approach will be used in Chapter 3. The Poisson approximation for
the example of a scanning statistic and for a modified version of the sequential
example is discussed in Chapter 4.

The second part of the book begins with a problem of intermediate difficulty.
The task in that problem is to produce an approximation for the significance
level of the Kolmogorov–Smirnov test and the Peacock test. Peacock’s test is
a generalization of the well known Kolmogorov–Smirnov nonparametric test of
goodness-of-fit to higher dimensions. The Kolmogorov–Smirnov test compares
the empirical distribution of a random variable to a theoretical distribution. Pea-
cock’s test, on the other hand, compares the empirical distribution of a random
multivariate vector to its theoretical multivariate distribution. The analysis of
the significance level of the Kolmogorov–Smirnov test is a classical exercise in
many advanced statistics textbooks. Knowledge about the multivariate version
of the test is not so wide spread. In Chapter 6 we give an alternative asymp-
totic derivation of the result for the Kolmogorov–Smirnov test on the basis of
our approach. We then show how little effort is needed in order to extend the
analysis to the multivariate setting.

More complex applications appear in the rest of the second part of the book.
The applications presented are a reflection of the projects that I was involved
with in recent years and in which the method was used.

The first application involves scanning for DNA copy number variations.
Most of the genetic material in somatic cells comes in two copies, one origi-
nating from the mother and the other from the father. Occasionally, a segment
of the DNA may be missing or may have multiple copies resulting in a copy
number different than 2. A scanning statistic for detecting such intervals using
genetic measurements generated from a sample can be constructed. The resulting
scanning problem is not unlike the simple example that is used in the first part of
the book. However, the produced two-dimensional field is not Gaussian, although
it is asymptotically so. This problem is analyzed in Chapter 7.
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The second example combines a scanning statistic with a sequential tool for
change-point detection. This example involves a scenario in which an image is
scanned for a signal of a specific structure. The specifications of the signal are
not known nor is the time in which it will appear, if at all. The goal is to identify
the emergence of the signal as fast as possible after it appeared, but not to do so
before it did. The noise involved is Gaussian but the statistics that are used, and
hence the associated random field, are not. The investigation of the properties
of an appropriate stopping time that may be used to detect the emergence of a
signal is carried out in Chapter 8.

The third application is discussed in Chapter 9. The issue in that application
is the design of a buffer that is large enough to store packets waiting to be
transmitted in an outgoing communication line. These packets arrive from a large
number of independent sources and the outgoing line is of a fixed bandwidth.
A simple model will characterize an incoming source by the distribution of the
duration of time that is active, the ‘on’ period, and the distribution of time that
it is idle, the ‘off ’ period. The size of the required buffer can be associated
with a level and the probability of a buffer overflow can be associated with the
probability that a random field associated with the sum of the on–off processes
exceeds the level. Apart from the fact that the field is not normally distributed, but
only asymptotically so, it is also the case that the characteristic behavior of local
fluctuations in this case differs from the characterizations in the other examples.
This local behavior is specified by a parameter we denote by α that may take a
value between 0 and 2 in general, and between 1 and 2 in the specific case. The
local behavior is characterized by constants known as Pickands’ constants that
depend on this parameter α.

The Pickands’ constants emerged as part of the development of the classical
double-sum method for analyzing Gaussian fields and were defined a long time
ago. However, their numerical evaluation remained an elusive problem and only
crude upper and lower bounds to their value existed. In Chapter 10 we will
explain how the representation that emerges from the method can be used in
order to evaluate the constants efficiently. With this last application we conclude
the book.




