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Production

Production is possibly the basic economic activity.
Without it there would be nothing to consume,
so the theory of demand would not be much of an
issue. Consequently we begin our introduction
to contemporary economic concepts with the
choices people face when producing goods or
services. In addition to introducing you to a
particular body of theory, we also begin here in
exposing you – gradually though – to the termi-
nology of contemporary economics. Much of it is
intuitive, but at just enough of an oblique angle
to daily meanings of the identical words that you
should pay careful attention. Our beginning point
is the relationship between the things people use
to produce other things and the things they pro-
duce with them – called inputs and outputs in the
economic lexicon. The concept of the production
function (sections 1.1 and 1.2) makes aspects of
these relationships somewhat more precise than
their use in casual conversation, but the degree
of precision can vary according to the need for
precision, which is a pleasant characteristic of
this body of theory. The production function
characterizes the technology – the actual physical
and engineering relationships among inputs
and outputs – in a fashion that constrains the
choices people find it useful to make as well as
the consequences of any choices they do make.
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Correspondingly, changes in technology can
change both choices and results (section 1.9).

One of the more important insights that con-
temporary economics uses, time and again, is that
there is generally more than one way to do just
about anything. Economics calls this aspect of life
“substitution” or “substitutability” (sections 1.3
and 1.4). It characterizes consumption as well
as production, but in this chapter we’ll focus
on its role in production choices. One of the
critical capacities of contemporary production
concepts in economics is the ability to attribute
proportions of products to the inputs that helped
produce them. This attribution is called income
distribution, and it involves attributing the prod-
uct(s) produced to the inputs that produced them
(or their owners, more precisely) in the form of
income (section 1.6). This process may actually
feel quite intuitive to scholars of the ancient
world who are accustomed to thinking of many
workers, particularly in the Near Eastern and
Aegean palatial and temple economies, being
paid in the form of rations or a comparable
part of what they produced. It’s the same thing,
basically. (As an historical accident of intellectual
development, the term “income distribution”
has also come to name a different, but certainly
not unrelated, concept – that of how a total
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income in an economy is distributed among its
members. This has become called the “personal
distribution of income” to distinguish it from the
“functional distribution of income,” which refers
to how output is attributed, if not necessarily
actually distributed, to the inputs that produced
it; section 1.11.)

Throughout this introduction to concepts about
the economics of production – the choices people
make in production – we have woven both actual
and hypothetical examples from times and places
in the ancient Mediterranean region. We close the
chapter with a more extended example of how the
use of concepts from production theory can illu-
minate the interpretation, and possibly even the
translation, of ancient texts.

Economic concepts are prescriptive, as well as
descriptive, in the sense that they identify the
choices people could make that would make them
the best off, in their own assessments, in terms
of their own goals. Accordingly, the concept of
efficiency emerges (section 1.7). With the further
step of a widespread belief that most people
at most times and places haven’t willingly left
“food on the table,” these descriptive prescrip-
tions also yield predictions of how people will
behave – the choices they’ll make – in a wide
range of circumstances (sections 1.8 and 1.9).

1.1 The Production Function

The workhorse concept of the theory of produc-
tion is the production function, which relates the
quantity of a product produced to the quantities
of things used to produce it. The “things used
to produce it” are called “factors of production”
(sometimes “factors” for short) or “inputs.” For
expositional purposes it is common (because it is
simple) to study production functions with two
inputs. Suppose we consider cotton (an output)
to be produced with labor and land as the inputs,
or the factors of production. Introducing some
simple notation, we could use the shorthand
Q = f (L,N), where Q represents the quantity of
cotton produced, L is the quantity of land used,
N is the quantity of labor used, and f stands for
the technological relationship between the inputs
and the output.1 The expression Q = f (L,N) is
read as “Q equals (or “is”) a function of L and N,”
not “Q equals f times L or N.”

Assume that all units of labor are equivalent to
one another (that is, no big strong fellows and
small weak fellows), all units of land are identical
(fertility, slope, and so forth), and that all units
of the cotton are of the same kind and quality.
Otherwise, how could we compare units with one
another? If you wanted to distinguish between,
say, two categories of labor, one small and weak,
the other big and strong, you would just specify
two different labor inputs. This is the first example
of a simplifying assumption in economic analysis
(most assumptions do simplify; life is compli-
cated enough without assuming that it is more
so). The second example is in the assumption that
the production function has just two inputs in it.
This is a commonly used assumption designed to
highlight the behavior of an individual factor. We
could have called one of the factors “labor” and
the other “all other inputs.” A two-factor designa-
tion serves to demonstrate most – but admittedly
not all – of the behavior we want to investigate
in production. The same simplification to just
two items will appear commonly throughout
this survey.

The relationship between each input and the
output is precisely defined. To get more cotton, if
the quantity of land is held fixed at the amount
L, we must increase the quantity of labor used.
Conversely, if labor is fixed at N, to get more
cotton we must increase the amount of land we
use. To get more output, at least one of the inputs
must be increased in number. Further, produc-
tion functions commonly – but not necessarily
always – have the property that if the quantity of
any one of the inputs used (we are not restricted
to only two inputs; this is just for expositional
convenience) is zero, the output is zero. Thus,
Q = f (0,N) = f (L, 0) = f (0, 0) = 0.

Production functions contain considerably
more information about the technology of pro-
duction than just that more inputs are required
to produce more of any output. They describe (i)
exactly how much more of each input is required
to produce another unit of output, and how
this quantitative relationship can be expected to
change as quantities of inputs and production
change; (ii) the ways that other inputs affect the
relationship between any particular input and
output; (iii) relationships among inputs such as
substitutability and complementarity; and (iv)
the effects, if any, of overall scale of production
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on the productivity of inputs. They help predict
the employment decisions of producers and
how producers will respond to cost changes and
various technological changes.

Even if ancient data are scarce or missing alto-
gether, the concept of the production function is
useful, simply for collecting and clarifying your
thoughts about what was used in production
and what factors might have caused production
to differ among locations or times. When we
want to use the production function concept to
think about a particular line of production at a
particular time and place, there is absolutely no
difficulty in adding more factors of production
than the two we’ve talked about so far. To think
about the economics of, say, pottery production,
we certainly would want to include labor time,
and for a relatively large potting operation, pos-
sibly several skill levels of labor. On the other
hand, we might decide that land used in pot-
tery production is so insignificant that we could
just ignore it; or alternatively, we might have
a case of ceramic production in a city such as
fifth-century Athens, where finding space to let
freshly turned pots dry before firing, as well as
space for kilns and fuel inventories, would have
been a non-negligible concern. Next, we might
have some capital equipment – wheels, brushes,
various tools for smoothing and scraping. Then
there is the clay itself, which may be quite spe-
cialized. The kilns for firing the pots are a type
of capital equipment, and the fuel for the fire
is a material input. Each of these inputs would
have required decisions that the remainder of the
chapter will examine: how much to use, propor-
tions relative to one another, technically possible
and economically (even aesthetically) acceptable
substitutions among one another.

The pottery example is a case of a production
function for a product. We can develop pro-
duction functions for processes as well, such as
different types of industrial heat generation (for
ceramics, metallurgy, baking, and preparation of
various materials) and chemical processes such
as dyeing and oil purification. Some of these
production functions could be thought of as
nested, in the sense that many of the chemical
processes require controlled heat as well as other
inputs combined with the heat. Economics has

developed the “engineering production func-
tion,” which uses chemical, mechanical, and
other engineering knowledge to develop empiri-
cal relationships between “economic” inputs such
as quantities of materials and sizes (capacities) of
capital equipment and quantities of these process
outputs, such as the magnitude of processed
oil, dyed textiles, or quantity of heat output
(Chenery 1948; Smith 1961, Chapter 2; Marsden
et al. 1974). Much of the literature on ancient
technologies that addresses such topics as the
techniques of firing pottery and related ceramic
materials such as faience and glass, smelting
metals, and the production and use of various
chemicals such as cosmetics and dyes, focuses on
the material components of recipes, frequently
on steps in processes, and occasionally on firing
temperatures.2 Much of the recent, physical sci-
ence analysis of metals and ceramics is essentially
reverse engineering from slags in the case of
metals and the actual pots in the ceramic cases,
to infer firing temperatures and technological
innovations in materials that permitted desired
transformations to occur at lower temperatures.3
While considerable technological knowledge has
derived from these investigations, they tend to
yield impressions of (i) unique methods used
at particular places and times, with deviations
representing errors and (ii) different technologies
in use to produce similar or identical products at
different locations or times. The element of choice
of technique within a given technology, which
was capable of alternative implementations, gets
downplayed in these approaches. This is not a
criticism per se, since each analytical methodol-
ogy offers a certain range of insights; overcoming
such restrictions presumably is the motivation
for continual calls for interdisciplinary analysis of
the ancient world.

Smith’s example of “multiple-pass regener-
ation processes” illustrates the types of choices
emphasized by the production function construct
(Smith 1961, 42–44). In this type of process, a
mixture of reactants, such as a vegetable oil, is
passed over a bed composed of some catalytic
substance such as fuller’s earth. The filtering
operation saturates the clay adsorbent but it can
be regenerated by washing and burning in a
furnace, although the clay’s adsorbing capacity
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falls with each regeneration. Eventually, after a
number of these regenerations, the adsorbent
declines sufficiently in efficiency that it pays to
begin operations with a new adsorbent charge.
Smith uses the chemical engineering parameters
relating number of passes and subsequent regen-
erations to adsorbent capacity, then, through
a series of substitutions involving quantities of
adsorbent (clay) and equipment capacity, derives
a production function that says that for a given
capacity of filtering equipment, the adsorbent
input to the process per year can be reduced only
by increasing the number of passes per cycle,
which entails using the clay at a lower level of effi-
ciency. A given quantity of filtered vegetable oil
can be produced in a year with alternative combi-
nations of equipment capacity and throughput of
fuller’s earth. This example speaks to findings of
alternative material recipes and process steps in
ancient industries. There is no necessary impli-
cation of different technologies; archaeologists
may be observing different choices of production
techniques within a given technology. Why they
might make those different choices is the subject
of section 1.7.

In the meantime, before leaving this intro-
duction to the production function, let’s listen
to Moorey (1994, 144) on the variability in the
ancient use of kilns:

Pottery kilns were always adapted to the peculiar
circumstances of the situation, the resources avail-
able, and the type of pottery to be produced . . .

Throughout, into modern times, “open” and
“kiln” pottery firing, in single- or double-chamber
structures, might be found side by side in the
same workshop or settlement for the production
of different types of vessels or various ceramic
fabrics.

Moorey’s first observation focuses on the choices
available to the ancient potters in choosing the
combination of capital and other inputs (pri-
marily fuel, probably, but possibly clay as well).
The second observation may be a case of either
coexistence of different technologies or simply of
different ratios of capital to other inputs within
a single technology, with the choice of that ratio
depending on clay quality (which we could

translate into alternative inputs) or even specific
products to be produced, with the input ratio
possibly influenced by the relative prices different
fabrics or vessel types could command. This last
interpretation takes us beyond the concepts we’ve
introduced so far, so with this we return to the
development of production theory.

1.2 The “Law” of Variable
Proportions

Consider the issue of how output changes with
changes in the quantities of inputs applied.
Figure 1.1 shows how total output increases as the
quantity of labor (N) increases, with the quantity
of land (L) fixed. As drawn, the total product (the
curve labeled TP) increases moderately at first,
then increases more steeply, then has its increase
begin to slow down, eventually go to zero, and
finally turn down. In Figure 1.2, consider that we
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Figure 1.1 The total product curve.
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Figure 1.2 Average and marginal products.
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have employed labor in the amount N0. The aver-
age product of labor (output Q0 divided by labor
N0) can be represented by the slope line from the
origin to point A on the TP curve (Q0 ÷ N0, or
Q0∕N0). Now, suppose we increase labor from
N0 to N1. Output increases from Q0 to Q1, or
to point C on the TP curve. The incremental
output attributable to the incremental labor input
is distance BC. This incremental output is called
the marginal product of labor. (The definition of
the marginal product of labor is ΔQ∕ΔN, where
the symbol Δ represents a change in the variable
following it.) TP has some degree of curvature
between points A and C, so we cannot draw any
straight line to represent the marginal product.
But suppose we contemplate making the differ-
ence between N1 and N0 smaller and smaller,
until N1 is just a tiny bit larger than N0 – so close
together that it looks like we are at a single point
on the TP curve. The slope of the TP curve at
point A (actually not a point, but the infinitesimal
distance between N0 and N1 as we’ve shrunk the
increment so much that we can approximate the
difference by the point A) represents the marginal
product of N at the quantity of labor N0. (The
marginal product of labor at N1 would be the
slope of the TP curve at point C.)

The steepest line from the origin to a point on
the TP curve will indicate the quantity of N per
unit of Q (actually the Q∕N ratio, which is the
average product) that gives the largest average
product of N. Figure 1.3 shows this line. The
slope of this line equals the slope of the tangent
to the TP curve at this point. So, at the maximum
value of average product, average product (AP)

Q

O
MP

AP

Variable factor

Stage 1 Stage 2 Stage 3

TP

Figure 1.3 Total, average, and marginal product
curves.

equals marginal product (MP). Figure 1.3 depicts
the average product and marginal product curves
corresponding to the total product curve and
shows the intersection of the AP and MP curves
below the intersection on the TP curve of the
line from the origin that has the greatest slope.
Figure 1.3 also marks out three stages of produc-
tion on the basis of the relationship between
average and marginal product. In Stage 1,
the average product of the “variable factor” is
increasing. Symmetrically, the marginal product
of the “fixed” factor is negative. The boundary
between Stages 1 and 2 is the maximum point
of average product. In Stage 3, marginal product
of the variable factor is negative. The boundary
between Stages 2 and 3 is the point of maximum
total product, indicated by the horizontal line
tangent to TP. Producing at any ratio of the
variable factor to the fixed factor contained in
Stage 1, the producer could get a larger average
product by adding more of the variable factor,
and he or she would be irrational not to add more
of the variable factor. Consequently, production
in Stage 1 is irrational. In Stage 3, the producer
has added so much of the variable factor that the
units are literally tripping over one another; they
actually lower total product, which is the meaning
of a negative marginal product. Production in
that stage is also irrational. Stage 2 contains the
only ratios of factors (inputs) that it is rational
to employ. One of the thoughts to take away
from this exposition is that producers will always
produce in a range (of input ratios) of decreasing
marginal product, for all inputs. Explanations
of people’s actions as being efforts to get away
from, or avoid, decreasing marginal productivity
are incorrect.

In Book XI of De Re Rustica, ll. 17–18, Col-
umella notes that a specific area of land, an
iugerum, can be trenched for a vineyard to a
depth of 3 feet by 80 laborers working for one
day, to 2 1∕2 feet by 50 laborers, or to 2 feet by 40
laborers. Notice the constant marginal returns,
in terms of depth dug, between the application
of 40 and 50 laborers and the decreasing returns
when he increases the number of laborers to 80:
80 laborers can dig less than twice as deep as can
40 laborers (Forster and Heffner 1955, 79). This,
of course, is not an empirical observation but,
possibly even more important, it is a recognition,
or expectation, of decreasing marginal returns to
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increasing applications of labor to a fixed quantity
of land.

1.3 Substitution

The next technological relationship specified by
the production function that we will discuss is
the array of ways that different combinations of
the inputs (two in this case) can produce a given
quantity of the output. You also can think of this
topic as how the inputs relate to one another. In
Figure 1.4, the quantity of labor (N) is measured
on the abscissa (the horizontal axis) and the
quantity of land is measured on the ordinate.
The curved line labeled Q0 represents a con-
stant quantity of output, say 100 bales; it can be
produced with any of the combinations of land
and labor represented by coordinates lying on it.
Thus, the labor-land combinations represented
by A (N0, L0) and B (N1, L1) will both yield 100
bales of cotton (Q0). The curve Q0 is called an
isoquant, because each point on it represents the
same quantity of output. Isoquant Q1 represents
a larger quantity of cotton, say 200 bales. Combi-
nations of labor and land represented by points
C (N3, L3) and D (N1, L4) will both produce 200
bales of cotton. Notice that, as these isoquants are
drawn, it is not necessary to use larger quantities
of both inputs to produce a larger output; in fact,
we can produce 200 bales at point D using no
more labor than we used at point B to produce
100 bales (N1) if we are willing to increase our
use of land to L4 from L1. This concept (“there’s

L

L3
L4
L0

Q0

Q1

N0 N3 N1

L1

O

A

B

D
C

N

Figure 1.4 An isoquant with substitution between
inputs in the production technology.

more than one way to skin a cat,” begging my
own cats’ pardon for the expression) is known
as “substitution.” Specifically, the production
function represented by the family of curves Q in
Figure 1.4 indicates that there is substitutability
between land and labor in the production of cot-
ton. Empirically, most production technologies
embody substitutability between (among) inputs.

The alternative – nonsubstitutability – can be
represented graphically as the L-shaped curves in
Figure 1.5. We can combine N0 units of labor and
L0 units of land to produce Q0 units of output.
If we add some labor, say to N1, but keep land
unchanged at L0, we still get Q0 units of output,
so we just wasted labor in the amount N1 –N0.
Only land-labor combinations along the line
labeled R will be efficient; above R, we’re using
land that contributes nothing to output, below
it we’re using labor that contributes nothing.
Such a production technology commonly is
called a “fixed-coefficients” technology. Why
even consider a production function with such
a characteristic? Several reasons. First, it is one
logical end of the continuum of degrees of sub-
stitutability between inputs. Second, for very
short periods of analysis, in which it is difficult
to substitute among inputs, many technolo-
gies with flexibility over longer periods can be
studied as if they were fixed-coefficient tech-
nologies. The technique known as input-output
analysis generally specifies fixed-coefficients
technologies.

Let’s return to the isoquant diagram and the
issue of substitutability among inputs. Figure 1.6

L

N0

Q0

Q1

R

N1

L0

O N

Figure 1.5 An isoquant with no substitution
between inputs in the production technology.
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L

O N

B

A

Figure 1.6 Marginal rate of technical substitution
(MRTS).

reproduces isoquant Q0 with points A and B from
Figure 1.4. The two lines drawn tangent to points
A and B have marginal interpretations analogous
to the tangent to the total product curve (TP) in
Figure 1.2. The slope of the line tangent to the
isoquant at point A represents the number of
units of land (L) that have to be substituted for a
single unit of labor (N) at that point (the change
in L divided by the change in N). The slope is
steep relative to the slope of the line tangent
through point B. Point A represents a labor-land
input combination that uses relatively few units
of labor. At such a point, substituting even more
land for another unit of labor is relatively difficult.
At a labor-land combination like point B, where
the ratio of labor to land is high, substituting a
unit of land for labor is not nearly so difficult. The
slope of the isoquant (actually, the negative of the
slope) at any point is called the marginal rate of
technical substitution (which itself is, in fact, the
ratio of the marginal products of the two inputs
at that ratio of inputs; we will discuss the concept
of the marginal product shortly).

The reader may have wondered why the cur-
vature of the isoquant that allows substitution
between inputs is shaped the way it is. Specif-
ically, why is it convex, as Figure 1.4 shows,
rather than concave, as in Figure 1.7? We have
already presented the information to answer this
question, but it may be useful to reassemble it
here. The convex isoquant of Figure 1.4 indicated

L

O N

Q

Figure 1.7 An isoquant with increasing MRTS –
impossible.

diminishing marginal rates of technical sub-
stitution as we moved toward either axis. That
is, as more labor is substituted for land (to the
right end of the abscissa, or N-axis), it takes
progressively more labor to replace a unit of land
and still produce a constant output. Viewing this
corner of Figure 1.4 alternatively (moving from
right to left instead of from left to right), when
we are already using a lot of labor, the amount
of land required to replace a unit of labor and
keep output constant isn’t very large. If we had a
concave isoquant such as Figure 1.7 shows, our
technology would be characterized by increasing
marginal rates of technical substitution: as we
replaced more land with labor, we could substi-
tute away units of land more and more easily. As
we will see below when we introduce the role
of input prices in determining input ratios in
production, a concave isoquant would encourage
the use of higher proportions of the relatively
more expensive input.

Figure 1.8 shows an isoquant that possesses
infinite substitutability between land and labor.
At any location along the isoquant, a unit of land
can substitute for x units of labor (where the value
of x is determined by the slope of the isoquant).
Perfect substitutability does not play a large
role in economic analysis, probably because it is
not important empirically. We present it simply
to show the limiting case of substitutability in
production.
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L

O N

Q1

Q0

Figure 1.8 An isoquant with perfect substitutabil-
ity between inputs – unlikely.

Much of the practical agricultural advice con-
tained in the Roman texts such as Columella’s
Res Rustica and De Arboribus and portions of
Pliny the Elder’s Natural History is written as if
the combinations of resources used in various
crops and husbanding were required in very
specific proportions, very much as would be
implied by fixed-coefficients production func-
tions. Nonetheless, even in these texts we can find
discussions of alternative ways of doing things.
Pliny, in Book XVIII of the Natural History,
l. 35, notes that, at least in older times, it was
considered better to sow less land and plough it
better – clearly a substitution of labor for land
(Rackham 1950, 213).

1.4 Measuring Substitution

Recall from Figure 1.2 that we can calculate the
marginal products of both inputs – and conse-
quently the ratio of their marginal products –
from knowledge of the ratio of the quantities of
the two factors (with, of course, knowledge of
the “functional form” of the production func-
tion, which we will discuss below). A summary
measure of the degree of substitutability between
inputs in producing a constant quantity of out-
put, called the elasticity of substitution (between

inputs), is the percentage change in the ratio of
inputs divided by the percentage change in the
ratio of marginal products. It is always measured
positively; frequently the lower case Greek letter
σ (or σij –read as “sigma-sub ij” – for the elastic-
ity of substitution between inputs i and j when
there are more than two inputs in the production
function) is used to denote it. In a more math-
ematical treatment than we will use here, there
are a number of ways of deriving formulae for
the elasticity of substitution, some using strictly
characteristics of the production function, others
using input prices; none is “wrong,” but different
measures illuminate different aspects of sub-
stitution and different circumstances. Another,
fairly intuitively appealing formula defines the
elasticity of substitution between two inputs as
the negative of percentage change in the ratio
of the quantities used divided by the percentage
change in the ratio of their costs. The elasticity
of substitution – indeed any elasticity – is a pure,
dimensionless number. That is, it does not have
the dimensions of output/input or cost/quantity,
or whatever; it will have the dimensions of
input/input or cost/cost, such that the measured
units cancel. (If, in modeling some problem your-
self, you find occasion to construct an elasticity
and you find that it has the dimensions of, say,
distance over time, or some such, you’ve made
an error.)

When a production function has only two
inputs, those inputs are always substitutes for
each other. In the cases of three or more inputs it
is possible for some pairs of inputs to be comple-
ments. In the case of substitutes, when the relative
price of one input goes up – call it input A – the
ratio of input A to substitute input B would fall
as the producer substitutes B for A. If inputs A
and C are complements to each other, when the
use of one of those inputs falls because of a rise
in its relative price, the use of the complement
also will fall; whether the ratio of the two comple-
mentary inputs falls, rises, or remains constant is
an empirical matter. Nevertheless, the ratios of
both those inputs to input B, for which they must
be substitutes, will fall when the price of one of
them rises relative to the price of B. The issue of
substitutability or complementarity is important
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in the subject of the demand for inputs, which we
will discuss below.

1.5 Specific “Functional Forms”
for Production Functions

Since we have brought up the concept of the
“functional form” of a production function, let’s
discuss it somewhat further. We introduced the
concept of the production function with general,
functional notation f (◾,◾), where “f ” (it could
have been any letter, Roman, Greek, or otherwise)
deliberately avoids spelling out exactly what the
equation looks like. Recalling junior high school
algebra, some function y = f (x) could represent
a specific equation like y = a + 2x, where x is the
“independent” variable and y is the “dependent”
variable. (On a Cartesian graph, such as we’ve
used here to describe the behavior of production
functions, y is on the ordinate and x is on the
abscissa.) Several specific functional forms have
been extremely popular for production functions,
because of both their theoretical properties and
their ability to find empirical correspondence in
data on production.

The simplest functional form that allows
substitutability between (among) inputs is the
Cobb–Douglas function: Q = ANαLβ, in which
A is simply a constant term, which turns out to
be handy to represent such events as technical
change. First, note that if the value of either input
(N or L in our cotton case) is zero, the value of Q
will be zero. The exponential parameters α and
β, called “output elasticities,” are positive and
generally add up to a value close to 1.0. We’ve
run into the term “elasticity” already, in reference
to substitutability. Elasticities are widely used in
economics to describe the percentage change in
one quantity (the one in the numerator of the
ratio) caused by a 1% change in another quantity;
the elasticity is the percentage change in the
“dependent” variable divided by the percentage
change in the “independent” variable. An output
elasticity is the percentage change in output
attributable to a 1% change in the corresponding
input. The sum of the output elasticities in the
Cobb–Douglas function has an important phys-
ical interpretation: it is the degree of returns to

scale in production. A sum of output elasticities
exactly equal to 1.0 implies constant returns to
scale (sometimes abbreviated CRS): a 1% increase
in all inputs will yield exactly a 1% increase in
output. A sum of output elasticities greater than
1.0 implies increasing returns to scale, and a sum
less than 1.0 gives decreasing returns to scale.
An example of increasing returns to scale would
be if a 1% increase in all inputs yielded a 1.05%
increase in output. For decreasing returns to
scale, a 1% increase in all inputs would yield,
say, a 0.95% increase in output. A restrictive
feature of the Cobb–Douglas function is that
its elasticity of substitution between each pair of
inputs is exactly 1.0, and the elasticity of substi-
tution has exactly that value at all points on the
isoquant. (As such, the Cobb–Douglas function
is one of a class of production functions called
“constant elasticity of substitution” functions.
This is in contrast to production functions that
allow the elasticity of substitution to vary at
different points along an isoquant, an apparently
“nice” characteristic when one wants to study the
effects of substitutability quite closely but one
that adds enormous mathematical complexity to
any analysis.) Consider the magnitudes of the
output elasticities α and β. Under CRS, reasonable
values of these two parameters would be α = 0.8
and β = 0.2. By “reasonable,” we mean that con-
siderable empirical investigation of agricultural
production with the Cobb–Douglas production
function has yielded statistically estimated values
of closely equivalent parameters around this pair
of values. Now, what does it mean to say that the
output elasticity of labor is 0.8? A 1% increase in
the use of labor, holding constant the amount of
land used, will increase output by 0.8%. Doubling
your labor alone won’t double your output: such
a proposition ignores the fact that labor isn’t the
only thing that contributes to the production.
It would increase it by 80%. Correspondingly,
increasing your land by 1% would increase output
by 0.2%; doubling your land input would get an
additional 20% of your output.

Another especially popular functional form
for production functions is the so-called con-
stant elasticity of substitution, or CES, function:
Q = A[δN−ρ + (1–δ)L−ρ]−v∕ρ, where the elas-
ticity of substitution between inputs N and L is
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σ = 1∕1 + ρ, and the value of ρ is between posi-
tive infinity and –1.0. The A term is comparable
to the A term in the Cobb–Douglas function.
The parameter v indicates the returns to scale
(v = 1.0 for CRS). The δ coefficients represent
the intensity of use of the inputs, but are not
exactly comparable to the output elasticities of
the Cobb–Douglas; in fact the output elasticities
for the CES function are quite complicated for-
mulae rather than single parameters. The CES is
a much more difficult functional form to use for
analytical (as contrasted with empirical) study.
Nevertheless, this functional form allows the
elasticity of substitution between each pair of
inputs (all elasticities are constrained to be the
same value) to be greater or less than unity, which
can have significant implications for the demands
for inputs as their relative costs change. (We
have not discussed demands for inputs yet – or
demands for products for that matter; the con-
cept, applied to inputs, describes how much of
the input a producer will want to use, according
to its productivity and cost. The issue is of critical
importance in determining the distribution of
income in an economy among the owners of
various factors of production.) When the elastic-
ity of substitution in the CES function is unity
(σ = 1.0 when ρ = 0), the form collapses to the
Cobb–Douglas form; when σ = 0 (as ρ → ∞; in
other words, “goes to infinity”), it collapses to the
fixed-coefficients production function.

Considering the limitations of these two pro-
duction functions, we have to say a few words
explaining why they maintain their popularity.
Contemporary empirical (econometric) study
of production favors more sophisticated func-
tions, such as the transcendental logarithmic
(“translog”), which allows any degree of sub-
stitutability (or complementarity) between any
pair of inputs and allows substitutability to vary
along isoquants. This functional form has a
large number of parameters, which requires a
correspondingly large data base for statistical
estimation. In circumstances where data are
less readily available, the CES and even the
Cobb–Douglas are still used. In analytical uses
(just writing equations and diagrams with pencil
and paper), both the Cobb–Douglas and the CES
can demonstrate many interesting theoretical

issues while offering considerable mathematical
tractability (particularly the Cobb–Douglas).
The translog function would be quite difficult to
manipulate for heuristic purposes, and would
offer little in the way of additional insights to
compensate for the greater trouble. The engi-
neering production functions we introduced
in section 1.1 generally are far more intricate
than any of these functional forms designed for
analytical or empirical research.4

1.6 Attributing Products to Inputs:
Distributing Income from
Production

After this brief excursion into functional forms,
let’s return to the issue of marginal products of
inputs. We’ve seen that the marginal (physical)
product (MPP) of an input is the contribution
that an increment of the input makes to total
output. Under conditions of constant returns to
scale, total output can be decomposed into a sum
of MPPs: in our case of producing cotton with
labor and land, Q = MPPNN + MPPLL. Now,
think of the cost of producing Q: we have to pay
for labor and land. Let’s put the cotton in terms of
its value by multiplying the entire equation by the
price of cotton, p ∶ pQ = pMPPNN + pMPPLL.
Now, thinking in terms of “wages” and “rents”
for labor and land (terms to which we will return
shortly), we can express the revenue from the
cotton we produced as pQ = wN + rL. The wage
rate (or the “price” paid for labor, by any other
name) is equal to the marginal physical product
of labor (which is actually in cotton) times the
price of cotton; and similarly for the rental rate
(or the “price” paid for using land this season).
If we were working in a barter economy (that
is, one in which money doesn’t exist and people
purchase one good directly with another), the
payments to labor and land (or to the people
who own those factors of production) are made
directly in the output, cotton. (What happens
to this simple equation when there are either
increasing or decreasing returns to scale? With
decreasing returns to scale, payment according
to marginal productivity will more than exhaust
the output – that is, there won’t be enough to go
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around; with increasing returns to scale, there’ll
be product left over after paying all the factors
their marginal products. This doesn’t cause as
severe a problem for marginal productivity theory
of factor pricing – and the income distribution
theory based on that – as it might seem, but we’ll
have to come back to why.)

We can obtain more information out of this
cost relationship. We can divide our cotton
revenue-cost equation by the value of the cotton
output to get an equation in terms of cost shares:
1 = wN∕pQ + rL∕pQ, where wN∕pQ is the pro-
portion of the cost of cotton production that can
be attributed to labor and rL∕pQ is the propor-
tion attributable to land. These are commonly
called “cost shares” or “factor shares.” However,
it can be shown mathematically that these cost
shares are equivalent to the output elasticities of
their respective inputs: the percentage change
in output divided by the percentage change in
input, or the ratio of the marginal product to
average product of each input. Recall that w, the
wage rate, is the marginal physical product of
labor, times the price of the output, p; since we
have w∕p, the ps cancel and we’re left with just
the marginal physical product of labor. This is
multiplied by N∕Q, which is one over the average
product of labor; so the entire “share” expres-
sion is the marginal product of labor divided by
the average product, which is the definition of
the output elasticity of labor in the production
function.

Having introduced the concept of the factor
share, this is a good place to note that the elas-
ticity of substitution gains particular interest for
its role in determining the distribution of income
among the owners of factors of production. Sup-
pose for the moment that we have two principal
factors in our economy (or at least in our model
of our economy) – labor and land – and that
our economy produces a single good – food.
An abstraction, admittedly. If the elasticity of
substitution between land and labor in the food
production function is unity (1.0), a change in the
relative price of land and labor, caused possibly
by technological change, population growth,
expansion of arable, or some other major event,
will leave the factor shares unchanged. However,
if σ > 1, the share of the factor whose relative
price has fallen will increase at the expense of the
other factor. For example, with σ = 1.5, say, if the

relative price of land falls, land will be substituted
for labor to an extent that the relative share of
total income going to land will increase; since
there are only two factors, that of labor will fall.
If σ < 1, the relative income share of the factor
whose relative price has increased will rise at the
expense of the other factor.

1.7 Efficiency and the Choice
of How to Produce

Let’s return to our isoquant version of the
production function. Why should we pick one
point on it for our input combination rather
than any other? In Figure 1.6, the slope of the
isoquant at any point represented the rate at
which we could substitute land for labor (or labor
for land) and still produce the same amount of
output. That described our technological capa-
bilities. The negatives of sloped lines in that
diagram also represent the cost of land in terms
of labor – either minus the rental rate on land
divided by the wage rate of labor if we want to use
a monetary numeraire, or the number of units
of land we could rent if we were to trade a unit
of labor for it in the case in which there is no
money to use for a numeraire. Either way – with
money or without – the (negative of the) slope
of a line “in L–N space” represents the avail-
ability of land and labor to our producer. The
isoquant represents the technical ability to sub-
stitute land for labor and still produce the same
output, and a “price” or “cost” line represents
our producer’s ability to secure the services of
those two inputs. At a point of tangency between
such a price line and an isoquant, the producer
can substitute between labor and land in pro-
duction at the same rate at which he or she can
“hire” or “rent” them. In general, higher costs of
land relative to labor will prompt producers to
use higher ratios of labor to land; similarly for
ratios of any two inputs in proportion to their
relative costs.

This description of the conditions of efficiency
in production may sound fine as theory, but it is
legitimate to ask how real people might discover
such efficient allocations of their resources for
themselves. First, agents directing production
operations for themselves or for others can be
expected to have a good, first-hand idea of what
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their input costs are. Even if they do not hire
inputs on an open market in an easily measured
numeraire such as money, they can be expected
to have a good, working idea of what they would
have to pay in kind or cash for additional units of
each of their inputs. Next, how do they find out
about the rates of technical substitution in their
production technologies? Two ways: experience
and the pressures of competition. Experience is
self-explanatory by and large. Competition can
come from the interactions of a large number
of other individuals interested in bidding away
resources for other activities or in supplying the
same products as our agent under consideration.
Alternatively, staying a step or so ahead of the
grim reaper (competition with nature) can have
a similar effect in, as Dr. Johnson expressed it,
concentrating the mind wonderfully. Does this
mean that all societies at all times are perfectly
efficient? The answer is, naturally and obviously,
“No,” but neither can they be expected to leave
a lot of so-called “low-hanging fruit” around to
rot. Efficiency in any real conditions depends
on the users’ understanding of their technology
and, to some extent, on their understanding of
how their own societies operate and respond to
opportunities and incentives.

It is important for students of economies,
ancient and modern, to distinguish between
efficiency and productivity. Ancient agriculture
used low-productivity technologies, but chances
are excellent that ancient farmers used those
low-productivity technologies highly efficiently.
The ancient land transportation industry simi-
larly is invariably characterized as inefficient, a
quite unlikely state of affairs. Efficiency is a matter
of how close the marginal rate of technical sub-
stitution (along an isoquant) is to the marginal
rate of substitution of inputs as represented by
a relative price line in our diagrams or, more
generally, by producers’ ability to acquire an extra
unit of one input in exchange for some quantity
of another input. Productivity is represented
by how far from the origin of our diagrams an
isoquant representing a particular quantity of
output is located: a unit isoquant (representing
the quantity of inputs required to produce one
unit of output) closer to the origin uses fewer
inputs than one farther away, hence represent-
ing greater productivity. Efficiency refers to the
behavioral choice of where on that isoquant to

produce – that is, given a relative price of inputs
and the input substitutability within a technology,
how close to the maximum possible output the
producer gets from his resources. The differ-
ence in contemporary scholars’ attitudes toward
the people of antiquity, depending on whether
we view them as having been inefficient – with
all the other pejorative characteristics associ-
ated with that unfortunate state of being – or
efficient but burdened with unproductive tech-
nologies, could have broad consequences for our
own studies.

Economic efficiency is not a product of the
modern, industrial world, but is simply getting
the most out of one’s resources that one can,
subject to the institutional constraints one faces.
In Chapter 6, we’ll discuss the role of constraints
in modifying an absolute efficiency concept to
various forms of conditional efficiency. For a
consumption-oriented example, the absence or
poor development of information markets to
support the Roman housing market, as noted
by Frier (1977),5 probably did retard the rapid
matching of people wanting to occupy housing
with those having units available, but informa-
tion is a tricky good to produce, economically
speaking, as we will learn in Chapter 7. Given the
limited information available on housing, there
is little reason to suspect that people knowingly
made less of their resources in housing than they
believed they could. In pursuing the issue of
inefficiency in the Roman housing market fur-
ther, the tendency to execute long-term contracts
and the institutionalized payment after occu-
pancy rather than before or during both could be
ascribed to the limited production of informa-
tion. Introducing concepts from four subsequent
chapters in the quasi-empirical discussion of
efficiency is not a deliberate tease, but rather a
demonstration of the intricacy of the empiri-
cal application of the efficiency concept. When
ancient institutions supporting some activity do
not demonstrate the same capacities of flexibility
and overall productivity that typically accompany
corresponding activities in the post-World War
II period in the Western, industrialized nations,
it is simplistic, as well as just plain wrong, to
adopt the fallback position that those people did
not act economically or that their activities were
simply governed by social restraint. Better to
investigate the economic reasons for the ancient
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constraints, as Stambaugh has done regarding the
public services that were and weren’t offered in
Roman cities.6

1.8 Predictions of Production
Theory 1: Input Price Changes

Let’s exercise the theory a bit, using this last set
of relationships about picking the optimal input
ratios according to the prevailing price or cost
ratios. Figure 1.9 has a lot of lines in it, but we
can walk through them and take away the infor-
mation they convey. The production technology
is characterized by the family of isoquants Qi, of
which we have drawn just three. The amount of
output associated with the isoquants increases as
we move outward from Q0 to Q3. We begin with
the situation in which the relative price of land
and labor is characterized by line AA′, which is
tangent to isoquant Q0 at point 1. Our producer
(this “producer” might be an individual, a firm,
a family farm, a temple, or an entire region or
country) finds that it can produce the most output
with its technology by using L1 amount of land
and N1 labor. The line from the origin, RA, is
called an expansion path; it describes the com-
binations of land and labor that this technology
would employ if it were to expand at the constant
set of relative prices described by line AA (refer
to A′ as “A prime”). Let’s consider a change in
this situation: the relative price of labor drops
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Figure 1.9 Production responses to input price
changes.

from AA′ to AB. But before we proceed, how do
we know that such a counterclockwise pivot of
the price line around its intersection with the
ordinate (the land axis) represents a cheapening
in the relative cost of labor? Here’s one way.
Suppose that the actual intercepts of price line
AA with both axes represent the real resources
available to the producer: if the producer decided
to put all available resources into the acquisition
of land and none into hiring labor, OA is the
quantity of land that could be acquired (rented)
at the relative prices described by AA′. Alterna-
tively, if she were to devote all her resources to
hiring labor at the same relative price ratio, she
could hire the services of OA′ labor. (There’s no
good reason why any producer would want to
put all resources into just one input; this is just
a method of demonstrating a point.) Now, the
relative price changes to the line AB. With the
same resources, the producer could still rent OA
units of land but could hire OB units of labor,
which is considerably more than she could hire
under the relative prices of AA′. Consequently,
labor is cheaper relative to land under AB than
under AA′.

Now, the relative cost of labor has fallen, and the
production technology has remained unchanged.
The highest isoquant our producer can reach with
the resources characterized by the intercepts of
relative price line AB is Q2. The movement from
the input combination (L1,N1) to input combi-
nation (L3,N3) includes a substantial decrease in
the ratio of land to labor represented by the shift
from expansion path RA to expansion path RB.
This move includes both a substitution effect and
a scale-of-production effect. If we were to change
the relative price from AA′ to AB but restrict
the producer to the same level of production,
the input combination would still move toward
more labor and less land; the same relative price
of AB is reproduced in A′′B′ (refer to A′′ as “A
double-prime”), which is tangent to Q0 at point 2.
Here the producer uses less land than before
(L2 < L1) and more labor (N2 > N1), but still
produces the same amount of output. Since we’re
letting the change in the relative price reflect
a real change in the resources available to the
producer, she can expand her scale of production
to the point where some isoquant will be just
tangent to the new relative price line AB. The
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producer could produce only the amount of
output described by isoquant Q1, but she is able
to reach as great a scale of production as that
associated with Q2. The movement from point
2 on Q0 to point 3 on Q2 represents the scale
effect; land used rises from L2 to L3, and labor
hired rises from N2 to N3. This change in relative
price could represent an actual change over time
(or even instantaneously) in a single location or
a comparison of production choices involving
the same technology but different locations with
different resource availabilities.

Let’s consider a couple of applications of this
concept. Agricultural technology in Egypt and
Lower Mesopotamia during the middle of the
second millennium had much in common, to
avoid saying outright that it was identical. Similar
arrays of crops were grown with pretty much the
same array of tools and animals, and with com-
parable biological understanding on the parts
of the two societies’ farmers. Water supply in
Egypt was primarily by inundation, with various
lifting equipment, while the Mesopotamians
supplemented with a more extensive system of
canal irrigation, supplemented with comparable
lifting equipment. The different water-supply
systems may have altered the price of water rel-
ative to other inputs, such as seed, labor, animal
traction, and hand-held equipment between the
two regions. Different population densities would
have altered the relative availabilities (and hence
costs) of labor and land. We can expect that these
differences in relative prices would have had some
impacts on the ratios of a number of these inputs,
making Egyptian and Mesopotamian agriculture
look more different than they actually were at a
fundamental, technological level.

Correspondingly, dry-land agriculture in Upper
Mesopotamia, with its different relative cost of
water (relative to the other inputs such as labor,
land, and equipment) than existed in Lower
Mesopotamia, would have conferred a consider-
ably different appearance to agricultural practices
in the two regions. The seed/land ratios would
have responded to the land/water cost ratio, and if
more plentiful availability of water enhanced the
value of land in Lower Mesopotamia, we would
expect to have seen lower ratios of labor to land
in Upper Mesopotamia.

1.9 Predictions of Production
Theory 2: Technological
Changes

Consider another possible change or difference.
Figure 1.10 can represent either a technological
change facing a given producer or a difference
in technologies faced by producers at different
locations. Using the technology associated with
isoquant Q0, a producer facing relative prices
represented by AA would choose input combina-
tions along expansion path R0. Facing the same
relative prices but using a different technology,
represented by isoquant Q1 – in which the sub-
stitution of labor for land is more difficult at each
land-labor combination – a producer would use a
higher ratio of labor to land, represented by input
choices along expansion path R1.

Consider an example of technological change
later in antiquity – the Roman use of pozzolana
for a hard, strong cement. In addition to the
possibility of producing entirely new products
(structures) such as true arches, the increased
material strength would have permitted the
substitution of land used in structures to actual
construction material: buildings would have been
able to cover larger floor spaces because the rela-
tive price of material strength to land’s price had
fallen. Additionally, the ratio of usable space per
unit of land would have increased as the relative
price of its provision fell.

Not all changes in the way things are done
are technological changes. Some observations
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Figure 1.10 Production responses to a change in
production technology.
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in Laurence’s (1999, Chapter 5) recent study of
Roman roads can be used to illustrate this point.
Laurence notes that the apparent growth in the
use of basalt (silex or selce) in road paving from
the third century B.C.E. into the first century
C.E. may have been limited primarily (with
the glaring exception of the Via Domitiana) to
short stretches of “showcase” roads and some
city streets. He does not attempt to attribute
any part of the increase in its use to technolog-
ical improvements in quarrying this stone, and
indeed it is difficult to see the increase in use of
selce as representing a technological change. As
Laurence notes, the weathering properties of this
stone may have made it more conducive to foot
and pack animal traffic than to wheeled vehicles
(Laurence 1999, 72). Most roads in Italy contin-
ued for some time to be surfaced with compacted
gravel (glarea), but Laurence notes that these
roads appear to have been gradually upgraded
in quality: “the nature of the road surface and its
associated structures were upgraded and altered
to reflect changes in the available technology,
with a marked improvement in terms of the
speed of travel or the weight of goods . . . that
might have been transported” (Laurence 1999,
73). It is not clear that the gradual upgradings
cited here were indeed permitted by improve-
ments in construction or materials technology, as
opposed to having entailed simply more extensive
applications of the same technology in response
to demands for more roads to accommodate the
growth of traffic, in terms of both flow volumes
and weight of goods carried.7 It is possible that
technological changes in vehicle technology
and tackle for the animal prime movers could
have contributed to increased demands for road
durability, width, and speed qualities, but no
evidence is suggested that changes in actual
road construction technology occurred in these
particular upgrades. This is not to imply that
technological improvements in Roman road
construction did not occur, such as modifica-
tions of substructural support, use of sand and
pebbles for grading under paving stones, and
changes in preferred materials because of their
properties of cementation, durability, flexibility,
and so forth – changes that would have altered
isoquants for roads. The advances in bridge

construction that permitted wider valleys to be
spanned (Laurence 1999, 73–75) probably do
represent what would be represented by changes
in an isoquant (quantities and proportions of, and
substitutabilities between, labor, equipment, and
materials required to build a bridge of specified
dimensions). This discussion is not a semantic
or nomenclatural cavil, but an emphasis of the
distinction between a change in the isoquant
involved in constructing particular types of
infrastructure and growth in the quantity and
quality of infrastructure, because of an increased
demand for it, using a constant isoquant. The
importance of the distinction should be obvi-
ous: first, no one would want to confuse growth
without technological change for technological
change; and second, the implications for who
benefitted from the observed events are different
as the incomes of the owners of different factors
would have fared differently under the alternative
circumstances.

1.10 Stocks and Flows

In our discussion of factors, we have referred
to “renting” land, “hiring” labor, or the ambigu-
ous term “acquiring the services” of either. It is
intuitive to visualize the productive input called
“labor” as individual people and to think of their
use in a productive activity as occupying their
entire persons. Correspondingly with land: why
not just “buy” it and “use” it as much as you want?
We have deliberately avoided including physical
capital, or items of equipment, among our factors
of production, for reasons to be discussed below,
but the same issue arises very clearly with equip-
ment. If we use a hammer among our inputs, what
is the relation between “owning” the hammer and
“using” it?

For each type of input, it is useful to distinguish
between the stock of the input and the flow of
services derived from a unit of it in each time
period. The form in which a stock of labor appears
is the individual person; even if the person hap-
pened to be owned by the agent organizing the
production (a case of slavery), only the services
of the person are used in production during any
period. Moving to a less potentially controversial
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case, consider the hammer we just introduced.
Treated reasonably carefully, a hammer will
last several periods; we can use it this period,
next period, the period after, and so on. In each
period, we use the services of the hammer. The
services are derived from the “stock” of hammer,
and it might be possible to eventually “use up”
the stock of hammer – i.e., either wear it out
gradually or break it all of a sudden, just through
regularly conscientious use. Consider land. Land
sometimes is (was) thought of as an “original
and indestructible” factor. However, land can be
“overused” and its fertility exhausted. Farmers
routinely conduct maintenance of one kind or
another on their land to keep it from washing
away through erosion, burning out through
salt accumulation, or otherwise becoming less
productive.

Production theory works with flows of services
of factors during a given period of time. These
flows are derived from a stock that embodies the
factor. The acquisition cost of a flow of services
from a factor for one time period generally is sub-
stantially lower than the acquisition cost of the
stock of the factor. It will be helpful to maintain
a conscious distinction between stocks and flows
in many contexts; ignoring or confusing the two
concepts can lead to serious analytical errors.

1.11 The Distribution of Income

We should say a few words about the distribution
of income at this point. First, what do we mean
by the distribution of income? There are two
principal interpretations of this expression, the
functional and the personal distributions. The
latter is possibly more intuitive: it refers to how
total income in the economy is distributed among
individuals or families. Frequently it is measured
by the Gini coefficient, whose numerical values
can be interpreted as degrees of skewness. For
instance, in a number of Latin American coun-
tries in the 1950s and 1960s (and later as well),
the 1 to 2% of families with the highest incomes
in the country received around 20 to 30% of total
national income, and the top 10% about 50%,
while the bottom 60% received around 20% (Jain
1975, 24 Table 13, 89 Table 57; Fishlow 1976,

61 Table 1, 72 Table 5; Webb 1976, 12 Table 1,
13 Table 2; Weisskoff 1976, 35 Table 1, 38–39
Table 2). They also held a similar proportion of
national wealth (a stock-flow distinction). The
20% of families receiving the lowest incomes
pulled in about 5% of national income. Together
with the people somewhere in the middle, these
numbers represent the personal distribution of
income in these countries. The personal dis-
tribution of income has considerable political
importance, as it is easy to imagine. These coun-
tries may be a reasonable benchmark against
which to gauge personal income distribution in
antiquity.

The functional distribution of income describes
the proportions of total income in the economy
going to particular factors of production (land,
labor, capital), or more specifically, to the owners
of those factors. A functional distribution of
income underlies each personal distribution of
income: the factors still produce the income,
regardless of who owns them. Following the
neoclassical model of the functional distribution
of income, the factor shares (proportion of input
costs accounted for by each factor of production)
from individual production functions can be
aggregated across the economy to reach aggregate
factor shares, which amounts to the functional
income distribution. One of the very handy
features of the way we have studied production is
that, under constant returns to scale, the output
elasticity of each factor (of production) equals
its share of income from a production process.
Proceeding to the level of the aggregate economy,
it is not difficult to find that, with a land output
elasticity of 0.15, a capital output elasticity of
0.05, and a labor output elasticity of 0.8, labor
claims 80% of total income in the economy, the
owners of land 15%, and the owners of capital
5%. These output elasticities are characteristic of
the output elasticities of “traditional” agriculture
(i.e., the agricultural sector that uses animal
and human power rather than fossil fuels and
natural rather than chemical fertilizers) over
the past several decades. Of course, if 5% of
families end up with 40% of income, we need
to look into how some of the labor income of
the bottom 95% of families is being captured
by the 5%.
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The neoclassical theory of income distribu-
tion has been criticized from several directions,
primarily for its use of the construct of aggre-
gate capital rather than a plethora of individual
items of equipment and because “market imper-
fections” (a term we have not discussed yet,
generally used to refer to departures of industry
structure from that of perfect competition; see
Chapter 4) cause the incomes to factors to differ
from their values of marginal product (which
equality is what lets us associate the output elas-
ticities with factor shares). The most important of
these disagreements about neoclassical income
distribution theory is known in the economics
literature as the Cambridge Controversy, or
sometimes the Cambridge–Cambridge Contro-
versy; the leading critics of neoclassical income
distribution theory have come from Cambridge
University, in England, while its most cogent
defenders were at the Massachusetts Institute of
Technology, in Cambridge, Massachusetts in the
United States. We will not devote much space
to that discussion; the most telling criticisms of
neoclassical distribution theory appear to have
their strongest force in situations that are not
particularly important empirically, and abandon-
ing the simplicity and power of the neoclassical
theory would leave us effectively without an alter-
native theory of functional income distribution.
So, as is the case with many theories in science,
while it may not be perfect, it will get us by until
a superior theory emerges, which to date has
not occurred.

It is easy to see that neoclassical distribution
theory relies on both supply and demand influ-
ences to arrive at a distribution of income. Output
elasticities in production functions are clearly
and purely technological parameters. However, it
is the value of marginal product that determines
factors’ shares; value of marginal product of any
factor is the price (value however expressed) of
the product times the marginal physical product
of the factor – the physical amount of what it
produces. Prices reflect individual and group
valuations – that is, the foundations of product
demand, which we discuss in Chapter 3.

Using neoclassical income distribution theory
gives us a baseline, functional distribution of
income that “should have” appeared in many
of the ancient Mediterranean and Aegean

economies, considering their production tech-
nologies. To the extent that we can get occasional
glimpses from either textual or artifactual records
that the personal distribution of income (which
may be easier to observe for those places during
the long periods of antiquity) that differ sub-
stantially from the 15-5-20 distribution we noted
in the previous paragraph, there is a need for
explanation. Neoclassical income distribution
theory gives us an implicit baseline that needs
explanation. Some combination of taxation,
tribute, slavery, and imperfect markets (monop-
olization of some productive activities is one
such imperfection) are obvious candidates. More
subtle possibilities derive from other market
imperfections, including the possible absence of
markets for such items as insurance of various
sorts (see Chapter 3, on consumption, for a dis-
cussion of risk and insurance, although there is
no treatment there of the absence of insurance
provision). Other theories of the personal distri-
bution of income would assist in this explanation,
but since some of the most incisive of those
theories rely on concepts we have not introduced
yet, we defer further discussion of them to a
later chapter.

Before leaving the subject here, however, we
offer a brief preview of what to expect in the
way of the analytical treatment of income dis-
tribution. So far, we have treated production in
a partial-equilibrium approach. The alternative
is a general-equilibrium approach. Partial equi-
librium describes situations in which either the
problem under study has few and small enough
connections to other parts of the economy that
we can safely ignore them, or that the extension
to general equilibrium brings sufficient com-
plications that we need to walk before we run
and learn what we can on the assumption that
those interactions are insignificant. One thing
that happens in general equilibrium analyses
that generally doesn’t in partial equilibrium is
that the distribution of income can change as
a consequence of some of the changes under
study. A change in the income distribution can
lead to a change in aggregate demand because
the consumption patterns of major groups of
individuals differ. For instance, a shift in income
from labor to owners of capital might precipitate
a shift in demand from basic foods to “luxuries”
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or from consumption to saving. We are getting a
bit ahead of ourselves now, because we have yet
to introduce the study of demand, but we believe
there is sufficient intuition about what “demand”
and “consumption” involve for the reader to take
away a satisfactory preview impression of what
to expect in the general equilibrium analysis of
income distribution.

1.12 Production Functions
in Achaemenid Babylonia

Matthew Stolper’s analysis of tablets from the
Murašû Archive (Stolper 1985, Chapter VI)
contains a number of tables showing various
inputs into agricultural operations and some
indicators of outputs: numbers of oxen or cows;
equipment such as plows and harness; rental
prices, in terms of grain, of these variable inputs
and land, and the apparent rent on land; outputs
of barley; influence of a plot’s location adjacent
to a canal, which of course offers a more conve-
nient supply of water as well as the possibility of
transportation of harvested crop. He infers the
considerable value of location next to a canal, but
otherwise a generally low price of land relative
to the costs of the moveable inputs. These are the
classic ingredients of a production function, but
analyzed without the benefit of the production
function as an organizing concept. At the risk of
using an interesting and excellent piece of work
as a negative example, Stolper relates outputs to
the quantity of a single input at a time, which
doesn’t take advantage of the information on how
the presence of one input affects the productivity
of another – with the exception of the water in
the canals, which he doesn’t really acknowledge
as another input. Also the production function
framework for thinking about everyday work
offers an adding-up discipline that is useful – it
helps the student account for everything that
goes into the production and relate those things
to everything that comes out. In a particularly
interesting subset of these texts, Stolper ran into
this adding up issue and intuitively recognized it
but did not appreciate the full implications of his
conclusions. We turn to this case.

Reinforcing, in his judgment, the conclu-
sion of typically low land prices are four texts

recording what Stolper calls “agreements to culti-
vate land in partnership” (130). It could be called
a share-rental agreement, such as is common
throughout both the developing and industri-
alized world today. These four texts describe
agreements (contracts) between owners and
renters of land, and Stolper interprets the agree-
ment in such a way that the land owner furnished
his land, both parties supplied animals, equip-
ment, laborers, and so on, in equal quantities, and
then they shared the crop equally. Stolper noticed
something odd about this arrangement – that it
didn’t leave any return for the people supplying
the land – but did not pursue the matter other
than to interpret the case as further evidence of
cheap land.

With the application of some simple production
theory, it’s easy to show that this interpretation
of the tablets implies that the land owners were
letting the renters use their land rent-free. Some
contemporary scholars would be inclined to favor
such an interpretation if they actually worked it
out themselves, but the issue of “free” land out-
side a distant frontier region, which this wasn’t,
raises more questions than it answers satisfacto-
rily. An alternative interpretation of these results
is that the tablet evidence was incomplete but was
translated as if it were complete.

If the land owner supplies the land and half of
everything else and the other fellow supplies half
of everything else, how do you decide what the
income share of land, labor, equipment, and so
forth, are? If 50% goes to half of the labor input
(the “other fellow”) and 50% goes to half the labor
income and all the rental (land) income, what
are the shares of labor and land in production?
If you’ve looked at these numbers and thought
that something was funny, you’re right. Follow
this: Let sN be the share of labor’s contribution
to the output and sL be land’s share (the “share”
concepts from production theory – they refer to
the share of the output produced by the specified
inputs; the shares will add up to 1). Start with
the “other fellow”: he gets half of labor’s share of
output and that’s it; that is equal to half of the
total product. In other words, 0.5sNR = 0.5R.
Now, the land owner gets the other half of the
output, while his contributions are half of the
labor and all of the land. So he has a claim on half
of labor’s contribution to output plus all of land’s
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contribution to output. Expressed as an equation,
that is: 0.5sNR + sLR = 0.5R. Now, from the
other fellow’s equation we get the solution that
sN = 1.0; plug that into the land owner’s equation
and we get the result that sL = 0. We could set
this up as a set of two simultaneous equations (sN
and sL are the variables) and use matrix algebra to
get numerical solutions for sN and sL, and we also
get sN = 1 and sL = 0. The social interpretation of
this is that the contribution of land to production
was zero – at least if people were able to claim
what they had produced. (You may ask: “but
how did they know what they, or the inputs they

supplied, produced?” Answer: observation and
passing down the information in a social infor-
mation storage and retrieval system.) Either the
land in question was at the absolute spatial edge
of economically usable land (along the lines of the
von Thünen model; see Chapter 11), leaving zero
revenue net of transportation costs for land rent,
or the observations are questionable. Actually,
one of the observations simply has to be wrong;
what’s questionable is which one it is – that they
split the output down the middle, or that they
each supplied half of everything else.
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Notes

1 Section 1.5 shows the full expressions of some popu-
lar production functions. These formulas are called
“functional forms.”

2 Lucas and Harris (1962, 150–154) on dyeing;
Forbes (1954, 249–250) on dyeing; Moorey (1994,
144–150 on firing pottery, 240–301 on base met-
als). Moorey (1994, 150) notes the fact that kilns
permit more efficient use of fuel; translated into
the language of the production function, there is a
tradeoff between the use of capital embodied in a
kiln and the amount of fuel used in the production
of a given quantity of pottery. Lucas and Harris
(1962, 371–372) hint at the capital–fuel tradeoff
as Egyptian potters moved from simply covering
the pots to be baked with a heap of animal dung in
Pre-Dynastic times and using straw, chaff, reeds,
and so forth, for fuel, to surrounding the heap with
a low, clay wall and the dung covering replaced by
clay, to finally a true kiln, the use of which must
have been well established by the Early Kingdom.

3 A sample of metals analyses: Boni et al. 2000;
Stos-Gale 2001; Stos and Gale 2006. A sample of
ceramic analyses: Freestone 1995; Vaughan, 1995;
Vandiver and Tumosa 1995; Hein and Mommsen
1999; Belfiore et al. 2007; Quinn and Day 2007.

4 For instance, the production function Smith (1961,
44) derived for the multiple-pass regeneration pro-
cess (use of fuller’s earth as a catalyst in purifying
vegetable oil) is y = Ax1[1 − BrγX2∕x1 ], where A =
α∕1–r,B = r1−[θf∕(θf+θr)], and γ = H∕β(θf + θr).

The output level of purified oil is y, x1 is the quan-
tity of fuller’s earth, and X2 is the capacity of the
adsorptive equipment (the capital). The definitions
of the engineering parameters are: r is the capacity
of the adsorbent after its regeneration relative to
before; θf is the hours per pass in the filtering
phase of the process and θr is the regeneration
time per pass; H is the hours per year of oper-
ation; α is a proportional constant representing
the ratio of output in the initial pass to the size
of the adsorbent charge in that pass; and β is the
corresponding ratio of the adsorbent facility to the
initial adsorbent charge. The specialization of the
engineering production function to the process
(or product) it describes is responsible for this
complication. While the Cobb–Douglas, CES, and
translog functions can be used to approximate
this process as well as innumerable others, the
engineering production function can yield insights
into the choice behavior toward one specific pro-
cess or product, contingent upon the technology.
Whether the engineering information available
on many ancient production processes, such as
various metallurgical operations, is sufficient to
develop engineering production functions along
these lines or not is less important than the alter-
native perspective on ancient production behavior
that this concept opens. The production function
focuses our attention on the choices available
to ancient producers, within the confines of the
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technologies they used, somewhat expanding our
horizons beyond the relatively rigid combinations
of materials and time incidentally implied by strict
readings of many of the physical science studies of
these ancient technologies.

5 I say “consumption-oriented” because the produc-
tion of housing is implicit in the example, as well as
consumption. We deal with some of the peculiarities
of housing as a good in Chapter 12.

6 Stambaugh (1988, Chapter 8) identifies the public
services offered in contemporary (implicitly United

States) and ancient Roman cities and considers
a number of reasons for the absences of public
(or even private, sometimes) provision of some of
them in the ancient cities. He explicitly declines to
apologize for what he believes some readers may
consider the use of “modernizing” concepts.

7 This is a matter of the “derived demand” for
roads – a demand derived from people who want
to travel and carry things. We’ll introduce derived
demand in Chapter 2.


